Pf4 Pharmacophores and Their Uses

Information

  • Patent Application
  • 20080305041
  • Publication Number
    20080305041
  • Date Filed
    November 21, 2005
    19 years ago
  • Date Published
    December 11, 2008
    16 years ago
Abstract
The invention provides a novel PF4 pharmacophore that is useful, inter alia, for identifying peptidomimetics and other compounds capable of modulating PF4 activity (e.g., as inhibitors, agonists or antagonists). Mutant PF4 polypeptide sequences are also provided that modulate PF4 activity in cells.
Description
1. FIELD OF THE INVENTION

The present invention generally relates to compositions and methods for modulating PF4 activity and, more specifically, to compositions and methods for modulating such PF4-mediated processes as angiogenesis, cell proliferation, cell migration and immune system processes. In particular, the invention relates to pharmacophore molecules that emulate the three-dimensional structure of a pharmacophore on the mature wild-type human PF4 molecule and to mutants or variants of such pharmacophore molecules, as well as to mimetic compounds (for example, peptidomimetics or small molecules) that have a pharmacophore or pharmacophore-like three-dimensional structure that is substantially the same as that of a PF4 ligand, or that differs in a function-determining aspect from a PF4 ligand and are capable of modulating PF4 activity. The invention also relates to methods of using such mimetic compounds to modulate PF4 activity, as well as to screening methods for identifying further mimetic compounds, including small molecules.


2. BACKGROUND OF THE INVENTION

Chemokines are a superfamily of structurally related, secreted, chemotactic peptides primarily affecting leukocyte migration during the inflammatory response. Their sequences are similar and are characterized by a 4-cysteine motif at the N-terminus. Structurally, all family members have a flexible N-terminal region followed by a loop, then three antiparallel beta strands and a single C-terminal alpha helix. One sub-class of chemokines, designated CXC, contain an intervening residue between the first two N-terminal cysteines. IL-8 is the most well-characterized CXC chemokine, but others include Gro-α and Gro-β, platelet factor-4 (PF4) and IL-10. CXC chemokines signal through receptors designated CXCR, where R designates an integer selected from the group of 1-6. All known CXCR are G-protein-coupled receptors having seven transmembrane-spanning alpha-helix domains.


The CXC chemokines have been implicated in human acute and chronic inflammatory diseases such as arthritis, respiratory diseases, and arteriosclerosis, and also in some acute disorders such as heparin-induced thrombocytopenia. Several CXC chemokines function as agonists of platelet function and stimulators of neutrophils. Recently, some chemokines have been shown to regulate endothelial cell migration and proliferation, suggesting a role in angiogenesis (Murdoch et al., Cytokine 1999; 9: 704-712).


Platelet factor 4 (PF4), which is also known as CXCL4, is a member of the CXC sub-family of chemokines derived from platelets. A preferred PF4 amino acid sequence has been described (see, e.g., Poncz et al, Blood 1987, 69:219-223) and is available from the GeneBank Database (Accession No. P02776). This full-length PF4 amino acid sequence is also provided here, in FIG. 1A (SEQ ID NO:32). The full-length PF4 amino acid sequence includes a signal peptide sequence that preferably comprises amino acid residues 1-31 of SEQ ID NO:32 (FIG. 1A). Typically, the signal peptide sequence is cleaved when the PF4 polypeptide is secreted by cells. Hence, preferred PF4 polypeptides of the invention are actually “mature” PF4 polypeptides, comprising amino acid residues 32-101 of SEQ ID NO:32 (FIG. 1A).


Other “variant” PF4 polypeptides are also known. For example, one preferred variant, referred to as PF4var1, has been described by Green et al (Mol. Cell. Biol. 1989, 9:1445-1451) and is available from the GeneBank Database (Accession No. P10720). This full-length PF4var1 sequence is also provided in FIG. 1B (SEQ ID NO:33). Like with wild-type PF4 (WTPF4) shown in FIG. 1A (SEQ ID NO:32), the PF4var1 includes a signal peptide sequence preferably comprising amino acid residues 1-34 of SEQ ID NO:33 (FIG. 1B), which is typically cleaved when the polypeptide is secreted by cells. Hence, preferred PF4var1 polypeptides are actually “mature” polypeptide that comprise amino acid residues 35-104 of SEQ ID NO:33 (FIG. 1B). For convenience, the PF4 polypeptides shown in FIGS. 1A and 1B (SEQ ID NOS:32-33) are referred to here as wild-type PF4 (WTPF4) and PF4var1, respectively. However, while the present invention is described (for convenience) primarily in terms of the mature WTPF4 sequence (i.e., residues 32-101 of SEQ ID NO:32), it is understood that both sequences represent polypeptide sequences of preferred, naturally occurring PF4 polypeptides. Similarly, other PF4 fragments, such as those fragments described in WO 99/41283 and the related peptides described in WO 01/46218 are also known.


PF4 is released from platelets during platelet aggregation, stimulates neutrophil adhesion to endothelial cells, and in the presence of co-stimulatory cytokines such as TNF, induces neutrophil degranulation in response to injury (Kasper et al, Blood 2003, 103:1602-1610). In addition, PF4 induces human natural killer cells to synthesize and release the related CXCL molecule IL-8, a potent neutrophil chemoattractant and activator (Marti et al., J Leukoc Biol. 2002; 72(3):590-7). PF4 also binds heparin with high affinity, resulting in the formation of immune complexes comprising PF4, heparin and IgG. These complexes lead to further platelet activation via binding of the IgG Fc to FcγRIIa receptors on platelets, resulting in thrombocytopenia and/or thrombosis in individuals receiving heparin.


Recently, PF4 was shown to bind directly to activated T cells and to inhibit their proliferation as well as the release of IFN gamma (Fleischer et al., J Immunol. 2002; 169(2):770-7). In addition, a peptide comprising amino acid residues 34-58 of PF4 produced a 30-40% inhibition of proliferation of murine hematopoietic progenitors (Lecompte-Raclet et al., Biochemistry. 2000; 39(31):9612-22). This activity has been attributed to the alpha helical motif at positions 34-58 of PF4, allowing a DLQ motif at position 54-56 to bind to the progenitor cells. Inhibition of human leukemic/megakaryocyte cell lines by PF4 was also dependent on certain C-terminal residues (residues 1-24 and 13-24 but not residues 16-24) (Lebeurier et al., J Lab Clin Med. 1996; 127(2):179-85). Abrogation or enhancement of PF4 inhibitory activity could be altered by mutations at specific residues within the 13-24 region.


Another important inhibitory activity of PF4, in particular of a C-terminal fragment comprising amino acid residues 47-70, is its anti-angiogenic activity. PF4 inhibits angiogenesis by binding to fibroblast growth factor 2 (FGF2) and preventing FGF-2 binding to vascular endothelial cells (Hagedorn et al., FASEB J. 200; 15(3):550-2). PF4 also disrupts binding of vascular endothelial cell growth factor, a mitogen for endothelial cells, thereby inhibiting its activity (Gengriniovitch et al., J. Biol. Chem. 1995; 270(25):15059-65). Modified C-terminal fragments of PF4 containing the sequence ELR (or the related modified motif DLR) had several times greater anti-angiogenic activity than the unmodified peptide (Hagedorn et al., Cancer Res. 2002; 62(23):6884-90). A single amino acid residue mutation at residue 52 (Cys52Ser) abolished all inhibitory activities (Hagedorn et al., 2001, supra). The conformation of the C-terminal inhibitory fragment in solution has been determined and has been found to be composed of two helical subdomains which interact with FGF in a specific 1:1 complex. Both subdomains are likely required for inhibition of fibroblast growth factor-driven mitogenesis (Lozano et al., J. Biol. Chem. 2001; 276(38):35723).


Recently, a splice variant of a previously known CXC receptor, CXCR3, was shown to bind PF4 with high affinity and act as a functional receptor for PF4 (Lasagni et al., J. Exp. Med. 2003; 197: 153749). Overexpression of this variant, designated CXCR3-B, in a human microvascular endothelial cell line, resulted in reduced DNA synthesis and in increased apoptosis.


NMR and crystal structures of PF4 demonstrate that the molecule exists as a homotetramer (Mayo et al., Biochemistry. 1995; 34(36):11399-409; and Zhang et al., Biochemistry. 1994; 33(27):8361-6). As described above, different residues from distinct structural motifs in the monomeric form of PF4 have been identified that confer specific activities to the molecule. However, there remains a need in the art for peptidomimetics, as well as for small molecule analogues that can mimic or preserve the functional groups on the amino acid residues within these motifs, for use as specific modulators of the immune response and angiogenesis.


Studies using a fluorescently labeled human recombinant PF4 purportedly show that the molecule preferentially binds at regions of active angiogenesis in vivo. Hansell et al., Am. J. Physiol. (1995) 269 (3 Pt 2):H829-836. This has led to the suggestion that PF4 might be useful as an imaging marker for angiogenesis in certain types of tumors, particularly in breast cancer tumors. Borgstrom et al. (Anticancer Res. (1998) 18(6A):4035-4041) and Moyer et al. (J. Nucl. Med. (1996) 37(4):673-679) describe using a 99mTc-labeled polypeptide that is said to contain the heparin-binding region of PF4. This peptide, which Moyer et al. refer to as P483H, is said to provide high contrast images of infection in vivo. The utility of PF4 as an imaging agent is limited, however, by the molecule's short half-life in blood plasma. Hence, there is a need for molecules, including peptidomimetics and small molecules, that can mimic or preserve the binding activity of PF4, and serve as useful imaging agents in vivo.


The development of such molecules requires elucidation of the entire pharmacophore structure for PF4 and/or PF4 variants (for example, PF4var1), and precise identification of essential and non-essential functional groups for a given activity.


The citation and/or discussion of a reference in this section and throughout the specification is provided merely to clarify the description of the present invention and is not an admission that any such reference is “prior art” to the invention described herein.


3. SUMMARY OF THE INVENTION

In response to one or more of the foregoing needs for PF4 activity modulation, the present invention provides novel pharmacophores that are useful, inter alia, for identifying novel compounds, such as novel peptidomimetics or small molecules, that are PF4 agonists or, alternatively, PF4 inhibitors. In particular, the invention provides a PF4 pharmacophore having at least 7 and preferably 10 functional groups, as set forth in Table 1, infra, and arranged in three-dimensional space in a manner that is substantially identical to the arrangement of corresponding functional groups in a PF4 polypeptide (see, for example, FIGS. 2A-2B); provided, however, that the pharmacophore is not PF4 itself nor any of the foregoing peptides discussed above as being in the prior art.


In a preferred aspect, the invention provides methods for identifying novel or existing compounds interacting with PF4 and/or having PF4-like or PF4 antagonistic activities. Such compounds include peptidomimetics and small molecules. Entities identified according to these methods can be either designed (e.g., in silico) and synthesized, or they can be selected from an existing compound library, e.g., by screening in silico. Entities identified according to these methods will modulate PF4 activity as agonists, antagonists, or inhibitors. In some embodiments, these methods comprise comparing a three-dimensional structure for a candidate compound to a three-dimensional structure of a PF4 pharmacophore (preferably a PF4 pharmacophore as substantially described herein). The three-dimensional structures for many compounds that can be screened according to these methods have already been elucidated and can be obtained, e.g., from publicly available databases or other sources. Alternatively, where the three-dimensional structure of a candidate compound has not yet been elucidated, its structure can often be determined using routine techniques (for example, X-Ray diffraction or NMR spectroscopy). Similarity between these three-dimensional structures and associated intramolecular characteristics (such as hydrogen bond forming properties as proton donors or acceptors, hydrophobic interactions, sulfide bond forming properties and electrostatic interactions) would predict that the candidate compound is a compound that modulates PF4 activity. In particular, the root-mean square deviation (RMSD) between the two three-dimensional structures is preferably not greater than about 1.0. The preselected compounds can then be tested as to whether they have the desired activity, in the presence of the pharmacophore molecule or in the presence of native PF4, the latter in vitro or in vivo. Alternatively, a PF4 mimic displaying the PF4 pharmacophore could be a “stand-in” for PF4 in in vitro screening libraries of compounds for those, if any, that have PF4 modulating activity.


In other embodiments, the invention provides PF4 mimetics, which can be mutant PF4 polypeptides that modulate (enhance or impede) PF4 activity in cells. The mutant PF4 polypeptides of the present invention preferably comprise the mature PF4 amino acid sequence set forth in FIG. 1C (SEQ ID NO:1) or a fragment thereof containing at least residues 5 to 23 with one or more amino acid substitutions in the 11 key residues that form the pharmacophore of the present invention. For example, and not by way of limitation, it is understood that wild-type PF4 (WTPF4) and variants thereof (e.g., PF4var1) interact with heparan sulfates through its lysine amino acid. In this predominant pathway, PF4 acts as an antiangiogenic agent by interacting with the surface of endothialial cells. Hence, in one embodiment, the amino acid substitutions include at least one substitution on the pharmacophore that affects PF4 binding to heparan sulfate, such as the amino acid substitutions Lys61→Gln, Lys62→Glu, Lys65→Gln and/or Lys66→Glu. Heparan sulfate binding can be preserved, lessened or increased. Particularly preferred examples of this embodiment are described in detail, below, and include a mutant that is referred to here as PF4-M1 (SEQ ID NO:2) described in the Examples, infra (see, in particular, Tables 3-4 below).


In other embodiments of PF4 mutants, the amino acid substitutions include substitutions in the DLQ sequence motif, such as one or more of the amino acid substitutions Gln9→Arg, Gln9→Ala, and Asp7→Ala. Other preferred amino acid substitutions include one or more of Leu11→Ser, Val13→Gln, Thr16→Ala, Gln18→Ala, Val19→Ser and His23→Ala. It should be noted that mimetics of these PF4 mutants are also within the invention, as long as the three-dimensional structure and intramolecular properties of the original and mutated key residues (including the modifications thereof) are preserved. There is also considerable freedom in linker structures present between key residues of the PF4 mutant or of its mimetic, again as long as the three-dimensional structure is preserved. For example, the invention additionally provides, within its scope, mutant PF4 polypeptides that comprise one or more amino acid additions or deletions, in addition to any of the key residue substitutions described above. Preferred mutant PF4 amino acid sequences of the invention comprise an amino acid sequence as set forth in any of SEQ ID NOS:2-30. See also, Table 3, infra.


Mutants used for validation of the pharmacophore are not active since the point of such mutagenesis is to replace one or more residues that are believed to be important for activity, with other residues that are believed to be unimportant for activity (i.e., the replacement of such residues is expected to abolish or modulate activity). If the mutant is deprived of all (or even some) biological activity compared to the wild type molecule, this means that the residue is crucial for biological activity and should be included in the pharmacophore definition.


The nature of the mutation can also be crucial. For example, it may not be beneficial to replace a hydrophilic residue with one that is hydrophobic (for example, alanine) since both will typically lead to the same type of interaction. The environment of the residue selected for mutation can also be crucial. For example, a mutation may give misleading positive or negative results because neighboring residues compensate (e.g., by conformational change) for the constraints imposed or released by the mutation. This can lead to erroneous interpretation of the results. In addition, the nature of the mutation is preferably chosen to avoid a shift of activity of PF4 toward IL8. Otherwise, the resulting mutant may have IL8-like properties.


The coordinates of the validation mutants described here are not important since the mutants have no interesting biological activity. The mimetics of PF4 can be readily determined with the pharmacophore. If the “candidate mimetic” fits on (i.e., is three-dimensionally superimposable with) the pharmacophore, it is a real mimetic. If the candidate contains only a part of the pharmacophore it can be an antagonist, capable of binding the protein target and competing with PF4 but not capable of activating the target. At least one such mimetic is provided in the present invention, and discussed in detail below.


In preferred embodiments, the present invention provides novel compositions that modulate PF4 activity, e.g., as PF4 agonists and/or antagonists. For example, the invention provides a compound having the following chemical formula:







Still other compounds provided by the invention are set forth in Formulas II through VIII illustrated in FIGS. 8 and 9A-9B. In addition, peptide based compounds are provided that can be used, e.g., as PF4 agonists and/or antagonists in accordance with the invention. These include the peptides referred to in the Examples, infra, as P34-56 (SEQ ID NO:157), P37-56 (SEQ ID NO:158), P34-53 (SEQ ID NO:159) and P35-53 (SEQ ID NO:160). A particularly preferred PF4 agonist is the peptide moiety P34-56 (SEQ ID NO:157), whereas the peptide moiety P34-53 (SEQ ID NO:159) is a particularly preferred PF4 antagonist.


In other embodiments, the invention provides detectable markers that are useful for detecting PF4 binding sites, such as PF4 receptors. These detectable markers generally comprise a PF4 antagonist of the invention with a detectable label conjugated thereto. Generally speaking, these detectable markers can be used to detect PF4 binding sites in an individual (for example, in a medical imaging technique such as MRI) by (a) administering the detectable marker to an individual; and (b) detecting the detectable marker's presence in the individual. Previous reports have indicated that PF4 preferably binds to sites of infection and/or angiogenesis in individuals, and can be used to detect certain tumors such as breast cancer tumors. Hence, the methods of this invention can also be used to detect sites of infection and/or angiogenesis in an individual.


These and other aspects of the present invention are described in detail in the following sections.





4. BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-C depict amino acid sequences of preferred PF4 polypeptides. FIG. 1A depicts the amino acid sequence (SEQ ID NO:32) of the full length PF4 polypeptide sequence from GenBank (Accession No. P02776). This full length PF4 polypeptide includes a “signal sequence” (residues 1-31) and a “mature” PF4 sequence comprising amino acid residues 32-101. FIG. 1B depicts the amino acid sequence (SEQ ID NO:33) of a preferred variant, PF4var1. This variant also includes a “signal sequence” (residues 1-34) and a “mature” sequence comprising residues 35-104. FIG. 1C depicts the amino acid sequence (SEQ ID NO:1) of a preferred, mature human PF4 polypeptide (residues 32-101 of SEQ ID NO:32). Dotted lines in FIG. 1C indicate covalent bonds between cysteine amino acid residues. Shaded portions of the sequence in FIG. 1C correspond to the DLQ binding motif (residues 7-9 and 54-56 of SEQ ID NO:1), which is part of the pharmacophore of the invention, and the heparan sulfate binding domain (residues 22-23, 49-50 and 61-66 of SEQ ID NO:1).



FIGS. 2A-2B illustrate the placement in three-dimensions of all ten key functional groups of the PF4 pharmacophore of the present invention. FIG. 2A shows the three-dimensional structure of the mature PF4 polypeptide backbone, based on the coordinates set forth in the Appendix, and highlights ten important functional groups, some of which are on the same residue. Amino acid residues containing functional groups of the pharmacophore as displayed on the native mature PF4 molecule are shown with each functional group of the pharmacophore circled and labeled with a roman numeral. The geometric arrangement of different functional groups in the native PF4 pharmacophore (or in a pharmacophore according to the invention that is a mimetic of PF4) is illustrated in FIG. 2B, with lines indicating the distances between each pair of functional groups, which are labeled with the same roman numerals used in FIG. 2A. Spheres designated with concentric circles indicate functional groups that are hydrogen bond acceptors, whereas grey spheres denote hydrogen bond donors. The black balls adjacent to these functional groups indicate a reference point A that gives the direction of an ideal hydrogen bond at each of these functional groups. For an explanation, see Example 6.2.5, infra. The wire mesh drawn around the hydrophobic functional groups VIII, IX and X indicates the preferred volume of a hydrophobic zone around those points.



FIGS. 3A-3B illustrate the placement and bonding potential in three-dimensions of the PF4 pharmacophore of the invention in Cartesian and spherical coordinate systems having the same origin. FIG. 3A illustrates the placement in three-dimensions of all ten key functional groups of the PF4 pharmacophore in Cartesian and spherical coordinate systems having the same origin. FIG. 3B illustrates the placement of the hydrophobic volume around pharmacophore point VI in the coordinate system of FIG. 3A as well as the direction of one of two potential hydrogen bonding vectors from pharmacophore point V and its corresponding hydrogen bonding potential surface area.



FIG. 4 illustrates hydrogen bond donating and hydrogen bond vectors and potential spheres. Ideal hydrogen bonding potential spherical caps are calculated and shown bisected at ¼ the length of the hydrogen bonding vector which corresponds to the ideal hydrogen bonding surface area for polar pharmacophore points



FIG. 5 illustrates the chemical structure of BQ-A01104, a particular compound which comprises all ten of the PF4 pharmacophore points listed in Table 5, below, held structurally rigid by a scaffold conceptualized as seven distinct subunits or “zones.” with each of the ten pharmacophore points indicated by the corresponding Roman numeral and each of the structural subunits indicated by a corresponding Arabic numeral.



FIGS. 6A-6G, illustrate the structural subunits or “zones” in the scaffold of BQ-A01104.



FIG. 7 illustrates certain exemplary modifications that can be made to optimize the compound BQ-A011004.



FIG. 8 illustrates the complete chemical structures of the modified compounds (Formulas II-VI).



FIGS. 9A-9B illustrate the complete chemical structures of exemplary PF4 agonists. FIG. 9A shows the complete chemical structure of one preferred example of a PF4 agonist (Formula VII). The chemical structure illustrated in FIG. 9B (Formula VIE) represents a preferred example of the PF4 agonist with a contrasting agent conjugated thereto for to detect PF4 polypeptides, e.g., in a medical imaging assay such as magnetic resonance imaging (MRI).



FIGS. 10A-10B compare three-dimensional structures of the peptides P34-56 (SEQ ID NO:157) and P34-53 (SEQ ID NO:159) to the three-dimensional structure of the pharmacophore points in wtPF4 (SEQ ID NO:1). In FIG. 10A, a representation of the P34-56 peptide's (SEQ ID NO:157) three-dimensional structure is shown in the bottom half of the figure. A representation of the three-dimensional structure of the region from Asp7-His23 in wtPF4 (SEQ ID NO:1) is depicted above the peptide. In FIG. 10B, a representation of the P34-53 peptide's (SEQ ID NO:159) three-dimensional structure is shown in the bottom half of the figure, beneath a representation of the wtPF4 (SEQ ID NO:1) three-dimensional structure in the region from Asp7-His23. Amino acid residues in the P34-56 and P34-53 peptides (SEQ ID NOS:157 and 159, respectively) are labeled to indicate the residue of the full-length WTPF4 amino acid sequence (SEQ ID NO:1) to which they correspond.





5. DETAILED DESCRIPTION

The present invention pertains to pharmacophore molecules for a cytokine that is referred to here as Platelet Factor 4 or “PF4”. The PF4 cytokine is also known as CXCL4. The PF4 amino acid sequence has been previously described (see, for example, Deuel et al, Proc. Natl. Acad. Sci. U.S.A. 1977, 74:2256-2258; Walz et al, Thromb. Res. 1977, 11:893-898; and Poncz et al., Blood 1987, 69:219-223). The sequence is also available, e.g., on the GenBank databases (Benson et al., Nucleic Acids Research 2003, 31:23-27) under the Accession No. P02776 (GI No. 130304).


For convenience, the invention is described here primarily in terms of the mature PF4 polypeptide whose amino acid sequence is set forth in FIG. 1C (SEQ ID NO:1). This mature PF4 polypeptide is also referred to here as the mature wild-type PF4 or “WTPF4.” PF4 variants can also be used in the present invention. For example, the full length amino acid sequence of one known, preferred variant, which is referred to here as PF4var1, is depicted in FIG. 1B (SEQ ID NO:33). Preferably, the PF4 polypeptide used in the present invention is a “mature” PF4 polypeptide. Hence, in embodiments that use a variant PF4 polypeptide, such as PF4var1, the polypeptide preferably does not contain the signal peptide sequence (e.g. amino acid residues 1-34 of SEQ ID NO:33) but comprises the amino acid residues of the mature polypeptide (e.g., residues 35-104 of SEQ ID NO:33). Generally, the level of amino acid sequence identity between the mature sequence of a variant PF4 and WTPF4 (SEQ ID NO:1) will be high—e.g., at least 70% and more preferably at least 75, 80, 85, 90, or 95%. Also, any differences between a variant and a wild-type PF4 sequence (as opposed to the PF4 “mutants” described in the Examples, infra) preferably will not modify any points of the pharmacophore. Different PF4 polypeptide sequences can be aligned and their levels of sequence identity to each other determined using any of different known sequence alignment algorithms, such as BLAST, FASTA, DNA Strider, CLUSTAL, etc.


In the case of WTPF4, the full length PF4 cytokine (SEQ ID NO:32) is expressed as a polypeptide chain of 101 amino acid residues. The first 31 amino acid residues of this “full length” PF4 amino acid sequence correspond to a domain that is generally referred to as the “signal sequence domain,” whereas the remaining amino acid residues (i.e., residues 32-101 of SEQ ID NO:32) correspond to what is generally referred to as the “mature” PF4 amino acid sequence. On processing, the PF4 signal sequence domain is cleaved and the “mature” PF4 polypeptide, which exhibits PF4 cytokine activity, is secreted by cells. Hence, pharmacophore molecules of the present invention contain the pharmacophoric structure of the mature PF4. For convenience, a mature wild-type human PF4 amino acid sequence is provided in FIG. 1C (SEQ ID NO:1). As explained above, however, variants of this sequence can also be used in this invention. The full length sequence of one such variant, PF4var1, is provided in FIG. 1B (SEQ ID NO:33), of which amino acid residues 1-34 correspond to the signal sequence. Hence, a preferred mature, variant PF4 polypeptide comprises the sequence of amino acid residues 35-104 of the PF4var1 sequence depicted in FIG. 1B (SEQ ID NO:33).


The three-dimensional structure of PF4 has also been determined by both X-ray crystallography (Zhang et al, Biochemistry 1994, 33:8361-8366) and NMR spectroscopy (Mayo et al, Biochemistry 1995, 34:11399-11409). The coordinates of these structures are available on the Protein Data Bank (Berman et al., Nucleic Acids Research 2000, 28:235-242) under the Accession Numbers 1RHP and 1PFM, respectively. For convenience, a list of coordinates from a preferred three-dimensional structure for mature human PF4 is also provided here in a PDB file format, as an Appendix, infra.


5.1. PF4 Pharmacophores


The term “pharmacophore,” as it is used to describe the present invention, refers to a compound or molecule having a particular collection of functional groups (e.g., atoms) in a particular three-dimensional configuration. More specifically, the term pharmacophore refers to compounds possessing this collection of functional groups in a three-dimensional configuration that is substantially identical to their three-dimensional arrangement on a protein or other compound of interest (referred to here as the “prototype” protein or compound). The present invention concerns the prototype protein PF4. Hence, pharmacophores of the present invention preferably possess a collection of functional groups in a three-dimensional configuration that is substantially identical to their three-dimensional arrangement on PF4. For example, the RMSD between functional groups in a prototype compound of interest and in a pharmacophore should preferably be less than or equal to about one angstrom as calculated, e.g., using the Molecular Similarity module within a molecular modeling program such as QUANTA (available from Molecular Simulations, Inc., San Diego, Calif.).


Preferred pharmacophores are derived from the three-dimensional structure of the protein (preferably the mature or active form of the protein) or other prototype compound of interest that is experimentally determined, e.g., by X-ray crystallography or by nuclear magnetic resonance (NMR) spectroscopy. However, suitable pharmacophores can also be derived, e.g., from homology models based on the structures of related compounds, or from three-dimensional structure-activity relationships. For example, preferred pharmacophores of the present invention are derived from the analysis of point mutations in a PF4 polypeptide, and evaluation of the effects those mutations have on PF4 activity. Suitable PF4 pharmacophores can then be deduced or derived, e.g., by correlating the effects of such mutations to three-dimensional, homology models of a mature PF4.


In preferred embodiments of the invention, PF4 antagonists can be used to detect PF4 receptor molecules, or other PF4 binding sites. The usefulness of detecting such PF4 binding sites is well known in the art. For example, Moyer et al., (J. Nucl. Med. (1996) 37(4):673-679) have described a polypeptide, which they call P483H, that purportedly contains a heparin-binding domain of PF4. 99mTc-labeled versions of this polypeptide are said to provide high contrast images of infection in vivo. Others have suggested that PF4 might be useful as an imaging marker for angiogenesis in certain types of tumors—particularly in breast cancer tumors. Borgstrom et al., Anticancer Res. (1998) 18(6A):4035-4041.


Accordingly, the present invention also provides detectable markers that can be used to detect PF4 binding molecules (for example, PF4 receptor molecules) and PF4 binding. Such detectable markers generally comprise a PF4 antagonist having a detectable label conjugated thereto. The PF4 antagonist can be any compound that binds to a PF4 receptor or binding site without activating the receptor or otherwise inducing PF4-mediated activity. An example of one small molecule antagonist is illustrated in FIG. 9A, whereas FIG. 9B illustrates an exemplary embodiment wherein the antagonist has a detectable label conjugated thereto, e.g., as a contrasting agent for magnetic resonance imaging.


While FIGS. 9A-9B illustrate any embodiment where the PF4 antagonist is a small molecule, PF4 antagonists that are peptides, polypeptides or peptidomimetics can also be used in accordance with these methods. Hence, the invention also includes detectable markers that comprise, as a PF4 antagonist, any of the PF4 polypeptides set forth in SEQ ID NOS:2-30, or any of the PF4 peptides described in international patent publication nos. WO 99/41283 and WO 01/46218. These include any of the peptides set forth in SEQ ID NOS:34-156, described infra. Still other PF4 antagonist peptides are provided in the Examples, infra, including the peptide designated P35-53 (SEQ ID NO:159).


The PF4 antagonist moiety can be readily conjugated to a detectable label according to any technique that is well known and routine to a person having ordinary skill in the art. In preferred embodiments, the detectable marker is used to detect PF4 binding sites in vivo, for example in a medical diagnostic or imaging assay such as magnetic resonance imaging (MRI) or computer assisted tomography (CAT). The PF4 antagonist can be conjugated to any of a variety of contrast or detection agents for such uses, including metals, radioactive isotopes, and radioopaque agents (e.g., gallium, technetium, indium, strontium, iodine, barium, bromine and phosphorus-containing compounds), radiolucent agents, contrast agents, dyes (e.g., fluorescent dyes and chromophores) and enzymes that catalyze a calorimetric or fluorometric reaction. In general, such agents can be attached using any of a variety of techniques known in the art, and in any orientation. See, for example, U.S. Pat. Nos. 5,330,742; 5,384,108; 5,618,513; 5,804,157; 5,952,464; and 6,797,255. One or more water soluble polymer moieties, such as poly-ethylene glycol or “PEG,” can also be conjugated to the PF4 antagonist, e.g., to increase solubility and/or bioavailability of the detectable marker.


As mentioned above, such detectable markers can be used to detect or identify the presence of PF4 binding sites, including the presence of PF4 receptors, in an individual. Generally, such methods comprise steps of administering the detectable marker to the individual, and detecting its presence, e.g. by detecting the presence of the detectable label. Previous reports have indicated that PF4 will preferably bind to sites of angiogenesis and/or infection in an individual. Hence, these methods can also be used to detect sites of angiogenesis and/or infection in individuals. The methods of detecting angiogenesis are particularly useful for detecting the sites of tumors or other cancers in individuals.


In preferred embodiments, these methods detect PF4 binding sites using known methods of medical imaging, such as magnetic resonance imaging (MRI). However, the methods can be practiced using any technique available to a person of ordinary skill for detecting the presence of the detectable label. For example, the methods can also be practiced by detecting the presence of the detectable label in situ (e.g., in a tissue sample from an individual), using, for example, a fluorescent moiety for the detectable label.


Pharmacophores of the present invention are particularly useful for identifying compounds, such as peptidomimetics or small molecules (i.e., organic or inorganic molecules that are preferably less than about 2 kDa in molecular weight, and are more preferably less than about 1 kDa in molecular weight), that modulate PF4 activity in cells (either in vitro or in vivo). For example, in certain embodiments pharmacophores of the present invention can be used to identify compounds that mimic the natural activity of PF4, e.g., by binding to a PF4 receptor. Such compounds, which are capable of increasing or enhancing PF4 activity, are referred to here as PF4 “agonists” or “agonist compounds.” In other embodiments, pharmacophores of the invention can be used to identify compounds that compete with PF4, e.g., for binding to a PF4 receptor, but do not themselves generate any PF4 activity. Such compounds therefore effectively inhibit or decrease PF4 activity, and are referred to here as PF4 “antagonists” or “antagonist compounds.”


Pharmacophore molecules of the present invention are generally more effective, and hence preferable, when the molecule consists essentially of those unique functional groups or elements that are necessary for PF4 activity, while having few if any functional groups or elements that do not affect such activity. Such pharmacophores thereby simplify the search for PF4 agonists and antagonists since the number of functional groups that must be compared between candidate compounds and the pharmacophore is greatly reduced. Accordingly, the present invention provides, in preferred embodiments, a PF4 pharmacophore that consists essentially of at least seven and not more than ten functional groups or “pharmacophore points” bearing the aforementioned spatial relationship Preferred pharmacophore points are given numbers and are set forth in Table I below. Each of these points corresponds to a particular amino acid side chain in the mature PF4 polypeptide sequence set forth in FIG. 1 (SEQ ID NO:1). More specifically, each point corresponds to a particular, unique atom or functional group on an amino acid side chain of that sequence. Accordingly, the pharmacophore points in Table 1 are set forth by specifying both the amino acid residue where they are located, and a particular atom or functional group of that residue side chain. Seven of the ten functional groups listed in Table 1 are essential for anti-angiogenic activity. The seven essential functional groups for anti-angiogenic activity include pharmacophore points I, II, III, IV and VIII, corresponding to the DLQ (Asp7-Leu8-Gln9) motif near the N-terminus of PF4; and pharmacophore points IX and X, corresponding to the hydrophobic centers of Leu11 and Val13. Preferable, but not essential, functional groups for anti-angiogenic activity include pharmacophore points V, VI and VII, corresponding to Gln18 and His23. If these latter points are omitted from a compound otherwise conforming to the pharmacophore, the compound will bind to endothelial cells, but does not activate those cells.


For consistency, the atoms and functional groups in Table 1 use the same notation that is used in the PDB file set forth as an Appendix, infra.









TABLE 1







PREFERRED PF4


PHARMACOPHORE POINTS











Pharmacophore
Amino Acid




Point
Residue
Atom/Functional Group







I
Asp7
(Atom 15) OD1



II
Asp7
(Atom 16) OD2



III
Gln9
(Atom 49) NE2



IV
Gln9
(Atom 50) OE1



V
Gln18
(Atom 182) OE1



VI
Gln18
(Atom 183) NE2



VII
His23
(Atom 276) NE2



VIII
Leu8
(Atom 26) CG



IX
Val13
(Atom 98) CB



X
Leu11
(Atom 72) CG











FIGS. 2A and 2B illustrate the pharmacophore points on mature PF4 itself. In particular, FIG. 2A shows an exemplary three-dimensional structure of the mature PF4 polypeptide backbone, based on the coordinates set forth in the Appendix, infra. Amino acid residues containing functional groups of the PF4 are shown with each functional group of the pharmacophore circled and labeled with the corresponding Roman numeral in Table 1, above. FIG. 2B shows the PF4 pharmacophore structure with each point corresponding to a particular functional group. Distances between these functional groups are indicated by lines drawn between the different functional groups in FIG. 2B. These distances can be readily determined and evaluated by a user, e.g., by measuring or calculating distances between the corresponding functional groups in the three-dimensional structure of mature PF4, such as the coordinates set forth in the Appendix, infra. For convenience, preferred distances between these functional groups are also set forth below in Table 2.









TABLE 2







PF4 PHARMACOPHORE DISTANCES










Pharmacophore
Distance (Å)



Points
Mean ± SD







I-II
 2.25 ± 0.05



I-III
 6.03 ± 1.37



I-IV
 6.92 ± 1.60



I-V
30.27 ± 2.92



I-VI
29.94 ± 2.49



I-VII
30.41 ± 4.31



I-VIII
 8.57 ± 2.60



I-IX
14.20 ± 1.53



I-X
12.54 ± 1.51



II-III
 6.00 ± 2.43



II-IV
 7.01 ± 1.84



II-V
30.83 ± 1.99



II-VI
30.33 ± 1.97



II-VII
31.24 ± 4.03



II-VIII
 9.09 ± 1.22



II-IX
14.45 ± 0.24



II-X
13.28 ± 0.37



III-IV
 2.31 ± 0.07



III-V
26.35 ± 2.76



III-VI
26.57 ± 2.02



III-VII
26.31 ± 3.05



III-VIII
 9.19 ± 1.40



III-IX
10.91 ± 1.74



III-X
 7.06 ± 2.49



IV-V
25.58 ± 1.40



IV-VI
25.80 ± 1.31



IV-VII
25.34 ± 2.81



IV-VIII
 9.02 ± 0.63



IV-IX
10.46 ± 0.46



IV-X
 6.52 ± 1.26



V-VI
 3.85 ± 1.54



V-VII
10.21 ± 2.21



V-VIII
23.10 ± 2.21



V-IX
17.29 ± 1.68



V-X
19.25 ± 2.12



VI-VII
14.07 ± 0.94



VI-VIII
21.84 ± 2.74



VI-IX
16.42 ± 2.03



VI-X
19.95 ± 2.02



VII-VIII
25.38 ± 4.39



VII-IX
20.60 ± 3.57



VII-X
18.76 ± 3.72



VIII-IX
 6.87 ± 0.96



VIII-X
 9.84 ± 1.05



IX-X
 7.25 ± 0.49










Preferably, a pharmacophore in the present invention is described using a coordinate system in which each point of the pharmacophore is described by a set of at least three coordinates representing and/or indicating its position in three-dimensional space. In this way, the arrangement of key points in the pharmacophore can be readily modeled and/or visualized (e.g. using various programs and algorithms for modeling molecular structure, such as INSIGHT II described infra). The coordinates of the pharmacophore can also be readily used to compare the pharmacophore structure, as described below, with points in a peptidomimetic or other candidate compound.


Additional parameters can and preferably are also used to describe other properties of the individual pharmacophore points. These can include, in the case of pharmacophore points that are hydrogen bond donors or acceptors, parameters indicating the preferred direction, orientation, size and/or distance of the hydrogen bond. Other parameters that can be used include, for hydrophobic pharmacophore points, a parameter indicating the size (e.g., the distance or volume) of the preferred hydrophobic interaction.


An example of a particularly preferred coordinate system and its use to describe the preferred PF4 pharmacophore is set forth in Example 6.2.5, below. This system can use either Cartesian or spherical coordinates to indicate the position of each pharmacophore point. Those skilled in the art will appreciate that the Cartesian coordinates for a given point can be readily converted into a set of spherical coordinates, and vice-versa, using well-known mathematical relationships between those two coordinate systems that are also set forth in the Example. To describe the preferred size and orientation of hydrogen bonds, the Example also provides, for each hydrogen bond donor and acceptor, coordinates for a hydrogen-bond vector, A, pointing in the direction of the preferred hydrogen bond. The surface area, S, of a preferred hydrogen bonding potential is also provided for each hydrogen bond donor and acceptor in the pharmacophore. This parameter defines the surface of a sphere cap around the hydrogen bonding vector, A, corresponding to the surface where hydrogen bond formation is preferable. For each hydrophobic pharmacophore point, the Example provides a point, m, indicating a point at the closest distance to the pharmacophore point at which undesirable interactions (e.g., interactions with hydrophilic or polar residues, or with polar solvent) should be avoided.


5.2. Peptidomimetics


As noted above, PF4 pharmacophores of the present invention are particularly useful as peptidomimetics and other compounds that are agonists and/or antagonists of PF4 activity. Accordingly, the invention also provides peptidomimetics that are agonists or antagonists of PF4 activity.


Peptidomimetics are described generally, e.g., in International Patent publication no. WO 01/5331 A2 by Gour et al. Such compounds can be, for example, peptides and peptide analogues that comprise a portion of a PF4 amino acid sequence (or an analogue thereof) which contain pharmacophore points substantially similar in configuration to the configuration of functional groups in a mature PF4 pharmacophore. However, one or more pharmacophore points in a peptidomimetic can be modified in a manner that affects PF4 activity (either as an agonist or antagonist), such as by replacement of an amino acid residue displaying that particular pharmacophore point. Alternatively, at least a portion of the peptidomimetics may be replaced by one or more non-peptide structures, such that the three-dimensional structure of functional groups in the pharmacophore is retained at least in part. In other words, one, two, three or more amino acid residues within a PF4 peptide may be replaced by a non-peptide structure. In addition, at least one key amino acid residue can be replaced by another having different characteristics (for example, different properties of hydrophobicity, hydrophilicity, proton donor or acceptor properties, electrostatic properties, etc.). Other portions of a peptide or peptidomimetic can also be replaced by a non-peptide structure.


Typically, peptidomimetics (both peptide and non-peptidyl analogues) may have improved properties (e.g., decreased proteolysis, increased retention or increased bioavailability) that make them more suitable for pharmaceutical compositions than a PF4 peptide. Peptidomimetics may also have improved oral availability. It should be noted that peptidomimetics of the invention may or may not have similar two-dimensional structures, such as sequences and structural formulas. However, all peptidomimetics within the invention with the same activity will share common three-dimensional structural features and geometry with one another, and all will be close to the three-dimensional structure of the pharmacophore of the native human PF4. Each peptidomimetic of the invention may further have one or more unique additional binding elements. The present invention provides methods (described infra) for identifying peptidomimetics.


All peptidomimetics provided herein have a three-dimensional structure that is substantially similar to a three-dimensional structure of a pharmacophore displayed on the native molecule as described above. Generally, the three-dimensional structure of a compound is considered substantially similar to that of a pharmacophore if the two structures have RMSD less than or equal to about one angstrom, as calculated, e.g., using the Molecular Similarity module with the QUANTA program (Biopolymer module of INSIGHT II program available from Accelrys, Inc., San Diego, Calif.) or using other molecular modeling programs and algorithms that are available to those skilled in the art. In preferred embodiments, compounds of the invention have a RMSD less than or equal to about 1.0 Angstrom. More preferably, compounds of the invention have an RMSD that is less than or equal to about 0.5 Angstrom, and still more preferably about 0.1 Angstroms. In particular, a peptidomimetic of the invention will have at least one low-energy three-dimensional structure that is or is predicted to be (e.g. by ab-initio modeling) substantially similar to the three-dimensional structure of a PP4 pharmacophore.


Lower energy conformations can be identified by conformational energy calculations using, for example, the CHARMM program (Brooks et al., J. Comput. Chem. 1983, 4:187-217). The energy terms include bonded and non-bonded terms, including bond length energy. It will be apparent that the conformational energy of a compound can also be calculated using any of a variety of other commercially available quantum mechanic or molecular mechanic programs. Generally, a low energy structure has a conformational energy that is within 50 kcal/mol of the global energy minimum.


As an example, and not by way of limitation, low energy conformations can be identified using combinations of two procedures. The first procedure involves a simulated annealing molecular dynamics approach. In this procedure, the system (which includes the designed peptidomimetics and water molecules) is heated up to above room temperature, preferably to around 600 degrees Kelvin (i.e., 600 K), and is simulated for a period for about 50 to 100 ps (e.g., for 70 ps) or longer. Gradually, the temperature of the system is reduced, e.g., to about 500 K and simulated for a period of about 100 ps or longer, then gradually reduced to 400 K and simulated for a period of 100 ps or longer. The system temperature is then reduced, again, to about 300 K and simulated for a period of about 500 ps or longer. During this analysis, the atom trajectories are recorded. Such simulated annealing procedures are well known in the art and are particularly advantageous, e.g., for their ability to efficiently search the conformational “space” of a protein or other compound. That is to say, using such procedures, it is possible to sample a large variety of possible conformations for a compound and rapidly identify those conformations having the lowest energy.


A second procedure involves the use of self-guided molecular dynamics (SGMD), as described by Wu & Wang, J. Physical Chem. 1998, 102:7238-7250. The SGMD method has been demonstrated to have an extremely enhanced conformational searching capability. Using the SGMD method, therefore, simulation may be performed at 300 K for 1000 ps or longer, and the atom trajectories recorded for analysis.


Conformational analysis of peptidomimetics and other compounds can also be carried out using the INSIGHT II molecular modeling package. First, cluster analysis may be performed using the trajectories generated from molecular dynamics simulations (as described above). From each cluster, the lowest energy conformation may be selected as the representative conformation for this cluster and can be compared to other conformational clusters. Upon cluster analysis, major conformational clusters may be identified and compared to the solution conformations of the cyclic peptide(s). Specifically, a peptidomimetic or other agonist/antagonist compound is optimally superimposed on the pharmacophore model using computational methods well known to those of skill in the art as implemented in, e.g., CATALYST™ (Molecular Simulations, Inc., San Diego, Calif.). A superposition of structures and the pharmacophore model is defined as a minimization of the root mean square distances between the centroids of the corresponding features of the molecule and the pharmacophore. A van der Waals surface is then calculated around the superimposed structures using a computer program such as CERIUS2™ (Molecular Simulations, Inca, San Diego, Calif.). The conformational comparison may also be carried out by using the Molecular Similarity module within the program INSIGHT II.


Similarity in structure can also be evaluated by visual comparison of the three-dimensional structures in graphical format, or by any of a variety of computational comparisons. For example, an atom equivalency may be defined in the peptidomimetic and pharmacophore three-dimensional structures, and a fitting operation used to establish the level of similarity. As used herein, an “atom equivalency” is a set of conserved atoms in the two structures. A “fitting operation” may be any process by which a candidate compound structure is translated and rotated to obtain an optimum fit with the cyclic peptide structure. A fitting operation may be a rigid fitting operation (e.g., the pharmacophore structure can be kept rigid and the three dimensional structure of the peptidomimetic can be translated and rotated to obtain an optimum fit with the pharmacophore structure). Alternatively, the fitting operation may use a least squares fitting algorithm that computes the optimum translation and rotation to be applied to the moving compound structure, such that the root mean square difference of the fit over the specified pairs of equivalent atoms is a minimum. Preferably, atom equivalencies may be established by the user and the fitting operation is performed using any of a variety of available software applications (e.g., INSIGHT II (available from Accelrys Inc. in San Diego, Calif.) or QUANTA, (available from Molecular Simulations)). Three-dimensional structures of candidate compounds for use in establishing substantial similarity can be determined experimentally (e.g., using NMR or X-ray crystallography techniques) or may be computer generated ab initio using, for example, methods provided herein. The use of such modeling and experimental methods to compare and identify peptidomimetics is well known in the art. See, for example, International Patent Publication Nos. WO 01/5331 and WO 98/02452, which are incorporated herein by reference in their entireties (see, Section 7 below).


As one example, and not by way of limitation, chemical libraries (containing, e.g., hydantoin and/or oxopiperazine compounds) may be made using combinatorial chemical techniques and initially screened, in silico, to identify compounds having elements of a PF4 pharmacophore of the invention, which are therefore likely to be either PF4 agonists or antagonists. Combinatorial chemical technology enables the parallel synthesis of organic compounds through the systematic addition of defined chemical components using highly reliable chemical reactions and robotic instrumentation. Large libraries of compounds result from the combination of all possible reactions that can be done at one site with all the possible reactions that can be done at a second, third or greater number of sites. Such methods have the potential to generate tens to hundreds of millions of new chemical compounds, either as mixtures attached to a solid support, or as individual, isolated compounds.


PF4 pharmacophores of the present invention can be used to greatly simplify and facilitate the screening of such chemical libraries to identify those compounds that are most likely to be effective agonists or antagonists of PF4. As a result, library synthesis can focus on those library members with the greatest likelihood of interacting with the target (e.g., a PF4 receptor or the PF4 polypeptide itself), and eliminate the need for synthesizing every possible member of a library (which often results in an unwieldy number of compounds). The integrated application of structure-based design and combinatorial chemical technologies can produce synergistic improvements in the efficiency of drug discovery. By way of example, hydantoin and oxopiperazine libraries may be limited to those compounds that involve only the addition of histidine and valine surrogates to a hydantoin or oxopiperazine backbone.


Peptidomimetic compounds of the present invention also include compounds that are or appear to be unrelated to the original PF4 peptide, but contain functional groups positioned on a nonpeptide scaffold that serve as topographical mimics. Such peptiomimetics are referred to here as “non-peptidyl analogues.” Non-peptidyl analogues can be identified, e.g., using library screens of large chemical databases. Such screens use the three-dimensional conformation of a pharmacophore to search such databases in three-dimensional space. A single three-dimensional structure can be used as a pharmacophore model in such a search. Alternatively, a pharmacophore model may be generated by considering the crucial chemical structural features present within multiple three-dimensional structures.


Any of a variety of databases of three-dimensional structures can be used for such searches. A database of three-dimensional structures can also be prepared by generating three-dimensional structures of compounds, and storing the three-dimensional structures in the form of data storage material encoded with machine-readable data. The three-dimensional structures can be displayed on a machine capable of displaying a graphical three-dimensional representation and programmed with instructions for using the data. Within preferred embodiments, three-dimensional structures are supplied as a set of coordinates that define the three-dimensional structure.


Preferably, the three-dimensional (3D) structure database contains at least 100,000 compounds, with small, non-peptidyl molecules having relatively simple chemical structures particularly preferred. It is also important that the 3D coordinates of compounds in the database be accurately and correctly represented. The National Cancer Institute (NCI) 3D-database (Milne et al., J. Chem. Inf. Comput. Sci. 1994, 34:1219-1224) and the Available Chemicals DIrector (ACD; available from MDL Information Systems, San Leandro, Calif.) are two exemplary databases that can be used to generate a database of three-dimensional structures, using molecular modeling methods such as those described, supra. For flexible molecules, which can have several low-energy conformations, it is desirable to store and search multiple conformations. The Chem-X program (Oxford Molecular Group PLC, Oxford, United Kingdom) is capable of searching thousands or even millions of conformations for a flexible compound. This capability of Chem-X provides a real advantage in dealing with compounds that can adopt multiple conformations. Using this approach, hundreds of millions of conformations can be searched in a 3D-pharmacophore searching process.


Typically, a pharmacophore search will involve at least three steps. The first of these is generation of a pharmacophore query. Such queries can be developed from an evaluation of distances in the three-dimensional structure of the pharmacophore. For example, FIG. 2A shows an exemplary three-dimensional structure of the mature PF4 polypeptide backbone, based on the coordinates set forth in the appendix, infra. Amino acid residues containing functional groups of the PF4 pharmacophore are shown with each functional group of the pharmacophore circled and labeled with a roman numeral corresponding to the numbering used in Table 1, supra. FIG. 2B shows the PF4 pharmacophore structure. In particular, each point in FIG. 2B corresponds to a particular functional group of the PF4 pharmacophore (indicated by roman numerals corresponding to the numbering used in Table 1, supra). Critical pharmacophore distances, which are preferably used in a pharmacophore search, are indicated by lines drawn between the different functional groups in FIG. 2B. These distances can be readily determined and evaluated by a user, e.g., by measuring distances between the corresponding functional groups in a three-dimensional structure of the mature PF4 polypeptide (for example, using the coordinates set forth in the Appendix, infra).


Using the pharmacophore query, a distance bit screening is preferably performed on a database to identify compounds that fulfill the required geometrical constraints. First, the candidate compounds are scanned in order to determine their important physical points (i.e., hydrogen bond donors, hydrogen bond acceptors, hydrophobic volumes, etc.) and important geometric parameters (i.e., relative distances between important physical points). Chemical groups (i.e., hydrophobic, NH4+, carbonyl, carboxylate) are used to map the surface of each candidate compound, while interaction fields are utilized to extract the number and nature of key-points within candidate molecules. There are a number of well-known techniques in the art, such as the GRID program (Molecular Discovery Ltd., London, United Kingdom; Goodford, 1985), which automatically extract important physical points and geometric parameters from the candidate molecules.


Once key-points are extracted from candidate molecules, the candidate compounds and the pharmacophores of the present invention are superimposed or aligned. The degree of similarity between the pharmacophore points and the corresponding key-points of the candidate compound is calculated and utilized to determine a degree of similarity between the two molecules. Details of the superposition method that can be utilized to compare the candidate molecules and the pharmacophores of the present invention are found in the following publications, De Esch et al., J Med. Chem. 2001 24:1666-74 and Lemmen et al., J Med. Chem. 1998 41(23):4502-20. Fitting of a compound to the pharmacophore volume can be done using other computational methods well known in the art. Visual inspection and manual docking of compounds into the active site volume can be done using such programs as QUANTA (Molecular Simulations, Burlington, Mass., 1992), SYBYL (Molecular Modeling Software, Tripos Associates, Inc., St. Louis, Mo., 1992), AMBER (Weiner et al., J. Am. Chem. Soc., 106: 765-784, 1984), or CHARMM (Brooks et al., J. Comp. Chem., 4: 187-217, 1983). This modeling step may be followed by energy minimization using standard force fields, such as CHARMM or AMBER. Other more specialized modeling programs include GRID (Goodford et al., J. Med. Chem., 28: 849-857, 1985), MCSS (Miranker & Karplus, Function and Genetics, 11: 29-34, 1991), AUTODOCK (Goodsell & Olsen, Proteins: Structure, Function and Genetics, 8: 195-202, 1990), and DOCK (Kuntz et al., J. Mol. Biol., 161:269-288 (1982)). In addition, compounds may be constructed de novo in an empty active site or in an active site including some portions of a known inhibitor using computer programs such as LUDI (Bohm, J. Comp. Aid. Molec. Design, 6: 61-78, 1992), LEGEND (Nishibata & Itai, Tetrahedron, 47: 8985, 1991), and LeapFrog (Tripos Associates, St. Louis, Mo.).


After the superposition procedure, molecules with a high matching score or high degree of similarity are selected for further verification of their similarity. Programs, such as ANOVA (performed, for example, with Minitab Statistical Software (Minitab, State College, Pa.)), extract differences that are statistically significant for a defined p value (preferably p values are less than 0.05) between the pharmacophore of the present invention and the candidate molecule. Candidate molecules with a p value below the defined p value are rejected.


A number of different mathematical indices can be utilized to measure the similarity between pharmacophore and candidate molecules. The mathematical indices of interest for the present invention are generally incorporated in the software packages. The choice of mathematical indices will depend on a number of factors, such as the pharmacophore of interest, the library of candidate molecules, and the functional groups identified as essential for activity. For a review on this topic see, Frederique et al., Current Topics in Medicinal Chem. 2004, 4: 589-600.


Compounds that have at least one low energy conformation satisfying the geometric requirement can be considered “hits,” and are candidate compounds for PF4 agonists or antagonists. In a specific embodiment of the invention, compounds of the invention are not PF4, PF4 mutants, IL-8, or a peptide having the amino acid sequence selected from the group consisting of: PHSPTAQLIA TLKNGQKISL DLQAP (SEQ ID NO:34); PHSPTVQLIA TLKNGQKISL DLQAP (SEQ ID NO:35); PYSPTAQLIA TLKNGQKISL DLQEP (SEQ ID NO:36); PHSPQTELUV KLKNGQKISL DLQAP (SEQ ID NO:37); PHSPTAQLIA TLKNGQKISV DLQAP (SEQ ID NO:38); AHSPTAQLIA TLKNGQKISL DLQAP (SEQ ID NO:39); AHSPTVQLIA TLKNGQQISL DLQAP (SEQ ID NO:40); AYSPTAQLIA TLKNGQKISL DLQEP (SEQ ID NO:41); AHSPQTELIV KLKNGQKISL DLQAP (SEQ ID NO:42); AHSPTAQLIA TLKNGQKISV DLQAP (SEQ ID NO:43); PHSATAQLIA TLKNGQKISL DLQAP (SEQ ID NO:44); PHSATVQLIA TLKNGQKISL DLQAP (SEQ ID NO:45); PYSATAQLIA TLKNGQKISL DLQEP (SEQ ID NO:46); PHSAQTELIV KLKNGQKISL DLQAP (SEQ ID NO:47); PHSATAQLIA TLKNGQKISV DLQAP (SEQ ID NO:48); AHSATAQLIA TLKNGQKISL DLQAP (SEQ ID NO:49); AHSATVQLIA TLKNGQQISL DLQAP (SEQ ID NO:50); AYSATAQLIA TLKNGQKISL DLQEP (SEQ ID NO:51); AHSAQTELIV KLKNGQKISL DLQAP (SEQ ID NO:52); AHSATAQLIA TLKNGQKISV DLQAP (SEQ ID NO:53); PHSPTAQLIA TLKNGQKISL DLQAPLY (SEQ ID NO:54); PHSPTVQLIA TLKNGQKISL DLQAPLY (SEQ ID NO:55); AHSATAQLIA TLKNGQKISL DLQAPLY (SEQ ID NO:56); PHSPQTELIV KLKNGQKISL DLQAPRY (SEQ ID NO:57); PHSPTAQLIA TLKNGQKISL DLQAPRY (SEQ ID NO:58); PHSTAAQLIA TLKNGQKISL DLQAPLY (SEQ ID NO:59); PHCPTAQLIA TLKNGRKICL DLQAP (SEQ ID NO:60); PHSPTPQLIA TLKNGQKISL DLQAP (SEQ ID NO:61); PHSTAPQLIA TLKNGQKISL DLQAPLY (SEQ ID NO:62); PHSPTAQLIA TLKNGQKISL (SEQ ID NO:63); PHSPTVQLIA TLKNGQKISL (SEQ ID NO:64); PYSPTAQLIA TLKNGQKISL (SEQ ID NO:65); PHSPQTELIV KLKNGQKISL (SEQ ID NO:66); PHSPTAQLIA TLKNGQKISV (SEQ ID NO:67); AHSPTAQLIA TLKNGQKISL (SEQ ID NO:68); AHSPTVQLIA TLKNGQQISL (SEQ ID NO:69); AYSPTAQLIA TLKNGQKISL (SEQ ID NO:70); AHSPQTELIV KLKNGQKISL (SEQ ID NO:71); AHSPTAQLIA TLKNGQKISV (SEQ ID NO:72); PHSATAQLIA TLKNGQKISL (SEQ ID NO:73); PHSATVQLIA TLKNGQKISL (SEQ ID NO:74); PYSATAQLIA TLKNGQKISL (SEQ ID NO:75); PHSAQTELIV KLKNGQKISL (SEQ ID NO:76); PHSATAQLIA TLKNGQKISV (SEQ ID NO:77); AHSATAQLIA TLKNGQKISL (SEQ ID NO:78); AHSATVQLIA TLKNGQQISL (SEQ ID NO:79); AYSATAQLIA TLKNGQKISL (SEQ ID NO:80); AHSAQTELIV KLKNGQKISL (SEQ ID NO:81); AHSATAQLIA TLKNGQKISV (SEQ ID NO:82); PHSPTAQLIA TLKNGRKISL (SEQ ID NO:83); PHSPTVQLIA TLKNGRKISL (SEQ ID NO:84); PYSPTAQLIA TLKNGRKISL (SEQ ID NO:85); PHSPQTELIV KLKNGRKISL (SEQ ID NO:86); PHSPTAQLIA TLKNGRKISV (SEQ ID NO:87); AHSPTAQLIA TLKNGRKISL (SEQ ID NO:88); AHSPTVQLIA TLKNGRQISL (SEQ ID NO:89); AYSPTAQLIA TLKNGRKISL (SEQ ID NO:90); AHSPQTELIV KLKNGRKISL (SEQ ID NO:91); AHSPTAQLIA TLKNGRKISV (SEQ ID NO:92); PHSATAQLIA TLKNGRKISL (SEQ ID NO:93); PHSATVQLIA TLKNGRKISL (SEQ ID NO:94); PYSATAQLIA TLKNGRKISL (SEQ ID NO:95); PHSAQTELIV KLKNGRKISL (SEQ ID NO:96); PHSATAQLIA TLKNGRKISV (SEQ ID NO:97); AHSATAQLIA TLKNGRKISL (SEQ ID NO:98); AHSATVQLIA TLKNGRQISL (SEQ ID NO:99); AYSATAQLIA TLKNGRKISL (SEQ ID NO:100); AHSAQTELIV KLKNGRKISL (SEQ ID NO:101); AHSATAQLIA TLKNGRKISV (SEQ ID NO:102); PHSPTAQLIA TLKNGQKISL ELR (SEQ ID NO:103); PHSPTVQLIA TLKNGQKISL ELR (SEQ ID NO:104); PYSPTAQLIA TLKNGQKISL ELR (SEQ ID NO:105); PHSPQTELIV KLKNGQKISL ELR (SEQ ID NO:106); PHSPTAQLIA TLKNGQKISV ELR (SEQ ID NO:107); AHSPTAQLIA TLKNGQKISL ELR (SEQ ID NO:108); AHSPTVQLIA TLKNGQQISL ELR (SEQ ID NO:109); AYSPTAQLIA TLKNGQKISL ELR (SEQ ID NO:110); AHSPQTELIV KLKNGQKISL ELR (SEQ ID NO:111); AHSPTAQLIA TLKNGQKISV ELR (SEQ ID NO:112); PHSATAQLIA TLKNGQKISL ELR (SEQ ID NO:113); PHSATVQLIA TLKNGQKISL ELR (SEQ ID NO:114); PYSATAQLIA TLKNGQKISL ELR (SEQ ID NO:115); PHSAQTELIV KLKNGQKISL ELR (SEQ ID NO:116); PHSATAQLIA TLKNGQKISV ELR (SEQ ID NO:117); AHSATAQLIA TLKNGQKISL ELR (SEQ ID NO:118); AHSATVQLIA TLKNGQQISL ELR (SEQ ID NO:119); AYSATAQLIA TLKNGQKISL ELR (SEQ ID NO:120); AHSAQTELIV KLKNGQKISL ELR (SEQ ID NO:121); AHSATAQLIA TLKNGQKISV ELR (SEQ ID NO:122); PHSPTAQLIA TLKNGRKISL ELR (SEQ ID NO:123); PHSPTVQLIA TLKNGRKISL ELR (SEQ ID NO:124); DYSPTAQLIA TLKNGRKISL ELR (SEQ ID NO:125); PHSPQTELIV KLKNGRKISL ELR (SEQ ID NO:126); PHSPTAQLIA TLKNGRKISV ELR (SEQ ID NO:127); AHSPTAQLIA TLKNGRKISL ELR (SEQ ID NO:128); AHSPTVQLIA TLKNGRQISL ELR (SEQ ID NO:129); AYSPTAQLIA TLKNGRKISL ELR (SEQ ID NO:130); AHSPQTELIV KLKNGRKISL ELR (SEQ ID NO:131); AHSPTAQLIA TLKNGRKISV ELR (SEQ ID NO:132); PHSATAQLIA TLKNGRKISL ELR (SEQ ID NO:133); PHSATVQLIA TLKNGRKISL ELR (SEQ ID NO:134); PYSATAQLIA TLKNGRKISL ELR (SEQ ID NO:135); PHSAQTELIV KLKNGRKISL ELR (SEQ ID NO:136); PHSATAQLIA TLKNGRKISV ELR (SEQ ID NO:137); AHSATAQLIA TLKNGRKISL ELR (SEQ ID NO:138); AHSATVQLIA TLKNGRQISL ELR (SEQ ID NO:139); AYSATAQLIA TLKNGRKISL ELR (SEQ ID NO:140); AHSAQTELIV KLKNORKISL ELR (SEQ ID NO:141); AHSATAQLIA TLKNGRKISV ELR (SEQ ID NO:142); PHSPTAQLIA TLKNGQKISL ELRAPLY (SEQ. ID NO:143); PHSPTVQLIA TLKNGQKISL ELRAPLY (SEQ ID NO:144); AHSATAQLIA TLKNGQKISL ELRAPLY (SEQ ID NO:145); PHSPQTELIV KLKNGQKISL ELRAPRY (SEQ ID NO:146); PHSPTAQLIA TLKNGQKISL ELRAPRY (SEQ ID NO:147); PHSATAQLIA TLKNGQKISL ELRAPLY (SEQ ID NO:148); PHSPTAQLIA TLKNGRKISL ELRAPLY (SEQ ID NO:149); PHSPTVQLIA TLKNGRKISL ELRAPLY (SEQ ID NO:150); AHSATAQLIA TLKNGRKISL ELRAPLY (SEQ ID NO:151); PHSPQTELIV KLKNGRKISL ELRAPRY (SEQ ID NO:152); PHCPTAQLIA TLKNGRKICL DLQAP (SEQ ID NO:153); PHSPTPQLIA TLKNGQKISL DLQAP (SEQ ID NO:154); PHSTAPQLIA TLKNGQKISL ELRAPLY (SEQ ID NO:155) or PHSPTAQLIA TLKNGQKISL DLQAP (SEQ ID NO:156).


Those skilled in the art will appreciate that a compound structure may be optimized, e.g., using screens as provided herein. Within such screens, the effect of specific alterations of a candidate compound on three-dimensional structure may be evaluated, e.g., to optimize three-dimensional similarity to a PF4 pharmacophore. Such alterations include, for example, changes in hydrophobicity, steric bulk, electrostatic properties, size and bond angle. Biological testing of candidate agonists and antagonists identified by these methods is also preferably used to confirm their activity.


Once an active peptidomimetic has been identified, related analogues can also be identified, e.g., by two-dimensional similarity searching. Such searching can be performed, for example, using the program ISIS Base (Molecular Design Limited). Two-dimensional similarity searching permits the identification of other available, closely related compounds which may be readily screened to optimize biological activity.


6. EXAMPLES

The present invention is also described and demonstrated by way of the following examples. However, the use of these and other examples anywhere in the specification is illustrative only and in no way limits the scope and meaning of the invention or of any exemplified term. Likewise, the invention is not limited to any particular preferred embodiments described here. Indeed, many modifications and variations of the invention may be apparent to those skilled in the art upon reading this specification, and such variations can be made without departing from the invention in spirit or in scope. The invention is therefore to be limited only by the terms of the appended claims along with the full scope of equivalents to which those claims are entitled.


6.1. Experimental Procedures


6.1.1 Recombinant PF4 Production


Recombinant PF4 was produced in E. coli as a protein containing a unique methionine residue immediately preceding the PF4 portion. More specifically, expression plasmids were constructed by cloning a synthetic gene encoding native sequence PF4 between the NcoI and XhoI sites in the multiple restriction site region of plasmid pET-15b (available from Novagen, Fontenay-sous-Bois, France). Mutant PF4 genes were generated using standard PCR amplification of synthetic oligonucleotide primers and the wild-type construct as template. All constructs were independently sequenced and verified (Génome Express, Grenoble, France).


BL21(DE) bacteria (available from Novagen, Fontenay-sous-Bois, France) carrying the PF4 plasmids were cultured at 37° C. in EZmix 2×YT medium containing 1 M glucose and appropriate antibiotics. Protein expression was induced in these cell cultures with 1 mM IPTG for 4 hours. Bacterial cells were harvested by centrifugation and were subjected to lysozyme treatment (1 mg/ml) and sonication. The resultant fusion protein was extracted from the lysis pellet with 6 M Urea in 50 mM Tris-HCl, pH 7.4, 5 mM EDTA, and 10 mM DTT. The extracts were then purified using ion-exchange chromatography, and the PF4 proteins were eluted with a gradient of 0-1 M NaCl followed by dialysis into PBS containing 0.5 NaCl. The final protein concentration was determined by use of a BCA Protein Assay Reagent. The homogeneity of recombinant PF4 proteins thus produced was verified by SDS-PAGE and Western blotting with polyclonal antibody against PF4.


6.1.2 Endothelial Cell Cultures


Human umbilical vein endothelial cells (HUVEC) were isolated by collagenase (Roche Diagnostics) digestion as described previously (Jaffe et al., J Clin Invest. 1973; 85(11):2745-56).


Cells were grown in M199 medium containing 15% fetal calf serum (FCS), 5% human serum, 2 mM glutamine, 50 U/ml penicillin, 50 μg/ml streptomycin, 2.5 μg/ml amphotericin B, and 15 mM HEPES. Cultures were maintained at 37° C. amd 5% CO2 in humidified atmosphere. Every 3-4 days, the cultures were harvested by trypsin treatment, diluted, replated and grown to confluence. HUVEC grown until confluence from the second or third passage are preferably used for experiments described here.


6.1.3 Endothelial Cell Proliferation Assays


Inhibition of DNA synthesis was measured by [3H]-thymidine incorporation assay. Cells were plated at 15,000 cells per well in a 24 well-plate in 0.5 ml medium containing 2.5% FCS and allowed to attach for 4 hours at 37° C. Proliferation was then induced by addition of 10 ng/ml of FGF-2, VEGF165 or VEGF121. Increasing concentrations of purified recombinant PF4 proteins were added to some wells and HUVEC were further incubated for 48 hours. [3H]-thymidine (1 μCi/well) was added during the last 20 hours of incubation. Cells were washed twice with PBS and treated with ice-cold 10% (w/v) trichloroacetic acid for 30 minutes. The resulting precipitates were solubilized with 1 M NaOH and incorporated radioactivity was measured in a Beckman LS-6500 multi-purpose scintillation counter.


6.1.4 HUVEC Migration Assay


HUVEC migration was evaluated in a modified Boyden chamber assay. Transwell cell culture chamber inserts with porous polycarbonate filters (8 μM pore size) were coated with 0.2% gelatin. HUVEC suspended in medium supplemented with 2.5% FCS were added to the inserts at 4×104 cells per well. The inserts were placed over chambers containing a chemotactic stimulus (10 ng/ml VEGF165), and cells were allowed to migrate for 4 hours at 37° C. in a CO2 incubator. For inhibition experiments, recombinant PF4 proteins were added to both the lower and upper chambers. After incubation, filters were rinsed with PBS, fixed with 1% paraformaldehyde and stained with hematoxyline of Harris (EMD Chemicals Inc. Gibbstown, N.J.).


The upper surfaces of the filters was scraped with a cotton swab to remove the nonmigrant cells. The upper surfaces of the filters were viewed in a optical microscope at high powered (×200) magnification, and the number of cells within the microscope visualization field was recorded. Each experimental point was performed in triplicate, and 20 visual fields were analyzed per filter.


6.1.5 Molecular Modeling


IL8 and PF4 polypeptide molecules were modeled in a molecular dynamics simulation that ran for 700 ps at 300 degrees Kelvin (i.e., 300 K). The molecules were modeled with periodic boundary conditions in a 62 Å×62 Å×62 Å box with approximately 8,000 water molecules. Seven Cl ions were included in simulations of the PF4 molecule and 4 Cl ions in simulations of the IL8 molecule, to neutralize electrostatic charges.


Molecular dynamics simulation of peptides ran for 700 ps at 900 K. The peptides were modeled with periodic boundary conditions in a 62 Å×62 Å×62 Å box with approximately 7680 water molecules and 720 trifluoroethanol molecules. Data from NMR analysis of the peptides were included in the molecular dynamics simulation. Harmonic distance constraints with coupling constants and velocities were adjusted to obtain a conformity between NMR experiments and simulation protocol when comparing coupling constants, relative population of different conformers of the same molecule, chemical shift anisotropy, dipole-dipole relaxation rates and other experimental factors to theoretical data.


Virtual peptides were modeled using Langevin dynamics, or other fast technique that avoids using periodic boundary condition with explicit water solvent, to increase the diversity of test peptides. Virtual peptides were randomly mutated at biologically active residues via computer manipulations. After molecular dynamics, virtual peptides were selected for probable activity using a QSAR filter and synthesized and tested on cell cultures (Grassy G, Calas B, Yasri A, Lahana R, Woo J, Iyer S, Kaczorek M, Floc'h R, Buelow R. Computer-assisted rational design of immunosuppressive compounds. Nat. Biotechnol. 1998; 16(8): 748-52).


Langevin dynamics simulations ran for 700 ps at 900 K under harmonic constraints on the peptide backbone. Quenched dynamics of certain density systems were used along with a distance-dependent dielectric constant (∈) to cool the simulated system to 300 K for re-equilibration. The last conformation obtained at the end of the quenched dynamics was finally submitted to 500 ps of molecular dynamics at 300 K.


6.1.6 Statistical Analysis


Triplicate determinations per experimental point were performed for most experiments, and the results are expressed as the mean±one standard deviation (SD) for the data combined from separate experiments. The significance of differences between groups was determined by a standard Student t-test for unpaired data.


6.2. Results


Peptide fragments of the mature PP4 polypeptide sequence depicted in FIG. 1C (SEQ ID NO:1) were generated and their angiogenic effects (cell migration and proliferation) on HUVEC cells evaluated using the assays described in Section 6.1, above. These peptides were investigated further using molecular modeling and quantitative structure activity relationship (QSAR) techniques to determine which conformation(s) and structural properties were common in peptides that exhibited anti-angiogenic activity.


Molecular dynamics calculations of full length PF4 and the related IL8 polypeptides were also performed. Active peptides were found to have a triad of amino acid residues Asp-Leu-Gln (DLQ) near the N-terminus with the same conformation as the Asp-Leu-Gln triad in full length PF4.


Next, the PF4 surface was mapped using site-directed mutagenesis. In particular, a series of mutant PF4 polypeptides was generated, and their angiogenic activity in HUVEC cells was investigated using assays such as those described in Section 6.1, above. Table 3 below lists amino acid sequences of the PF4 polypeptides generated, along with each polypeptide designation and sequence identification number (SEQ ID NO.). The first sequence, which is designated WTPF4, corresponds to the wild-type, mature PF4 amino acid sequence that is also depicted in FIG. 1C (SEQ ID NO:1). The other sequences depicted in Table 3 comprise one or more amino acid substitutions, indicated by bold-faced, underlined type in the amino acid sequence.









TABLE 3







MUTANT PF4 POLYPEPTIDES








Mutant/WT
Sequence













WTPF4
EAEEDGDLQC LCVKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:1




LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M1
EAEEDGDLQC LCVKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:2



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M2
EAEEDGDLQS LCVKTTSQVR PRHITSLEVI KAGPHSPTAQ
SEQ ID NO:3



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M2H
EAEEDGDLQS LCVKTTSQVR PRHITSLEVI KAGPHSPTAQ
SEQ ID NO:4



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M3
EAEEDGDLRC LCVKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:5



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M3H
EAEEDGDLRC LCVKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:6



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M4
EAEEDGALAC LCVKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:7



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M4H
EAEEDGALAC LCVKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:8



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M5
EAEEDGDLQC SCQKTASQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:9



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M5H
EAEEDGDLQC SCQKTASQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:10



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M6
EAEEDGDLQC LCVKTTSASR PRAITSLEVI KAGPHCPTAQ
SEQ ID NO:11



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M6H
EAEEDGDLQC LCVKTTSASR PRAITSLEVI KAGPHCPTAQ
SEQ ID NO:12



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M7H
EAEEDGDLQC LCVKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:13



LIATLKNGRK ICLDLQAPLY QEIIQELLES YYY





PF4-M8
EAEEDGDLQC SCVKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:14



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M8H
EAEEDGDLQC SCVKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:15



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M9
EAEEDGDLQC LCQKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:16



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M9H
EAEEDGDLQC LCQKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:17



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M10
EAEEDGDLQC LCVKTASQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:18



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4M10H
EAEEDGDLQC LCVKTASQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:19



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M11
EAEEDGDLQC LCVKTTSAVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:20



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M11H
EAEEDGDLQC LCVKTTSAVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:21



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M12
EAEEDGDLQC LCVKTTSQVR PRAITSLEVI KAGPHCPTAQ
SEQ ID NO:22



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M12H
EAEEDGDLQC LCVKTTSQVR PRAITSLEVI KAGPHCPTAQ
SEQ ID NO:23



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M13
EAEEDGDLQC LCVKTTSQSR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:24



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M13H
EAEEDGDLQC LCVKTTSQSR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:25



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M14


A
C LCVKTTSQVR PRHITSLEVI KAGPHCPTAQ

SEQ ID NO:26



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M14H


A
C LCVKTTSQVR PRHITSLEVI KAGPHCPTAQ

SEQ ID NO:27



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M15


A
C SCQKTASQVR PRHITSLEVI KAGPHCPTAQ

SEQ ID NO:28



LIATLKNGRK ICLDLQAPLY KKIIKKLLES


PF4-M15H


A
C SCQKTASQVR PRHITSLEVI KAGPHCPTAQ

SEQ ID NO:29



LIATLKNGRK ICLDLQAPLY QEIIQELLES





PF4-M17H
      DLQC LCVKTTSQVR PRHITSLEVI KAGPHCPTAQ
SEQ ID NO:30



LIATLKNGRK ICLDLQAPLY QEIIQELLES









The significance of each mutation described in Table 3, above, is summarized in Table 4, infra, along with a description of the mutation's expected effect on PF4 activity.









TABLE 4







PF4 MUTATIONS


AND THEIR SIGNIFICANCE









Mutant(s)
Significance
Function





PF4-M1
Lysine residues 61, 62, 65 and 66 allow PF4 to
These mutations prevent



bind to heparan sulfate negative charges. This
interaction of PF4-M1 with



motif is referred to as the Heparan sulfate
heparan sulfate and allow



Binding Domain or “HBD”. By interacting
pF4-M1 to inhibit



with heparan sulfate, PF4 activates growth
angiogenesis through a



factors transduction pathway. In the mutant
separate pathway, for which a



PF4-M1, the HBD is absent
pharmacophore is developed




in this invention. The mutant




does not interact with




heparan sulfate or its




receptor, and so does not




prevent VEGF165 interaction




with heparan sulfate.




PF4-M1 is antiangiogenic




and inhibits the proliferation




of HUVECT stimulated by




VEGF121 and VEGF165.




PF4-M1 also inhibits cell




migration.


PF4-M2 and
To test the importance of Cys residues in the
Complete loss of activity due


PF4-M2H
stability of PF4.
to misfolding.


PF4-M3
Test of the influence of DLQ motif
This DLQ mutant is still able



replacement by an IL8-like motif (ELR), on
to inhibit angiogenesis but by



the antiangiogenic activity of PF4. PF4-M3 is
interacting with heparan



carrying HBD.
sulfate. It has the same effect




as WTPF4 on HUVEC. DLQ




seems to play a minor role in




the heparan sulfate-




dependent pathway.


PF4-M3H
PF4-M3H is a PF4-M3 mutant without HBD.
This mutant cannot inhibit




the proliferation and the




migration of HUVEC cells.




DLQ seems to play a major




role in the pathway




postulated in this




specification. Replacement of




only one residue (Q to R)




cancels the antiangiogenic




properties of PF4.


PF4-M4
Test of the influence of DLQ motif
Mutation does not modify the



suppression on the antiangiogenic activity of
antiangiogenic properties of



PF4. M4 is able to bind to heparan sulfate
PF4 since those properties



through the HBD.
are, heparan sulfate-




dependantfor PF4-M4.


PF4-M4H
DLQ motif suppression.
Inhibits nearly completely or




completely the




antiangiogenic properties of




PF4.


PF4-M5
After alignment of PF4 and IL8 (FIG. 7),
Mutation decreases the



residues of different physical nature were
antiangiogenic properties of



pointed (arrows). This sequence difference
PF4.



can explain the difference in receptor



specificity between IL8 and PF4. IL8 is



proangiogenic and PF4 is antiangiogenic.



Those loci were mutated. M5 is a triple



mutant. Amino acids in WT replaced by



residues with different physical properties:



L42S, V44Q, T47A. All mutants are carrying



HBD.


PF4-M5H
Triple mutant: L42S, V44Q, T47A, without
Decreases the antiangiogenic



HBD.
activity of the triple mutant.


PF4-M6
M6 is a triple mutant. Amino acids in WT
Mutation decreases the



replaced by residues with different physical
antiangiogenic properties of



properties: Q49A, V50S, H54A. All mutants
PF4.



are carrying the heparan sulfate-binding



domain (HBD).


PF4-M6H
Triple mutant: Q49A, V50S, H54A, without
Mutations induce a loss of



HBD.
antiangiogenic activity of




PF4. The mutated loci are




important for the




antiangiogenic activity.


PF4-M7H
This mutant is a PF4-M1 mutant with three
Repetition of tyrosine increases



tyrosine residues added at the C-terminal end
the number of [125I] atoms that



of the PF4. The additional tyrosine residues
can be carried by PF4-M7.



are useful to carry [125I] label.


PF4-M8
Single mutant of PF4-M5 carrying HBD. The
Mutation does not modify the



single mutation (L42S) controls formation of
antiangiogenic properties of



the triple mutant.
PF4.


PF4-M8H
PF4-M8H is a single mutant: L42S, without
Mutation suppresses the



HBD.
antiangiogenic properties of




PF4. This locus is necessary




for pharmacophore




definition.


PF4-M9
Single mutant of PF4-M5 carrying HBD. The
Mutation does not modify the



single mutation (V44Q) is used to control
antiangiogenic properties of



triple mutant.
PF4.


PF4-M9H
PF4-M9H is a single mutant: V44Q, without
Mutation suppresses the



HBD.
antiangiogenic properties of




PF4. This locus is necessary




for pharmacophore




definition.


PF4-M10
Single mutant of PF4-M5 carrying HBD. The
Mutation does not modify the



single mutation (T47A) controls formation of
antiangiogenic properties of



the triple mutant.
PF4.


PF4-M10H
PF4-M10H is a single mutant: T47A, without
Mutation does not suppress



HBD.
the antiangiogenic properties




of PF4. This locus is not




required for pharmacophore




definition.


PF4-M11
Single mutant of PF4-M6 carrying HBD. The
Mutation does not modify the



single mutation (Q49A) controls formation of
antiangiogenic properties of



the triple mutant.
PF4.


PF4-M11H
PF4-M10H is a single mutant: Q49A, without
Mutation suppresses the



HBD.
antiangiogenic properties of




PF4. This locus is necessary




for pharmacophore




definition.


PF4-M12
Single mutant of PF4-M6 carrying HBD. The
Mutation does not modify the



single mutation (H54A) controls formation of
antiangiogenic properties of



the triple mutant.
PF4.


PF4-M12H
PF4-M12H is a single mutant: H54A, without
Mutation suppresses the



HBD.
antiangiogenic properties of




PF4. This locus is necessary




for pharmacophore




definition.


PF4-M13
Single mutant of PF4-M6 carrying HBD. The
Mutation does not modify the



single mutation (V50S) controls formation of
antiangiogenic properties of



the triple mutant.
PF4.


PF4-M13H
PF4-M13H is a single mutant: V50S, without
Mutation does not suppress



HBD.
the antiangiogenic properties




of PF4. This locus is not




required for pharmacophore




definition.


PF4-M17H
Mutant lacking the N-terminal negative
Mutation does not modify the



sequence EAEEDG (SEQ ID NO: 31)
antiangiogenic properties of




PF4.









By characterizing the activity of these mutations and correlating the results with a three-dimensional structure of PF4, more complete pharmacophore structures for that molecule have been identified. In particular, this PF4 pharmacophore consists essentially of at least seven and up to ten key functional groups and of their spatial relationships that are believed to be critical for specific interactions of PF4 with a PF4-receptor. Each point in this pharmacophore structure corresponds to a particular, unique atom or functional group on an amino acid side chain of the mature PF4 sequence set forth in FIG. 1C (SEQ ID NO:1). These points are set forth in Table 1, above, and also in Table 5 below. In particular, Table 5 specifies the amino acid residue where each point in the PF4 pharmacophore is located, along with the particular atom or functional group of that side chain that corresponds to the pharmacophore point. The far left-hand column in Table 5 also provides a commentary describing the nature of possible interactions between the pharmacophore and a PF4-specific receptor.









TABLE 5







PREFERRED PF4 PHARMACOPHORE POINTS











Amino




Pharmacophore
Acid
Atom/Functional


Point
Residue
Group
Comment(s)





I
Asp7
(Atom 15) OD1
Electrostatic interaction





Hydrogen bond





acceptor


II
Asp7
(Atom 16) OD2
Electrostatic interaction





Hydrogen bond





acceptor


III
Gln9
(Atom 49) NE2
Hydrogen bond donor


IV
Gln9
(Atom 50) OE1
Hydrogen bond





acceptor


V
Gln18
(Atom 182) OE1
Hydrogen bond





acceptor


VI
Gln18
(Atom 183) NE2
Hydrophobic donor


VII
His23
(Atom 276) NE2
Hydrogen bond





acceptor


VIII
Leu8
(Atom 26) CG
Hydrophobic





interaction


IX
Val13
(Atom 98) CB
Hydrophobic





interaction


X
Leu11
(Atom 72) CG
Hydrophobic





interaction










FIGS. 2A and 2B provide an illustration of this pharmacophore on the prototype molecule, native mature human PF4. In particular, FIG. 2A shows a three-dimensional structure of the mature PF4 polypeptide backbone, based on the coordinates set forth in the Appendix, infra. Amino acid residues containing functional groups of the PF4 pharmacophore are shown with each functional group of the pharmacophore circled and labeled with the corresponding roman numeral in Table 1, above. FIG. 2B shows the PF4 pharmacophore structure with each point corresponding to a particular functional group. Distances between these functional groups are indicated by lines drawn between the different functional groups in FIG. 2B. These distances can be readily determined and evaluated by a user, e.g. by measuring or calculating distances between the corresponding functional groups in the three-dimensional structure of mature PF4, such as the coordinates set forth in the Appendix, infra. For convenience, preferred distances between these functional groups are also set forth below in Table 6.









TABLE 6







PF4 PHARMACOPHORE DISTANCES










Pharmacophore
Distance (Å)



Points
Mean ± SD







I-II
 2.25 ± 0.05



I-III
 6.03 ± 1.37



I-IV
 6.92 ± 1.60



I-V
30.27 ± 2.92



I-VI
29.94 ± 2.49



I-VII
30.41 ± 4.31



I-VIII
 8.57 ± 2.60



I-IX
14.20 ± 1.53



I-X
12.54 ± 1.51



II-III
 6.00 ± 2.43



II-IV
 7.01 ± 1.84



II-V
30.83 ± 1.99



II-VI
30.33 ± 1.97



II-VII
31.24 ± 4.03



II-VIII
 9.09 ± 1.22



II-IX
14.45 ± 0.24



II-X
13.28 ± 0.37



III-IV
 2.31 ± 0.07



III-V
26.35 ± 2.76



III-VI
26.57 ± 2.02



III-VII
26.31 ± 3.05



III-VIII
 9.19 ± 1.40



III-IX
10.91 ± 1.74



III-X
 7.06 ± 2.49



IV-V
25.58 ± 1.40



IV-VI
25.80 ± 1.31



IV-VII
25.34 ± 2.81



IV-VIII
 9.02 ± 0.63



IV-IX
10.46 ± 0.46



IV-X
 6.52 ± 1.26



V-VI
 3.85 ± 1.54



V-VII
10.21 ± 2.21



V-VIII
23.10 ± 2.21



V-IX
17.29 ± 1.68



V-X
19.25 ± 2.12



VI-VII
14.07 ± 0.94



VI-VIII
21.84 ± 2.74



VI-IX
16.42 ± 2.03



VI-X
19.95 ± 2.02



VII-VIII
25.38 ± 4.39



VII-IX
20.60 ± 3.57



VII-X
18.76 ± 3.72



VIII-IX
 6.87 ± 0.96



VIII-X
 9.84 ± 1.05



IX-X
 7.25 ± 0.49










6.3. Coordinate System Visualization and Bonding Potentials


The PF4 pharmacophore of the invention was further visualized to elucidate bonding and hydrophobic potential around each of the pharmacophore points. As described above, each pharmacophore point is classified as either a hydrogen bond acceptor, a hydrogen bond donor, or as participating in a hydrophobic interaction. By visualizing these points onto a coordinate system, the hydrophobic volumes and hydrogen bonding spherical surface caps can be better understood for the purposes of agonist/antagonist design.


An origin was chosen and defined as 0 from which both Cartesian and spherical coordinate systems were drawn. The three dimensional figure from FIG. 2B was generated using the critical distances between the functional groups as described above. This figure was superimposed upon the Cartesian and spherical coordinate systems to account for hydrophobic volumes and hydrogen bonding vector directions. FIG. 3A provides an illustration of this pharmacophore in three dimensions. Each point in the pharmacophore is defined by the two geometric systems (Cartesian coordinates and spherical coordinates). Those skilled in the art can readily convert the Cartesian coordinates for a given point into spherical coordinates, and vice-versa, using well known mathematical relationships between these two coordinate systems. In particular, it is understood that the spherical coordinates, r, θ and φ, can be readily determined from given cartesian coordinates, x, y and z, using the relationships:






r
=



x
2

+

y
2

+

z
2










ϕ
=


tan

-
1




(

y
x

)



,


if





x

>
0








ϕ
=



tan

-
1




(

y
x

)


+
180


,


if





x

<
0







θ
=


cos

-
1




(

z
r

)






Likewise, the cartesian coordinates, x, y and z, can be readily determined from given spherical coordinates, r, θ and φ, using the relationships:





x=r sin θ cos φ





y=r sin θ sin φ





z=r cos θ


For convenience, preferred Cartesian and spherical coordinates for the pharmacophore points are set fort below in Table 7.









TABLE 7







PF4 PHARMACOPHORE COORDINATES













Pharmacophore








Points
x
y
z
r
θ
φ
















I H. bond
−0.863
−15.865
0.964
15.92
86.54
266.898


acceptor


II H. bond
0.452
−15.619
2.749
15.87
80.036
−88.355


acceptor


III H. bond
3.465
−10.737
−2.157
11.49
100.834
−72.124


donor


IV H. bond
4.52
−8.973
−0.948
10.09
95.404
−63.273


acceptor


V H. bond
−1.662
17.444
0.654
17.53
87.874
95.431


acceptor


VI H. bond
−3.49
16.751
2.271
17.26
82.451
101.758


donor


VII H. bond
1.2
17.361
−12.069
21.18
124.756
86.058


donor


VIII
−3.224
−7.877
4.781
9.76
60.677
247.75


hydrophobic


volume


IX hydrophobic
0.564
−1.39
4.395
4.74
21.998
−67.924


volume


X hydrophobic
4.043
−3.387
−2.315
5.76
113.713
−39.96


volume


origin
0.000
0.000
0.000
0.000
0.000
0.000









A point, M, was defined as the closest point to a hydrophobic pharmacophore point at which an undesirable interaction could be avoided. The hydrophobic volume around the pharmacophore point is defined as 4/3π(rhy)3 wherein rhy is the distance between the pharmacophore point and point M on the surface of the hydrophobic volume. FIG. 3B provides an illustration of the hydrophobic volume around pharmacophore point VI. Preferred Cartesian and spherical coordinates for the hydrophobic volume outer sphere points (m points) are set forth below in Table 8.


Furthermore, one or more hydrogen bond vectors, A, were calculated for each of the polar pharmacophore points using standard electronegativity data. FIG. 3B provides an illustration of one hydrogen bonding vector from pharmacophore point V. A hydrogen bonding potential spherical cap was then defined for each hydrogen bond vector as having a concave depth of ¼ the length of the hydrogen bonding vector in a sphere whose radius is ½ the length of the hydrogen bonding vector. FIG. 4 shows the graphical representation of both hydrogen bond donating and hydrogen bond accepting hydrogen bonding potential spherical caps.


The surface area of the hydrogen bond cap is defined as 2πRcaph wherein Rcap is the radius of the sphere and h is concave depth of the spherical cap. For convenience, preferred Cartesian and spherical coordinates for the hydrogen bond vector points (A points) for this pharmacophore are set forth below in Table 8. Similarly, the hydrophobic volumes (“Vol”) and hydrogen bonding cap surface areas (“S”) for this pharmacophore are set forth below in Table 9.









TABLE 8







HYDROPHOBIC POINT AND


HYDROGEN BONDING VECTOR COORDINATES













Pharmacophore








Points
x
y
z
r
θ
φ
















origin
0.000
0.000
0.000
0.000
0.000
0.000


A_Ia
−2.128
−15.922
−0.612
16.07
92.195
262.399


A_Ib
−0.428
−17.301
2.154
17.44
82.917
268.595


A_II
1.677
−15.542
4.299
16.21
74.631
−83.853


A_IIIa
5.531
−9.996
−4.33
12.22
110.768
−61.052


A_IIIb
1.381
−12.838
−2.067
13.08
99.106
−83.872


A_IVa
4.281
−7.704
0.472
8.83
86.948
−60.948


A_IVb
6.071
−8.527
−2.208
10.7
101.923
−54.558


A_V
−1.005
17.349
−1.135
17.41
93.751
93.303


A_V
−0.689
18.181
2.074
18.31
83.508
92.158


A_VI
−2.426
18.896
3.877
19.44
78.507
97.305


A_VI
−5.475
14.573
2.612
15.78
80.483
110.581


A_VII
−0.253
17.729
−13.524
22.3
127.351
90.805


A_VII
2.637
17.019
−10.78
20.32
122.057
81.204


m_VIII
−5.281
−7.342
3.491
9.69
68.893
234.281


m_IX
1.731
−0.451
4.147
4.52
23.443
−14.605


m_X
5.683
−2.278
−3.603
7.1
120.512
−21.846
















TABLE 9







PF4 PHARMACOPHORE POINT


HYDROPHOBIC VOLUMES


AND HYDROGEN BONDING CAP SURFACE AREAS











Pharmacophore Point
Area (Å)2
Volume (Å)3







S_Ia
5




S_Ib
5



S_II
5



S_IIIa
4



S_IIIb
4



S_IVa
5



S_IVb
5



S_Va
5



S_Vb
5



S_VIa
4



S_VIb
4



S_VIIa
4



S_VIIb
4



Vol_VIII

64 ± 1



Vol_IX

14.7 ± 1  



Vol_X

55 ± 1










6.4. Use of the Pharmacophore in Compound Design


This example demonstrates how a pharmacophore of this invention can be used to identify, design and synthesize compounds that can be either agonists or antagonists of the PF4 receptor. In particular, a lead compound, referred to here as BQ-A01104 (Formula I), is disclosed.







BQ-A01104 is a neutral molecule with one anionic group (a carboxylic acid group) and a cationic group (a quaternary amine in the piperidinium ring). The compound is soluble in an aqueous solution of sodium chloride. The compound comprises all ten of the PF4 pharmacophore points listed in Table 5, supra, held structurally rigid by a scaffold that, for convenience, can be conceptualized a seven distinct subunits or “zones.” The chemical structure of BQ-A01104 is illustrated in FIG. 5, with each of the ten pharmacophore points indicated by the corresponding Roman numeral listed in Table 5, above. Each of the structural subunits or “zones” is also indicated by a corresponding arabic numeral. These structural subunits are illustrated individually in FIGS. 6A-6G, and discussed below. High temperature molecular dynamics (MD) simulation of the molecule is water (1 nanosecond at 900 Kelvin) reveals that the molecule is structurally stable, and maintains all structural constraints. That is to say, the scaffold stays rigid along all MD trajectories.


Zone 1 (FIG. 6A), the first chemical subunit, comprises a piperidinium ring that carries the pharmacophore groups I through IV and VIII, linked to the ring by flexible chemical arms. The sp hybridization of the quaternary amine in this subunit allows good presentation of the pharmacophore points in three-dimensional space. Rotation about the dihedral angle D1 (shown in FIG. 6A), which joins Zone 1 and Zone 2, is limited due to the proximity of the nitrogen containing ring and aliphatic carbon (carbon 27). This dihedral angle has a value of about 46.9°, providing good presentation of the pharmacophore points.


Zone 2 (FIG. 6B) maintains the presentation of an ethyloxy side chain corresponding to pharmacophore point X via an sp3 carbon (C38) in the aliphatic backbone. The ketone oxygen gives a desirable bend to the bending angle, in order to correctly present the pharmacophore point X.


Zone 3 (FIG. 6C) comprises a peptide bond that gives some rigidity to the side chain carrying the pharmacophore point IX. The dihedral angles D1, D2 and D3 for this subunit (shown in FIG. 6C) have average values of −155.6°, 53.3° and 22.3°, respectively. This configuration allows the aromatic ring corresponding to the pharmacophore point IX to be oriented toward the above-described chemical subunits.


Zone 4 (FIG. 6D) links zones 3 and 5 to each other at a fixed angle, by means of a peptide bond that is rigid even during high temperature MD simulations.


Zone 5 (FIG. 6E) comprises an aromatic ring, which maintains an energetically favorable relative orientation between the pharmacophore points V and VI on one branch (labeled in FIG. 6E as Branch 2), pharmacophore point VII on the other branch (labeled in FIG. 6E as Branch 3), and the remaining pharmacophore points I-IV and VIII-X on the third branch (labeled in FIG. 6E as Branch 1).


Zone 6 (FIG. 61) comprises a peptide bond, giving rigidity to the side chain carrying the pharmacophore point VII. The average dihedral angle values D1 and D2 (shown in FIG. 6F) are −108° and 26°, respectively. This configuration allows the benzimidazole ring corresponding to pharmacophore point VII to be correctly oriented for efficient activity.


Zone 7 (FIG. 6G) comprises a benzimidazole ring that correctly orients the nitrogen three atom in order to fit the pharmacophore point VII.


Pharmacophore points I, II, V, VI and VIII are connected to backbone subunits in BQ-A011004 via flexible aliphatic chains. By contrast, pharmacophore points III, IV, VII, IX and X are connected to the backbone subunits of BQ-A011004 by chains that are relatively rigid and constrained. These latter pharmacophore points are therefore relatively constrained compared to the former. This reflects the relative flexibility of different pharmacophore points in the PF4 polypeptide itself. For example, restrained flexibility of pharmacophore points X and IX, which are located on the Ala43 and Leu45 amino acid residues of PF4 (SEQ ID NO:1), is imposed by the existence of an α-helix that is necessary for PF4 activity. The stability of this helix is maintained by a capping box present at its N-terminal end. In the PF4 polypeptide (SEQ ID NO:1), therefore, the movements of residues Val13 and Leu11 are restrained due to the rigidity of the PF4 skeleton imposed by two disulfide bridges.


6.4.1 Preparation of BQ-A01104


BQ-A01104 and other compounds identified and designed as either agonists or antagonists of the PF4 receptor can be obtained via standard, well-known synthetic methodology.


Various compounds identified and designed as either agonists or antagonists of the PF4 receptor contain one or more chiral centers, and can exist as racemic mixtures of enantiomers or mixtures of diastereomers. These isomers may be asymmetrically synthesized or resolved using standard techniques such as chiral columns or chiral resolving agents. See, e.g., Jacques, J., et al., Enantiomers, Racemates and Resolutions (Wiley-Interscience, New York, 1981); Wilen, S. H., et al., Tetrahedron 33:2725 (1977); Eliel, E. L., Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); and Wilen, S. H., Tables of Resolving Agents and Optical Resolutions p. 268 (E. L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind., 1972).


Some convenient methods are illustrated in Schemes 14. These schemes are merely meant to be illustrative of one synthetic pathway, however, these synthetic pathways can be modified in ways that will be obvious to those skilled in the art to create a variety of compounds. Starting materials useful for preparing the compounds of the invention and intermediates therefore, are commercially available or can be prepared from commercially available materials using known synthetic methods and reagents.


Methods of synthesizing the compounds of the present invention are illustrated in the following schemes. Because of possible discrepancies in using chemical nomenclature, where structures are provided for compounds or moieties the structure, and not the chemical name, controls the definition of the compound or moiety.







In scheme 1, intermediate 5 is produced by first alkylating 4-phenylbutylamine (1) (Aldrich Chemical Co.) with aluminum chloride in water with chloroacetic acid to produce phenylacetic acid compound 2. Compound 2 is reacted with thionyl chloride to produce the acid chloride which is reacted with the benzimidazol-5-yl-methylamine to form the amide compound 3. Benzimidazol-5-yl-methylamine is made in 3 steps from commercially available benzimidazole carboxylic acid (Aldrich Chemical Co.); (1) treatment of the carboxylic acid with thionyl chloride to form the acid chloride, (2) reaction of the acid chloride with ammonia to form the corresponding primary amide (See Beckwith et al. in Zabicky The Chemistry of Amides Wiley, NY, 1970, pg. 73), and (3) reduction of the amide with lithium aluminum hydride in THF to form the desired methyl amine (See Challis et al. in Zabicky The Chemistry of Amides Wiley, NY, 1970, pg. 795). Compound 3 is then alkylated again with 3-chloropropionic acid and aluminum chloride in water to produce the trisubstituted phenyl compound 4. Finally compound 4 is reacted with thionyl chloride and ammonia to convert the carboxylic acid to the amide intermediate 5.







In scheme 2, intermediate 12 is produced by converting the cylcopentenyl amide compound (6) to the 1,3-dicarbonyl compound (7) with osmium tetroxide followed by treatment with sodium periodate and then treatment with water and a mild reducing agent such as NaHSO3. Compound 6 is formed in 3 steps from commercially available cyclopentanone (Aldrich Chemical Co.); (1) an aldol reaction of cyclopentanone with the enolate of ethyl acetate, (2) dehydration of the resultant alcohol by treatment with acid, and (3) conversion of the resultant α,β-unsaturated ester to its corresponding amide upon reaction with the sodium or lithium salt of aniline (Majetich et al. Tetrahedron Lett. 1994, 35, 8727). Compound 7 is oxidized using standard techniques, for example treatment with KMnO4, to the carboxylic acid compound 8. Compound 8 is treated with vinylmagnesium chloride and the resultant alcohol subsequently dehydrated with acid to produce the diene compound 9. The vinyl alkene of compound 9 is brominated with hydrogen bromide followed by hydrogenation of the heptenyl olefin with hydrogen gas in the presence of a catalytic amount of palladium on carbon. Finally the 1-bromoalkane is reacted with magnesium to produce the alkyl grignard reagent 10. Compound 10 is then reacted with 3-aminopropanal in ether to produce alcohol compound 11. Finally compound 11 is reacted with a base, followed by ethylbromide and then acid to form ethyl ether intermediate 12.







In scheme 3, intermediate 19 is produced in three steps from commercially available 3-butenal diethyl acetal (Aldrich Chemical Co.); (1) hydroboration with BH3 followed by oxidation with NaOH/H2O2, 2) conversion of the diethyl acetal to the aldehyde with treatment of catalytic p-toluene sulfonic acid, and (3) protection of the alcohol of 4-hydroxy-butanal to form compound 13. The choice of appropriate protecting groups in this and other steps of the synthesis will be readily determined by one of ordinary skill in the art. Suitable protecting groups and standard techniques for choosing and synthesizing protecting groups can be found in T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis (Wiley-Interscience, New York, 1999). Compound 13 is then reacted with the grignard reagent (14; forms in two steps, (1) addition of HBr to 4-phenyl-1-butyne (Aldrich Chemical Co.) under Markovnikov conditions, and (2) reaction of the resultant vinylic bromide with magnesium) in ether to produce alcohol compound 15. Compound 15 is reacted with tosyl chloride, or other suitable leaving group precursor, in the presence of base, e.g., NEt3, to produce tosylate compound 16. Compound 16 is reacted with the Gringard reagent formed by protecting 4-bromobutanal (4-bromobutanal is made from 4-hydroxy-butanal (supra) upon treatment with 2,4,6-trichloro[1,3,5]triazine, NaBr and N,N-dimethylformamide in methylene chloride; de Luca et al. Org. Lett., 2002, 4, 553-555) with a protecting group that is orthogonal to P1 and reacting the protected compound with magnesium to form compound 17. Compound 17 is deprotected to remove the original protecting group P1 and the free alcohol is subsequently oxidized to the carboxylic acid with, for example, CrO3. After oxidation, the intermediate is brominated with tribromophospine and bromine gas to form the α-bromo carboxylic acid. The carboxylic acid is then treated with thionyl chloride and the resultant acid chloride is treated with ammonia to produce amide compound 18. The olefin of compound 18 is brominated with hydrogen bromide to afford the primary bromide and the second protecting group (P2) is removed from the intermediate and the resultant alcohol oxidized to the aldehyde using standard methods, e.g. treatment with the Swern or Dess-Martin reagent, to form intermediate 19.







Finally, in scheme 4, the dibromo intermediate 19 is coupled with the amine intermediate 12 in the presence of a base and tert butyl-ammonium iodide (TBAI) to give the piperidine intermediate 20. The carboxylic acid of intermediate 20 is coupled with the amine of intermediate 5 in the presence of DCC and catalytic DMAP followed by oxidation of the remaining aldehyde with, for example KMnO4, to afford title compound I, BQ-A01104.


6.5. Optimization of Activity


Using routine techniques of chemical synthesis and modification, it is possible to further optimize both the activity and Absorption, Distribution, Metabolism and Excretion (ADME) properties of compounds that are designed and/or identified using the pharmacophores of this invention. For example, candidate PF4 agonist or antagonist compounds can be modified either by modifying one or more functional groups that correspond to pharmacophore points, by modifying the scaffolding (e.g. the subunits or “zones” described, supra, for BQ-A011004), or both. FIG. 7 illustrates certain, exemplary modifications that can be made to optimize the compound BQ-A011004. The complete chemical structures of these modified compounds (Formulas II-VI) are shown in FIGS. 8A-8E. Such modifications, and compounds comprising them, therefore are also considered a part of the present invention, as is their use, e.g., as agonists or antagonists of PF4. Compounds II-VI can, for example, be prepared from the following synthetic protocols that are derivations of schemes 1-4.


The preparation of the compound of Formula II is illustrated in schemes 5-6. The key modifications to the BQ-A011004 scaffold are the substitution of a cyclohexyl ring for the piperazine ring, and the substitution of an isopropylamide group for the phenylamide group.










The substitution of the cyclohexyl fragment for the piperazine ring is accomplished according to Schemes 5a, 5b. First, γ-caprolactone (Aldrich Chemical Co.) is converted to the corresponding ring-opened ester with treatment of sodium ethoxide (Scheme 5A). The intermediate ester alcohol is oxidized under Swern conditions to the corresponding ester aldehyde, and the aldehyde protected as its dioxolane with ethylene glycol in the presence of catalytic p-TSA. The ester is then reduced to the alcohol with LiAlH4 to provide compound 22. Treatment of compound 22 with N-bromosuccinimide and methylsulfide converts the allylic alcohol to its corresponding allyl bromide (Corey et al. Tetrahedron Lett. 1972, 4339). Reaction of the allyl bromide with the lithium enolate of acetaldehyde (formed from acetaldehyde and lithium diisopropylamide) provides alkene aldehyde compound 23.


As illustrated in Scheme 5B, 3-phenyl-1-propanol (24, Aldrich Chemical Co.) is first oxidized under Swern conditions to the aldehyde and the aldehyde is reacted with vinylmagnesium bromide which, upon reaction workup, affords the corresponding allylic alcohol. The allylic alcohol is first reacted with NBS and DMS to afford the allyl bromide and the bromide is converted to the corresponding Grignard reagent (25) with magnesium. Compound 25 is then added to aldehyde 23 and the resultant alcohol is converted to the corresponding tosylate (26) with tosyl chloride in the presence of base (e.g., NEt3). The tosylate is displaced by treatment with a protected 4-hydroxybutyl Grignard reagent to form diene 27. Ring closing metathesis of compound 27 with a catalytic amount of Hoveyda-Grubbs 2nd generation catalyst (28) (Hoveyda et al. J. Am. Chem. Soc. 121, 791, 1999) followed by a Wacker oxidation with PdCl2 (Tsuji, J. Synthesis 1990, 739) affords cyclic ketone 29.







The remainder of the compound of Formula II is constructed as illustrated in Scheme 6. Compound 10C (See Scheme 9, infra) is reacted with 3-bromopropionaldehyde to afford alcohol 30. The alcohol is then converted to its corresponding ethyl ether upon treatment with ethyl bromide in the presence of base (e.g., NEt3) and the intermediate compound is converted to its corresponding Grignard reagent (31) with magnesium metal. Grignard reagent 31 is then added to compound 29 and the resultant alcohol dehydrated to its corresponding alkene (32) upon treatment with acid (the dioxolane group is also removed in this step). Compound 32 is then hydrogenated in the presence of hydrogen and catalytic palladium on carbon and the aldehyde converted to its corresponding amide by 1) oxidation to the acid with KMnO4, 2) conversion of the acid to the acid chloride with thionyl chloride, and 3) reaction of the acid chloride with ammonia. The resultant amide 33 is then coupled with compound 5 (See Scheme 1) in the presence of DCC and catalytic DMAP. Finally, the compound of Formula II is completed when the protecting group P2 is removed and the resultant alcohol oxidized to its corresponding acid with KMnO4.


The preparation of the compound of Formula III is illustrated in scheme 7-8. The key modifications to the BQ-A011004 scaffold are the substitution of an aminocarbonyl ethyl group for the aminocarbonyl group substituted on the piperazine ring, and the substitution of a 4-[4-aminobutyl]-4,5-dihydropyrazole for the aminomethylbenzimidazole fragment.







The substitution of an 4-[4-aminobutyl]-4,5-dihydropyrazole group is achieved through the synthesis of fragment 5A as illustrated in Scheme 7. Reaction of 6-amino heptyne (IA) with diazomethane under Pechmann conditions (T. L. Jacobs in R. C. Elderfield, Heterocyclic Compounds 5, 70 (New York, 1957)) affords 4-[4-aminobutyl]pyrazole which is reduced to the corresponding 4,5-dihydropyrazole (2A) with hydrogen in the presence of catalytic palladium on carbon. Dihydropyrazole 2A is then coupled with the acid chloride of compound 2 (i.e., reaction of compound 2 from Scheme 1 with thionyl chloride) to form amide 3A. Compound 3A is then alkylated again with 3-chloropropionic acid and aluminum chloride in water to produce the trisubstituted phenyl compound 4A. Finally compound 4A is reacted with thionyl chloride and ammonia to convert the carboxylic acid to the amide intermediate 5A.







The substitution of an aminocarbonyl ethyl group is achieved from compound 17 (prepared in Scheme 3, above). As shown in Scheme 8, Compound 17 is deprotected to remove the original protecting group P1 and the free alcohol is subsequently oxidized to the aldehyde under Swern conditions. After oxidation, the intermediate is brominated with tribromophospine and bromine gas to form the α-bromo aldehyde 18B. The α-bromo aldehyde is reacted with α-(p-nitrophenoxycarbonyl)methyldiethylphosphonate (prepared from the p-nitrophenyl ester of acetic acid and diethylchlorophosphonate in the presence of, for example, NEt3) under Horner Wadworth Emmons conditions to form the corresponding α,β-unsaturated γ-bromo ester. The activated ester is then converted to the corresponding amide 19B by treatment with ammonia (See Beckwith, A. L. J., in Zabicky The Chemistry of Amides; Wiley: NY, 1970, p. 96). The olefin of compound 19B is brominated with hydrogen bromide to afford the primary bromide and the second protecting group (P2) is removed from the intermediate and the resultant alcohol oxidized to the aldehyde using standard methods, e.g., treatment with the Swern or Dess-Martin reagent Finally, the α,β-unsaturated amide is hydrogenated with hydrogen in the presence of catalytic palladium on carbon to afford fragment 20B. To complete the synthesis of the compound of Formula III, compound 20A is coupled with compound 12 under the conditions described in Scheme 4 above. The resultant product is then coupled with compound 5A (See Scheme 5) in the presence of DCC and catalytic DMAP and the aldehyde oxidized to the corresponding carboxylic acid with, for example, KMnO4.







The preparation of the compound of Formula IV is illustrated in Scheme 9. The key modifications to the BQ-A011004 scaffold are the substitution of a 2-methylbutyl group for the ethoxy group y to the piperazine ring, and the substitution of an isopropoyl amide group for the phenyl amide group. The synthesis of a compound with these two modifications can be achieved via the synthesis of modified fragment 13C (Scheme 9). Fragment 13C is produced by converting the cyclopentenyl isopropylamide compound (6C) to the 1,3-dicarbonyl compound (7C) with osmium tetroxide followed by treatment with sodium periodate and then treatment with water and a mild reducing agent such as NaHSO3. Compound 6C is formed in 3 steps form commercially available cyclopentanone (Aldrich Chemical Co.); (1) an aldol reaction of cyclopentanone with the enolate of ethyl acetate, (2) dehydration of the resultant alcohol by treatment with acid, and (3) conversion of the resultant α,β-unsaturated ester to its corresponding amide upon reaction with the lithium isopropylamide (Majetich et al. Tetrahedron Lett. 1994, 35, 8727). Compound 7C is oxidized using standard techniques, for example treatment with KMnO4, to the carboxylic acid compound 8C. Compound 8C is treated with vinylmagnesium chloride and the resultant alcohol subsequently dehydrated with acid to produce the diene compound 9C. The vinyl alkene of compound 9C is brominated with hydrogen bromide followed by hydrogenation of the heptenyl olefin with hydrogen gas in the presence of a catalytic amount of palladium on carbon. Finally the 1-bromoalkane is reacted with magnesium to produce the alkyl grignard reagent 10C. Compound 10C is then reacted with 3-aminopropanal in ether, followed by treatment with mild acid to produce alcohol compound 11C. Compound 11C is converted to its corresponding tosylate 12C by treatment with tosyl chloride in the presence of base, for example NEt3. Finally, treatment of tosylate 12C with 3-methylbutyl magnesium bromide (produced from 3-methyl-1-bromobutane and magnesium in ether) affords fragment 13C. The remainder of the synthesis of the compound of Formula IV can be achieved by substituting compound 13C for compound 12 in Scheme 4 (supra) and carrying out the appropriate coupling reactions with compounds 19 and 5.







The preparation of the compound of Formula V is illustrated in Scheme 10. The key modification to the BQ-A011004 scaffold is the substitution of an isopropoyl amide group for the phenyl amide group. The synthesis of a compound with these two modifications can be achieved via the synthesis of modified fragment 12D. In scheme 10, intermediate 12D is produced by converting the cyclopentenyl isopropylamide compound (6C) to the 1,3-dicarbonyl compound (7C) with osmium tetroxide followed by treatment with sodium periodate and then treatment with water and a mild reducing agent such as NaHSO3. Compound 7 is oxidized using standard techniques, for example treatment with KMnO4, to the carboxylic acid compound 8C. Compound 8C is treated with vinylmagnesium chloride in the resultant alcohol subsequently dehydrated with acid to produce the diene compound 9C. The vinyl alkene of compound 9C is brominated with hydrogen bromide followed by hydrogenation of the heptenyl olefin with hydrogen gas in the presence of a catalytic amount of palladium on carbon. Finally the 1-bromoalkane is reacted with magnesium to produce the alkyl Grignard reagent 10C. Compound 10C is then reacted with 3-aminopropanal in ether, followed by treatment with mild acid to produce alcohol compound 11C. Finally compound 11C is reacted with a base, followed by ethylbromide and then acid to form ethyl ether intermediate 12D. The remainder of the synthesis of the compound of Formula IV can be achieved by substituting compound 12D for compound 12 in Scheme 4 (supra) and carrying out the appropriate coupling reactions with compounds 19 and 5.


The key modification to the BQ-A011004 scaffold for the compound of Formula VI is the substitution of a 4-[4-aminobutyl]-4,5-dihydropyrazole for the aminomethylbenzimidazole fragment. The synthesis is achieved by the coupling of compound 5A (See Scheme 7) with compound 20 (See Scheme 4) with DCC in the presence of catalytic DMAP followed by oxidation of the aldehyde to the corresponding carboxylic acid with, for example, KMnO4.


Pharmacophore molecules of the invention can also be selected or modified by selecting or modifying molecules so that they include certain points of the PF4 pharmacophore while selectively excluding others. For example, without being limited to any particular theory or mechanism of action, lead PF4 antagonists (which bind to but do not activate PF4 receptor) can be selected and/or identified by identifying compounds that include certain pharmacophore points required and/or preferred for binding to the PF4 receptor, while selectively excluding other points that may be required or preferred for target (in this example PF4 receptor) activation. See also, Section 5.1, above.


The chemical structure of one such compound is illustrated in FIG. 9A (Formula VII). This compound includes functional groups corresponding to the PF4 pharmacophore points IX, X and VI (Tables 1 and 5, below), while functional groups corresponding to the remaining PF4 pharmacophore points (i.e., points I to V, VII and VIM) are not present. This compound is expected to compete with other molecules such as wild-type PF4 (SEQ ID NO:1) and BQ-A01004 (Formula I) for binding to the PF4 receptor without activating that target. Hence, a compound having this chemical structure is expected to be, and can be used as, a PF4 antagonist in accordance with the present invention.


In preferred embodiments, such PF4 agonist and/or antagonist compounds can be used to detect PF4 receptor polypeptides or fragments thereof. For example, a PF4 agonist or antagonist can be conjugated to a detectable label, and binding of the agonist molecule to PF4 receptor can be detected by detecting the detectable label. In particular embodiments, the PF4 agonist is conjugated to a contrasting agent, for detecting in a medical imaging application such as magnetic resonance imaging (MRI). For imaging purposes, any of a variety of diagnostic agents may be incorporated into a pharmaceutical composition, either linked to a modulating agent or free within the composition. Diagnostic agents include any substance administered to illuminate a physiological function within a patient, while leaving other physiological functions generally unaffected. Diagnostic agents include metals, radioactive isotopes and radioopaque agents (e.g., gallium, technetium, indium, strontium, iodine, barium, bromine and phosphorus-containing compounds), radiolucent agents, contrast agents, dyes (e.g., fluorescent dyes and chromophores) and enzymes that catalyze a calorimetric or fluorometric reaction. In general, such agents may be attached using a variety of techniques as described above, and may be present in any orientation. In such embodiments, one or more water soluble polymers (for example, polyethylene glycol or “PEG”) can also be conjugated to the PF4 agonist or antagonist.


One preferred, exemplary embodiment is illustrated in FIG. 9B. Here, a linker moiety can be used to attach a contrast agent or other detectable label, such as a lanthanide atom encaged inside a DOTA cycle.


6.6. Additional PF4-Derived Polypeptides


In still other embodiments, the present invention provides still other peptides that are derived from the amino acid sequence of PF4, and are useful, e.g. as PF4 agonists and/or antagonists according to methods described here. Particularly preferred polypeptides of these other embodiments include polypeptides having any one or more of the following amino acid sequences:














Desig-




nation
Sequence


















P34-56
PHSPTAQLIATLKNGRKISLDLQ
(SEQ ID NO:157)






P37-56
PTAQLIATLKNGRKISLDLQ
(SEQ ID NO:158)





P34-53
PHSPTAQLIATLKNGRKISL
(SEQ ID NO:159)





P35-53
PSPTAQLIATLKNGRKISL
(SEQ ID NO:160)









The peptide designated P34-56 (SEQ ID NO:157), above, is so named because it is derived from the sequence of amino acids corresponding to residues 34-56 in the full-length, mature PF4 amino acid sequence set forth in FIG. 1C (SEQ ID NO:1). This peptide is understood to bind to and activate the PF4 receptor, and is therefore particularly useful as a PF4 agonist according to the methods of this invention. Without being limited to any particular theory or mechanism of action, the activity of P34-56 (SEQ ID NO:157) is believed to be mediated, at least in part, by residues in an alpha-helix region that comprises residues 5-13 of SEQ ID NO:157. This sequence is derived from and corresponds to an alpha-helix region of the mature PF4 polypeptide (FIG. 1C) comprising the sequence of amino acid residues 38-46 of SEQ ID NO:1. The alpha-helix in the P34-56 peptide (SEQ ID NO:157) is, in turn, understood to be stabilized at least in part by a “capping box” moiety corresponding to the sequence of amino acid residues 1-4 in that peptide. This capping box moiety is not present in the second peptide, designated P37-56 (SEQ ID NO:158), which is otherwise identical to the sequence of P34-56 (SEQ ID NO:157). The removal of this capping box is understood to destabilize the alpha-helix moiety, and thereby render the resulting peptide inactive. Hence, the P37-56 peptide (SEQ ID NO:158), supra, is understood to be inactive in that it does not activate the PF4 receptor.


The peptide designated P34-53 (SEQ ID NO:159) is likewise named because its sequence is derived from the sequence of amino acids corresponding to residues 34-53 of the full-length, mature PF4 amino acid sequence depicted in FIG. 1C (SEQ ID NO:1). The P34-53 peptide (SEQ ID NO:159) effectively competes against P34-56 (SEQ ID NO:157) for target binding, but does not activate the PF4 receptor. Hence, this peptide is particularly useful as a PF4 antagonist according to methods of the present invention. In preferred embodiments, a detectable label can be conjugated to the P34-53 peptide (SEQ ID NO:159), and the peptide can be used to detect PF4 receptor polypeptides, e.g., in a diagnostic assay. In particularly preferred embodiments, the P34-53 peptide (SEQ ID NO:159) can be used to detect PF4 receptor polypeptides (or fragments thereof) in vivo in an individual, for example as part of a magnetic resonance imaging (MRI) or other medical imaging and/or diagnostic assay.


The peptide designated P35-53 (SEQ ID NO:160) is identical to P34-53 (SEQ ID NO:159), except that the His2 residue of P34-53 (SEQ ID NO:159) has been removed. This modification is understood to abolish PF4 binding activity, so that the P35-53 peptide (SEQ ID NO:160) does not bind to or activate PF4 receptor.


Without being limited to any particular theory or mechanism of action, it is believed that the activities of these peptides can be attributed to configurations of certain amino acid residues corresponding to some, but not necessarily all, of the PF4 pharmacophore points described, supra, in this application. This can be more readily seen by comparing three dimensional structures of the different peptides to the PF4 pharmacophore configuration. Two such exemplary comparisons are provided herein, in FIGS. 10A-10B.


Specifically, the bottom half of FIG. 10A provides a three-dimensional representation of the P34-56 peptide (SEQ ID NO:157) backbone, and compares it to the PF4 pharmacophore structure illustrated in FIG. 2A (which is also shown in the top half of FIG. 10A). For convenience, the P34-56 peptide (SEQ ID NO:157) amino acid residues are labeled in FIG. 10A with the numbers of corresponding residues in the full length, mature, wild-type PF4 amino acid sequence (SEQ ID NO:1).


The PF4 pharmacophore is partially present in the P34-56 peptide. Specifically, Gln23 in P34-56 (SEQ ID NO:157) mimics the position and orientation of Gln9 in wild-type, mature PF4 (SEQ ID NO:1) and, hence, provides functional groups corresponding to PF4 pharmacophore points III and IV listed in Table 1, supra. Leu22 in P34-56 (SEQ ID NO:157) mimics the position and orientation of Leu8 in WTPF4 (SEQ ID NO:1) and, hence, provides functional groups corresponding to PF4 pharmacophore point VIII. Asp21 in P34-56 (SEQ ID NO:157) mimics the position and orientation of Asp7 in wild-type PF4 (SEQ ID NO:1), and provides functional groups corresponding to PF4 pharmacophore points I and II. The P34-56 peptide (SEQ ID NO:157) residue Leu12 mimics the position and orientation of the Leu11 amino acid residue in WTPF4 (SEQ ID NO:1), and provides a functional group corresponding to pharmacophore point X. P34-56 peptide (SEQ ID NO:157) amino acid residue Ile9 mimics WTPF4 (SEQ ID NO:1) residue Val 13 and provides PF4 pharmacophore point IX. Finally, the His2 amino acid residue of P34-56 (SEQ ID NO:157) mimics Gln18 of WTPF4 (SEQ ID NO:1). This amino acid residue therefore provides a functional group corresponding to PF4 pharmacophore VI. Unlike glutamine, however, the histidine side chain does not comprise an oxygen. Hence, His2 and, by extension, the P34-56 peptide itself (SEQ ID NO:157) do not comprise a functional group corresponding to PF4 pharmacophore point V. A functional group corresponding to PF4 pharmacophore point VII also is not present in the P34-56 peptide (SEQ ID NO:157).


As explained, supra, the P34-56 peptide (SEQ ID NO:157) is derived from and corresponds to the sequence of amino acid residues 34-56 in the WTPF4 amino acid sequence set forth at SEQ ID NO:1. A person skilled in the art will therefore appreciate that amino acid residues His2, Ile9, Leu12, Asp21, Leu22 and Gln23 in that peptide (SEQ ID NO:157) correspond to residues His35, Ile42, Leu45, Asp54, Leu55 and Gln56, respectively, in SEQ ID NO:1. These residues are therefore identified in the bottom half of FIG. 10A according to those residues in WTPF4 (SEQ ID NO:1) from which they are derived and to which they correspond.


Further inspection of FIG. 10A provides further insight into the functional significance of points I through IV and VIII in the PF4 pharmacophore. These points are all located in the sequence of amino acid residues, Asp7-Leu8-Gln9, in the WTPF4 amino acid sequence (SEQ ID NO:1). The P34-56 peptide (SEQ ID NO:157) also comprises a DLQ motif, at residues 21-23. Without being limited to any particular theory or mechanism of action, this DLQ motif in P34-57 (SEQ ID NO:157) is believed to be stabilized by a network of hydrogen bonds, so that its conformation mimics the N-terminal folding of the DLQ motif at residues 7-9 in WTPF4.



FIG. 10B shows a similar comparison of the P34-53 peptide (SEQ ID NO:159) to the PF4 pharmacophore of FIG. 2A. Again, peptide residues in this figure are labeled according to the amino acid residues in full length WTPF4 (SEQ ID NO:1) to which they correspond. In particular, the P34-53 peptide (SEQ ID NO:159) comprises amino acid residues corresponding to His35, Ile42 and Leu45 in SEQ ID NO:1, and presents functional groups corresponding to points VI, IX and X of the PF4 pharmacophore. However, the DLQ residues, which are found in P34-56 (SEQ ID NO: 157), are not present in the P34-53 peptide (SEQ ID NO:159), and the peptide does not have any functional groups corresponding to pharmacophore points I through IV and VIII. The P34-53 peptide (SEQ ID NO:159) therefore effectively competes with PF4 for binding to the PF4 receptor, and can be used, e.g., in MRI imaging studies according to this invention. However, the peptide does not activate the PF4 receptor, and is not an effective PF4 agonist.


7. REFERENCES CITED

Numerous references, including patents, patent applications and various publications, are cited and discussed in the description of this invention. The citation and/or discussion of such references is provided merely to clarify the description of the present invention and is not an admission that any such reference is “prior art” to the invention described here. All references cited and/or discussed in this specification (including references, e.g., to biological sequences or structures in the GenBank, PDB or other public databases) are incorporated herein by reference in their entirety and to the same extent as if each reference was individually incorporated by reference.


8. APPENDIX
Crystal Structure Coordinates for PF4

See also, Zhang et al., Biochemistry 1994, 33:8361-8366; and Accession No. 1RHP of the Protein Data Bank (both of which are hereby incorporated by reference and in their entireties).

















HEADER


PLATELET FACTOR
16-SEP-94
1RHP
1RHP
2

















COMPND


PLATELET FACTOR 4 (HPF4) (HUMAN RECOMBINANT)
1RHP
3






SOURCE


HUMAN (HOMO SAPIENS) RECOMBINANT FORM EXPRESSED IN
1RHP
4





SOURCE
2

(ESCHERICHIA COLI)
1RHP
5





AUTHOR


L. CHEN, X. ZHANG
1RHP
6





REVDAT
1

30-NOV-94 1RHP 0
1RHP
7





JRNL


AUTH X. ZHANG, L. CHEN, D.P. BANCROFT, C.K. LAI,
1RHP
8








T.E. MAIONE





JRNL


TITL CRYSTAL STRUCTURE OF RECOMBINANT HUMAN PLATELET
1RHP
9





JRNL


TITL 2 FACTOR 4
1RHP
10

















JRNL


REF BIOCHEMISTRY
V. 33 8361 1994
1RHP
11


















JRNL


REFN ASTM BICHAW US ISSN 0006-2960
0033
1RHP
12

















REMARK
1


1RHP
13






REMARK
2


1RHP
14






REMARK
2

RESOLUTION. 2.4 ANGSTROMS.
1RHP
15





REMARK
3


1RHP
16





REMARK
3

REFINEMENT.
1RHP
17

















REMARK
3

PROGRAM
X-PLOR
1RHP
18






REMARK
3

AUTHORS
BRUNGER
1RHP
19





REMARK
3

R VALUE
0.241
1RHP
20


















REMARK
3

RMSD BOND DISTANCES
0.016
ANGSTROMS
1RHP
21






REMARK
3

RMSD BOND ANGLES
3.89
DEGREES
1RHP
22





REMARK
3




1RHP
23





REMARK
3

NUMBER OF REFLECTIONS
11037

1RHP
24





REMARK
3

RESOLUTION RANGE
8.-2.4
ANGSTROMS
1RHP
25





REMARK
3

DATA CUTOFF
2.
SIGMA(F)
1RHP
26





REMARK
3

PERCENT COMPLETION
94.4

1RHP
27





REMARK
3




1RHP
28

















REMARK
3

NUMBER OF PROTEIN ATOMS
1988
1RHP
29






REMARK
3

NUMBER OF NUCLEIC ACID ATOMS
   0
1RHP
30





REMARK
3

NUMBER OF SOLVENT ATOMS
  91
1RHP
31
















REMARK
3


1RHP
32






REMARK
3

R-FACTOR 22.0% FOR RESOLUTION RANGE 8-3.0 ANGSTROMS.
1RHP
33





REMARK
4


1RHP
34





REMARK
4

THE ASYMMETRIC UNIT CONSISTS OF FOUR IDENTICAL
1RHP
35





REMARK
4

CHAINS AND EACH OF THE FOUR IDENTICAL CHAINS IS
1RHP
36





REMARK
4

MISSING THE FIRST SIX RESIDUES DUE TO DISORDER.
1RHP
37





REMARK
5


1RHP
38





REMARK
5

CROSS REFERENCE TO SEQUENCE DATABASE
1RHP
39

















REMARK
5

SWISS-PROT ENTRY NAME
PDB ENTRY CHAIN NAME
1RHP
40






REMARK
5

PLF4_HUMAN
A
1RHP
41





REMARK
5

PLF4_HUMAN
B
1RHP
42





REMARK
5

PLF4_HUMAN
C
1RHP
43





REMARK
5

PLF4_HUMAN
D
1RHP
44





REMARK
5



1RHP
45
















REMARK
5

THE FOLLOWING RESIDUES APE MISSING FROM THE
1RHP
46






REMARK
5

N-TERMINUS OF CHAINS A, B, C, AND D:
1RHP
47





REMARK
5

SEQUENCE NUMBER IS THAT FROM SWISS-PROT ENTRY
1RHP
48

















REMARK
5

GLU
32
1RHP
49






REMARK
5

ALA
33
1RHP
50





REMARK
5

GLU
34
1RHP
51





REMARK
5

GLU
35
1RHP
52





REMARK
5

ASP
36
1RHP
53





REMARK
5

GLY
37
1RHP
54

















SEQRES
1
A
70
GLU ALA GLU GLU ASP GLY ASP LEU GLN CYS LEU CYS VAL
1RHP
55






SEQRES
2
A
70
LYS THR THR SER GLN VAL ARG PRO ARG HIS ILE THR SER
1RHP
56





SEQRES
3
A
70
LEU GLU VAL ILE LYS ALA GLY PRO HIS CYS PRO THR ALA
1RHP
57





SEQRES
4
A
70
GLN LEU ILE ALA THR LEU LYS ASN GLY ARG LYS ILE CYS
1RHP
58





SEQRES
5
A
70
LEU ASP LEU GLN ALA PRO LEU TYR LYS LYS ILE ILE LYS
1RHP
59





SEQRES
6
A
70
LYS LEU LEU GLU SER
1RHP
60





SEQRES
1
B
70
GLU ALA GLU GLU ASP GLY ASP LEU GLN CYS LEU CYS VAL
1RHP
61





SEQRES
2
B
70
LYS THR THR SER GLN VAL ARG PRO ARG HIS ILE THR SER
1RHP
62





SEQRES
3
B
70
LEU GLU VAL ILE LYS ALA GLY PRO HIS CYS PRO THR ALA
1RHP
63





SEQRES
4
B
70
GLN LEU ILE ALA THR LEU LYS ASN GLY ARG LYS ILE CYS
1RHP
64





SEQRES
5
B
70
LEU ASP LEU GLN ALA PRO LEU TYR LYS LYS ILE ILE LYS
1RHP
65





SEQRES
6
B
70
LYS LEU LEU GLU SER
1RHP
66





SEQRES
1
C
70
GLU ALA GLU GLU ASP GLY ASP LEU GLN CYS LEU CYS VAL
1RHP
67





SEQRES
2
C
70
LYS THR THR SER GLN VAL ARG PRO ARG HIS ILE THR SER
1RHP
68





SEQRES
3
C
70
LEU GLU VAL ILE LYS ALA GLY PRO HIS CYS PRO THR ALA
1RHP
69





SEQRES
4
C
70
GLN LEU ILE ALA THR LEU LYS ASN GLY ARG LYS ILE CYS
1RHP
70





SEQRES
5
C
70
LEU ASP LEU GLN ALA PRO LEU TYR LYS LYS ILE ILE LYS
1RHP
71





SEQRES
6
C
70
LYS LEU LEU GLU SER
1RHP
72





SEQRES
1
D
70
GLU ALA GLU GLU ASP GLY ASP LEU GLN CYS LEU CYS VAL
1RHP
73





SEQRES
2
D
70
LYS THR THR SER GLN VAL ARG PRO ARG HIS ILE THR SER
1RHP
74





SEQRES
3
D
70
LEU GLU VAL ILE LYS ALA GLY PRO HIS CYS PRO THR ALA
1RHP
75





SEQRES
4
D
70
GLN LEU ILE ALA THR LEU LYS ASN GLY ARG LYS ILE CYS
1RHP
76





SEQRES
5
D
70
LEU ASP LEU GLN ALA PRO LEU TYR LYS LYS ILE ILE LYS
1RHP
77





SEQRES
6
D
70
LYS LEU LEU GLU SER
1RHP
78
















FORMUL
5
HOH
*91(H2 O1)
1RHP
79






















HELIX
1
H1
ALA A
57
SER A
70
1

1RHP
80






HELIX
2
H1
ALA B
57
SER B
70
1

1RHP
81





HELIX
3
H1
ALA C
57
SER C
70
1

1RHP
82





HELIX
4
H1
ALA D
57
SER D
70
1

1RHP
83






















SHEET
1
A
3
THR A
25
GLY A
33
0


1RHP
84



























SHEET
2
A
3
PRO A
37
LYS A
46
−1
O
GLN A
40
N
ILE A
30
1RHP
85






SHEET
3
A
3
GLY A
48
LEU A
53
−1
O
ILE A
51
N
ALA A
43
1RHP
86





SHEET
1
B
3
THR B
25
GLY B
33
0






1RHP
87





SHEET
2
B
3
PRO B
37
LYS B
46
−1
O
GLN B
40
N
ILE B
30
1RHP
88





SHEET
3
B
3
GLY B
48
LEU B
53
−1
O
ILE B
51
N
ALA B
43
1RHP
89





SHEET
1
C
3
THR C
25
GLY C
33
0






1RHP
90





SHEET
2
C
3
PRO C
37
LYS C
46
−1
O
GLN C
40
N
ILE C
30
1RHP
91





SHEET
3
C
3
GLY C
48
LEU C
53
−1
O
ILE C
51
N
ALA C
43
1RHP
92





SHEET
1
D
3
THR D
25
GLY D
33
0






1RHP
93





SHEET
2
D
3
PRO D
37
LYS D
46
−1
O
GLN D
40
N
ILE D
30
1RHP
94





SHEET
3
D
3
GLY D
48
LEU D
53
−1
O
ILE D
51
N
ALA D
43
1RHP
95




















SSBOND
1

CYS A
10
CYS A
36

1RHP
96






SSBOND
2

CYS A
12
CYS A
52

1RHP
97





SSBOND
3

CYS B
10
CYS B
36

1RHP
98





SSBOND
4

CYS B
12
CYS B
52

1RHP
99





SSBOND
5

CYS C
10
CYS C
36

1RHP
100





SSBOND
6

CYS C
12
CYS C
52

1RHP
101





SSBOND
7

CYS D
10
CYS D
36

1RHP
102





SSBOND
8

CYS D
12
CYS D
52

1RHP
103





















CRYST1
78.200
86.200
43.400
90.00
90.00
90.00
P 21 21 21
16
1RHP
104



















ORIGX1
1.000000
0.000000
0.000000
0.00000

1RHP
105






ORIGX2
0.000000
1.000000
0.000000
0.00000

1RHP
106





ORIGX3
0.000000
0.000000
1.000000
0.00000

1RHP
107





SCALE1
0.012788
0.000000
0.000000
0.00000

1RHP
108





SCALE2
0.000000
0.011601
0.000000
0.00000

1RHP
109





SCALE3
0.000000
0.000000
0.023041
0.00000

1RHP
110






















ATOM
1
N
ASP A
7
5.920
31.818
67.142
1.00
32.27
1RHP
111






ATOM
2
CA
ASP A
7
4.777
31.780
66.231
1.00
31.32
1RHP
112





ATOM
3
C
ASP A
7
5.295
30.941
65.064
1.00
28.47
1RHP
113





ATOM
4
O
ASP A
7
6.467
30.537
65.143
1.00
27.01
1RHP
114





ATOM
5
CB
ASP A
7
4.411
33.190
65.717
1.00
36.54
1RHP
115





ATOM
6
CG
ASP A
7
5.466
33.875
64.816
1.00
38.80
1RHP
116





ATOM
7
OD1
ASP A
7
6.527
34.293
65.337
1.00
41.06
1RHP
117





ATOM
8
OD2
ASP A
7
5.205
33.985
63.598
1.00
41.38
1RHP
118





ATOM
9
N
LEU A
8
4.445
30.661
64.076
1.00
24.38
1RHP
119





ATOM
10
CA
LEU A
8
4.820
30.027
62.838
1.00
23.92
1RHP
120





ATOM
11
C
LEU A
8
3.617
29.436
62.149
1.00
22.50
1RHP
121





ATOM
12
O
LEU A
8
2.903
30.207
61.513
1.00
22.74
1RHP
122





ATOM
13
CB
LEU A
8
5.856
28.891
62.973
1.00
23.90
1RHP
123





ATOM
14
CG
LEU A
8
7.014
29.129
61.988
1.00
24.46
1RHP
124





ATOM
15
CD1
LEU A
8
7.712
30.503
62.220
1.00
22.75
1RHP
125





ATOM
16
CD2
LEU A
8
7.959
27.936
62.139
1.00
22.11
1RHP
126





ATOM
17
N
GLN A
9
3.313
28.138
62.303
1.00
22.60
1RHP
127





ATOM
18
CA
GLN A
9
2.327
27.424
61.482
1.00
22.44
1RHP
128





ATOM
19
C
GLN A
9
2.315
27.896
60.051
1.00
20.54
1RHP
129





ATOM
20
O
GLN A
9
1.358
28.414
59.467
1.00
20.00
1RHP
130





ATOM
21
CB
GLN A
9
0.877
27.541
61.995
1.00
23.30
1RHP
131





ATOM
22
CG
GLN A
9
0.344
26.299
62.744
1.00
25.06
1RHP
132





ATOM
23
CD
GLN A
9
0.460
24.941
62.049
1.00
28.56
1RHP
133





ATOM
24
OE1
GLN A
9
1.431
24.655
61.348
1.00
26.97
1RHP
134





ATOM
25
NE2
GLN A
9
−0.493
24.027
62.184
1.00
27.14
1RHP
135





ATOM
26
N
CYS A
10
3.506
27.806
59.513
1.00
17.73
1RHP
136





ATOM
27
CA
CYS A
10
3.602
28.161
58.136
1.00
17.90
1RHP
137





ATOM
28
C
CYS A
10
3.115
26.980
57.376
1.00
15.84
1RHP
138





ATOM
29
O
CYS A
10
3.000
27.123
56.167
1.00
16.62
1RHP
139





ATOM
30
CB
CYS A
10
5.009
28.405
57.683
1.00
21.20
1RHP
140





ATOM
31
SG
CYS A
10
5.602
30.061
58.036
1.00
24.89
1RHP
141





ATOM
32
N
LEU A
11
2.890
25.835
58.019
1.00
11.26
1RHP
142





ATOM
33
CA
LEU A
11
2.552
24.614
57.340
1.00
12.16
1RHP
143





ATOM
34
C
LEU A
11
3.815
24.123
56.604
1.00
12.52
1RHP
144





ATOM
35
O
LEU A
11
4.406
23.132
57.061
1.00
12.83
1RHP
145





ATOM
36
CB
LEU A
11
1.341
24.865
56.386
1.00
12.17
1RHP
146





ATOM
37
CG
LEU A
11
0.773
23.719
55.556
1.00
12.31
1RHP
147





ATOM
38
CD1
LEU A
11
0.187
22.683
56.487
1.00
12.97
1RHP
148





ATOM
39
CD2
LEU A
11
−0.280
24.235
54.599
1.00
13.84
1RHP
149





ATOM
40
N
CYS A
12
4.313
24.756
55.526
1.00
12.29
1RHP
150





ATOM
41
CA
CYS A
12
5.545
24.328
54.849
1.00
14.66
1RHP
151





ATOM
42
C
CYS A
12
6.761
24.766
55.647
1.00
17.40
1RHP
152





ATOM
43
O
CYS A
12
7.006
25.982
55.712
1.00
18.24
1RHP
153





ATOM
44
CB
CYS A
12
5.708
24.963
53.505
1.00
9.85
1RHP
154





ATOM
45
SG
CYS A
12
4.211
24.752
52.569
1.00
6.57
1RHP
155





ATOM
46
N
VAL A
13
7.493
23.885
56.319
1.00
18.97
1RHP
156





ATOM
47
CA
VAL A
13
8.703
24.339
56.951
1.00
19.18
1RHP
157





ATOM
48
C
VAL A
13
9.800
23.593
56.249
1.00
19.49
1RHP
158





ATOM
49
O
VAL A
13
10.780
24.234
55.876
1.00
21.46
1RHP
159





ATOM
50
CB
VAL A
13
8.688
24.086
58.477
1.00
19.46
1RHP
160





ATOM
51
CG1
VAL A
13
8.604
22.624
58.868
1.00
19.26
1RHP
161





ATOM
52
CG2
VAL A
13
9.939
24.806
58.999
1.00
20.35
1RHP
162





ATOM
53
N
LYS A
14
9.758
22.298
56.008
1.00
17.21
1RHP
163





ATOM
54
CA
LYS A
14
10.778
21.766
55.134
1.00
16.20
1RHP
164





ATOM
55
C
LYS A
14
10.207
22.028
53.735
1.00
13.59
1RHP
165





ATOM
56
O
LYS A
14
8.991
21.917
53.577
1.00
12.58
1RHP
166





ATOM
57
CB
LYS A
14
10.951
20.310
55.478
1.00
16.82
1RHP
167





ATOM
58
CG
LYS A
14
11.622
20.216
56.836
1.00
18.16
1RHP
168





ATOM
59
CD
LYS A
14
12.135
18.793
57.015
1.00
22.66
1RHP
169





ATOM
60
CE
LYS A
14
13.080
18.591
58.207
1.00
23.56
1RHP
170





ATOM
61
NZ
LYS A
14
13.698
17.269
58.124
1.00
25.59
1RHP
171





ATOM
62
N
THR A
15
10.910
22.511
52.728
1.00
9.85
1RHP
172





ATOM
63
CA
THR A
15
10.338
22.605
51.397
1.00
9.27
1RHP
173





ATOM
64
C
THR A
15
10.921
21.508
50.520
1.00
10.05
1RHP
174





ATOM
65
O
THR A
15
11.402
20.489
51.028
1.00
8.41
1RHP
175





ATOM
66
CB
THR A
15
10.645
23.944
50.740
1.00
10.64
1RHP
176





ATOM
67
OG1
THR A
15
11.980
24.164
51.109
1.00
12.44
1RHP
177





ATOM
68
CG2
THR A
15
9.866
25.135
51.159
1.00
10.83
1RHP
178





ATOM
69
N
THR A
16
10.905
21.667
49.190
1.00
11.84
1RHP
179





ATOM
70
CA
THR A
16
11.430
20.697
48.259
1.00
10.42
1RHP
180





ATOM
71
C
THR A
16
11.473
21.218
46.829
1.00
11.95
1RHP
181





ATOM
72
O
THR A
16
10.854
22.209
46.443
1.00
15.68
1RHP
182





ATOM
73
CB
THR A
16
10.579
19.488
48.285
1.00
9.22
1RHP
183





ATOM
74
OG1
THR A
16
11.486
18.472
47.943
1.00
11.04
1RHP
184





ATOM
75
CG2
THR A
16
9.361
19.543
47.369
1.00
11.47
1RHP
185





ATOM
76
N
SER A
17
12.165
20.407
46.051
1.00
13.29
1RHP
186





ATOM
77
CA
SER A
17
12.355
20.554
44.624
1.00
13.44
1RHP
187





ATOM
78
C
SER A
17
12.264
19.173
44.064
1.00
13.47
1RHP
188





ATOM
79
O
SER A
17
12.310
19.009
42.853
1.00
15.02
1RHP
189





ATOM
80
CB
SER A
17
13.740
21.082
44.255
1.00
14.59
1RHP
190





ATOM
81
OG
SER A
17
14.836
20.665
45.089
1.00
14.64
1RHP
191





ATOM
82
N
GLN A
18
12.106
18.144
44.887
1.00
13.15
1RHP
192





ATOM
83
CA
GLN A
18
12.166
16.791
44.392
1.00
13.65
1RHP
193





ATOM
84
C
GLN A
18
10.815
16.391
43.829
1.00
15.30
1RHP
194





ATOM
85
O
GLN A
18
10.226
15.381
44.246
1.00
17.24
1RHP
195





ATOM
86
CB
GLN A
18
12.593
15.916
45.541
1.00
9.92
1RHP
196





ATOM
87
CG
GLN A
18
13.908
16.385
46.123
1.00
9.21
1RHP
197





ATOM
88
CD
GLN A
18
14.805
15.203
46.298
1.00
9.39
1RHP
198





ATOM
89
OE1
GLN A
18
14.832
14.503
47.308
1.00
8.91
1RHP
199





ATOM
90
NE2
GLN A
18
15.485
14.921
45.218
1.00
8.23
1RHP
200





ATOM
91
N
VAL A
19
10.320
17.162
42.849
1.00
14.83
1RHP
201





ATOM
92
CA
VAL A
19
8.997
16.910
42.346
1.00
13.99
1RHP
202





ATOM
93
C
VAL A
19
8.992
16.754
40.852
1.00
15.12
1RHP
203





ATOM
94
O
VAL A
19
9.413
17.619
40.092
1.00
16.00
1RHP
204





ATOM
95
CB
VAL A
19
8.083
18.032
42.774
1.00
11.56
1RHP
205





ATOM
96
CG1
VAL A
19
8.618
19.350
42.268
1.00
11.83
1RHP
206





ATOM
97
CG2
VAL A
19
6.681
17.690
42.313
1.00
9.87
1RHP
207





ATOM
98
N
ARG A
20
8.524
15.576
40.446
1.00
16.24
1RHP
208





ATOM
99
CA
ARG A
20
8.415
15.204
39.041
1.00
15.47
1RHP
209





ATOM
100
C
ARG A
20
7.262
16.104
38.549
1.00
16.00
1RHP
210





ATOM
101
O
ARG A
20
6.110
15.930
38.996
1.00
15.69
1RHP
211





ATOM
102
CB
ARG A
20
8.105
13.688
39.016
1.00
17.77
1RHP
212





ATOM
103
CG
ARG A
20
8.363
12.820
37.776
1.00
17.58
1RHP
213





ATOM
104
CD
ARG A
20
9.854
12.432
37.507
1.00
19.04
1RHP
214





ATOM
105
NE
ARG A
20
10.497
13.196
36.432
1.00
21.73
1RHP
215





ATOM
106
CZ
ARG A
20
11.216
12.655
35.408
1.00
23.83
1RHP
216





ATOM
107
NH1
ARG A
20
11.467
11.337
35.268
1.00
20.82
1RHP
217





ATOM
108
NH2
ARG A
20
11.732
13.465
34.467
1.00
22.90
1RHP
218





ATOM
109
N
PRO A
21
7.477
17.107
37.685
1.00
14.55
1RHP
219





ATOM
110
CA
PRO A
21
6.450
18.059
37.270
1.00
12.40
1RHP
220





ATOM
111
C
PRO A
21
5.179
17.423
36.719
1.00
11.88
1RHP
221





ATOM
112
O
PRO A
21
4.078
17.880
36.986
1.00
11.60
1RHP
222





ATOM
113
CB
PRO A
21
7.171
18.935
36.265
1.00
12.55
1RHP
223





ATOM
114
CG
PRO A
21
8.582
18.926
36.769
1.00
13.34
1RHP
224





ATOM
115
CD
PRO A
21
8.758
17.454
37.087
1.00
13.99
1RHP
225





ATOM
116
N
ARG A
22
5.255
16.309
36.002
1.00
11.94
1RHP
226





ATOM
117
CA
ARG A
22
4.074
15.736
35.396
1.00
11.80
1RHP
227





ATOM
118
C
ARG A
22
3.197
14.949
36.342
1.00
10.17
1RHP
228





ATOM
119
O
ARG A
22
2.360
14.173
35.915
1.00
9.69
1RHP
229





ATOM
120
CB
ARG A
22
4.555
14.899
34.204
1.00
16.50
1RHP
230





ATOM
121
CG
ARG A
22
4.663
13.373
34.169
1.00
21.54
1RHP
231





ATOM
122
CD
ARG A
22
3.648
12.864
33.126
1.00
27.26
1RHP
232





ATOM
123
NE
ARG A
22
4.164
12.009
32.059
1.00
29.40
1RHP
233





ATOM
124
CZ
ARG A
22
3.958
12.303
30.757
1.00
29.28
1RHP
234





ATOM
125
NH1
ARG A
22
3.334
13.428
30.344
1.00
30.90
1RHP
235





ATOM
126
NH2
ARG A
22
4.443
11.459
29.839
1.00
32.62
1RHP
236





ATOM
127
N
HIS A
23
3.310
15.084
37.651
1.00
9.21
1RHP
237





ATOM
128
CA
HIS A
23
2.483
14.290
38.533
1.00
9.07
1RHP
238





ATOM
129
C
HIS A
23
1.778
15.196
39.483
1.00
8.72
1RHP
239





ATOM
130
O
HIS A
23
1.192
14.684
40.428
1.00
9.28
1RHP
240





ATOM
131
CB
HIS A
23
3.307
13.314
39.354
1.00
13.04
1RHP
241





ATOM
132
CG
HIS A
23
4.031
12.223
38.576
1.00
17.54
1RHP
242





ATOM
133
ND1
HIS A
23
3.837
11.800
37.325
1.00
20.70
1RHP
243





ATOM
134
CD2
HIS A
23
5.057
11.477
39.108
1.00
17.68
1RHP
244





ATOM
135
CE1
HIS A
23
4.686
10.840
37.063
1.00
19.46
1RHP
245





ATOM
136
NE2
HIS A
23
5.413
10.662
38.148
1.00
17.19
1RHP
246





ATOM
137
N
ILE A
24
1.839
16.507
39.285
1.00
9.76
1RHP
247





ATOM
138
CA
ILE A
24
1.215
17.473
40.182
1.00
12.32
1RHP
248





ATOM
139
C
ILE A
24
−0.066
17.989
39.521
1.00
11.73
1RHP
249





ATOM
140
O
ILE A
24
−0.083
18.492
38.387
1.00
14.22
1RHP
250





ATOM
141
CB
ILE A
24
2.255
18.639
40.528
1.00
12.41
1RHP
251





ATOM
142
CG1
ILE A
24
1.564
19.756
41.248
1.00
13.69
1RHP
252





ATOM
143
CG2
ILE A
24
2.866
19.247
39.294
1.00
13.68
1RHP
253





ATOM
144
CD1
ILE A
24
2.516
20.917
41.556
1.00
13.22
1RHP
254





ATOM
145
N
THR A
25
−1.167
17.775
40.227
1.00
10.49
1RHP
255





ATOM
146
CA
THR A
25
−2.475
18.091
39.719
1.00
9.49
1RHP
256





ATOM
147
C
THR A
25
−2.967
19.410
40.195
1.00
8.70
1RHP
257





ATOM
148
O
THR A
25
−3.884
19.918
39.565
1.00
11.30
1RHP
258





ATOM
149
CB
THR A
25
−3.501
17.047
40.130
1.00
10.90
1RHP
259





ATOM
150
OG1
THR A
25
−3.015
16.424
41.317
1.00
13.26
1RHP
260





ATOM
151
CG2
THR A
25
−3.763
16.060
39.024
1.00
10.43
1RHP
261





ATOM
152
N
SER A
26
−2.434
20.008
41.244
1.00
8.82
1RHP
262





ATOM
153
CA
SER A
26
−2.984
21.237
41.733
1.00
9.11
1RHP
263





ATOM
154
C
SER A
26
−1.891
21.947
42.458
1.00
9.15
1RHP
264





ATOM
155
O
SER A
26
−1.072
21.265
43.074
1.00
10.35
1RHP
265





ATOM
156
CB
SER A
26
−4.115
20.914
42.678
1.00
11.50
1RHP
266





ATOM
157
OG
SER A
26
−4.569
22.018
43.455
1.00
12.47
1RHP
267





ATOM
158
N
LEU A
27
−1.851
23.269
42.384
1.00
6.51
1RHP
268





ATOM
159
CA
LEU A
27
−0.907
24.041
43.152
1.00
7.96
1RHP
269





ATOM
160
C
LEU A
27
−1.757
25.047
43.887
1.00
8.42
1RHP
270





ATOM
161
O
LEU A
27
−2.814
25.448
43.407
1.00
8.51
1RHP
271





ATOM
162
CB
LEU A
27
0.066
24.841
42.309
1.00
7.51
1RHP
272





ATOM
163
CG
LEU A
27
1.587
24.669
42.337
1.00
8.75
1RHP
273





ATOM
164
CD1
LEU A
27
2.084
25.935
41.700
1.00
6.32
1RHP
274





ATOM
165
CD2
LEU A
27
2.251
24.618
43.701
1.00
7.89
1RHP
275





ATOM
166
N
GLU A
28
−1.336
25.428
45.067
1.00
7.36
1RHP
276





ATOM
167
CA
GLU A
28
−1.991
26.446
45.821
1.00
8.63
1RHP
277





ATOM
166
C
GLU A
28
−0.849
27.423
46.053
1.00
11.10
1RHP
278





ATOM
169
O
GLU A
28
0.174
26.983
46.591
1.00
13.03
1RHP
279





ATOM
170
CB
GLU A
28
−2.440
25.983
47.182
1.00
7.72
1RHP
280





ATOM
171
CG
GLU A
28
−3.551
24.972
47.399
1.00
6.93
1RHP
281





ATOM
172
CD
GLU A
28
−4.027
25.007
48.847
1.00
7.80
1RHP
282





ATOM
173
OE1
GLU A
28
−4.347
26.097
49.352
1.00
7.76
1RHP
283





ATOM
174
OE2
GLU A
28
−4.068
23.942
49.455
1.00
4.78
1RHP
284





ATOM
175
N
VAL A
29
−0.923
28.700
45.691
1.00
8.25
1RHP
285





ATOM
176
CA
VAL A
29
0.106
29.679
45.977
1.00
8.98
1RHP
296





ATOM
177
C
VAL A
29
−0.426
30.383
47.227
1.00
9.95
1RHP
287





ATOM
178
O
VAL A
29
−1.162
31.352
47.049
1.00
12.68
1RHP
285





ATOM
179
CB
VAL A
29
0.201
30.639
44.773
1.00
7.55
1RHP
289





ATOM
180
CG1
VAL A
29
1.260
31.673
45.026
1.00
8.26
1RHP
290





ATOM
181
CG2
VAL A
29
0.548
29.882
43.510
1.00
8.40
1RHP
291





ATOM
182
N
ILE A
30
−0.212
30.061
48.497
1.00
9.87
1RHP
292





ATOM
183
CA
ILE A
30
−0.895
30.848
49.525
1.00
11.90
1RHP
293





ATOM
184
C
ILE A
30
−0.067
32.077
49.797
1.00
13.74
1RHP
294





ATOM
185
O
ILE A
30
1.143
31.942
49.851
1.00
15.29
1RHP
295





ATOM
186
CB
ILE A
30
−1.187
29.978
50.842
1.00
9.72
1RHP
296





ATOM
187
CG1
ILE A
30
−1.198
30.888
52.043
1.00
12.46
1RHP
297





ATOM
188
CG2
ILE A
30
−0.248
28.826
50.989
1.00
9.43
1RHP
298





ATOM
189
CD1
ILE A
30
−1.185
30.136
53.394
1.00
14.02
1RHP
299





ATOM
190
N
LYS A
31
−0.675
33.267
49.825
1.00
16.87
1RHP
300





ATOM
191
CA
LYS A
31
−0.025
34.551
50.127
1.00
18.85
1RHP
301





ATOM
192
C
LYS A
31
0.598
34.467
51.507
1.00
20.23
1RHP
302





ATOM
193
O
LYS A
31
0.043
33.761
52.358
1.00
22.18
1RHP
303





ATOM
194
CB
LYS A
31
−1.063
35.685
50.127
1.00
19.16
1RHP
304





ATOM
195
CG
LYS A
31
−0.760
37.143
50.534
1.00
16.15
1RHP
305





ATOM
196
CD
LYS A
31
−0.336
38.044
49.374
1.00
14.86
1RHP
306





ATOM
197
CE
LYS A
31
−0.665
39.520
49.666
1.00
14.11
1RHP
307





ATOM
198
NZ
LYS A
31
−0.667
40.291
48.430
1.00
12.44
1RHP
308





ATOM
199
N
ALA A
32
1.712
35.167
51.731
1.00
18.98
1RHP
309





ATOM
200
CA
ALA A
32
2.342
35.183
53.045
1.00
15.84
1RHP
310





ATOM
201
C
ALA A
32
1.544
36.105
53.949
1.00
13.39
1RHP
311





ATOM
202
O
ALA A
32
0.823
36.952
53.437
1.00
13.10
1RHP
312





ATOM
203
CB
ALA A
32
3.744
35.743
52.962
1.00
16.26
1RHP
313





ATOM
204
N
GLY A
33
1.628
36.045
55.257
1.00
11.11
1RHP
314





ATOM
205
CA
GLY A
33
0.920
36.998
56.055
1.00
12.95
1RHP
315





ATOM
206
C
GLY A
33
1.357
36.900
57.492
1.00
17.73
1RHP
316





ATOM
207
O
GLY A
33
2.303
36.189
57.839
1.00
16.02
1RHP
317





ATOM
208
N
PRO A
34
0.643
37.570
58.400
1.00
20.24
1RHP
318





ATOM
209
CA
PRO A
34
0.919
37.533
59.825
1.00
22.34
1RHP
319





ATOM
210
C
PRO A
34
0.942
36.067
60.211
1.00
24.98
1RHP
320





ATOM
211
O
PRO A
34
1.693
35.655
61.077
1.00
26.54
1RHP
321





ATOM
212
CB
PRO A
34
−0.222
38.337
60.420
1.00
22.09
1RHP
322





ATOM
213
CG
PRO A
34
−1.395
38.112
59.482
1.00
20.22
1RHP
323





ATOM
214
CD
PRO A
34
−0.652
38.223
58.148
1.00
22.42
1RHP
324





ATOM
215
N
HIS A
35
0.111
35.262
59.558
1.00
27.98
1RHP
325





ATOM
216
CA
HIS A
35
0.173
33.814
59.672
1.00
30.67
1RHP
326





ATOM
217
C
HIS A
35
1.376
33.509
58.780
1.00
31.78
1RHP
327





ATOM
218
O
HIS A
35
1.108
33.485
57.563
1.00
35.19
1RHP
328





ATOM
219
CB
HIS A
35
−1.123
33.177
59.069
1.00
29.24
1RHP
329





ATOM
220
CG
HIS A
35
−1.094
31.666
58.769
1.00
28.40
1RHP
330





ATOM
221
ND1
HIS A
35
−1.695
30.720
59.484
1.00
28.16
1RHP
331





ATOM
222
CD2
HIS A
35
−0.462
31.035
57.703
1.00
28.45
1RHP
332





ATOM
223
CE1
HIS A
35
−1.445
29.568
58.898
1.00
28.38
1RHP
333





ATOM
224
NE2
HIS A
35
−0.712
29.761
57.829
1.00
30.01
1RHP
334





ATOM
225
N
CYS A
36
2.641
33.364
59.218
1.00
30.63
1RHP
335





ATOM
226
CA
CYS A
36
3.728
32.933
58.306
1.00
27.47
1RHP
336





ATOM
227
C
CYS A
36
4.249
33.946
57.284
1.00
23.26
1RHP
337





ATOM
228
O
CYS A
36
3.568
34.247
56.299
1.00
19.53
1RHP
338





ATOM
229
CB
CYS A
36
3.299
31.690
57.517
1.00
26.70
1RHP
339





ATOM
230
SG
CYS A
36
4.637
30.995
56.546
1.00
24.84
1RHP
340





ATOM
231
N
PRO A
37
5.516
34.395
57.419
1.00
20.18
1RHP
341





ATOM
232
CA
PRO A
37
6.175
35.441
56.609
1.00
20.07
1RHP
342





ATOM
233
C
PRO A
37
6.481
35.131
55.156
1.00
18.93
1RHP
343





ATOM
234
O
PRO A
37
7.020
35.967
54.426
1.00
19.14
1RHP
344





ATOM
235
CB
PRO A
37
7.449
35.771
57.327
1.00
16.70
1RHP
345





ATOM
236
CG
PRO A
37
7.184
35.275
58.730
1.00
18.17
1RHP
346





ATOM
237
CD
PRO A
37
6.414
33.985
58.492
1.00
20.40
1RHP
347





ATOM
238
N
THR A
38
6.090
33.963
54.681
1.00
18.67
1RHP
348





ATOM
239
CA
THR A
38
6.482
33.515
53.379
1.00
17.88
1RHP
349





ATOM
240
C
THR A
38
5.284
32.772
52.799
1.00
18.35
1RHP
350





ATOM
241
O
THR A
38
4.488
32.107
53.469
1.00
17.93
1RHP
351





ATOM
242
CB
THR A
38
7.728
32.637
53.602
1.00
19.13
1RHP
352





ATOM
243
OG1
THR A
38
8.380
32.642
52.353
1.00
18.55
1RHP
353





ATOM
244
CG2
THR A
38
7.454
31.200
54.068
1.00
19.49
1RHP
354





ATOM
245
N
ALA A
39
5.139
32.937
51.503
1.00
17.25
1RHP
355





ATOM
246
CA
ALA A
39
4.123
32.234
50.774
1.00
15.24
1RHP
356





ATOM
247
C
ALA A
39
4.464
30.762
50.860
1.00
13.86
1RHP
357





ATOM
248
O
ALA A
39
5.572
30.385
51.245
1.00
13.92
1RHP
358





ATOM
249
CB
ALA A
39
4.154
32.591
49.310
1.00
17.14
1RHP
359





ATOM
250
N
GLN A
40
3.543
29.893
50.538
1.00
12.35
1RHP
360





ATOM
251
CA
GLN A
40
3.904
28.521
50.366
1.00
12.47
1RHP
361





ATOM
252
C
GLN A
40
3.491
28.142
48.949
1.00
12.13
1RHP
362





ATOM
253
O
GLN A
40
2.702
28.840
48.314
1.00
10.90
1RHP
363





ATOM
254
CB
GLN A
40
3.195
27.723
51.409
1.00
14.36
1RHP
364





ATOM
255
CG
GLN A
40
3.806
28.017
52.765
1.00
15.18
1RHP
365





ATOM
256
CD
GLN A
40
2.959
28.817
53.732
1.00
17.98
1RHP
366





ATOM
257
OE1
GLN A
40
1.742
28.820
53.665
1.00
17.09
1RHP
367





ATOM
258
NE2
GLN A
40
3.516
29.461
54.728
1.00
18.48
1RHP
368





ATOM
259
N
LEU A
41
4.086
27.133
48.351
1.00
9.76
1RHP
369





ATOM
260
CA
LEU A
41
3.613
26.663
47.079
1.00
10.44
1RHP
370





ATOM
261
C
LEU A
41
3.250
25.240
47.468
1.00
10.98
1RHP
371





ATOM
262
O
LEU A
41
4.120
24.381
47.539
1.00
12.68
1RHP
372





ATOM
263
CB
LEU A
41
4.728
26.687
46.037
1.00
10.60
1RHP
373





ATOM
264
CG
LEU A
41
5.193
27.934
45.291
1.00
9.44
1RHP
374





ATOM
265
CD1
LEU A
41
4.109
28.405
44.381
1.00
12.88
1RHP
375





ATOM
266
CD2
LEU A
41
5.568
29.022
46.255
1.00
10.00
1RHP
376





ATOM
267
N
ILE A
42
2.001
24.946
47.797
1.00
12.65
1RHP
377





ATOM
268
CA
ILE A
42
1.575
23.627
48.295
1.00
12.42
1RHP
378





ATOM
269
C
ILE A
42
1.255
22.846
47.021
1.00
16.06
1RHP
379





ATOM
270
O
ILE A
42
0.448
23.339
46.222
1.00
19.20
1RHP
380





ATOM
271
CB
ILE A
42
0.313
23.822
49.236
1.00
9.65
1RHP
381





ATOM
272
CG1
ILE A
42
0.679
24.728
50.402
1.00
8.60
1RHP
382





ATOM
273
CG2
ILE A
42
−0.133
22.548
49.867
1.00
3.96
1RHP
383





ATOM
274
CD1
ILE A
42
−0.501
25.149
51.266
1.00
8.11
1RHP
384





ATOM
275
N
ALA A
43
1.825
21.683
46.740
1.00
13.77
1RHP
385





ATOM
276
CA
ALA A
43
1.591
20.993
45.491
1.00
12.85
1RHP
386





ATOM
277
C
ALA A
43
0.753
19.798
45.867
1.00
13.98
1RHP
387





ATOM
278
O
ALA A
43
1.083
19.148
46.861
1.00
16.28
1RHP
388





ATOM
279
CB
ALA A
43
2.878
20.494
44.907
1.00
8.50
1RHP
389





ATOM
280
N
THR A
44
−0.318
19.476
45.163
1.00
11.50
1RHP
390





ATOM
281
CA
THR A
44
−1.105
18.316
45.476
1.00
10.77
1RHP
391





ATOM
282
C
THR A
44
−0.799
17.471
44.265
1.00
10.22
1RHP
392





ATOM
283
O
THR A
44
−0.807
17.982
43.137
1.00
11.88
1RHP
393





ATOM
284
CB
THR A
44
−2.565
18.766
45.589
1.00
9.12
1RHP
394





ATOM
285
OG1
THR A
44
−2.603
19.824
46.550
1.00
10.81
1RHP
395





ATOM
286
CG2
THR A
44
−3.486
17.656
46.075
1.00
9.87
1RHP
396





ATOM
287
N
LEU A
45
−0.448
16.214
44.482
1.00
10.20
1RHP
397





ATOM
288
CA
LEU A
45
−0.014
15.330
43.413
1.00
11.61
1RHP
398





ATOM
289
C
LEU A
45
−1.105
14.312
43.124
1.00
14.08
1RHP
399





ATOM
290
O
LEU A
45
−1.942
14.042
43.990
1.00
17.83
1RHP
400





ATOM
291
CB
LEU A
45
1.261
14.548
43.807
1.00
11.22
1RHP
401





ATOM
292
CG
LEU A
45
2.537
15.133
44.412
1.00
8.97
1RHP
402





ATOM
293
CD1
LEU A
45
3.318
14.026
45.021
1.00
8.15
1RHP
403





ATOM
294
CD2
LEU A
45
3.416
15.749
43.383
1.00
8.74
1RHP
404





ATOM
295
N
LYS A
46
−1.048
13.625
41.984
1.00
13.60
1RHP
405





ATOM
296
CA
LYS A
46
−2.052
12.663
41.583
1.00
13.97
1RHP
406





ATOM
297
C
LYS A
46
−2.229
11.557
42.592
1.00
13.96
1RHP
407





ATOM
298
O
LYS A
46
−3.339
11.095
42.755
1.00
15.19
1RHP
408





ATOM
299
CB
LYS A
46
−1.702
12.051
40.230
1.00
14.76
1RHP
409





ATOM
300
CG
LYS A
46
−1.866
13.033
39.065
1.00
17.13
1RHP
410





ATOM
301
CD
LYS A
46
−1.250
12.460
37.748
1.00
20.99
1RHP
411





ATOM
302
CE
LYS A
46
−0.759
13.458
36.626
1.00
22.33
1RHP
412





ATOM
303
NZ
LYS A
46
−1.776
14.097
35.794
1.00
22.26
1RHP
413





ATOM
304
N
ASN A
47
−1.280
11.124
43.394
1.00
13.76
1RHP
414





ATOM
305
CA
ASN A
47
−1.600
10.042
44.318
1.00
15.20
1RHP
415





ATOM
306
C
ASN A
47
−2.176
10.589
45.613
1.00
15.26
1RHP
416





ATOM
307
O
ASN A
47
−2.129
9.930
46.646
1.00
15.75
1RHP
417





ATOM
308
CB
ASN A
47
−0.378
9.202
44.686
1.00
15.96
1RHP
418





ATOM
309
CG
ASN A
47
−0.817
7.792
45.074
1.00
19.04
1RHP
419





ATOM
310
OD1
ASN A
47
−0.659
7.308
46.203
1.00
18.63
1RHP
420





ATOM
311
ND2
ASN A
47
−1.369
7.086
44.096
1.00
18.26
1RHP
421





ATOM
312
N
GLY A
48
−2.701
11.810
45.687
1.00
14.17
1RHP
422





ATOM
313
CA
GLY A
48
−3.213
12.321
46.954
1.00
11.43
1RHP
423





ATOM
314
C
GLY A
48
−2.195
13.099
47.769
1.00
10.76
1RHP
424





ATOM
315
O
GLY A
48
−2.554
14.153
48.257
1.00
9.32
1RHP
425





ATOM
316
N
ARG A
49
−0.965
12.610
47.943
1.00
11.85
1RHP
426





ATOM
317
CA
ARG A
49
0.135
13.221
48.702
1.00
13.22
1RHP
427





ATOM
318
C
ARG A
49
0.314
14.672
48.370
1.00
11.78
1RHP
428





ATOM
319
O
ARG A
49
0.318
15.018
47.189
1.00
12.00
1RHP
429





ATOM
320
CB
ARG A
49
1.449
12.511
48.387
1.00
15.17
1RHP
430





ATOM
321
CG
ARG A
49
2.281
11.940
49.537
1.00
20.18
1RHP
431





ATOM
322
CD
ARG A
49
1.582
10.975
50.528
1.00
21.59
1RHP
432





ATOM
323
NE
ARG A
49
1.168
9.676
49.992
1.00
20.23
1RHP
433





ATOM
324
CZ
ARG A
49
0.080
9.028
50.441
1.00
19.78
1RHP
434





ATOM
325
NH1
ARG A
49
−0.698
9.572
51.381
1.00
19.11
1RHP
435





ATOM
326
NH2
ARG A
49
−0.239
7.837
49.905
1.00
17.52
1RHP
436





ATOM
327
N
LYS A
50
0.555
15.472
49.394
1.00
10.80
1RHP
437





ATOM
328
CA
LYS A
50
0.672
16.910
49.232
1.00
11.69
1RHP
438





ATOM
329
C
LYS A
50
2.050
17.317
49.732
1.00
9.93
1RHP
439





ATOM
330
O
LYS A
50
2.426
16.787
50.776
1.00
12.77
1RHP
440





ATOM
331
CB
LYS A
50
−0.419
17.581
50.060
1.00
11.76
1RHP
441





ATOM
332
CG
LYS A
50
−0.756
19.024
49.731
1.00
8.99
1RHP
442





ATOM
333
CD
LYS A
50
−1.843
19.485
50.661
1.00
8.23
1RHP
443





ATOM
334
CE
LYS A
50
−3.090
18.633
50.494
1.00
8.38
1RHP
444





ATOM
335
NZ
LYS A
50
−3.682
18.764
49.176
1.00
8.05
1RHP
445





ATOM
336
N
ILE A
51
2.795
18.232
49.094
1.00
8.81
1RHP
446





ATOM
337
CA
ILE A
51
4.161
18.623
49.447
1.00
6.35
1RHP
447





ATOM
338
C
ILE A
51
4.343
20.099
49.242
1.00
4.95
1RHP
448





ATOM
339
O
ILE A
51
3.728
20.643
48.352
1.00
3.08
1RHP
449





ATOM
340
CB
ILE A
51
5.227
17.946
48.572
1.00
7.68
1RHP
450





ATOM
341
CG1
ILE A
51
4.690
17.783
47.149
1.00
7.68
1RHP
451





ATOM
342
CG2
ILE A
51
5.663
16.655
49.221
1.00
7.95
1RHP
452





ATOM
343
CD1
ILE A
51
5.619
17.112
46.158
1.00
8.20
1RHP
453





ATOM
344
N
CYS A
52
5.152
20.798
50.002
1.00
2.53
1RHP
454





ATOM
345
CA
CYS A
52
5.404
22.219
49.787
1.00
5.14
1RHP
455





ATOM
346
C
CYS A
52
6.647
22.453
48.935
1.00
7.95
1RHP
456





ATOM
347
O
CYS A
52
7.777
22.245
49.380
1.00
12.65
1RHP
457





ATOM
348
CB
CYS A
52
5.686
22.996
51.053
1.00
5.68
1RHP
458





ATOM
349
SG
CYS A
52
4.550
22.812
52.423
1.00
10.46
1RHP
459





ATOM
350
N
LEU A
53
6.542
22.911
47.715
1.00
9.86
1RHP
460





ATOM
351
CA
LEU A
53
7.706
23.191
46.913
1.00
11.72
1RHP
461





ATOM
352
C
LEU A
53
8.528
24.360
47.474
1.00
13.93
1RHP
462





ATOM
353
O
LEU A
53
8.194
25.048
48.453
1.00
14.45
1RHP
463





ATOM
354
CB
LEU A
53
7.230
23.503
45.531
1.00
14.03
1RHP
464





ATOM
355
CG
LEU A
53
6.339
22.460
44.946
1.00
13.85
1RHP
465





ATOM
356
CD1
LEU A
53
5.583
23.020
43.776
1.00
12.70
1RHP
466





ATOM
357
CD2
LEU A
53
7.173
21.279
44.591
1.00
12.91
1RHP
467





ATOM
358
N
ASP A
54
9.654
24.602
46.829
1.00
15.11
1RHP
468





ATOM
359
CA
ASP A
54
10.563
25.649
47.191
1.00
13.41
1RHP
469





ATOM
360
C
ASP A
54
10.282
26.899
46.453
1.00
10.64
1RHP
470





ATOM
361
O
ASP A
54
9.979
26.823
45.267
1.00
7.83
1RHP
471





ATOM
362
CB
ASP A
54
11.935
25.176
46.905
1.00
18.99
1RHP
472





ATOM
363
CG
ASP A
54
12.612
24.949
48.223
1.00
22.87
1RHP
473





ATOM
364
OD1
ASP A
54
12.538
25.855
49.083
1.00
25.87
1RHP
474





ATOM
365
OD2
ASP A
54
13.182
23.870
48.379
1.00
25.23
1RHP
475





ATOM
366
N
LEU A
55
10.457
28.005
47.160
1.00
8.17
1RHP
476





ATOM
367
CA
LEU A
55
10.010
29.293
46.668
1.00
9.24
1RHP
477





ATOM
368
C
LEU A
55
10.735
29.824
45.456
1.00
8.86
1RHP
478





ATOM
369
O
LEU A
55
11.291
29.021
44.735
1.00
7.38
1RHP
479





ATOM
370
CB
LEU A
55
10.115
30.297
47.789
1.00
10.49
1RHP
480





ATOM
371
CG
LEU A
55
8.892
30.808
48.533
1.00
11.79
1RHP
481





ATOM
372
CD1
LEU A
55
9.394
31.663
49.671
1.00
9.03
1RHP
482





ATOM
373
CD2
LEU A
55
7.994
31.649
47.650
1.00
11.79
1RHP
483





ATOM
374
N
GLN A
56
10.629
31.144
45.175
1.00
16.82
1RHP
484





ATOM
375
CA
GLN A
56
11.337
31.983
44.176
1.00
21.72
1RHP
485





ATOM
376
C
GLN A
56
12.129
31.506
42.963
1.00
24.95
1RHP
486





ATOM
377
O
GLN A
56
12.797
32.356
42.340
1.00
27.82
1RHP
487





ATOM
378
CB
GLN A
56
12.259
32.910
44.918
1.00
23.23
1RHP
488





ATOM
379
CG
GLN A
56
11.407
34.107
45.202
1.00
23.55
1RHP
489





ATOM
380
CD
GLN A
56
11.753
34.832
46.499
1.00
23.23
1RHP
490





ATOM
381
OE1
GLN A
56
11.472
36.032
46.669
1.00
23.31
1RHP
491





ATOM
382
NE2
GLN A
56
12.362
34.117
47.460
1.00
25.27
1RHP
492





ATOM
383
N
ALA A
57
11.964
30.231
42.576
1.00
23.51
1RHP
493





ATOM
384
CA
ALA A
57
12.760
29.535
41.587
1.00
20.41
1RHP
494





ATOM
385
C
ALA A
57
12.129
29.564
40.205
1.00
17.80
1RHP
495





ATOM
386
O
ALA A
57
10.948
29.869
40.089
1.00
19.01
1RHP
496





ATOM
387
CB
ALA A
57
12.919
28.086
42.084
1.00
18.09
1RHP
497





ATOM
388
N
PRO A
58
12.807
29.146
39.141
1.00
15.05
1RHP
498





ATOM
389
CA
PRO A
58
12.202
28.563
37.964
1.00
11.47
1RHP
499





ATOM
390
C
PRO A
58
11.294
27.377
38.184
1.00
11.03
1RHP
500





ATOM
391
O
PRO A
58
10.688
26.871
37.244
1.00
12.47
1RHP
501





ATOM
392
CB
PRO A
58
13.388
28.228
37.096
1.00
12.77
1RHP
502





ATOM
393
CG
PRO A
58
14.421
29.237
37.510
1.00
14.91
1RHP
503





ATOM
394
CD
PRO A
58
14.251
29.253
39.011
1.00
15.12
1RHP
504





ATOM
395
N
LEU A
59
11.149
26.862
39.402
1.00
9.80
1RHP
505





ATOM
396
CA
LEU A
59
10.329
25.673
39.612
1.00
9.59
1RHP
506





ATOM
397
C
LEU A
59
8.918
26.113
39.436
1.00
9.71
1RHP
507





ATOM
398
O
LEU A
59
8.217
25.446
38.676
1.00
9.71
1RHP
508





ATOM
399
CB
LEU A
59
10.539
25.122
40.999
1.00
7.77
1RHP
509





ATOM
400
CG
LEU A
59
10.145
23.723
41.333
1.00
5.57
1RHP
510





ATOM
401
CD1
LEU A
59
10.672
22.782
40.299
1.00
8.78
1RHP
511





ATOM
402
CD2
LEU A
59
10.710
23.369
42.685
1.00
4.36
1RHP
512





ATOM
403
N
TYR A
60
8.531
27.251
40.027
1.00
9.61
1RHP
513





ATOM
404
CA
TYR A
60
7.179
27.686
39.795
1.00
10.86
1RHP
514





ATOM
405
C
TYR A
60
6.782
28.095
38.396
1.00
12.85
1RHP
515





ATOM
406
O
TYR A
60
5.645
27.806
38.042
1.00
17.68
1RHP
516





ATOM
407
CB
TYR A
60
6.753
28.820
40.643
1.00
10.43
1RHP
517





ATOM
408
CG
TYR A
60
7.525
30.086
40.905
1.00
10.88
1RHP
518





ATOM
409
CD1
TYR A
60
7.668
31.120
40.020
1.00
10.18
1RHP
519





ATOM
410
CD2
TYR A
60
7.904
30.229
42.220
1.00
11.56
1RHP
520





ATOM
411
CE1
TYR A
60
8.182
32.311
40.508
1.00
14.29
1RHP
521





ATOM
412
CE2
TYR A
60
8.409
31.396
42.704
1.00
14.15
1RHP
522





ATOM
413
CZ
TYR A
60
8.537
32.444
41.850
1.00
15.73
1RHP
523





ATOM
414
OH
TYR A
60
9.008
33.617
42.428
1.00
16.68
1RHP
524





ATOM
415
N
LYS A
61
7.547
28.713
37.510
1.00
10.88
1RHP
525





ATOM
416
CA
LYS A
61
7.071
28.866
36.141
1.00
8.59
1RHP
526





ATOM
417
C
LYS A
61
7.006
27.494
35.468
1.00
8.97
1RHP
527





ATOM
418
O
LYS A
61
6.167
27.257
34.615
1.00
8.97
1RHP
528





ATOM
419
CB
LYS A
61
8.003
29.700
35.340
1.00
8.98
1RHP
529





ATOM
420
CG
LYS A
61
8.208
31.107
35.794
1.00
9.67
1RHP
530





ATOM
421
CD
LYS A
61
9.543
31.372
35.176
1.00
10.69
1RHP
531





ATOM
422
CE
LYS A
61
9.920
32.802
35.407
1.00
12.58
1RHP
532





ATOM
423
NZ
LYS A
61
9.697
33.191
36.788
1.00
11.42
1RHP
533





ATOM
424
N
LYS A
62
7.866
26.539
35.816
1.00
12.30
1RHP
534





ATOM
425
CA
LYS A
62
7.867
25.205
35.221
1.00
13.09
1RHP
535





ATOM
426
C
LYS A
62
6.565
24.462
35.482
1.00
13.14
1RHP
536





ATOM
427
O
LYS A
62
5.787
24.156
34.577
1.00
12.78
1RHP
537





ATOM
428
CB
LYS A
62
9.019
24.391
35.798
1.00
14.18
1RHP
538





ATOM
429
CG
LYS A
62
9.224
22.991
35.222
1.00
14.28
1RHP
539





ATOM
430
CD
LYS A
62
9.853
23.007
33.821
1.00
15.27
1RHP
540





ATOM
431
CE
LYS A
62
10.143
21.568
33.477
1.00
13.02
1RHP
541





ATOM
432
NZ
LYS A
62
11.245
21.549
32.556
1.00
13.10
1RHP
542





ATOM
433
N
ILE A
63
6.301
24.217
36.758
1.00
11.80
1RHP
543





ATOM
434
CA
ILE A
63
5.121
23.508
37.192
1.00
9.60
1RHP
544





ATOM
435
C
ILE A
63
3.882
24.251
36.742
1.00
8.86
1RHP
545





ATOM
436
O
ILE A
63
3.032
23.642
36.101
1.00
9.55
1RHP
546





ATOM
437
CB
ILE A
63
5.182
23.388
38.692
1.00
8.16
1RHP
547





ATOM
438
CG1
ILE A
63
6.450
22.656
39.107
1.00
10.34
1RHP
548





ATOM
439
CG2
ILE A
63
3.972
22.664
39.139
1.00
8.73
1RHP
549





ATOM
440
CD1
ILE A
63
6.694
22.307
40.578
1.00
13.69
1RHP
550





ATOM
441
N
ILE A
64
3.799
25.558
36.987
1.00
7.59
1RHP
551





ATOM
442
CA
ILE A
64
2.634
26.306
36.611
1.00
9.19
1RHP
552





ATOM
443
C
ILE A
64
2.388
26.193
35.133
1.00
10.55
1RHP
553





ATOM
444
O
ILE A
64
1.229
25.962
34.820
1.00
12.93
1RHP
554





ATOM
445
CB
ILE A
64
2.805
27.773
37.061
1.00
7.50
1RHP
555





ATOM
446
CG1
ILE A
64
2.518
27.768
38.576
1.00
8.52
1RHP
556





ATOM
447
CG2
ILE A
64
1.920
28.750
36.294
1.00
6.18
1RHP
557





ATOM
448
CD1
ILE A
64
2.803
29.046
39.420
1.00
8.38
1RHP
558





ATOM
449
N
LYS A
65
3.298
26.234
34.177
1.00
12.10
1RHP
559





ATOM
450
CA
LYS A
65
2.837
26.150
32.821
1.00
14.02
1RHP
560





ATOM
451
C
LYS A
65
2.628
24.716
32.459
1.00
15.11
1RHP
561





ATOM
452
O
LYS A
65
2.005
24.500
31.426
1.00
15.60
1RHP
562





ATOM
453
CB
LYS A
65
3.803
26.767
31.839
1.00
17.12
1RHP
563





ATOM
454
CG
LYS A
65
3.034
27.539
30.717
1.00
21.77
1RHP
564





ATOM
455
CD
LYS A
65
2.299
26.673
29.654
1.00
24.17
1RHP
565





ATOM
456
CE
LYS A
65
1.231
27.395
28.822
1.00
23.70
1RHP
566





ATOM
457
NZ
LYS A
65
0.326
26.419
28.223
1.00
24.58
1RHP
567





ATOM
458
N
LYS A
66
3.044
23.683
33.194
1.00
15.89
1RHP
568





ATOM
459
CA
LYS A
66
2.617
22.342
32.789
1.00
16.58
1RHP
569





ATOM
460
C
LYS A
66
1.150
22.218
33.221
1.00
17.67
1RHP
570





ATOM
461
O
LYS A
66
0.394
21.432
32.639
1.00
21.96
1RHP
571





ATOM
462
CB
LYS A
66
3.449
21.222
33.447
1.00
17.02
1RHP
572





ATOM
463
CG
LYS A
66
4.983
21.322
33.249
1.00
20.36
1RHP
573





ATOM
464
CD
LYS A
66
5.432
21.487
31.785
1.00
21.07
1RHP
574





ATOM
465
CE
LYS A
66
6.484
22.605
31.641
1.00
20.00
1RHP
575





ATOM
466
NZ
LYS A
66
6.436
23.278
30.346
1.00
20.18
1RHP
576





ATOM
467
N
LEU A
67
0.707
23.032
34.202
1.00
16.85
1RHP
577





ATOM
468
CA
LEU A
67
−0.685
23.097
34.659
1.00
13.25
1RHP
578





ATOM
469
C
LEU A
67
−1.542
23.997
33.779
1.00
12.29
1RHP
579





ATOM
470
O
LEU A
67
−2.682
23.657
33.515
1.00
13.15
1RHP
580





ATOM
471
CB
LEU A
67
−0.803
23.641
36.092
1.00
7.96
1RHP
581





ATOM
472
CG
LEU A
67
−0.093
22.944
37.237
1.00
3.92
1RHP
562





ATOM
473
CD1
LEU A
67
−0.401
23.676
38.487
1.00
2.52
1RHP
583





ATOM
474
CD2
LEU A
67
−0.575
21.537
37.435
1.00
2.93
1RHP
584





ATOM
475
N
LEU A
68
−1.099
25.138
33.290
1.00
10.42
1RHP
585





ATOM
476
CA
LEU A
68
−1.929
26.029
32.504
1.00
10.73
1RHP
586





ATOM
477
C
LEU A
68
−2.078
25.609
31.058
1.00
12.75
1RHP
587





ATOM
478
O
LEU A
68
−1.946
26.370
30.082
1.00
10.65
1RHP
588





ATOM
479
CB
LEU A
68
−1.338
27.396
32.584
1.00
11.18
1RHP
589





ATOM
480
CG
LEU A
68
−1.865
28.415
33.560
1.00
12.10
1RHP
590





ATOM
481
CD1
LEU A
68
−2.062
27.801
34.914
1.00
13.70
1RHP
591





ATOM
482
CD2
LEU A
68
−0.867
29.561
33.647
1.00
12.88
1RHP
582





ATOM
483
N
GLU A
69
−2.516
24.365
30.979
1.00
16.13
1RHP
593





ATOM
484
CA
GLU A
69
−2.643
23.615
29.748
1.00
23.50
1RHP
594





ATOM
485
C
GLU A
69
−3.186
22.251
30.223
1.00
26.75
1RHP
595





ATOM
486
O
GLU A
69
−4.124
22.260
31.039
1.00
28.16
1RHP
596





ATOM
487
CB
GLU A
69
−1.285
23.510
29.180
1.00
24.43
1RHP
597





ATOM
488
CG
GLU A
69
−1.239
23.349
27.710
1.00
26.48
1RHP
598





ATOM
489
CD
GLU A
69
0.114
22.771
27.367
1.00
28.27
1RHP
599





ATOM
490
OE1
GLU A
69
1.134
23.310
27.837
1.00
27.88
1RHP
600





ATOM
491
OE2
GLU A
69
0.132
21.760
26.656
1.00
30.17
1RHP
601





ATOM
492
N
SER A
70
−2.624
21.073
29.881
1.00
27.97
1RHP
602





ATOM
493
CA
SER A
70
−3.177
19.785
30.310
1.00
26.87
1RHP
603





ATOM
494
C
SER A
70
−2.057
18.800
30.668
1.00
27.50
1RHP
604





ATOM
495
O
SER A
70
−1.019
18.762
29.974
1.00
27.68
1RHP
605





ATOM
496
CB
SER A
70
−4.025
19.221
29.172
1.00
27.57
1RHP
606





ATOM
497
OG
SER A
70
−4.609
20.314
28.452
1.00
26.61
1RHP
607





TER
498

SER A
70





1RHP
608





HETATM
499
O
HOH A
71
1.441
9.706
30.512
1.00
23.59
1RHP
609





HETATM
500
O
HOH A
72
7.286
26.889
50.542
1.00
27.41
1RHP
610





HETATM
501
O
HOH A
73
−3.388
30.794
61.718
1.00
15.03
1RHP
611





HETATM
502
O
HOH A
74
7.376
36.705
41.431
1.00
21.13
1RHP
612





HETATM
503
O
HOH A
75
−7.221
20.396
27.869
1.00
15.40
1RHP
613





HETATM
504
O
HOH A
76
14.249
16.834
42.220
1.00
39.10
1RHP
614





HETATM
505
O
HOH A
77
1.991
6.425
47.231
1.00
17.03
1RHP
615





HETATM
506
O
HOH A
78
10.865
16.120
59.043
1.00
29.88
1RHP
616





HETATM
507
O
HOH A
79
−6.335
16.868
43.397
1.00
44.71
1RHP
617





HETATM
508
O
HOH A
80
10.601
36.531
38.480
1.00
20.86
1RHP
618





HETATM
509
O
HOH A
81
2.395
13.017
27.637
1.00
35.17
1RHP
619





HETATM
510
O
HOH A
82
1.629
20.208
28.804
1.00
29.20
1RHP
620





HETATM
511
O
HOH A
83
0.848
14.249
33.742
1.00
34.71
1RHP
621





HETATM
512
O
HOH A
84
16.874
15.525
59.033
1.00
29.01
1RHP
622





HETATM
513
O
HOH A
85
4.996
35.535
60.902
1.00
9.39
1RHP
623





HETATM
514
O
HOH A
86
8.076
29.220
51.759
1.00
27.50
1RHP
624





HETATM
515
O
HOH A
87
−4.320
14.479
42.695
1.00
40.77
1RHP
625





HETATM
516
O
HOH A
88
1.991
4.000
48.464
1.00
33.25
1RHP
626





HETATM
517
O
HOH A
89
11.385
18.541
53.057
1.00
29.34
1RHP
627





HETATM
518
O
HOH A
90
1.082
19.686
35.468
1.00
23.94
1RHP
628





HETATM
519
O
HOH A
91
2.102
11.541
35.327
1.00
24.90
1RHP
629





HETATM
520
O
HOH A
92
−1.591
29.019
29.987
1.00
39.76
1RHP
630





HETATM
521
O
HOH A
93
12.054
9.498
37.355
1.00
42.50
1RHP
631





HETATM
522
O
HOH A
94
−0.812
4.693
44.959
1.00
30.68
1RHP
632





HETATM
523
O
HOH A
95
14.214
11.730
33.809
1.00
35.05
1RHP
633





ATOM
524
N
ASP B
7
−16.599
14.751
41.674
1.00
6.71
1RHP
634





ATOM
525
CA
ASP B
7
−16.628
13.780
40.622
1.00
6.88
1RHP
635





ATOM
526
C
ASP B
7
−16.717
14.647
39.404
1.00
7.82
1RHP
636





ATOM
527
O
ASP B
7
−15.961
15.605
39.505
1.00
7.86
1RHP
637





ATOM
528
CB
ASP B
7
−18.207
13.152
40.677
1.00
6.72
1RHP
638





ATOM
529
CG
ASP B
7
−18.187
11.717
40.148
1.00
9.29
1RHP
639





ATOM
530
OD1
ASP B
7
−17.925
11.507
38.946
1.00
7.94
1RHP
640





ATOM
531
OD2
ASP B
7
−18.433
10.807
40.958
1.00
7.47
1RHP
641





ATOM
532
N
LEU B
8
−17.410
14.431
38.314
1.00
7.26
1RHP
642





ATOM
533
CA
LEU B
8
−17.258
15.225
37.119
1.00
9.93
1RHP
643





ATOM
534
C
LEU B
8
−17.343
16.755
37.198
1.00
13.16
1RHP
644





ATOM
535
O
LEU B
8
−17.337
17.373
36.125
1.00
15.46
1RHP
645





ATOM
536
CB
LEU B
8
−18.288
14.602
36.161
1.00
9.86
1RHP
646





ATOM
537
CG
LEU B
8
−19.030
15.233
34.963
1.00
9.12
1RHP
647





ATOM
538
CD1
LEU B
8
−19.510
14.113
34.059
1.00
10.31
1RHP
648





ATOM
539
CD2
LEU B
8
−20.213
16.076
35.418
1.00
10.66
1RHP
649





ATOM
540
N
GLN B
9
−17.385
17.502
38.302
1.00
14.34
1RHP
650





ATOM
541
CA
GLN B
9
−17.674
18.905
38.082
1.00
17.97
1RHP
651





ATOM
542
C
GLN B
9
−16.502
19.824
38.023
1.00
17.32
1RHP
652





ATOM
543
O
GLN B
9
−15.448
19.702
38.660
1.00
18.64
1RHP
653





ATOM
544
CB
GLN B
9
−18.621
19.509
39.125
1.00
19.36
1RHP
654





ATOM
545
CG
GLN B
9
−20.067
18.997
39.169
1.00
21.09
1RHP
655





ATOM
546
CD
GLN B
9
−21.028
19.399
38.059
1.00
22.41
1RHP
656





ATOM
547
OE1
GLN B
9
−22.125
19.822
38.405
1.00
24.70
1RHP
657





ATOM
548
NE2
GLN B
9
−20.866
19.237
36.746
1.00
21.91
1RHP
658





ATOM
549
N
CYS B
10
−16.792
20.758
37.150
1.00
16.30
1RHP
659





ATOM
550
CA
CYS B
10
−15.970
21.912
37.007
1.00
14.44
1RHP
660





ATOM
551
C
CYS B
10
−16.412
22.725
38.203
1.00
14.54
1RHP
661





ATOM
552
O
CYS B
10
−17.598
22.808
38.503
1.00
12.26
1RHP
662





ATOM
553
CB
CYS B
10
−16.319
22.605
35.739
1.00
14.58
1RHP
663





ATOM
554
SG
CYS B
10
−15.736
21.662
34.314
1.00
18.74
1RHP
664





ATOM
555
N
LEU B
11
−15.466
23.247
38.965
1.00
14.29
1RHP
665





ATOM
556
CA
LEU B
11
−15.830
24.120
40.036
1.00
12.18
1RHP
666





ATOM
557
C
LEU B
11
−16.330
25.396
39.388
1.00
14.39
1RHP
667





ATOM
558
O
LEU B
11
−17.463
25.808
39.647
1.00
16.26
1RHP
668





ATOM
559
CB
LEU B
11
−14.623
24.368
40.891
1.00
9.14
1RHP
669





ATOM
560
CG
LEU B
11
−14.486
23.331
41.964
1.00
9.44
1RHP
670





ATOM
561
CD1
LEU B
11
−13.203
23.445
42.713
1.00
5.83
1RHP
671





ATOM
562
CD2
LEU B
11
−15.612
23.559
42.945
1.00
9.77
1RHP
672





ATOM
563
N
CYS B
12
−15.564
26.025
38.499
1.00
14.94
1RHP
673





ATOM
564
CA
CYS B
12
−15.975
27.294
37.938
1.00
14.83
1RHP
674





ATOM
565
C
CYS B
12
−17.016
27.143
36.874
1.00
15.04
1RHP
675





ATOM
566
O
CYS B
12
−16.757
26.586
35.813
1.00
13.79
1RHP
676





ATOM
567
CB
CYS B
12
−14.792
28.001
37.357
1.00
13.61
1RHP
677





ATOM
568
SG
CYS B
12
−13.619
28.035
38.710
1.00
12.15
1RHP
678





ATOM
569
N
VAL B
13
−18.208
27.631
37.223
1.00
17.68
1RHP
679





ATOM
570
CA
VAL B
13
−19.361
27.689
36.324
1.00
16.43
1RHP
680





ATOM
571
C
VAL B
13
−19.330
28.970
35.529
1.00
16.01
1RHP
681





ATOM
572
O
VAL B
13
−19.831
29.010
34.414
1.00
15.17
1RHP
682





ATOM
573
CB
VAL B
13
−20.652
27.570
37.177
1.00
15.62
1RHP
683





ATOM
574
CG1
VAL B
13
−21.698
28.661
37.052
1.00
13.84
1RHP
684





ATOM
575
CG2
VAL B
13
−21.237
26.277
36.674
1.00
16.66
1RHP
685





ATOM
576
N
LYS B
14
−18.790
30.024
36.135
1.00
14.99
1RHP
686





ATOM
577
CA
LYS B
14
−18.645
31.326
35.502
1.00
17.11
1RHP
687





ATOM
578
C
LYS B
14
−17.412
31.932
36.132
1.00
14.55
1RHP
688





ATOM
579
O
LYS B
14
−17.235
31.696
37.335
1.00
14.45
1RHP
689





ATOM
580
CB
LYS B
14
−19.784
32.322
35.794
1.00
20.91
1RHP
690





ATOM
581
CG
LYS B
14
−21.141
32.184
35.106
1.00
24.68
1RHP
691





ATOM
582
CD
LYS B
14
−22.018
33.283
35.714
1.00
29.58
1RHP
692





ATOM
583
CE
LYS B
14
−23.504
32.970
35.428
1.00
32.18
1RHP
693





ATOM
584
NZ
LYS B
14
−24.423
33.691
36.319
1.00
36.38
1RHP
694





ATOM
585
N
THR B
15
−16.638
32.737
35.393
1.00
11.59
1RHP
695





ATOM
586
CA
THR B
15
−15.407
33.326
35.857
1.00
11.41
1RHP
696





ATOM
587
C
THR B
15
−15.728
34.557
36.676
1.00
14.81
1RHP
697





ATOM
588
O
THR B
15
−16.787
34.567
37.345
1.00
17.29
1RHP
698





ATOM
589
CB
THR B
15
−14.579
33.664
34.654
1.00
11.02
1RHP
699





ATOM
590
OG1
THR B
15
−15.370
34.543
33.860
1.00
8.03
1RHP
700





ATOM
591
CG2
THR B
15
−14.101
32.405
33.945
1.00
9.03
1RHP
701





ATOM
592
N
THR B
16
−14.793
35.521
36.754
1.00
13.55
1RHP
702





ATOM
593
CA
THR B
16
−15.032
36.758
37.451
1.00
13.04
1RHP
703





ATOM
594
C
THR B
16
−13.966
37.746
37.067
1.00
13.11
1RHP
704





ATOM
595
O
THR B
16
−13.022
38.042
37.785
1.00
14.65
1RHP
705





ATOM
596
CB
THR B
16
−15.020
36.563
38.960
1.00
15.18
1RHP
706





ATOM
597
OG1
THR B
16
−14.956
35.175
39.309
1.00
14.67
1RHP
707





ATOM
598
CG2
THR B
16
−16.276
37.201
39.509
1.00
13.87
1RHP
708





ATOM
599
N
SER B
17
−14.182
38.308
35.895
1.00
15.59
1RHP
709





ATOM
600
CA
SER B
17
−13.316
39.266
35.234
1.00
17.24
1RHP
710





ATOM
601
C
SER B
17
−12.747
40.478
35.978
1.00
17.71
1RHP
711





ATOM
602
O
SER B
17
−12.144
41.324
35.316
1.00
21.74
1RHP
712





ATOM
603
CB
SER B
17
−14.057
39.757
33.947
1.00
19.44
1RHP
713





ATOM
604
OG
SER B
17
−14.784
38.766
33.166
1.00
21.82
1RHP
714





ATOM
605
N
GLN B
18
−12.824
40.742
37.270
1.00
15.85
1RHP
715





ATOM
606
CA
GLN B
18
−12.114
41.888
37.819
1.00
18.33
1RHP
716





ATOM
607
C
GLN B
18
−12.062
41.589
39.286
1.00
18.02
1RHP
717





ATOM
608
O
GLN B
18
−13.002
40.997
39.821
1.00
17.08
1RHP
718





ATOM
609
CB
GLN B
18
−12.848
43.214
37.641
1.00
22.53
1RHP
719





ATOM
610
CG
GLN B
18
−12.058
44.482
38.076
1.00
28.01
1RHP
720





ATOM
611
CD
GLN B
18
−10.948
45.055
37.148
1.00
28.58
1RHP
721





ATOM
612
OE1
GLN B
18
−10.335
46.087
37.477
1.00
31.50
1RHP
722





ATOM
613
NE2
GLN B
18
−10.602
44.528
35.958
1.00
33.23
1RHP
723





ATOM
614
N
VAL B
19
−10.937
41.951
39.887
1.00
17.73
1RHP
724





ATOM
615
CA
VAL B
19
−10.675
41.751
41.300
1.00
19.22
1RHP
725





ATOM
616
C
VAL B
19
−9.359
42.461
41.567
1.00
22.93
1RHP
726





ATOM
617
O
VAL B
19
−8.525
42.541
40.656
1.00
24.40
1RHP
727





ATOM
618
CB
VAL B
19
−10.541
40.252
41.616
1.00
18.45
1RHP
728





ATOM
619
CG1
VAL B
19
−9.417
39.572
40.838
1.00
16.26
1RHP
729





ATOM
620
CG2
VAL B
19
−10.267
40.130
43.090
1.00
18.16
1RHP
730





ATOM
621
N
ARG B
20
−9.124
42.955
42.780
1.00
24.01
1RHP
731





ATOM
622
CA
ARG B
20
−7.859
43.625
43.077
1.00
24.80
1RHP
732





ATOM
623
C
ARG B
20
−6.749
42.648
43.555
1.00
22.48
1RHP
733





ATOM
624
O
ARG B
20
−6.958
42.040
44.617
1.00
23.56
1RHP
734





ATOM
625
CB
ARG B
20
−8.244
44.714
44.114
1.00
26.07
1RHP
735





ATOM
626
CG
ARG B
20
−7.155
45.739
44.509
1.00
28.36
1RHP
736





ATOM
627
CD
ARG B
20
−7.631
46.952
45.373
1.00
30.29
1RHP
737





ATOM
628
NE
ARG B
20
−8.331
47.957
44.580
1.00
28.61
1RHP
738





ATOM
629
CZ
ARG B
20
−8.682
49.168
45.044
1.00
26.73
1RHP
739





ATOM
630
NH1
ARG B
20
−8.397
49.615
46.269
1.00
24.77
1RHP
740





ATOM
631
NH2
ARG B
20
−9.313
49.988
44.206
1.00
27.79
1RHP
741





ATOM
632
N
PRO B
21
−5.552
42.441
42.957
1.00
20.67
1RHP
742





ATOM
633
CA
PRO B
21
−4.487
41.499
43.412
1.00
20.34
1RHP
743





ATOM
634
C
PRO B
21
−4.042
41.734
44.855
1.00
20.31
1RHP
744





ATOM
635
O
PRO B
21
−3.468
40.900
45.534
1.00
21.08
1RHP
745





ATOM
636
CB
PRO B
21
−3.331
41.690
42.460
1.00
17.36
1RHP
746





ATOM
637
CG
PRO B
21
−3.935
42.366
41.248
1.00
18.63
1RHP
747





ATOM
638
CD
PRO B
21
−5.044
43.238
41.857
1.00
19.44
1RHP
748





ATOM
639
N
ARG B
22
−4.320
42.914
45.391
1.00
23.94
1RHP
749





ATOM
640
CA
ARG B
22
−4.069
43.213
46.795
1.00
25.25
1RHP
750





ATOM
641
C
ARG B
22
−5.208
42.566
47.624
1.00
25.15
1RHP
751





ATOM
642
O
ARG B
22
−5.410
42.924
48.794
1.00
24.31
1RHP
752





ATOM
643
CB
ARG B
22
−3.946
44.802
46.867
1.00
28.32
1RHP
753





ATOM
644
CG
ARG B
22
−4.775
45.792
47.742
1.00
27.20
1RHP
754





ATOM
645
CD
ARG B
22
−3.925
46.817
48.555
1.00
27.40
1RHP
755





ATOM
646
NE
ARG B
22
−3.077
46.078
49.495
1.00
25.56
1RHP
756





ATOM
647
CZ
ARG B
22
−3.014
46.290
50.811
1.00
23.63
1RHP
757





ATOM
648
NH1
ARG B
22
−3.699
47.274
51.390
1.00
24.89
1RHP
758





ATOM
649
NH2
ARG B
22
−2.262
45.467
51.557
1.00
24.37
1RHP
759





ATOM
650
N
HIS B
23
−5.998
41.607
47.073
1.00
23.30
1RHP
760





ATOM
651
CA
HIS B
23
−7.116
41.029
47.810
1.00
22.41
1RHP
761





ATOM
652
C
HIS B
23
−7.066
39.533
48.017
1.00
18.77
1RHP
762





ATOM
653
O
HIS B
23
−7.518
39.032
49.047
1.00
15.42
1RHP
763





ATOM
654
CB
HIS B
23
−8.491
41.348
47.145
1.00
24.58
1RHP
764





ATOM
655
CG
HIS B
23
−9.124
42.723
47.499
1.00
28.15
1RHP
765





ATOM
656
ND1
HIS B
23
−9.858
43.547
46.729
1.00
28.62
1RHP
766





ATOM
657
CD2
HIS B
23
−9.014
43.377
48.735
1.00
30.22
1RHP
767





ATOM
658
CE1
HIS B
23
−10.178
44.633
47.441
1.00
32.42
1RHP
768





ATOM
659
NE2
HIS B
23
−9.659
44.525
48.651
1.00
30.14
1RHP
769





ATOM
660
N
ILE B
24
−6.471
38.824
47.079
1.00
14.30
1RHP
770





ATOM
661
CA
ILE B
24
−6.487
37.375
47.024
1.00
12.03
1RHP
771





ATOM
662
C
ILE B
24
−5.532
36.736
48.017
1.00
13.90
1RHP
772





ATOM
663
O
ILE B
24
−4.374
37.143
47.983
1.00
14.55
1RHP
773





ATOM
664
CB
ILE B
24
−6.118
37.018
45.601
1.00
11.19
1RHP
774





ATOM
665
CG1
ILE B
24
−7.124
37.651
44.682
1.00
12.67
1RHP
775





ATOM
666
CG2
ILE B
24
−6.052
35.522
45.428
1.00
12.84
1RHP
776





ATOM
667
CD1
ILE B
24
−6.896
37.461
43.189
1.00
11.71
1RHP
777





ATOM
668
N
THR B
25
−5.878
35.786
48.895
1.00
15.57
1RHP
778





ATOM
669
CA
THR B
25
−4.873
35.145
49.741
1.00
15.27
1RHP
779





ATOM
670
C
THR B
25
−4.287
33.931
49.001
1.00
14.01
1RHP
780





ATOM
671
O
THR B
25
−3.114
33.889
48.635
1.00
13.94
1RHP
781





ATOM
672
CB
THR B
25
−5.430
34.597
51.075
1.00
18.14
1RHP
782





ATOM
673
OG1
THR B
25
−6.736
35.076
51.329
1.00
19.37
1RHP
783





ATOM
674
CG2
THR B
25
−4.494
34.992
52.192
1.00
20.19
1RHP
784





ATOM
675
N
SER B
26
−5.116
32.910
48.782
1.00
10.07
1RHP
785





ATOM
676
CA
SER B
26
−4.729
31.650
48.183
1.00
9.61
1RHP
786





ATOM
677
C
SER B
26
−5.030
31.797
46.724
1.00
8.16
1RHP
787





ATOM
678
O
SER B
26
−5.880
32.608
46.385
1.00
8.76
1RHP
788





ATOM
679
CB
SER B
26
−5.571
30.545
48.786
1.00
11.70
1RHP
789





ATOM
680
OG
SER B
26
−4.980
29.236
48.814
1.00
19.77
1RHP
790





ATOM
681
N
LEU B
27
−4.393
31.116
45.816
1.00
7.23
1RHP
791





ATOM
682
CA
LEU B
27
−4.794
31.192
44.437
1.00
9.33
1RHP
792





ATOM
683
C
LEU B
27
−4.427
29.800
44.000
1.00
12.71
1RHP
793





ATOM
684
O
LEU B
27
−3.292
29.345
44.187
1.00
14.92
1RHP
794





ATOM
685
CB
LEU B
27
−4.001
32.235
43.709
1.00
8.62
1RHP
795





ATOM
686
CG
LEU B
27
−4.286
32.468
42.237
1.00
9.60
1RHP
796





ATOM
687
CD1
LEU B
27
−3.985
33.898
41.894
1.00
12.46
1RHP
797





ATOM
688
CD2
LEU B
27
−3.405
31.583
41.374
1.00
10.99
1RHP
798





ATOM
689
N
GLU B
28
−5.400
29.118
43.416
1.00
12.03
1RHP
799





ATOM
690
CA
GLU B
28
−5.281
27.715
43.140
1.00
12.56
1RHP
800





ATOM
691
C
GLU B
28
−5.320
27.466
41.658
1.00
15.35
1RHP
801





ATOM
692
O
GLU B
28
−6.287
27.853
40.989
1.00
16.84
1RHP
802





ATOM
693
CB
GLU B
28
−6.425
27.020
43.839
1.00
11.80
1RHP
803





ATOM
694
CG
GLU B
28
−6.309
25.491
43.891
1.00
11.43
1RHP
804





ATOM
695
CD
GLU B
28
−7.341
24.801
44.743
1.00
12.19
1RHP
805





ATOM
696
OE1
GLU B
28
−7.953
25.433
45.597
1.00
10.13
1RHP
806





ATOM
697
OE2
GLU B
28
−7.525
23.614
44.542
1.00
12.36
1RHP
807





ATOM
698
N
VAL B
29
−4.278
26.813
41.155
1.00
15.27
1RHP
808





ATOM
699
CA
VAL B
29
−4.212
26.474
39.757
1.00
12.56
1RHP
809





ATOM
700
C
VAL B
29
−4.541
24.987
39.729
1.00
9.90
1RHP
810





ATOM
701
O
VAL B
29
−3.906
24.204
40.424
1.00
9.03
1RHP
811





ATOM
702
CB
VAL B
29
−2.796
26.835
39.272
1.00
12.48
1RHP
812





ATOM
703
CG1
VAL B
29
−2.629
26.365
37.877
1.00
12.53
1RHP
813





ATOM
704
CG2
VAL B
29
−2.581
28.344
39.197
1.00
10.30
1RHP
814





ATOM
705
N
ILE B
30
−5.605
24.616
39.022
1.00
9.52
1RHP
815





ATOM
706
CA
ILE B
30
−6.110
23.254
38.907
1.00
11.83
1RHP
816





ATOM
707
C
ILE B
30
−6.031
22.853
37.430
1.00
14.07
1RHP
817





ATOM
708
O
ILE B
30
−6.516
23.536
36.512
1.00
14.01
1RHP
818





ATOM
709
CB
ILE B
30
−7.589
23.155
39.392
1.00
10.60
1RHP
819





ATOM
710
CG1
ILE B
30
−7.803
23.738
40.785
1.00
9.90
1RHP
820





ATOM
711
CG2
ILE B
30
−7.944
21.695
39.436
1.00
10.95
1RHP
821





ATOM
712
CD1
ILE B
30
−9.087
23.269
41.486
1.00
8.55
1RHP
822





ATOM
713
N
LYS B
31
−5.409
21.713
37.188
1.00
14.56
1RHP
823





ATOM
714
CA
LYS B
31
−5.141
21.288
35.836
1.00
14.90
1RHP
824





ATOM
715
C
LYS B
31
−6.268
20.385
35.421
1.00
15.83
1RHP
825





ATOM
716
O
LYS B
31
−6.937
19.762
36.255
1.00
15.93
1RHP
826





ATOM
717
CB
LYS B
31
−3.824
20.536
35.803
1.00
14.69
1RHP
827





ATOM
718
CG
LYS B
31
−3.202
20.382
34.433
1.00
13.07
1RHP
828





ATOM
719
CD
LYS B
31
−2.281
19.201
34.485
1.00
12.65
1RHP
829





ATOM
720
CE
LYS B
31
−3.074
17.932
34.765
1.00
14.37
1RHP
830





ATOM
721
NZ
LYS B
31
−2.200
16.777
34.917
1.00
15.82
1RHP
831





ATOM
722
N
ALA B
32
−6.418
20.321
34.101
1.00
15.07
1RHP
832





ATOM
723
CA
ALA B
32
−7.388
19.496
33.412
1.00
14.31
1RHP
833





ATOM
724
C
ALA B
32
−7.282
18.074
33.832
1.00
14.88
1RHP
034





ATOM
725
O
ALA B
32
−6.333
17.708
34.508
1.00
16.92
1RHP
835





ATOM
726
CB
ALA B
32
−7.155
19.512
31.936
1.00
14.87
1RHP
836





ATOM
727
N
GLY B
33
−8.228
17.270
33.398
1.00
18.70
1RHP
837





ATOM
728
CA
GLY B
33
−8.292
15.839
33.736
1.00
21.94
1RHP
838





ATOM
729
C
GLY B
33
−9.763
15.393
33.606
1.00
23.37
1RHP
839





ATOM
730
O
GLY B
33
−10.552
16.167
33.025
1.00
27.46
1RHP
840





ATOM
731
N
PRO B
34
−10.279
14.290
34.169
1.00
19.65
1RHP
841





ATOM
732
CA
PRO B
34
−11.676
13.848
34.016
1.00
18.30
1RHP
842





ATOM
733
C
PRO B
34
−12.795
14.720
34.645
1.00
16.74
1RHP
843





ATOM
734
O
PRO B
34
−13.929
14.282
34.838
1.00
17.33
1RHP
844





ATOM
735
CB
PRO B
34
−11.627
12.445
34.597
1.00
18.80
1RHP
845





ATOM
736
CG
PRO B
34
−10.173
12.134
34.875
1.00
16.67
1RHP
846





ATOM
737
CD
PRO B
34
−9.589
13.496
35.158
1.00
19.46
1RHP
847





ATOM
738
N
HIS B
35
−12.594
15.978
35.010
1.00
14.83
1RHP
848





ATOM
739
CA
HIS B
35
−13.635
16.704
35.720
1.00
15.41
1RHP
849





ATOM
740
C
HIS B
35
−13.996
18.076
35.163
1.00
14.14
1RHP
850





ATOM
741
O
HIS B
35
−14.917
18.787
35.578
1.00
14.88
1RHP
851





ATOM
742
CB
HIS B
35
−13.189
16.834
37.157
1.00
17.57
1RHP
852





ATOM
743
CG
HIS B
35
−11.793
17.433
37.281
1.00
21.36
1RHP
853





ATOM
744
ND1
HIS B
35
−10.668
16.764
37.536
1.00
22.07
1RHP
854





ATOM
745
CD2
HIS B
35
−11.445
18.761
37.116
1.00
23.26
1RHP
855





ATOM
746
CE1
HIS B
35
−9.665
17.625
37.523
1.00
22.24
1RHP
856





ATOM
747
NE2
HIS B
35
−10.149
18.813
37.274
1.00
24.14
1RHP
857





ATOM
748
N
CYS B
36
−13.207
18.489
34.191
1.00
11.64
1RHP
858





ATOM
749
CA
CYS B
36
−13.292
19.817
33.668
1.00
11.54
1RHP
859





ATOM
750
C
CYS B
36
−12.153
19.680
32.695
1.00
12.55
1RHP
860





ATOM
751
O
CYS B
36
−11.016
19.462
33.120
1.00
13.11
1RHP
861





ATOM
752
CB
CYS B
36
−12.962
20.825
34.738
1.00
10.73
1RHP
862





ATOM
753
SG
CYS B
36
−13.849
22.352
34.423
1.00
13.16
1RHP
863





ATOM
754
N
PRO B
37
−12.359
19.676
31.394
1.00
12.41
1RHP
864





ATOM
755
CA
PRO B
37
−11.304
19.769
30.413
1.00
14.05
1RHP
865





ATOM
756
C
PRO B
37
−10.665
21.142
30.377
1.00
13.26
1RHP
866





ATOM
757
O
PRO B
37
−10.088
21.503
29.357
1.00
14.90
1RHP
867





ATOM
758
CB
PRO B
37
−12.008
19.387
29.156
1.00
13.74
1RHP
868





ATOM
759
CG
PRO B
37
−13.369
19.984
29.372
1.00
16.34
1RHP
869





ATOM
760
CD
PRO B
37
−13.642
19.445
30.752
1.00
14.85
1RHP
870





ATOM
761
N
THR B
38
−10.651
21.893
31.467
1.00
12.60
1RHP
871





ATOM
762
CA
THR B
38
−10.186
23.255
31.455
1.00
14.10
1RHP
872





ATOM
763
C
THR B
38
−9.420
23.496
32.721
1.00
14.48
1RHP
873





ATOM
764
O
THR B
38
−9.778
23.038
33.809
1.00
16.21
1RHP
874





ATOM
765
CB
THR B
38
−11.385
24.158
31.387
1.00
14.43
1RHP
875





ATOM
766
OG1
THR B
38
−11.924
23.841
30.109
1.00
15.57
1RHP
876





ATOM
767
CG2
THR B
38
−11.112
25.643
31.566
1.00
14.47
1RHP
877





ATOM
768
N
ALA B
39
−8.315
24.186
32.580
1.00
15.51
1RHP
878





ATOM
769
CA
ALA B
39
−7.584
24.548
33.755
1.00
14.33
1RHP
879





ATOM
770
C
ALA B
39
−8.501
25.584
34.363
1.00
14.26
1RHP
880





ATOM
771
O
ALA B
39
−9.208
26.304
33.658
1.00
12.03
1RHP
881





ATOM
772
CB
ALA B
39
−6.265
25.141
33.367
1.00
16.08
1RHP
882





ATOM
773
N
GLN B
40
−8.572
25.537
35.675
1.00
14.67
1RHP
883





ATOM
774
CA
GLN B
40
−9.423
26.422
36.438
1.00
14.71
1RHP
884





ATOM
775
C
GLN B
40
−8.473
27.181
37.359
1.00
14.67
1RHP
885





ATOM
776
O
GLN B
40
−7.500
26.567
37.798
1.00
13.26
1RHP
886





ATOM
777
CB
GLN B
40
−10.402
25.587
37.245
1.00
15.63
1RHP
887





ATOM
778
CG
GLN B
40
−11.158
24.563
36.428
1.00
14.87
1RHP
888





ATOM
779
CD
GLN B
40
−12.024
23.745
37.354
1.00
17.01
1RHP
889





ATOM
780
OE1
GLN B
40
−13.086
24.191
37.789
1.00
17.42
1RHP
890





ATOM
781
NE2
GLN B
40
−11.605
22.544
37.735
1.00
17.23
1RHP
891





ATOM
782
N
LEU B
41
−8.697
28.441
37.727
1.00
15.12
1RHP
892





ATOM
783
CA
LEU B
41
−7.789
29.198
38.564
1.00
14.02
1RHP
893





ATOM
784
C
LEU B
41
−8.624
29.872
39.662
1.00
14.67
1RHP
894





ATOM
785
O
LEU B
41
−9.025
31.044
39.598
1.00
16.79
1RHP
895





ATOM
786
CB
LEU B
41
−7.106
30.190
37.641
1.00
15.99
1RHP
896





ATOM
787
CG
LEU B
41
−5.600
30.258
37.396
1.00
15.92
1RHP
897





ATOM
788
CD1
LEU B
41
−5.005
29.070
35.675
1.00
16.60
1RHP
898





ATOM
789
CD2
LEU B
41
−5.399
31.383
36.436
1.00
16.85
1RHP
899





ATOM
790
N
ILE B
42
−8.963
29.133
40.704
1.00
11.77
1RHP
900





ATOM
791
CA
ILE B
42
−9.817
29.595
41.814
1.00
10.15
1RHP
901





ATOM
792
C
ILE B
42
−9.121
30.667
42.653
1.00
9.73
1RHP
902





ATOM
793
O
ILE B
42
−7.904
30.543
42.796
1.00
14.00
1RHP
903





ATOM
794
CB
ILE B
42
−10.140
28.282
42.558
1.00
8.44
1RHP
904





ATOM
795
CG1
ILE B
42
−11.154
27.593
41.722
1.00
7.82
1RHP
905





ATOM
796
CG2
ILE B
42
−10.641
28.454
43.955
1.00
8.78
1RHP
906





ATOM
797
CD1
ILE B
42
−10.754
26.139
41.638
1.00
6.30
1RHP
907





ATOM
798
N
ALA B
43
−9.731
31.693
43.235
1.00
7.13
1RHP
908





ATOM
799
CA
ALA B
43
−9.008
32.694
44.004
1.00
5.37
1RHP
909





ATOM
800
C
ALA B
43
−9.805
32.913
45.237
1.00
4.98
1RHP
910





ATOM
801
O
ALA B
43
−10.931
33.324
45.062
1.00
8.14
1RHP
911





ATOM
802
CB
ALA B
43
−8.956
33.991
43.259
1.00
2.74
1RHP
912





ATOM
803
N
THR B
44
−9.392
32.649
46.453
1.00
5.38
1RHP
913





ATOM
804
CA
THR B
44
−10.166
32.870
47.671
1.00
7.46
1RHP
914





ATOM
805
C
THR B
44
−9.866
34.289
48.114
1.00
9.32
1RHP
915





ATOM
806
O
THR B
44
−8.753
34.533
48.575
1.00
14.27
1RHP
916





ATOM
807
CB
THR B
44
−9.732
31.910
48.822
1.00
8.95
1RHP
917





ATOM
808
OG1
THR B
44
−9.967
30.586
48.355
1.00
11.12
1RHP
918





ATOM
809
CG2
THR B
44
−10.453
32.159
50.144
1.00
10.01
1RHP
919





ATOM
810
N
LEU B
45
−10.751
35.273
47.995
1.00
11.21
1RHP
920





ATOM
811
CA
LEU B
45
−10.466
36.640
48.423
1.00
9.85
1RHP
921





ATOM
812
C
LEU B
45
−10.167
36.778
49.914
1.00
7.93
1RHP
922





ATOM
813
O
LEU B
45
−10.373
35.870
50.707
1.00
4.49
1RHP
923





ATOM
814
CB
LEU B
45
−11.669
37.493
48.000
1.00
11.08
1RHP
924





ATOM
815
CG
LEU B
45
−11.612
38.407
46.776
1.00
14.78
1RHP
925





ATOM
816
CD1
LEU B
45
−10.474
37.977
45.875
1.00
15.54
1RHP
926





ATOM
817
CD2
LEU B
45
−12.969
38.383
46.055
1.00
14.25
1RHP
927





ATOM
818
N
LYS B
46
−9.715
37.942
50.333
1.00
9.27
1RHP
928





ATOM
819
CA
LYS B
46
−9.393
38.187
51.719
1.00
13.08
1RHP
929





ATOM
820
C
LYS B
46
−10.486
37.924
52.760
1.00
15.31
1RHP
930





ATOM
821
O
LYS B
46
−10.200
37.868
53.965
1.00
16.74
1RHP
931





ATOM
822
CB
LYS B
46
−8.954
39.620
51.828
1.00
13.07
1RHP
932





ATOM
823
CG
LYS B
46
−7.706
39.839
52.678
1.00
16.19
1RHP
933





ATOM
824
CD
LYS B
46
−6.411
39.746
51.860
1.00
18.42
1RHP
934





ATOM
825
CE
LYS B
46
−6.091
40.952
50.978
1.00
16.53
1RHP
935





ATOM
826
NZ
LYS B
46
−6.037
42.195
51.720
1.00
17.26
1RHP
936





ATOM
827
N
ASN B
47
−11.763
37.817
52.349
1.00
18.41
1RHP
937





ATOM
828
CA
ASN B
47
−12.859
37.659
53.304
1.00
18.10
1RHP
938





ATOM
829
C
ASN B
47
−13.334
36.239
53.438
1.00
15.94
1RHP
939





ATOM
830
O
ASN B
47
−13.514
35.791
54.558
1.00
17.03
1RHP
940





ATOM
831
CB
ASN B
47
−14.064
38.545
52.940
1.00
19.72
1RHP
941





ATOM
832
CG
ASN B
47
−14.782
38.334
51.612
1.00
20.57
1RHP
942





ATOM
833
OD1
ASN B
47
−14.770
37.265
50.987
1.00
23.37
1RHP
943





ATOM
834
ND2
ASN B
47
−15.473
39.373
51.170
1.00
21.71
1RHP
944





ATOM
835
N
GLY B
48
−13.563
35.496
52.387
1.00
14.44
1RHP
945





ATOM
836
CA
GLY B
48
−13.897
34.112
52.531
1.00
11.29
1RHP
946





ATOM
837
C
GLY B
48
−14.351
33.576
51.205
1.00
12.87
1RHP
947





ATOM
838
O
GLY B
48
−14.043
32.439
50.841
1.00
11.93
1RHP
948





ATOM
839
N
ARG B
49
−15.021
34.392
50.408
1.00
15.68
1RHP
949





ATOM
840
CA
ARG B
49
−15.615
33.817
49.228
1.00
22.27
1RHP
950





ATOM
841
C
ARG B
49
−14.776
33.856
47.963
1.00
22.09
1RHP
951





ATOM
842
O
ARG B
49
−14.163
34.866
47.601
1.00
23.53
1RHP
952





ATOM
843
CB
ARG B
49
−16.994
34.491
49.033
1.00
26.40
1RHP
953





ATOM
844
CG
ARG B
49
−18.198
33.946
49.940
1.00
31.14
1RHP
954





ATOM
845
CD
ARG B
49
−18.079
34.028
51.506
1.00
31.76
1RHP
955





ATOM
846
NE
ARG B
49
−17.463
35.289
51.961
1.00
32.10
1RHP
956





ATOM
847
CZ
ARG B
49
−17.095
35.534
53.237
1.00
31.04
1RHP
957





ATOM
848
NH1
ARG B
49
−17.363
34.710
54.270
1.00
28.06
1RHP
958





ATOM
849
NH2
ARG B
49
−16.491
36.689
53.482
1.00
29.81
1RHP
959





ATOM
850
N
LYS B
50
−14.734
32.664
47.367
1.00
18.08
1RHP
960





ATOM
851
CA
LYS B
50
−13.960
32.352
46.177
1.00
13.52
1RHP
981





ATOM
852
C
LYS B
50
−14.457
32.976
44.905
1.00
12.03
1RHP
982





ATOM
853
O
LYS B
50
−15.665
33.002
44.719
1.00
10.78
1RHP
963





ATOM
854
CB
LYS B
50
−13.930
30.844
45.922
1.00
13.13
1RHP
964





ATOM
855
CG
LYS B
50
−13.249
29.990
46.977
1.00
14.43
1RHP
965





ATOM
856
CD
LYS B
50
−13.812
28.559
47.020
1.00
15.02
1RHP
966





ATOM
857
CE
LYS B
50
−12.751
27.527
47.461
1.00
14.95
1RHP
967





ATOM
858
NZ
LYS B
50
−12.134
27.874
48.729
1.00
16.11
1RHP
968





ATOM
859
N
ILE B
51
−13.595
33.445
44.018
1.00
10.56
1RHP
969





ATOM
860
CA
ILE B
51
−13.988
33.799
42.655
1.00
12.15
1RHP
970





ATOM
861
C
ILE B
51
−13.039
33.039
41.722
1.00
13.58
1RHP
971





ATOM
862
O
ILE B
51
−11.893
32.801
42.104
1.00
14.88
1RHP
972





ATOM
863
CB
ILE B
51
−13.841
35.294
42.262
1.00
12.72
1RHP
973





ATOM
864
CG1
ILE B
51
−12.425
35.786
42.469
1.00
17.18
1RHP
974





ATOM
865
CG2
ILE B
51
−14.858
36.086
43.032
1.00
11.19
1RHP
975





ATOM
866
CD1
ILE B
51
−12.206
37.108
41.746
1.00
18.52
1RHP
976





ATOM
867
N
CYS B
52
−13.419
32.633
40.512
1.00
11.26
1RHP
977





ATOM
868
CA
CYS B
52
−12.498
31.940
39.627
1.00
10.87
1RHP
978





ATOM
869
C
CYS B
52
−11.949
32.957
38.640
1.00
14.16
1RHP
979





ATOM
870
O
CYS B
52
−12.734
33.586
37.907
1.00
15.50
1RHP
980





ATOM
871
CB
CYS B
52
−13.151
30.868
38.769
1.00
11.97
1RHP
981





ATOM
872
SG
CYS B
52
−14.137
29.691
39.700
1.00
16.03
1RHP
982





ATOM
873
N
LEU B
53
−10.636
33.169
38.604
1.00
13.62
1RHP
983





ATOM
874
CA
LEU B
53
−10.033
34.018
37.574
1.00
13.12
1RHP
984





ATOM
875
C
LEU B
53
−10.073
33.278
36.236
1.00
12.30
1RHP
985





ATOM
876
O
LEU B
53
−10.387
32.074
36.213
1.00
11.22
1RHP
986





ATOM
877
CB
LEU B
53
−8.610
34.298
37.927
1.00
14.18
1RHP
987





ATOM
878
CG
LEU B
53
−8.347
34.855
39.282
1.00
13.56
1RHP
988





ATOM
879
CD1
LEU B
53
−6.844
34.961
39.455
1.00
16.34
1RHP
989





ATOM
880
CD2
LEU B
53
−9.027
36.201
39.422
1.00
16.96
1RHP
990





ATOM
881
N
ASP B
54
−9.750
33.863
35.108
1.00
9.76
1RHP
991





ATOM
882
CA
ASP B
54
−9.842
33.074
33.902
1.00
15.76
1RHP
992





ATOM
883
C
ASP B
54
−8.531
32.920
33.205
1.00
19.09
1RHP
993





ATOM
884
O
ASP B
54
−7.674
33.794
33.350
1.00
20.58
1RHP
994





ATOM
885
CB
ASP B
54
−10.781
33.692
32.918
1.00
18.44
1RHP
995





ATOM
886
CG
ASP B
54
−10.385
35.100
32.524
1.00
20.80
1RHP
996





ATOM
887
OD1
ASP B
54
−9.971
35.867
33.403
1.00
20.52
1RHP
997





ATOM
888
OD2
ASP B
54
−10.485
35.406
31.328
1.00
21.92
1RHP
998





ATOM
889
N
LEU B
55
−8.340
31.847
32.435
1.00
22.16
1RHP
999





ATOM
890
CA
LEU B
55
−7.119
31.739
31.622
1.00
24.05
1RHP
1000





ATOM
891
C
LEU B
55
−7.282
32.670
30.400
1.00
25.69
1RHP
1001





ATOM
892
O
LEU B
55
−8.282
33.418
30.318
1.00
26.52
1RHP
1002





ATOM
893
CB
LEU B
55
−6.902
30.309
31.123
1.00
23.82
1RHP
1003





ATOM
894
CG
LEU B
55
−7.069
29.154
32.114
1.00
23.30
1RHP
1004





ATOM
895
CD1
LEU B
55
−6.677
27.880
31.382
1.00
22.40
1RHP
1005





ATOM
896
CD2
LEU B
55
−6.233
29.355
33.371
1.00
22.31
1RHP
1006





ATOM
897
N
GLN B
56
−6.331
32.556
29.433
1.00
27.52
1RHP
1007





ATOM
898
CA
GLN B
56
−6.217
33.408
28.240
1.00
28.19
1RHP
1008





ATOM
899
C
GLN B
56
−6.587
34.858
28.590
1.00
29.51
1RHP
1009





ATOM
900
O
GLN B
56
−7.543
35.401
28.026
1.00
29.52
1RHP
1010





ATOM
901
CB
GLN B
56
−7.112
32.811
27.127
1.00
27.09
1RHP
1011





ATOM
902
CG
GLN B
56
−7.091
33.528
25.761
1.00
27.62
1RHP
1012





ATOM
903
CD
GLN B
56
−5.744
33.605
25.050
1.00
27.03
1RHP
1013





ATOM
904
OE1
GLN B
56
−5.388
34.609
24.408
1.00
30.46
1RHP
1014





ATOM
905
NE2
GLN B
56
−4.922
32.556
25.151
1.00
29.38
1RHP
1015





ATOM
906
N
ALA B
57
−5.878
35.497
29.559
1.00
29.94
1RHP
1016





ATOM
907
CA
ALA B
57
−6.253
36.853
29.965
1.00
31.90
1RHP
1017





ATOM
908
C
ALA B
57
−5.286
37.606
30.881
1.00
32.93
1RHP
1018





ATOM
909
O
ALA B
57
−4.824
36.972
31.851
1.00
34.58
1RHP
1019





ATOM
910
CB
ALA B
57
−7.581
36.843
30.695
1.00
32.44
1RHP
1020





ATOM
911
N
PRO B
58
−4.990
38.936
30.687
1.00
31.20
1RHP
1021





ATOM
912
CA
PRO B
58
−3.938
39.666
31.407
1.00
28.77
1RHP
1022





ATOM
913
C
PRO B
58
−3.982
39.484
32.909
1.00
27.71
1RHP
1023





ATOM
914
O
PRO B
58
−2.905
39.183
33.417
1.00
29.57
1RHP
1024





ATOM
915
CB
PRO B
58
−4.077
41.131
31.021
1.00
28.73
1RHP
1025





ATOM
916
CG
PRO B
58
−5.447
41.224
30.368
1.00
29.51
1RHP
1026





ATOM
917
CD
PRO B
58
−5.664
39.835
29.738
1.00
29.90
1RHP
1027





ATOM
918
N
LEU B
59
−5.113
39.512
33.649
1.00
24.61
1RHP
1028





ATOM
919
CA
LEU B
59
−5.023
39.353
35.111
1.00
22.91
1RHP
1029





ATOM
920
C
LEU B
59
−4.280
38.153
35.788
1.00
23.86
1RHP
1030





ATOM
921
O
LEU B
59
−3.657
38.376
36.849
1.00
23.40
1RHP
1031





ATOM
922
CB
LEU B
59
−6.440
39.398
35.746
1.00
20.62
1RHP
1032





ATOM
923
CG
LEU B
59
−6.820
40.596
36.665
1.00
17.79
1RHP
1033





ATOM
924
CD1
LEU B
59
−7.694
40.133
37.814
1.00
17.99
1RHP
1034





ATOM
925
CD2
LEU B
59
−5.614
41.129
37.400
1.00
19.38
1RHP
1035





ATOM
926
N
TYR B
60
−4.182
36.902
35.298
1.00
22.26
1RHP
1036





ATOM
927
CA
TYR B
60
−3.598
35.897
36.182
1.00
22.28
1RHP
1037





ATOM
928
C
TYR B
60
−2.062
35.975
36.367
1.00
23.64
1RHP
1038





ATOM
929
O
TYR B
60
−1.560
35.805
37.496
1.00
24.05
1RHP
1039





ATOM
930
CB
TYR B
60
−4.055
34.536
35.691
1.00
20.06
1RHP
1040





ATOM
931
CG
TYR B
60
−3.620
34.066
34.329
1.00
19.91
1RHP
1041





ATOM
932
CD1
TYR B
60
−4.238
34.493
33.165
1.00
21.89
1RHP
1042





ATOM
933
CD2
TYR B
60
−2.610
33.148
34.291
1.00
20.96
1RHP
1043





ATOM
934
CE1
TYR B
60
−3.860
33.965
31.928
1.00
22.70
1RHP
1044





ATOM
935
CE2
TYR B
60
−2.236
32.617
33.076
1.00
20.76
1RHP
1045





ATOM
936
CZ
TYR B
60
−2.843
33.015
31.900
1.00
22.51
1RHP
1046





ATOM
937
OH
TYR B
60
−2.441
32.365
30.736
1.00
23.69
1RHP
1047





ATOM
938
N
LYS B
61
−1.304
36.317
35.302
1.00
22.09
1RHP
1048





ATOM
939
CA
LYS B
61
0.140
36.599
35.381
1.00
21.78
1RHP
1049





ATOM
940
C
LYS B
61
0.418
37.627
36.512
1.00
21.96
1RHP
1050





ATOM
941
O
LYS B
61
1.271
37.508
37.407
1.00
20.96
1RHP
1051





ATOM
942
CB
LYS B
61
0.643
37.218
34.057
1.00
22.99
1RHP
1052





ATOM
943
CG
LYS B
61
0.514
36.423
32.760
1.00
23.56
1RHP
1053





ATOM
944
CD
LYS B
61
1.800
35.625
32.494
1.00
23.41
1RHP
1054





ATOM
945
CE
LYS B
61
2.879
36.543
31.964
1.00
21.19
1RHP
1055





ATOM
946
NZ
LYS B
61
2.411
37.078
30.699
1.00
21.14
1RHP
1056





ATOM
947
N
LYS B
62
−0.430
38.655
36.486
1.00
21.57
1RHP
1057





ATOM
948
CA
LYS B
62
−0.316
39.762
37.414
1.00
22.24
1RHP
1058





ATOM
949
C
LYS B
62
−0.604
39.277
38.830
1.00
22.14
1RHP
1059





ATOM
950
O
LYS B
62
0.207
39.561
39.719
1.00
21.39
1RHP
1060





ATOM
951
CB
LYS B
62
−1.299
40.892
37.017
1.00
20.29
1RHP
1061





ATOM
952
CG
LYS B
62
−1.204
41.242
35.527
1.00
20.83
1RHP
1062





ATOM
953
CD
LYS B
62
−1.768
42.606
35.168
1.00
20.68
1RHP
1063





ATOM
954
CE
LYS B
62
−1.693
42.845
33.654
1.00
22.39
1RHP
1064





ATOM
955
NZ
LYS B
62
−2.047
44.227
33.343
1.00
23.06
1RHP
1065





ATOM
956
N
ILE B
63
−1.659
38.482
39.063
1.00
21.58
1RHP
1066





ATOM
957
CA
ILE B
63
−2.000
38.089
40.419
1.00
18.73
1RHP
1067





ATOM
958
C
ILE B
63
−0.893
37.187
40.952
1.00
20.98
1RHP
1068





ATOM
959
O
ILE B
63
−0.394
37.386
42.071
1.00
22.01
1RHP
1069





ATOM
960
CB
ILE B
63
−3.294
37.276
40.533
1.00
17.62
1RHP
1070





ATOM
961
CG1
ILE B
63
−4.506
37.757
39.735
1.00
18.31
1RHP
1071





ATOM
962
CG2
ILE B
63
−3.625
37.380
41.980
1.00
13.61
1RHP
1072





ATOM
963
CD1
ILE B
63
−5.496
38.833
40.281
1.00
16.63
1RHP
1073





ATOM
964
N
ILE B
64
−0.457
36.192
40.163
1.00
20.69
1RHP
1074





ATOM
965
CA
ILE B
64
0.549
35.251
40.639
1.00
20.83
1RHP
1075





ATOM
966
C
ILE B
64
1.827
36.018
40.992
1.00
22.24
1RHP
1076





ATOM
967
O
ILE B
64
2.480
35.677
41.985
1.00
23.04
1RHP
1077





ATOM
968
CB
ILE B
64
0.799
34.168
39.537
1.00
18.99
1RHP
1078





ATOM
969
CG1
ILE B
64
−0.492
33.353
39.313
1.00
18.27
1RHP
1079





ATOM
970
CG2
ILE B
64
1.969
33.254
39.952
1.00
18.99
1RHP
1080





ATOM
971
CD1
ILE B
64
−0.364
32.141
38.361
1.00
13.64
1RHP
1081





ATOM
972
N
LYS B
65
2.182
37.084
40.253
1.00
23.66
1RHP
1082





ATOM
973
CA
LYS B
65
3.338
37.889
40.602
1.00
22.41
1RHP
1083





ATOM
974
C
LYS B
65
3.140
38.434
41.994
1.00
22.16
1RHP
1084





ATOM
975
O
LYS B
65
3.863
38.038
42.909
1.00
18.23
1RHP
1085





ATOM
976
CB
LYS B
65
3.538
39.092
39.661
1.00
26.89
1RHP
1086





ATOM
977
CG
LYS B
65
4.077
38.669
38.285
1.00
28.35
1RHP
1087





ATOM
978
CD
LYS B
65
4.577
39.794
37.338
1.00
30.68
1RHP
1088





ATOM
979
CE
LYS B
65
5.122
39.163
36.026
1.00
32.00
1RHP
1089





ATOM
980
NZ
LYS B
65
4.962
40.050
34.877
1.00
28.71
1RHP
1090





ATOM
981
N
LYS B
66
2.089
39.236
42.166
1.00
22.29
1RHP
1091





ATOM
982
CA
LYS B
66
1.820
39.970
43.396
1.00
23.00
1RHP
1092





ATOM
983
C
LYS B
66
2.003
39.065
44.579
1.00
21.48
1RHP
1093





ATOM
984
O
LYS B
66
2.828
39.306
45.451
1.00
20.58
1RHP
1094





ATOM
985
CB
LYS B
66
0.373
40.516
43.415
1.00
24.56
1RHP
1095





ATOM
986
CG
LYS B
66
0.042
41.534
44.538
1.00
26.18
1RHP
1096





ATOM
987
CD
LYS B
66
0.770
42.848
44.192
1.00
28.03
1RHP
1097





ATOM
988
CE
LYS B
66
0.526
43.955
45.201
1.00
28.23
1RHP
1098





ATOM
989
NZ
LYS B
66
1.349
45.096
44.845
1.00
27.88
1RHP
1099





ATOM
990
N
LEU B
67
1.327
37.939
44.419
1.00
20.36
1RHP
1100





ATOM
991
CA
LEU B
67
1.274
36.941
45.444
1.00
19.29
1RHP
1101





ATOM
992
C
LEU B
67
2.671
36.445
45.751
1.00
20.23
1RHP
1102





ATOM
993
O
LEU B
67
3.077
36.545
46.912
1.00
20.14
1RHP
1103





ATOM
994
CB
LEU B
67
0.382
35.787
44.982
1.00
15.33
1RHP
1104





ATOM
995
CG
LEU B
67
−1.101
35.754
45.204
1.00
13.27
1RHP
1105





ATOM
996
CD1
LEU B
67
−1.661
34.556
44.515
1.00
10.83
1RHP
1106





ATOM
997
CD2
LEU B
67
−1.421
35.540
46.647
1.00
10.64
1RHP
1107





ATOM
998
N
LEU B
68
3.439
35.986
44.754
1.00
21.24
1RHP
1108





ATOM
999
CA
LEU B
68
4.734
35.412
45.069
1.00
22.54
1RHP
1109





ATOM
1000
C
LEU B
68
5.784
36.336
45.736
1.00
23.67
1RHP
1110





ATOM
1001
O
LEU B
68
6.500
35.872
46.642
1.00
24.01
1RHP
1111





ATOM
1002
CB
LEU B
68
5.302
34.785
43.789
1.00
19.06
1RHP
1112





ATOM
1003
CG
LEU B
68
5.155
33.256
43.562
1.00
19.29
1RHP
1113





ATOM
1004
CD1
LEU B
68
5.128
32.547
44.903
1.00
15.82
1RHP
1114





ATOM
1005
CD2
LEU B
68
3.894
32.937
42.791
1.00
16.56
1RHP
1115





ATOM
1006
N
GLU B
69
5.911
37.634
45.387
1.00
23.00
1RHP
1116





ATOM
1007
CA
GLU B
69
6.872
38.516
46.053
1.00
21.74
1RHP
1117





ATOM
1008
C
GLU B
69
6.531
38.500
47.532
1.00
22.47
1RHP
1118





ATOM
1009
O
GLU B
69
7.418
38.166
48.320
1.00
22.61
1RHP
1119





ATOM
1010
CB
GLU B
69
6.770
39.965
45.619
1.00
23.39
1RHP
112O





ATOM
1011
CG
GLU B
69
6.770
40.255
44.101
1.00
26.10
1RHP
1121





ATOM
1012
CD
GLU B
69
6.388
41.699
43.704
1.00
26.82
1RHP
1122





ATOM
1013
OE1
GLU B
69
5.849
42.452
44.539
1.00
27.65
1RHP
1123





ATOM
1014
OE2
GLU B
69
6.631
42.054
42.538
1.00
28.39
1RHP
1124





ATOM
1015
N
SER B
70
5.253
38.775
47.870
1.00
22.94
1RHP
1125





ATOM
1016
CA
SER B
70
4.727
38.778
49.233
1.00
23.87
1RHP
1126





ATOM
1017
C
SER B
70
5.518
39.666
50.186
1.00
23.17
1RHP
1127





ATOM
1018
O
SER B
70
4.904
40.518
50.839
1.00
25.59
1RHP
1128





ATOM
1019
CB
SER B
70
4.693
37.328
49.814
1.00
24.60
1RHP
1129





ATOM
1020
OG
SER B
70
3.534
36.510
49.576
1.00
24.06
1RHP
1130





TER
1021

SER B
70





1RHP
1131





HETATM
1022
O
HOH B
71
−24.354
19.768
40.329
1.00
13.29
1RHP
1132





HETATM
1023
O
HOH B
72
−10.696
29.595
35.287
1.00
31.41
1RHP
1133





HETATM
1024
O
HOH B
73
−8.819
28.083
46.927
1.00
21.22
1RHP
1134





HETATM
1025
O
HOH B
74
0.142
17.556
32.927
1.00
26.43
1RHP
1135





HETATM
1026
O
HOH B
75
−9.383
38.863
56.334
1.00
39.17
1RHP
1136





HETATM
1027
O
HOH B
76
−3.284
32.871
28.332
1.00
43.54
1RHP
1137





HETATM
1028
O
HOH B
77
−18.816
21.587
33.721
1.00
23.40
1RHP
1138





HETATM
1029
O
HOH B
78
−12.760
33.792
56.930
1.00
19.07
1RHP
1139





HETATM
1030
O
HOH B
79
−5.833
48.682
43.094
1.00
31.24
1RHP
1140





HETATM
1031
O
HOH B
80
−12.389
19.778
39.679
1.00
19.93
1RHP
1141





HETATM
1032
O
HOH B
81
−14.666
40.987
41.947
1.00
37.58
1RHP
1142





HETATM
1033
O
HOH B
82
−17.064
39.620
34.643
1.00
36.95
1RHP
1143





HETATM
1034
O
HOH B
83
−11.187
36.810
35.641
1.00
25.15
1RHP
1144





HETATM
1035
O
HOH B
84
−11.876
37.706
33.178
1.00
28.47
1RHP
1145





HETATM
1036
O
HOH B
85
−25.295
37.298
36.065
1.00
20.34
1RHP
1146





HETATM
1037
O
HOH B
86
−2.291
31.588
25.969
1.00
27.96
1RHP
1147





HETATM
1038
O
HOH B
87
8.306
35.400
48.739
1.00
14.94
1RHP
1148





HETATM
1039
O
HOH B
88
−13.066
29.041
33.612
1.00
16.27
1RHP
1149





HETATM
1040
O
HOH B
89
−16.939
33.190
31.717
1.00
25.65
1RHP
115O





HETATM
1041
O
HOH B
90
−4.929
48.818
40.338
1.00
16.04
1RHP
1151





HETATM
1042
O
HOH B
91
−17.260
23.347
32.284
1.00
34.49
1RHP
1152





HETATM
1043
O
HOH B
92
−7.802
47.434
38.776
1.00
26.98
1RHP
1153





HETATM
1044
O
HOH B
93
−3.557
34.876
26.628
1.00
28.47
1RHP
1154





HETATM
1045
O
HOH B
94
−17.438
19.376
33.177
1.00
35.28
1RHP
1155





ATOM
1046
N
ASP C
7
12.167
11.391
46.389
1.00
27.00
1RHP
1156





ATOM
1047
CA
ASP C
7
12.246
11.387
47.847
1.00
27.74
1RHP
1157





ATOM
1048
C
ASP C
7
11.091
12.367
48.199
1.00
28.14
1RHP
1158





ATOM
1049
O
ASP C
7
10.057
12.045
47.592
1.00
30.35
1RHP
1159





ATOM
1050
CB
ASP C
7
13.673
11.878
48.333
1.00
26.85
1RHP
1160





ATOM
1051
CG
ASP C
7
14.971
11.110
47.939
1.00
26.10
1RHP
1161





ATOM
1052
OD1
ASP C
7
14.915
10.047
47.299
1.00
28.98
1RHP
1162





ATOM
1053
OD2
ASP C
7
16.060
11.586
48.294
1.00
22.57
1RHP
1163





ATOM
1054
N
LEU C
8
11.136
13.494
48.958
1.00
27.62
1RHP
1164





ATOM
1055
CA
LEU C
8
10.020
14.388
49.355
1.00
26.87
1RHP
1165





ATOM
1056
C
LEU C
8
9.486
14.017
50.731
1.00
25.75
1RHP
1166





ATOM
1057
O
LEU C
8
9.440
12.825
51.032
1.00
25.30
1RHP
1167





ATOM
1058
CB
LEU C
8
8.780
14.346
48.470
1.00
29.82
1RHP
1168





ATOM
1059
CG
LEU C
8
9.021
14.770
47.033
1.00
31.49
1RHP
1169





ATOM
1060
CD1
LEU C
8
8.034
14.065
46.075
1.00
33.26
1RHP
1170





ATOM
1061
CD2
LEU C
8
9.009
16.282
47.026
1.00
31.74
1RHP
1171





ATOM
1062
N
GLN C
9
8.941
14.997
51.465
1.00
23.85
1RHP
1172





ATOM
1063
CA
GLN C
9
8.672
14.902
52.905
1.00
25.61
1RHP
1173





ATOM
1064
C
GLN C
9
7.227
14.956
53.449
1.00
26.46
1RHP
1174





ATOM
1065
O
GLN C
9
6.222
15.031
52.714
1.00
29.00
1RHP
1175





ATOM
1066
CB
GLN C
9
9.504
16.039
53.563
1.00
23.45
1RHP
1176





ATOM
1067
CG
GLN C
9
8.808
17.424
53.789
1.00
21.38
1RHP
1177





ATOM
1068
CD
GLN C
9
8.174
18.224
52.636
1.00
20.67
1RHP
1178





ATOM
1069
OE1
GLN C
9
7.738
17.705
51.611
1.00
18.40
1RHP
1179





ATOM
1070
NE2
GLN C
9
8.093
19.538
52.693
1.00
17.94
1RHP
1180





ATOM
1071
N
CYS C
10
7.157
14.966
54.794
1.00
25.67
1RHP
1181





ATOM
1072
CA
CYS C
10
5.931
15.279
55.505
1.00
23.73
1RHP
1182





ATOM
1073
C
CYS C
10
5.509
16.741
55.357
1.00
22.68
1RHP
1183





ATOM
1074
O
CYS C
10
6.349
17.629
55.512
1.00
21.79
1RHP
1184





ATOM
1075
CB
CYS C
10
6.096
15.000
56.999
1.00
23.32
1RHP
1185





ATOM
1076
SG
CYS C
10
6.376
13.237
57.308
1.00
26.25
1RHP
1186





ATOM
1077
N
LEU C
11
4.255
17.096
55.081
1.00
20.26
18RHP
1187





ATOM
1078
CA
LEU C
11
3.867
18.492
55.169
1.00
16.64
1RHP
1188





ATOM
1079
C
LEU C
11
3.635
18.751
56.668
1.00
17.78
1RHP
1189





ATOM
1080
O
LEU C
11
4.349
19.551
57.277
1.00
16.76
1RHP
1190





ATOM
1081
CB
LEU C
11
2.610
18.682
54.397
1.00
12.85
1RHP
1191





ATOM
1082
CG
LEU C
11
2.266
20.030
53.877
1.00
9.54
1RHP
1192





ATOM
1083
CD1
LEU C
11
2.697
20.113
52.433
1.00
9.46
1RHP
1193





ATOM
1084
CD2
LEU C
11
0.762
20.238
53.950
1.00
10.01
1RHP
1194





ATOM
1085
N
CYS C
12
2.734
18.006
57.336
1.00
16.99
1RHP
1195





ATOM
1086
CA
CYS C
12
2.400
18.262
58.736
1.00
17.81
1RHP
1196





ATOM
1087
C
CYS C
12
3.287
17.784
59.859
1.00
18.19
1RHP
1197





ATOM
1088
O
CYS C
12
3.313
16.600
60.239
1.00
18.90
1RHP
1198





ATOM
1089
CB
CYS C
12
1.045
17.730
59.150
1.00
16.39
1RHP
1199





ATOM
1090
SG
CYS C
12
−0.238
18.672
58.335
1.00
15.19
1RHP
1200





ATOM
1091
N
VAL C
13
4.046
18.755
60.345
1.00
18.14
1RHP
1201





ATOM
1092
CA
VAL C
13
4.737
18.565
61.590
1.00
19.30
1RHP
1202





ATOM
1093
C
VAL C
13
4.351
19.678
62.572
1.00
20.29
1RHP
1203





ATOM
1094
O
VAL C
13
4.154
19.427
63.757
1.00
22.46
1RHP
1204





ATOM
1095
CB
VAL C
13
6.243
18.549
61.341
1.00
17.50
1RHP
1205





ATOM
1096
CG1
VAL C
13
6.825
19.903
60.902
1.00
17.16
1RHP
1206





ATOM
1097
CG2
VAL C
13
6.821
18.015
62.646
1.00
19.37
1RHP
1207





ATOM
1098
N
LYS C
14
4.184
20.930
62.181
1.00
21.26
1RHP
1208





ATOM
1099
CA
LYS C
14
3.913
21.945
63.183
1.00
22.54
1RHP
1209





ATOM
1100
C
LYS C
14
2.393
21.895
63.297
1.00
22.88
1RHP
1210





ATOM
1101
O
LYS C
14
1.625
22.049
62.324
1.00
24.98
1RHP
1211





ATOM
1102
CB
LYS C
14
4.478
23.236
62.644
1.00
23.30
1RHP
1212





ATOM
1103
CG
LYS C
14
5.974
23.067
62.344
1.00
26.29
1RHP
1213





ATOM
1104
CD
LYS C
14
6.804
23.050
63.610
1.00
26.58
1RHP
1214





ATOM
1105
CE
LYS C
14
7.402
24.462
63.597
1.00
27.18
1RHP
1215





ATOM
1106
NZ
LYS C
14
8.149
24.818
64.800
1.00
29.62
1RHP
1216





ATOM
1107
N
THR C
15
1.924
21.611
64.493
1.00
19.82
1RHP
1217





ATOM
1108
CA
THR C
15
0.528
21.309
64.654
1.00
15.66
1RHP
1218





ATOM
1109
C
THR C
15
−0.161
22.215
65.648
1.00
18.53
1RHP
1219





ATOM
1110
O
THR C
15
0.362
22.332
66.767
1.00
21.38
1RHP
1220





ATOM
1111
CB
THR C
15
0.656
19.854
64.977
1.00
12.83
1RHP
1221





ATOM
1112
OG1
THR C
15
0.592
19.254
63.692
1.00
11.08
1RHP
1222





ATOM
1113
CG2
THR C
15
−0.290
19.335
65.985
1.00
7.85
1RHP
1223





ATOM
1114
N
THR C
16
−1.304
22.856
65.287
1.00
18.15
1RHP
1224





ATOM
1115
CA
THR C
16
−1.977
23.780
66.200
1.00
16.66
1RHP
1225





ATOM
1116
C
THR C
16
−3.330
23.272
66.687
1.00
17.77
1RHP
1226





ATOM
1117
O
THR C
16
−3.916
22.306
66.175
1.00
16.61
1RHP
1227





ATOM
1118
CB
THR C
16
−2.081
25.185
65.494
1.00
15.70
1RHP
1228





ATOM
1119
OG1
THR C
16
−2.551
26.147
66.437
1.00
15.98
1RHP
1229





ATOM
1120
CG2
THR C
16
−3.002
25.168
64.332
1.00
14.32
1RHP
1230





ATOM
1121
N
SER C
17
−3.700
23.903
67.807
1.00
19.29
1RHP
1231





ATOM
1122
CA
SER C
17
−4.953
23.708
68.494
1.00
18.26
1RHP
1232





ATOM
1123
C
SER C
17
−5.555
25.028
68.925
1.00
18.09
1RHP
1233





ATOM
1124
O
SER C
17
−6.429
25.061
69.792
1.00
18.96
1RHP
1234





ATOM
1125
CB
SER C
17
−4.769
22.826
69.720
1.00
19.54
1RHP
1235





ATOM
1126
OG
SER C
17
−4.693
21.459
69.311
1.00
22.25
1RHP
1236





ATOM
1127
N
GLN C
18
−5.146
26.162
68.359
1.00
18.24
1RHP
1237





ATOM
1128
CA
GLN C
18
−5.868
27.398
68.656
1.00
20.51
1RHP
1238





ATOM
1129
O
GLN C
18
−6.643
27.780
67.363
1.00
21.73
1RHP
1239





ATOM
1130
O
GLN C
18
−6.312
28.682
66.578
1.00
21.55
1RHP
1240





ATOM
1131
CB
GLN C
18
−4.855
28.500
69.144
1.00
18.57
1RHP
1241





ATOM
1132
CG
GLN C
18
−4.255
28.119
70.531
1.00
16.31
1RHP
1242





ATOM
1133
CD
GLN C
18
−4.117
29.224
71.584
1.00
14.73
1RHP
1243





ATOM
1134
OE1
GLN C
18
−4.186
30.431
71.334
1.00
13.97
1RHP
1244





ATOM
1135
NE2
GLN C
18
−3.963
28.807
72.827
1.00
13.01
1RHP
1245





ATOM
1136
N
VAL C
19
−7.717
27.001
67.157
1.00
21.87
1RHP
1246





ATOM
1137
CA
VAL C
19
−8.564
27.081
65.986
1.00
19.95
1RHP
1247





ATOM
1138
C
VAL C
19
−10.026
27.289
66.367
1.00
23.44
1RHP
1248





ATOM
1139
O
VAL C
19
−10.504
26.629
67.313
1.00
25.69
1RHP
1249





ATOM
1140
CB
VAL C
19
−8.394
25.778
65.193
1.00
19.87
1RHP
1250





ATOM
1141
CG1
VAL C
19
−8.914
24.501
65.878
1.00
15.93
1RHP
1251





ATOM
1142
CG2
VAL C
19
−9.114
26.057
63.911
1.00
17.97
1RHP
1252





ATOM
1143
N
ARG C
20
−10.776
28.173
65.680
1.00
24.01
1RHP
1253





ATOM
1144
CA
ARG C
20
−12.207
28.270
66.003
1.00
24.09
1RHP
1254





ATOM
1145
C
ARG C
20
−12.901
27.247
65.087
1.00
24.47
1RHP
1255





ATOM
1146
O
ARG C
20
−13.012
27.616
63.903
1.00
26.75
1RHP
1256





ATOM
1147
CB
ARG C
20
−12.781
29.696
65.722
1.00
23.75
1RHP
1257





ATOM
1148
CG
ARG C
20
−12.225
30.771
66.640
1.00
24.28
1RHP
1258





ATOM
1149
CD
ARG C
20
−12.998
32.130
66.738
1.00
27.61
1RHP
1259





ATOM
1150
NE
ARG C
20
−13.211
32.971
65.527
1.00
30.14
1RHP
1260





ATOM
1151
CZ
ARG C
20
−13.434
34.325
65.567
1.00
32.49
1RHP
1261





ATOM
1152
NH1
ARG C
20
−13.301
35.026
66.712
1.00
35.34
1RHP
1262





ATOM
1153
NH2
ARG C
20
−13.657
35.069
64.454
1.00
33.58
1RHP
1263





ATOM
1154
N
PRO C
21
−13.418
26.022
65.413
1.00
23.95
1RHP
1264





ATOM
1155
CA
PRO C
21
−14.154
25.154
64.466
1.00
23.04
1RHP
1265





ATOM
1156
C
PRO C
21
−15.201
25.946
63.701
1.00
25.37
1RHP
1266





ATOM
1157
O
PRO C
21
−15.479
25.589
62.557
1.00
26.02
1RHP
1267





ATOM
1158
CB
PRO C
21
−14.781
24.027
65.274
1.00
22.03
1RHP
1268





ATOM
1159
CG
PRO C
21
−14.724
24.534
66.690
1.00
20.18
1RHP
1269





ATOM
1160
CD
PRO C
21
−13.430
25.388
66.725
1.00
22.71
1RHP
1270





ATOM
1161
N
ARG C
22
−15.666
27.104
64.241
1.00
25.93
1RHP
1271





ATOM
1162
CA
ARG C
22
−16.628
27.973
63.585
1.00
24.90
1RHP
1272





ATOM
1163
C
ARG C
22
−15.975
28.842
62.527
1.00
23.89
1RHP
1273





ATOM
1164
O
ARG C
22
−16.435
29.967
62.294
1.00
22.00
1RHP
1274





ATOM
1165
CB
ARG C
22
−17.374
28.840
64.663
1.00
24.99
1RHP
1275





ATOM
1166
CG
ARG C
22
−18.722
28.142
65.034
1.00
26.31
1RHP
1276





ATOM
1167
CD
ARG C
22
−18.955
27.628
66.512
1.00
26.29
1RHP
1277





ATOM
1168
NE
ARG C
22
−19.535
28.593
67.473
1.00
27.93
1RHP
1278





ATOM
1169
CZ
ARG C
22
−20.038
28.252
68.694
1.00
27.26
1RHP
1279





ATOM
1170
NH1
ARG C
22
−20.061
26.997
69.177
1.00
24.63
1RHP
1280





ATOM
1171
NH2
ARG C
22
−20.512
29.213
69.501
1.00
25.48
1RHP
1281





ATOM
1172
N
HIS C
23
−14.931
28.334
61.852
1.00
23.14
1RHP
1282





ATOM
1173
CA
HIS C
23
−14.238
29.038
60.775
1.00
25.16
1RHP
1283





ATOM
1174
C
HIS C
23
−13.406
28.107
59.864
1.00
23.32
1RHP
1284





ATOM
1175
O
HIS C
23
−12.482
28.566
59.189
1.00
23.91
1RHP
1285





ATOM
1176
CB
HIS C
23
−13.325
30.161
61.391
1.00
25.80
1RHP
1286





ATOM
1177
CG
HIS C
23
−13.956
31.559
61.565
1.00
25.80
1RHP
1287





ATOM
1178
ND1
HIS C
23
−15.130
32.004
61.099
1.00
25.91
1RHP
1288





ATOM
1179
CD2
HIS C
23
−13.361
32.643
62.186
1.00
27.67
1RHP
1289





ATOM
1180
CE1
HIS C
23
−15.259
33.279
61.389
1.00
25.02
1RHP
1290





ATOM
1181
NE2
HIS C
23
−14.187
33.653
62.039
1.00
26.38
1RHP
1291





ATOM
1182
N
ILE C
24
−13.707
26.810
59.756
1.00
21.17
1RHP
1292





ATOM
1183
CA
ILE C
24
−12.971
25.846
58.929
1.00
18.86
1RHP
1293





ATOM
1184
C
ILE C
24
−13.911
25.445
57.777
1.00
18.28
1RHP
1294





ATOM
1185
O
ILE C
24
−15.080
25.081
57.927
1.00
22.14
1RHP
1295





ATOM
1186
CB
ILE C
24
−12.533
24.604
59.821
1.00
13.21
1RHP
1296





ATOM
1187
CG1
ILE C
24
−11.439
25.001
60.845
1.00
9.90
1RHP
1297





ATOM
1188
CG2
ILE C
24
−12.010
23.505
58.937
1.00
11.82
1RHP
1298





ATOM
1189
CD1
ILE C
24
−10.828
23.823
61.627
1.00
2.35
1RHP
1299





ATOM
1190
N
THR C
25
−13.321
25.486
56.610
1.00
17.57
1RHP
1300





ATOM
1191
CA
THR C
25
−13.987
25.336
55.354
1.00
14.81
1RHP
1301





ATOM
1192
C
THR C
25
−13.778
23.941
54.805
1.00
15.91
1RHP
1302





ATOM
1193
O
THR C
25
−14.693
23.365
54.220
1.00
19.78
1RHP
1303





ATOM
1194
CB
THR C
25
−13.355
26.515
54.618
1.00
13.81
1RHP
1304





ATOM
1195
OG1
THR C
25
−14.137
27.605
55.087
1.00
11.52
1RHP
1305





ATOM
1196
CG2
THR C
25
−13.240
26.406
53.123
1.00
12.27
1RHP
1306





ATOM
1197
N
SER C
26
−12.597
23.357
54.952
1.00
16.41
1RHP
1307





ATOM
1198
CA
SER C
26
−12.303
22.021
54.430
1.00
15.23
1RHP
1308





ATOM
1199
C
SER C
26
−11.586
21.380
55.576
1.00
11.10
1RHP
1309





ATOM
1200
O
SER C
26
−11.220
22.050
56.541
1.00
13.68
1RHP
1310





ATOM
1201
CB
SER C
26
−11.263
21.913
53.286
1.00
17.29
1RHP
1311





ATOM
1202
OG
SER C
26
−11.381
22.673
52.082
1.00
22.75
1RHP
1312





ATOM
1203
N
LEU C
27
−11.375
20.097
55.440
1.00
8.00
1RHP
1313





ATOM
1204
CA
LEU C
27
−10.504
19.351
56.309
1.00
7.87
1RHP
1314





ATOM
1205
C
LEU C
27
−10.100
18.266
55.335
1.00
6.53
1RHP
1315





ATOM
1206
O
LEU C
27
−10.909
17.809
54.530
1.00
7.33
1RHP
1316





ATOM
1207
CB
LEU C
27
−11.289
18.855
57.493
1.00
8.86
1RHP
1317





ATOM
1208
CG
LEU C
27
−10.621
17.902
58.448
1.00
11.58
1RHP
1318





ATOM
1209
CD1
LEU C
27
−10.876
18.345
59.867
1.00
12.04
1RHP
1319





ATOM
1210
CD2
LEU C
27
−11.187
16.500
58.258
1.00
8.51
1RHP
1320





ATOM
1211
N
GLU C
28
−8.828
17.941
55.297
1.00
7.13
1RHP
1321





ATOM
1212
CA
GLU C
28
−8.302
16.962
54.385
1.00
6.39
1RHP
1322





ATOM
1213
C
GLU C
28
−7.628
15.948
55.297
1.00
7.75
1RHP
1323





ATOM
1214
O
GLU C
28
−6.964
16.343
56.262
1.00
7.35
1RHP
1324





ATOM
1215
CB
GLU C
28
−7.378
17.724
53.508
1.00
3.22
1RHP
1325





ATOM
1216
CG
GLU C
28
−7.239
17.076
52.168
1.00
2.88
1RHP
1326





ATOM
1217
CD
GLU C
28
−6.498
17.911
51.146
1.00
2.89
1RHP
1327





ATOM
1218
OE1
GLU C
28
−6.447
19.143
51.188
1.00
2.38
1RHP
1328





ATOM
1219
OE2
GLU C
28
−5.965
17.285
50.255
1.00
5.33
1RHP
1329





ATOM
1220
N
VAL C
29
−7.813
14.649
55.130
1.00
7.35
1RHP
1330





ATOM
1221
CA
VAL C
29
−7.185
13.674
56.000
1.00
7.77
1RHP
1331





ATOM
1222
C
VAL C
29
−6.281
12.894
55.064
1.00
9.16
1RHP
1332





ATOM
1223
O
VAL C
29
−6.783
12.368
54.071
1.00
13.88
1RHP
1333





ATOM
1224
CB
VAL C
29
−8.307
12.821
56.643
1.00
7.98
1RHP
1334





ATOM
1225
CG1
VAL C
29
−7.808
11.485
57.116
1.00
8.51
1RHP
1335





ATOM
1226
CG2
VAL C
29
−8.772
13.500
57.930
1.00
6.29
1RHP
1336





ATOM
1227
N
ILE C
30
−4.970
12.802
55.254
1.00
7.71
1RHP
1337





ATOM
1228
CA
ILE C
30
−4.140
12.115
54.290
1.00
8.40
1RHP
1338





ATOM
1229
C
ILE C
30
−3.575
10.897
54.962
1.00
8.05
1RHP
1339





ATOM
1230
O
ILE C
30
−3.133
10.981
56.100
1.00
9.35
1RHP
1340





ATOM
1231
CB
ILE C
30
−3.002
13.000
53.815
1.00
8.73
1RHP
1341





ATOM
1232
CG1
ILE C
30
−3.458
14.424
53.547
1.00
11.24
1RHP
1342





ATOM
1233
CG2
ILE C
30
−2.443
12.344
52.562
1.00
8.82
1RHP
1343





ATOM
1234
CD1
ILE C
30
−2.626
15.198
52.519
1.00
8.46
1RHP
1344





ATOM
1235
N
LYS C
31
−3.580
9.776
54.281
1.00
10.02
1RHP
1345





ATOM
1236
CA
LYS C
31
−3.129
8.534
54.848
1.00
11.82
1RHP
1346





ATOM
1237
C
LYS C
31
−1.633
8.554
55.078
1.00
14.86
1RHP
1347





ATOM
1238
O
LYS C
31
−0.856
9.090
54.268
1.00
17.42
1RHP
1348





ATOM
1239
CB
LYS C
31
−3.486
7.430
53.901
1.00
13.31
1RHP
1349





ATOM
1240
CG
LYS C
31
−3.426
6.041
54.524
1.00
13.89
1RHP
1350





ATOM
1241
CD
LYS C
31
−3.538
4.985
53.415
1.00
13.46
1RHP
1351





ATOM
1242
CE
LYS C
31
−3.432
3.648
54.102
1.00
14.70
1RHP
1352





ATOM
1243
NZ
LYS C
31
−3.484
2.544
53.177
1.00
15.73
1RHP
1353





ATOM
1244
N
ALA C
32
−1.217
7.974
56.196
1.00
16.96
1RHP
1354





ATOM
1245
CA
ALA C
32
0.203
7.889
56.489
1.00
18.59
1RHP
1355





ATOM
1246
C
ALA C
32
0.848
7.053
55.408
1.00
19.63
1RHP
1356





ATOM
1247
O
ALA C
32
0.242
6.038
55.052
1.00
20.59
1RHP
1357





ATOM
1248
CB
ALA C
32
0.463
7.158
57.776
1.00
18.47
1RHP
1358





ATOM
1249
N
GLY C
33
2.041
7.344
54.900
1.00
21.64
1RHP
1359





ATOM
1250
CA
GLY C
33
2.659
6.503
53.883
1.00
18.91
1RHP
1360





ATOM
1251
C
GLY C
33
4.122
6.855
53.743
1.00
17.85
1RHP
1361





ATOM
1252
O
GLY C
33
4.614
7.723
54.463
1.00
16.79
1RHP
1362





ATOM
1253
N
PRO C
34
4.878
6.248
52.840
1.00
15.38
1RHP
1363





ATOM
1254
CA
PRO C
34
6.184
6.684
52.382
1.00
16.06
1RHP
1364





ATOM
1255
C
PRO C
34
6.766
8.072
52.720
1.00
19.85
1RHP
1365





ATOM
1256
O
PRO C
34
7.854
8.162
53.262
1.00
19.97
1RHP
1366





ATOM
1257
CB
PRO C
34
6.026
6.402
50.923
1.00
14.50
1RHP
1367





ATOM
1258
CG
PRO C
34
5.034
5.248
50.827
1.00
11.38
1RHP
1368





ATOM
1259
CD
PRO C
34
4.583
4.969
52.249
1.00
13.74
1RHP
1369





ATOM
1260
N
HIS C
35
6.060
9.184
52.467
1.00
22.43
1RHP
1370





ATOM
1261
CA
HIS C
35
6.481
10.587
52.679
1.00
23.88
1RHP
1371





ATOM
1262
C
HIS C
35
6.495
11.029
54.151
1.00
24.25
1RHP
1372





ATOM
1263
O
HIS C
35
7.118
12.040
54.564
1.00
23.83
1RHP
1373





ATOM
1264
CB
HIS C
35
5.519
11.586
51.944
1.00
25.95
1RHP
1374





ATOM
1265
CG
HIS C
35
5.647
11.947
50.449
1.00
27.88
1RHP
1375





ATOM
1266
ND1
HIS C
35
5.175
13.076
49.893
1.00
28.98
1RHP
1376





ATOM
1267
CD2
HIS C
35
6.274
11.227
49.440
1.00
29.40
1RHP
1377





ATOM
1268
CE1
HIS C
35
5.490
13.065
48.611
1.00
28.39
1RHP
1378





ATOM
1269
NE2
HIS C
35
6.149
11.957
48.347
1.00
28.23
1RHP
1379





ATOM
1270
N
CYS C
36
5.652
10.294
54.893
1.00
24.08
1RHP
1380





ATOM
1271
CA
CYS C
36
5.346
10.655
56.244
1.00
22.94
1RHP
1381





ATOM
1272
C
CYS C
36
4.821
9.488
57.031
1.00
22.41
1RHP
1382





ATOM
1273
O
CYS C
36
3.809
8.924
56.621
1.00
23.35
1RHP
1383





ATOM
1274
CB
CYS C
36
4.286
11.695
56.273
1.00
22.45
1RHP
1384





ATOM
1275
SG
CYS C
36
4.582
12.432
57.874
1.00
24.01
1RHP
1385





ATOM
1276
N
PRO C
37
5.351
9.079
58.179
1.00
22.38
1RHP
1386





ATOM
1277
CA
PRO C
37
4.923
7.887
58.880
1.00
20.61
1RHP
1387





ATOM
1278
C
PRO C
37
3.689
8.191
59.701
1.00
20.85
1RHP
1388





ATOM
1279
O
PRO C
37
3.499
7.493
60.703
1.00
21.09
1RHP
1389





ATOM
1280
CB
PRO C
37
6.123
7.541
59.687
1.00
19.35
1RHP
1390





ATOM
1281
CG
PRO C
37
6.558
8.902
60.201
1.00
22.27
1RHP
1391





ATOM
1282
CD
PRO C
37
6.369
9.786
58.959
1.00
22.54
1RHP
1392





ATOM
1283
N
THR C
38
2.907
9.251
59.440
1.00
21.05
1RHP
1393





ATOM
1284
CA
THR C
38
1.661
9.427
60.169
1.00
22.02
1RHP
1394





ATOM
1285
C
THR C
38
0.669
10.136
59.282
1.00
21.59
1RHP
1395





ATOM
1286
O
THR C
38
1.013
10.758
58.261
1.00
22.15
1RHP
1396





ATOM
1287
CB
THR C
38
1.832
10.266
61.419
1.00
23.39
1RHP
1397





ATOM
1288
OG1
THR C
38
3.226
10.269
61.781
1.00
26.27
1RHP
1398





ATOM
1289
CG2
THR C
38
0.967
9.695
62.541
1.00
23.45
1RHP
1399





ATOM
1290
N
ALA C
39
−0.599
9.927
59.617
1.00
20.69
1RHP
1400





ATOM
1291
CA
ALA C
39
−1.675
10.598
58.912
1.00
16.27
1RHP
1401





ATOM
1292
C
ALA C
39
−1.566
12.080
59.245
1.00
14.47
1RHP
1402





ATOM
1293
O
ALA C
39
−1.052
12.489
60.297
1.00
14.04
1RHP
1403





ATOM
1294
CB
ALA C
39
−3.000
10.020
59.373
1.00
14.25
1RHP
1404





ATOM
1295
N
GLN C
40
−1.960
12.891
58.292
1.00
11.96
1RHP
1405





ATOM
1296
CA
GLN C
40
−1.808
14.315
58.442
1.00
13.66
1RHP
1406





ATOM
1297
C
GLN C
40
−3.192
14.898
58.287
1.00
14.83
1RHP
1407





ATOM
1298
O
GLN C
40
−3.867
14.507
57.335
1.00
16.68
1RHP
1408





ATOM
1299
CB
GLN C
40
−0.908
14.853
57.352
1.00
12.77
1RHP
1409





ATOM
1300
CG
GLN C
40
0.417
14.114
57.177
1.00
13.21
1RHP
1410





ATOM
1301
CD
GLN C
40
1.185
14.627
55.971
1.00
13.72
1RHP
1411





ATOM
1302
OE1
GLN C
40
1.754
15.726
55.972
1.00
13.29
1RHP
1412





ATOM
1303
NE2
GLN C
40
1.208
13.862
54.893
1.00
11.96
1RHP
1413





ATOM
1304
N
LEU C
41
−3.647
15.783
59.160
1.00
14.03
1RHP
1414





ATOM
1305
CA
LEU C
41
−4.945
16.395
59.079
1.00
13.36
1RHP
1415





ATOM
1306
C
LEU C
41
−4.708
17.839
58.707
1.00
13.45
1RHP
1416





ATOM
1307
O
LEU C
41
−4.384
18.636
59.585
1.00
15.22
1RHP
1417





ATOM
1308
CB
LEU C
41
−5.656
16.313
60.425
1.00
16.22
1RHP
1418





ATOM
1309
CG
LEU C
41
−6.624
15.143
60.634
1.00
18.80
1RHP
1419





ATOM
1310
CD1
LEU C
41
−5.860
13.844
60.661
1.00
18.81
1RHP
1420





ATOM
1311
CD2
LEU C
41
−7.310
15.234
61.968
1.00
18.09
1RHP
1421





ATOM
1312
N
ILE C
42
−4.850
18.212
57.444
1.00
10.23
1RHP
1422





ATOM
1313
CA
ILE C
42
−4.619
19.578
56.982
1.00
8.39
1RHP
1423





ATOM
1314
C
ILE C
42
−5.958
20.288
57.084
1.00
8.73
1RHP
1424





ATOM
1315
O
ILE C
42
−6.909
19.691
56.601
1.00
9.30
1RHP
1425





ATOM
1316
CB
ILE C
42
−4.147
19.561
55.509
1.00
8.07
1RHP
1426





ATOM
1317
CG1
ILE C
42
−2.967
18.647
55.366
1.00
5.48
1RHP
1427





ATOM
1318
CG2
ILE C
42
−3.754
20.951
55.054
1.00
5.60
1RHP
1428





ATOM
1319
CD1
ILE C
42
−2.894
18.223
53.926
1.00
4.68
1RHP
1429





ATOM
1320
N
ALA C
43
−6.118
21.485
57.654
1.00
8.23
1RHP
1430





ATOM
1321
CA
ALA C
43
−7.399
22.199
57.737
1.00
6.73
1RHP
1431





ATOM
1322
C
ALA C
43
−7.334
23.609
57.183
1.00
6.32
1RHP
1432





ATOM
1323
O
ALA C
43
−6.610
24.479
57.644
1.00
6.95
1RHP
1433





ATOM
1324
CB
ALA C
43
−7.877
22.338
59.168
1.00
4.60
1RHP
1434





ATOM
1325
N
THR C
44
−8.060
23.863
56.139
1.00
7.46
1RHP
1435





ATOM
1326
CA
THR C
44
−8.084
25.125
55.456
1.00
8.80
1RHP
1436





ATOM
1327
C
THR C
44
−8.920
26.079
56.307
1.00
11.62
1RHP
1437





ATOM
1328
O
THR C
44
−10.119
25.822
56.485
1.00
17.79
1RHP
1438





ATOM
1329
CB
THR C
44
−8.724
24.835
54.110
1.00
9.69
1RHP
1439





ATOM
1330
OG1
THR C
44
−8.237
23.581
53.651
1.00
10.89
1RHP
1440





ATOM
1331
CG2
THR C
44
−8.358
25.840
53.068
1.00
13.08
1RHP
1441





ATOM
1332
N
LEU C
45
−8.405
27.142
56.917
1.00
13.82
1RHP
1442





ATOM
1333
CA
LEU C
45
−9.213
28.133
57.615
1.00
13.39
1RHP
1443





ATOM
1334
C
LEU C
45
−9.982
28.857
56.520
1.00
17.02
1RHP
1444





ATOM
1335
O
LEU C
45
−9.548
28.964
55.363
1.00
17.66
1RHP
1445





ATOM
1336
CB
LEU C
45
−8.349
29.160
58.326
1.00
12.01
1RHP
1446





ATOM
1337
CG
LEU C
45
−8.035
29.218
59.830
1.00
10.88
1RHP
1447





ATOM
1338
CD1
LEU C
45
−8.864
30.342
60.459
1.00
12.78
1RHP
1448





ATOM
1339
CD2
LEU C
45
−8.258
27.869
60.480
1.00
9.08
1RHP
1449





ATOM
1340
N
LYS C
46
−11.127
29.409
56.898
1.00
18.94
1RHP
1450





ATOM
1341
CA
LYS C
46
−11.975
30.129
55.975
1.00
19.52
1RHP
1451





ATOM
1342
C
LYS C
46
−11.210
31.263
55.308
1.00
19.26
1RHP
1452





ATOM
1343
O
LYS C
46
−11.162
31.280
54.088
1.00
19.19
1RHP
1453





ATOM
1344
CB
LYS C
46
−13.204
30.663
56.728
1.00
20.96
1RHP
1454





ATOM
1345
CG
LYS C
46
−14.446
30.853
55.800
1.00
23.85
1RHP
1455





ATOM
1346
CD
LYS C
46
−15.834
30.737
56.507
1.00
24.50
1RHP
1456





ATOM
1347
CE
LYS C
46
−16.107
29.393
57.233
1.00
24.31
1RHP
1457





ATOM
1348
NZ
LYS C
46
−17.406
29.400
57.882
1.00
22.25
1RHP
1458





ATOM
1349
N
ASN C
47
−10.504
32.184
55.931
1.00
19.46
1RHP
1459





ATOM
1350
CA
ASN C
47
−9.881
33.246
55.170
1.00
18.95
1RHP
1460





ATOM
1351
C
ASN C
47
−8.701
32.919
54.274
1.00
19.44
1RHP
1461





ATOM
1352
O
ASN C
47
−7.837
33.788
54.060
1.00
22.96
1RHP
1462





ATOM
1353
CB
ASN C
47
−9.481
34.309
56.134
1.00
19.64
1RHP
1463





ATOM
1354
CG
ASN C
47
−8.381
33.830
57.035
1.00
20.16
1RHP
1464





ATOM
1355
OD1
ASN C
47
−8.696
33.322
58.115
1.00
20.16
1RHP
1465





ATOM
1356
ND2
ASN C
47
−7.114
33.950
56.636
1.00
17.22
1RHP
1466





ATOM
1357
N
GLY C
48
−8.546
31.693
53.781
1.00
18.52
1RHP
1467





ATOM
1358
CA
GLY C
48
−7.441
31.367
52.875
1.00
16.75
1RHP
1468





ATOM
1359
C
GLY C
48
−6.495
30.292
53.395
1.00
15.78
1RHP
1469





ATOM
1360
O
GLY C
48
−6.439
29.146
52.930
1.00
12.27
1RHP
1470





ATOM
1361
N
ARG C
49
−5.752
30.760
54.383
1.00
15.95
1RHP
1471





ATOM
1362
CA
ARG C
49
−4.690
29.987
55.003
1.00
17.01
1RHP
1472





ATOM
1363
C
ARG C
49
−5.032
28.618
55.551
1.00
15.75
1RHP
1473





ATOM
1364
O
ARG C
49
−6.144
28.446
56.039
1.00
15.37
1RHP
1474





ATOM
1365
CB
ARG C
49
−4.065
30.662
56.194
1.00
20.82
1RHP
1475





ATOM
1366
CG
ARG C
49
−4.513
32.041
56.530
1.00
24.81
1RHP
1476





ATOM
1367
CD
ARG C
49
−3.812
33.257
55.888
1.00
28.50
1RHP
1477





ATOM
1368
NE
ARG C
49
−4.080
34.190
56.951
1.00
27.87
1RHP
1478





ATOM
1369
CZ
ARG C
49
−3.491
35.335
57.110
1.00
28.51
1RHP
1479





ATOM
1370
NH1
ARG C
49
−2.679
35.834
56.195
1.00
27.90
1RHP
1480





ATOM
1371
NH2
ARG C
49
−3.773
35.978
58.238
1.00
28.13
1RHP
1481





ATOM
1372
N
LYS C
50
−4.030
27.723
55.614
1.00
12.87
1RHP
1482





ATOM
1373
CA
LYS C
50
−4.176
26.362
56.132
1.00
10.89
1RHP
1483





ATOM
1374
C
LYS C
50
−3.375
26.151
57.433
1.00
8.52
1RHP
1484





ATOM
1375
O
LYS C
50
−2.550
27.004
57.763
1.00
7.32
1RHP
1485





ATOM
1376
CB
LYS C
50
−3.706
25.377
55.063
1.00
8.64
1RHP
1486





ATOM
1377
CG
LYS C
50
−4.263
25.740
53.730
1.00
9.78
1RHP
1487





ATOM
1378
CD
LYS C
50
−3.745
24.823
52.696
1.00
13.15
1RHP
1488





ATOM
1379
CE
LYS C
50
−4.506
23.531
52.847
1.00
17.10
1RHP
1489





ATOM
1380
NZ
LYS C
50
−5.789
23.593
52.160
1.00
20.25
1RHP
1490





ATOM
1381
N
ILE C
51
−3.575
25.083
58.205
1.00
7.65
1RHP
1491





ATOM
1382
CA
ILE C
51
−2.817
24.786
59.417
1.00
12.40
1RHP
1492





ATOM
1383
C
ILE C
51
−2.872
23.291
59.721
1.00
14.08
1RHP
1493





ATOM
1384
O
ILE C
51
−3.921
22.699
59.517
1.00
16.46
1RHP
1494





ATOM
1385
CB
ILE C
51
−3.363
25.458
60.682
1.00
10.95
1RHP
1495





ATOM
1386
CG1
ILE C
51
−4.870
25.315
60.729
1.00
10.65
1RHP
1496





ATOM
1387
CG2
ILE C
51
−2.931
26.892
60.719
1.00
11.31
1RHP
1497





ATOM
1388
CD1
ILE C
51
−5.514
25.678
62.067
1.00
11.50
1RHP
1498





ATOM
1389
N
CYS C
52
−1.849
22.584
60.170
1.00
14.44
1RHP
1499





ATOM
1390
CA
CYS C
52
−2.017
21.178
60.474
1.00
15.58
1RHP
1500





ATOM
1391
C
CYS C
52
−2.657
21.015
61.828
1.00
15.49
1RHP
1501





ATOM
1392
O
CYS C
52
−2.286
21.738
62.754
1.00
17.27
1RHP
1502





ATOM
1393
CB
CYS C
52
−0.696
20.456
60.520
1.00
16.30
1RHP
1503





ATOM
1394
SG
CYS C
52
0.148
20.507
58.940
1.00
14.00
1RHP
1504





ATOM
1395
N
LEU C
53
−3.527
20.026
61.979
1.00
16.67
1RHP
1505





ATOM
1396
CA
LEU C
53
−4.244
19.742
63.201
1.00
16.29
1RHP
1506





ATOM
1397
C
LEU C
53
−3.700
18.548
63.996
1.00
16.09
1RHP
1507





ATOM
1398
O
LEU C
53
−3.257
17.477
63.539
1.00
12.22
1RHP
1508





ATOM
1399
CB
LEU C
53
−5.706
19.445
62.907
1.00
15.90
1RHP
1509





ATOM
1400
CG
LEU C
53
−6.817
20.429
62.692
1.00
14.76
1RHP
1510





ATOM
1401
CD1
LEU C
53
−8.048
19.596
62.424
1.00
11.02
1RHP
1511





ATOM
1402
CD2
LEU C
53
−7.053
21.324
63.904
1.00
13.01
1RHP
1512





ATOM
1403
N
ASP C
54
−3.847
18.716
65.293
1.00
15.46
1RHP
1513





ATOM
1404
CA
ASP C
54
−3.336
17.717
66.175
1.00
16.44
1RHP
1514





ATOM
1405
C
ASP C
54
−4.232
16.496
66.131
1.00
17.89
1RHP
1515





ATOM
1406
O
ASP C
54
−5.413
16.498
66.449
1.00
18.29
1RHP
1516





ATOM
1407
CB
ASP C
54
−3.234
18.353
67.579
1.00
16.49
1RHP
1517





ATOM
1408
CG
ASP C
54
−2.045
17.926
68.442
1.00
13.82
1RHP
1518





ATOM
1409
OD1
ASP C
54
−1.763
16.737
68.471
1.00
14.66
1RHP
1519





ATOM
1410
OD2
ASP C
54
−1.397
18.771
69.071
1.00
14.80
1RHP
1520





ATOM
1411
N
LEU C
55
−3.569
15.448
65.686
1.00
19.38
1RHP
1521





ATOM
1412
CA
LEU C
55
−4.081
14.091
65.713
1.00
20.31
1RHP
1522





ATOM
1413
C
LEU C
55
−3.921
13.508
67.116
1.00
19.25
1RHP
1523





ATOM
1414
O
LEU C
55
−4.073
12.299
67.306
1.00
18.01
1RHP
1524





ATOM
1415
CB
LEU C
55
−3.311
13.215
64.717
1.00
20.95
1RHP
1525





ATOM
1416
CG
LEU C
55
−3.990
11.896
64.352
1.00
24.02
1RHP
1526





ATOM
1417
CD1
LEU C
55
−5.269
12.267
63.589
1.00
22.26
1RHP
1527





ATOM
1418
CD2
LEU C
55
−3.099
10.975
63.514
1.00
22.86
1RHP
1528





ATOM
1419
N
GLN C
56
−3.493
14.262
68.131
1.00
20.14
1RHP
1529





ATOM
1420
CA
GLN C
56
−3.516
13.739
69.515
1.00
24.66
1RHP
1530





ATOM
1421
C
GLN C
56
−4.542
14.605
70.258
1.00
24.72
1RHP
1531





ATOM
1422
O
GLN C
56
−4.864
14.428
71.450
1.00
24.83
1RHP
1532





ATOM
1423
CB
GLN C
56
−2.109
13.839
70.289
1.00
24.63
1RHP
1533





ATOM
1424
CG
GLN C
56
−1.686
15.132
71.056
1.00
28.71
1RHP
1534





ATOM
1425
CD
GLN C
56
−0.465
15.073
72.000
1.00
29.59
1RHP
1535





ATOM
1426
OE1
GLN C
56
0.108
14.012
72.319
1.00
31.55
1RHP
1536





ATOM
1427
NE2
GLN C
56
−0.014
16.224
72.516
1.00
30.57
1RHP
1537





ATOM
1428
N
ALA C
57
−5.060
15.606
69.542
1.00
23.57
1RHP
1538





ATOM
1429
CA
ALA C
57
−5.960
16.507
70.200
1.00
23.86
1RHP
1539





ATOM
1430
C
ALA C
57
−7.318
15.825
70.073
1.00
23.95
1RHP
1540





ATOM
1431
O
ALA C
57
−7.645
15.152
69.089
1.00
22.98
1RHP
1541





ATOM
1432
CB
ALA C
57
−6.020
17.859
69.499
1.00
24.24
1RHP
1542





ATOM
1433
N
PRO C
58
−8.121
15.970
71.109
1.00
23.08
1RHP
1543





ATOM
1434
CA
PRO C
58
−9.555
15.808
71.036
1.00
23.38
1RHP
1544





ATOM
1435
C
PRO C
58
−10.164
16.580
69.883
1.00
21.52
1RHP
1545





ATOM
1436
O
PRO C
58
−10.829
15.999
69.024
1.00
21.64
1RHP
1546





ATOM
1437
CB
PRO C
58
−10.022
16.278
72.370
1.00
24.42
1RHP
1547





ATOM
1438
CG
PRO C
58
−8.882
17.214
72.780
1.00
23.19
1RHP
1548





ATOM
1439
CD
PRO C
58
−7.690
16.360
72.442
1.00
23.75
1RHP
1549





ATOM
1440
N
LEU C
59
−9.907
17.881
69.835
1.00
19.22
1RHP
1550





ATOM
1441
CA
LEU C
59
−10.478
18.785
68.871
1.00
18.29
1RHP
1551





ATOM
1442
C
LEU C
59
−10.862
18.369
67.460
1.00
18.98
1RHP
1552





ATOM
1443
O
LEU C
59
−11.760
19.034
66.968
1.00
20.69
1RHP
1553





ATOM
1444
CB
LEU C
59
−9.530
19.932
68.843
1.00
17.55
1RHP
1554





ATOM
1445
CG
LEU C
59
−9.777
21.251
68.191
1.00
16.59
1RHP
1555





ATOM
1446
CD1
LEU C
59
−11.173
21.766
68.444
1.00
17.81
1RHP
1556





ATOM
1447
CD2
LEU C
59
−8.741
22.202
68.778
1.00
16.36
1RHP
1557





ATOM
1448
N
TYR C
60
−10.391
17.370
66.704
1.00
19.60
1RHP
1558





ATOM
1449
CA
TYR C
60
−10.915
17.102
65.340
1.00
20.24
1RHP
1559





ATOM
1450
C
TYR C
60
−12.235
16.307
65.367
1.00
19.53
1RHP
1560





ATOM
1451
O
TYR C
60
−12.825
15.992
64.328
1.00
19.74
1RHP
1561





ATOM
1452
CB
TYR C
60
−9.885
16.323
64.483
1.00
20.83
1RHP
1562





ATOM
1453
CG
TYR C
60
−9.763
14.835
64.786
1.00
20.54
1RHP
1563





ATOM
1454
CD1
TYR C
60
−9.064
14.400
65.891
1.00
18.22
1RHP
1564





ATOM
1455
CD2
TYR C
60
−10.451
13.939
64.000
1.00
19.49
1RHP
1565





ATOM
1456
CE1
TYR C
60
−9.049
13.060
66.216
1.00
18.66
1RHP
1566





ATOM
1457
CE2
TYR C
60
−10.439
12.604
64.320
1.00
20.10
1RHP
1567





ATOM
1458
CZ
TYR C
60
−9.739
12.180
65.422
1.00
17.13
1RHP
1568





ATOM
1459
OH
TYR C
60
−9.761
10.847
65.738
1.00
21.91
1RHP
1569





ATOM
1460
N
LYS C
61
−12.651
15.898
66.567
1.00
18.84
1RHP
1570





ATOM
1461
CA
LYS C
61
−13.960
15.310
66.797
1.00
19.41
1RHP
157I





ATOM
1462
C
LYS C
61
−14.961
16.380
66.447
1.00
18.76
1RHP
1572





ATOM
1463
O
LYS C
61
−15.631
16.292
65.426
1.00
17.04
1RHP
1573





ATOM
1464
CB
LYS C
61
−14.177
14.934
68.262
1.00
21.61
1RHP
1574





ATOM
1465
CG
LYS C
61
−13.217
13.803
68.581
1.00
26.45
1RHP
1575





ATOM
1466
CD
LYS C
61
−13.477
13.137
69.922
1.00
30.73
1RHP
1576





ATOM
1467
CE
LYS C
61
−12.340
12.127
70.148
1.00
30.54
1RHP
1577





ATOM
1468
NZ
LYS C
61
−11.057
12.844
70.252
1.00
34.82
1RHP
1578





ATOM
1469
N
LYS C
62
−14.930
17.452
67.250
1.00
19.13
1RHP
1579





ATOM
1470
CA
LYS C
62
−15.837
18.581
67.138
1.00
19.72
1RHP
1580





ATOM
1471
C
LYS C
62
−15.972
19.058
65.701
1.00
20.81
1RHP
1581





ATOM
1472
O
LYS C
62
−17.090
19.067
65.152
1.00
23.03
1RHP
1582





ATOM
1473
CB
LYS C
62
−15.349
19.771
67.974
1.00
22.32
1RHP
1583





ATOM
1474
CG
LYS C
62
−16.443
20.752
68.411
1.00
24.23
1RHP
1584





ATOM
1475
CD
LYS C
62
−17.130
19.967
69.511
1.00
27.07
1RHP
1585





ATOM
1476
CE
LYS C
62
−18.471
20.469
69.995
1.00
29.46
1RHP
1586





ATOM
1477
NZ
LYS C
62
−18.267
21.613
70.861
1.00
31.50
1RHP
1587





ATOM
1478
N
ILE C
63
−14.817
19.338
65.079
1.00
18.18
1RHP
1588





ATOM
1479
CA
ILE C
63
−14.764
19.883
63.744
1.00
14.14
1RHP
1589





ATOM
1480
C
ILE C
63
−15.480
18.964
62.774
1.00
14.44
1RHP
1590





ATOM
1481
O
ILE C
63
−16.417
19.442
62.132
1.00
14.17
1RHP
1591





ATOM
1482
CB
ILE C
63
−13.285
20.092
63.370
1.00
13.23
1RHP
1592





ATOM
1483
CG1
ILE C
63
−12.624
21.065
64.352
1.00
12.65
1RHP
1593





ATOM
1484
CG2
ILE C
63
−13.184
20.663
61.976
1.00
12.32
1RHP
1594





ATOM
1485
CD1
ILE C
63
−11.104
21.227
64.208
1.00
9.86
1RHP
1595





ATOM
1486
N
ILE C
64
−15.254
17.655
62.668
1.00
15.03
1RHP
1596





ATOM
1487
CA
ILE C
64
−15.941
16.924
61.596
1.00
18.44
1RHP
1597





ATOM
1488
C
ILE C
64
−17.479
16.866
61.701
1.00
20.50
1RHP
1598





ATOM
1489
O
ILE C
64
−18.182
16.884
60.688
1.00
20.82
1RHP
1599





ATOM
1490
CB
ILE C
64
−15.278
15.523
61.520
1.00
16.61
1RHP
1600





ATOM
1491
CG1
ILE C
64
−14.168
15.679
60.486
1.00
16.99
1RHP
1601





ATOM
1492
CG2
ILE C
64
−16.204
14.397
61.089
1.00
17.11
1RHP
1602





ATOM
1493
CD1
ILE C
64
−13.205
14.483
60.353
1.00
19.22
1RHP
1603





ATOM
1494
N
LYS C
65
−18.023
16.900
62.920
1.00
24.34
1RHP
1604





ATOM
1495
CA
LYS C
65
−19.457
16.939
63.182
1.00
25.15
1RHP
1605





ATOM
1496
C
LYS C
65
−19.907
18.238
62.532
1.00
26.01
1RHP
1606





ATOM
1497
O
LYS C
65
−20.609
18.194
61.501
1.00
25.76
1RHP
1607





ATOM
1498
CB
LYS C
65
−19.711
16.982
64.681
1.00
25.45
1RHP
1608





ATOM
1499
CG
LYS C
65
−21.077
17.427
65.188
1.00
25.85
1RHP
1609





ATOM
1500
CD
LYS C
65
−21.021
17.239
66.723
1.00
25.50
1RHP
1610





ATOM
1501
CE
LYS C
65
−21.919
18.181
67.555
1.00
24.36
1RHP
1611





ATOM
1502
NZ
LYS C
65
−21.492
18.213
68.956
1.00
24.69
1RHP
1612





ATOM
1503
N
LYS C
66
−19.429
19.409
62.972
1.00
23.88
1RHP
1613





ATOM
1504
CA
LYS C
66
−19.972
20.631
62.378
1.00
22.29
1RHP
1614





ATOM
1505
C
LYS C
66
−19.612
20.849
60.900
1.00
22.10
1RHP
1615





ATOM
1506
O
LYS C
66
−19.964
21.899
60.335
1.00
20.39
1RHP
1616





ATOM
1507
CB
LYS C
66
−19.547
21.867
63.186
1.00
19.61
1RHP
1617





ATOM
1508
CG
LYS C
66
−20.245
22.067
64.500
1.00
17.79
1RHP
1618





ATOM
1509
CD
LYS C
66
−19.559
21.271
65.564
1.00
20.40
1RHP
1619





ATOM
1510
CE
LYS C
66
−19.896
21.895
66.911
1.00
20.83
1RHP
1620





ATOM
1511
NZ
LYS C
66
−19.197
23.154
67.114
1.00
22.62
1RHP
1621





ATOM
1512
N
LEU C
67
−18.901
19.918
60.227
1.00
19.86
1RHP
1622





ATOM
1513
CA
LEU C
67
−18.724
20.053
58.777
1.00
16.77
1RHP
1623





ATOM
1514
C
LEU C
67
−19.669
19.122
58.057
1.00
15.19
1RHP
1624





ATOM
1515
O
LEU C
67
−20.100
19.376
56.940
1.00
14.99
1RHP
1625





ATOM
1516
CB
LEU C
67
−17.297
19.734
58.307
1.00
11.52
1RHP
1626





ATOM
1517
CG
LEU C
67
−16.122
20.645
58.683
1.00
8.95
1RHP
1627





ATOM
1518
CD1
LEU C
67
−15.361
20.821
57.408
1.00
10.50
1RHP
1628





ATOM
1519
CD2
LEU C
67
−16.495
22.030
59.178
1.00
7.43
1RHP
1629





ATOM
1520
N
LEU C
68
−20.040
18.039
58.703
1.00
16.44
1RHP
1630





ATOM
1521
CA
LEU C
68
−20.987
17.133
58.117
1.00
18.15
1RHP
1631





ATOM
1522
C
LEU C
68
−22.400
17.549
58.512
1.00
20.98
1RHP
1632





ATOM
1523
O
LEU C
68
−23.391
17.039
57.958
1.00
20.49
1RHP
1633





ATOM
1524
CB
LEU C
68
−20.630
15.738
58.591
1.00
16.29
1RHP
1634





ATOM
1525
CG
LEU C
68
−19.259
15.317
58.063
1.00
16.67
1RHP
1635





ATOM
1526
CD1
LEU C
68
−18.728
14.099
58.795
1.00
16.28
1RHP
1636





ATOM
1527
CD2
LEU C
68
−19.389
15.080
56.586
1.00
15.05
1RHP
1637





ATOM
1528
N
GLU C
69
−22.567
18.496
59.437
1.00
20.66
1RHP
1638





ATOM
1529
CA
GLU C
69
−23.915
18.922
59.749
1.00
22.32
1RHP
1639





ATOM
1530
C
GLU C
69
−24.537
19.892
58.721
1.00
21.03
1RHP
1640





ATOM
1531
O
GLU C
69
−24.695
21.104
58.943
1.00
18.46
1RHP
1641





ATOM
1532
CB
GLU C
69
−23.928
19.553
61.135
1.00
24.05
1RHP
1642





ATOM
1533
CG
GLU C
69
−23.318
18.749
62.255
1.00
27.39
1RHP
1643





ATOM
1534
CD
GLU C
69
−24.106
17.597
62.859
1.00
28.74
1RHP
1644





ATOM
1535
OE1
GLU C
69
−24.273
16.546
62.206
1.00
30.01
1RHP
1645





ATOM
1536
OE2
GLU C
69
−24.531
17.778
64.017
1.00
31.20
1RHP
1646





ATOM
1537
N
SER C
70
−24.902
19.318
57.567
1.00
23.43
1RHP
1647





ATOM
1538
CA
SER C
70
−25.652
19.973
56.485
1.00
26.03
1RHP
1648





ATOM
1539
C
SER C
70
−26.162
18.999
55.382
1.00
26.62
1RHP
1649





ATOM
1540
O
SER C
70
−26.707
17.912
55.657
1.00
29.15
1RHP
1650





ATOM
1541
CB
SER C
70
−24.822
21.044
55.755
1.00
27.68
1RHP
1651





ATOM
1542
OG
SER C
70
−24.148
21.997
56.581
1.00
25.67
1RHP
1652





TER
1543

SER C
70





1RHP
1653





HETATM
1544
O
HOH C
71
5.265
13.592
60.317
1.00
17.64
1RHP
1654





HETATM
1545
O
HOH C
72
−0.443
1.906
56.286
1.00
9.73
1RHP
1655





HETATM
1546
O
HOH C
73
−5.053
38.787
55.488
1.00
22.52
1RHP
1656





HETATM
1547
O
HOH C
74
7.338
21.236
55.629
1.00
39.58
1RHP
1657





HETATM
1548
O
HOH C
75
−8.132
20.895
54.002
1.00
34.71
1RHP
1658





HETATM
1549
O
HOH C
76
−2.390
6.601
58.853
1.00
26.18
1RHP
1659





HETATM
1550
O
HOH C
77
11.030
24.828
65.249
1.00
12.07
1RHP
1660





HETATM
1551
O
HOH C
78
−2.115
17.117
61.059
1.00
25.66
1RHP
1661





HETATM
1552
O
HOH C
79
−19.760
24.508
61.337
1.00
7.09
1RHP
1662





HETATM
1553
O
HOH C
80
−20.148
25.031
63.973
1.00
20.26
1RHP
1663





HETATM
1554
O
HOH C
81
0.522
15.409
61.980
1.00
32.34
1RHP
1664





HETATM
1555
O
HOH C
82
−26.619
15.251
57.227
1.00
41.89
1RHP
1665





HETATM
1556
O
HOH C
83
−23.118
25.348
66.285
1.00
36.09
1RHP
1666





HETATM
1557
O
HOH C
84
12.382
26.078
62.961
1.00
31.58
1RHP
1667





HETATM
1558
O
HOH C
85
−16.404
33.881
64.066
1.00
30.94
1RHP
1668





HETATM
1559
O
HOH C
86
−20.608
30.276
57.378
1.00
19.39
1RHP
1669





ATOM
1560
N
ASP D
7
−17.805
32.317
39.767
1.00
14.52
1RHP
1670





ATOM
1561
CA
ASP D
7
−18.716
31.584
40.626
1.00
18.32
1RHP
1671





ATOM
1562
C
ASP D
7
−18.497
30.089
40.453
1.00
17.38
1RHP
1672





ATOM
1563
O
ASP D
7
−18.200
29.613
39.345
1.00
16.68
1RHP
1673





ATOM
1564
CB
ASP D
7
−20.143
31.890
40.260
1.00
21.96
1RHP
1674





ATOM
1565
CG
ASP D
7
−21.035
32.355
41.403
1.00
25.68
1RHP
1675





ATOM
1566
OD1
ASP D
7
−20.584
33.100
42.287
1.00
25.83
1RHP
1676





ATOM
1567
OD2
ASP D
7
−22.203
31.966
41.402
1.00
31.15
1RHP
1677





ATOM
1568
N
LEU D
8
−18.703
29.340
41.526
1.00
14.97
1RHP
1678





ATOM
1569
CA
LEU D
8
−18.426
27.908
41.553
1.00
12.07
1RHP
1679





ATOM
1570
C
LEU D
8
−19.697
27.116
41.797
1.00
11.73
1RHP
1680





ATOM
1571
O
LEU D
8
−20.656
27.676
42.307
1.00
10.31
1RHP
1681





ATOM
1572
CB
LEU D
8
−17.421
27.549
42.680
1.00
8.34
1RHP
1682





ATOM
1573
CG
LEU D
8
−16.095
28.264
42.896
1.00
3.86
1RHP
1683





ATOM
1574
CD1
LEU D
8
−16.381
29.569
43.563
1.00
4.23
1RHP
1684





ATOM
1575
CD2
LEU D
8
−15.180
27.497
43.812
1.00
2.44
1RHP
1685





ATOM
1576
N
GLN D
9
−19.742
25.836
41.461
1.00
15.19
1RHP
1686





ATOM
1577
CA
GLN D
9
−20.889
24.971
41.688
1.00
15.25
1RHP
1687





ATOM
1570
C
GLN D
9
−20.475
23.831
42.598
1.00
16.80
1RHP
1688





ATOM
1579
O
GLN D
9
−19.403
23.887
43.209
1.00
19.16
1RHP
1689





ATOM
1580
CB
GLN D
9
−21.397
24.415
40.361
1.00
17.45
1RHP
1690





ATOM
1581
CG
GLN D
9
−20.486
23.610
39.417
1.00
18.07
1RHP
1591





ATOM
1582
CD
GLN D
9
−21.187
23.012
38.174
1.00
20.75
1RHP
1692





ATOM
1583
OE1
GLN D
9
−20.587
22.605
37.161
1.00
22.22
1RHP
1693





ATOM
1584
NE2
GLN D
9
−22.518
22.886
38.173
1.00
24.72
1RHP
1694





ATOM
1585
N
CYS D
10
−21.268
22.785
42.797
1.00
16.72
1RHP
1695





ATOM
1586
CA
CYS D
10
−20.839
21.657
43.608
1.00
15.62
1RHP
1696





ATOM
1587
C
CYS D
10
−19.805
20.907
42.844
1.00
15.91
1RHP
1697





ATOM
1588
O
CYS D
10
−20.055
20.652
41.671
1.00
17.43
1RHP
1698





ATOM
1589
CB
CYS D
10
−21.872
20.641
43.838
1.00
15.72
1RHP
1699





ATOM
1590
SG
CYS D
10
−23.189
21.476
44.662
1.00
15.05
1RHP
1700





ATOM
1591
N
LEU D
11
−18.718
20.484
43.478
1.00
15.87
1RHP
1701





ATOM
1592
CA
LEU D
11
−17.746
19.673
42.787
1.00
14.28
1RHP
1702





ATOM
1593
C
LEU D
11
−18.306
18.283
42.460
1.00
14.13
1RHP
1703





ATOM
1594
O
LEU D
11
−17.949
17.663
41.444
1.00
14.73
1RHP
1704





ATOM
1595
CB
LEU D
11
−16.537
19.575
43.673
1.00
16.16
1RHP
1705





ATOM
1596
CG
LEU D
11
−15.298
18.961
43.092
1.00
17.80
1RHP
1706





ATOM
1597
CD1
LEU D
11
−14.834
19.802
41.918
1.00
19.43
1RHP
1707





ATOM
1598
CD2
LEU D
11
−14.186
18.967
44.103
1.00
16.24
1RHP
1708





ATOM
1599
N
CYS D
12
−19.157
11.716
43.329
1.00
11.99
1RHP
1709





ATOM
1600
CA
CYS D
12
−19.722
16.374
43.197
1.00
9.52
1RHP
1710





ATOM
1601
C
CYS D
12
−21.015
16.389
42.415
1.00
10.12
1RHP
1711





ATOM
1602
O
CYS D
12
−21.858
17.255
42.663
1.00
12.74
1RHP
1712





ATOM
1603
CB
CYS D
12
−19.970
15.783
44.586
1.00
9.64
1RHP
1713





ATOM
1604
SG
CYS D
12
−18.441
15.632
45.545
1.00
12.15
1RHP
1714





ATOM
1605
N
VAL D
13
−21.209
15.399
41.529
1.00
10.06
1RHP
1715





ATOM
1606
CA
VAL D
13
−22.371
15.346
40.660
1.00
8.05
1RHP
1716





ATOM
1607
C
VAL D
13
−23.080
14.005
40.656
1.00
7.83
1RHP
1717





ATOM
1608
O
VAL D
13
−23.957
13.784
39.850
1.00
7.76
1RHP
1718





ATOM
1609
CB
VAL D
13
−21.884
15.723
39.265
1.00
7.65
1RHP
1719





ATOM
1610
CG1
VAL D
13
−21.376
14.495
38.529
1.00
6.24
1RHP
1720





ATOM
1611
CG2
VAL D
13
−22.997
16.458
38.552
1.00
8.76
1RHP
1721





ATOM
1612
N
LYS D
14
−22.710
13.077
41.506
1.00
9.96
1RHP
1722





ATOM
1613
CA
LYS D
14
−23.223
11.702
41.573
1.00
11.20
1RHP
1723





ATOM
1614
C
LYS D
14
−22.712
11.254
42.918
1.00
11.76
1RHP
1724





ATOM
1615
O
LYS D
14
−21.897
11.944
43.542
1.00
10.23
1RHP
1725





ATOM
1616
CB
LYS D
14
−22.570
10.656
40.701
1.00
12.03
1RHP
1726





ATOM
1617
CG
LYS D
14
−22.793
10.390
39.235
1.00
14.46
1RHP
1727





ATOM
1618
CD
LYS D
14
−21.716
9.409
38.733
1.00
16.61
1RHP
1728





ATOM
1619
CE
LYS D
14
−21.620
8.020
39.411
1.00
16.90
1RHP
1729





ATOM
1620
NZ
LYS D
14
−21.035
8.062
40.749
1.00
17.64
1RHP
1730





ATOM
1621
N
THR D
15
−23.087
10.088
43.387
1.00
12.10
1RHP
1731





ATOM
1622
CA
THR D
15
−22.490
9.606
44.591
1.00
12.35
1RHP
1732





ATOM
1623
C
THR D
15
−22.225
8.136
44.370
1.00
12.78
1RHP
1733





ATOM
1624
O
THR D
15
−22.701
7.501
43.422
1.00
14.19
1RHP
1734





ATOM
1625
CB
THR D
15
−23.434
9.914
45.743
1.00
13.04
1RHP
1735





ATOM
1626
OG1
THR D
15
−23.441
11.331
45.842
1.00
14.19
1RHP
1736





ATOM
1627
CG2
THR D
15
−22.976
9.396
47.085
1.00
13.63
1RHP
1737





ATOM
1628
N
THR D
16
−21.263
7.743
45.184
1.00
14.08
1RHP
1738





ATOM
1629
CA
THR D
16
−20.664
6.453
45.175
1.00
17.02
1RHP
1739





ATOM
1630
C
THR D
16
−21.055
5.770
46.456
1.00
20.54
1RHP
1740





ATOM
1631
O
THR D
16
−21.018
6.398
47.525
1.00
21.70
1RHP
1741





ATOM
1632
CB
THR D
16
−19.161
6.653
45.071
1.00
17.51
1RHP
1742





ATOM
1633
OG1
THR D
16
−18.911
7.343
43.820
1.00
18.30
1RHP
1743





ATOM
1634
CG2
THR D
16
−18.429
5.327
45.211
1.00
15.19
1RHP
1744





ATOM
1635
N
SER D
17
−21.554
4.544
46.236
1.00
24.15
1RHP
1745





ATOM
1636
CA
SER D
17
−21.846
3.611
47.304
1.00
24.54
1RHP
1746





ATOM
1637
C
SER D
17
−20.734
2.575
47.337
1.00
23.10
1RHP
1747





ATOM
1638
O
SER D
17
−20.228
2.248
48.412
1.00
20.89
1RHP
1748





ATOM
1639
CB
SER D
17
−23.239
2.932
47.081
1.00
27.08
1RHP
1749





ATOM
1640
OG
SER D
17
−23.753
2.871
45.737
1.00
28.11
1RHP
1750





ATOM
1641
N
GLN D
18
−20.267
2.012
46.235
1.00
21.48
1RHP
1751





ATOM
1642
CA
GLN D
18
−19.211
1.021
46.342
1.00
20.28
1RHP
1752





ATOM
1643
C
GLN D
18
−17.875
1.720
46.449
1.00
19.15
1RHP
1753





ATOM
1644
O
GLN D
18
−17.495
2.400
45.494
1.00
16.44
1RHP
1754





ATOM
1645
CB
GLN D
18
−19.158
0.104
45.115
1.00
23.26
1RHP
1755





ATOM
1646
CG
GLN D
18
−20.258
−0.945
44.951
1.00
25.98
1RHP
1756





ATOM
1647
CD
GLN D
18
−19.854
−2.096
44.027
1.00
28.98
1RHP
1757





ATOM
1648
OE1
GLN D
18
−18.840
−2.067
43.309
1.00
32.76
1RHP
1758





ATOM
1649
NE2
GLN D
18
−20.626
−3.179
44.018
1.00
31.27
1RHP
1759





ATOM
1650
N
VAL D
19
−17.203
1.689
47.594
1.00
18.77
1RHP
1760





ATOM
1651
CA
VAL D
19
−15.810
2.149
47.663
1.00
21.15
1RHP
1761





ATOM
1652
C
VAL D
19
−15.070
1.168
48.551
1.00
23.05
1RHP
1762





ATOM
1653
O
VAL D
19
−15.634
0.701
49.559
1.00
26.28
1RHP
1763





ATOM
1654
CB
VAL D
19
−15.611
3.603
48.263
1.00
19.09
1RHP
1764





ATOM
1655
CG1
VAL D
19
−16.065
3.818
49.695
1.00
17.46
1RHP
1765





ATOM
1656
CG2
VAL D
19
−14.113
3.843
48.204
1.00
21.28
1RHP
1766





ATOM
1657
N
ARG D
20
−13.833
0.785
48.179
1.00
25.39
1RHP
1767





ATOM
1658
CA
ARG D
20
−13.115
−0.144
49.065
1.00
24.52
1RHP
1768





ATOM
1659
C
ARG D
20
−12.239
0.718
50.004
1.00
22.14
1RHP
1769





ATOM
1660
O
ARG D
20
−11.249
1.303
49.539
1.00
23.14
1RHP
1770





ATOM
1661
CB
ARG D
20
−12.245
−1.155
48.253
1.00
25.68
1RHP
1771





ATOM
1662
CG
ARG D
20
−12.895
−2.003
47.101
1.00
28.28
1RHP
1772





ATOM
1683
CD
ARG D
20
−13.190
−1.217
45.782
1.00
30.29
1RHP
1773





ATOM
1664
NE
ARG D
20
−12.145
−0.206
45.706
1.00
32.25
1RHP
1774





ATOM
1665
CZ
ARG D
20
−12.029
0.785
44.831
1.00
32.56
1RHP
1775





ATOM
1666
NH1
ARG D
20
−12.693
0.877
43.674
1.00
33.01
1RHP
1776





ATOM
1667
NH2
ARG D
20
−11.106
1.684
45.140
1.00
34.30
1RHP
1777





ATOM
1668
N
PRO D
21
−12.585
0.858
51.312
1.00
17.61
1RHP
1778





ATOM
1669
CA
PRO D
21
−12.144
1.942
52.191
1.00
15.55
1RHP
1779





ATOM
1670
C
PRO D
21
−10.633
2.082
52.226
1.00
15.10
1RHP
1780





ATOM
1671
O
PRO D
21
−10.049
3.167
52.198
1.00
13.23
1RHP
1781





ATOM
1672
CB
PRO D
21
−12.778
1.619
53.539
1.00
14.43
1RHP
1782





ATOM
1673
CG
PRO D
21
−13.025
0.136
53.498
1.00
14.96
1RHP
1783





ATOM
1674
CD
PRO D
21
−13.437
−0.073
52.046
1.00
17.34
1RHP
1784





ATOM
1675
N
ARG D
22
−9.981
0.934
52.174
1.00
17.60
1RHP
1785





ATOM
1676
CA
ARG D
22
−8.549
0.932
52.070
1.00
20.85
1RHP
1786





ATOM
1677
C
ARG D
22
−8.470
0.900
50.556
1.00
21.60
1RHP
1787





ATOM
1678
O
ARG D
22
−8.713
−0.136
49.929
1.00
24.81
1RHP
1788





ATOM
1679
CB
ARG D
22
−7.853
−0.332
52.595
1.00
24.30
1RHP
1789





ATOM
1680
CG
ARG D
22
−6.317
−0.162
52.660
1.00
29.12
1RHP
1790





ATOM
1681
CD
ARG D
22
−5.384
0.189
51.428
1.00
31.45
1RHP
1791





ATOM
1682
NE
ARG D
22
−4.002
0.111
51.948
1.00
34.32
1RHP
1792





ATOM
1683
CZ
ARG D
22
−2.905
−0.376
51.311
1.00
35.95
1RHP
1793





ATOM
1684
NH1
ARG D
22
−2.919
−0.816
50.038
1.00
37.67
1RHP
1794





ATOM
1685
NH2
ARG D
22
−1.740
−0.411
51.980
1.00
35.52
1RHP
1795





ATOM
1686
N
HIS D
23
−8.156
2.067
50.016
1.00
18.71
1RHP
1796





ATOM
1687
CA
HIS D
23
−7.882
2.379
48.617
1.00
17.00
1RHP
1797





ATOM
1688
C
HIS D
23
−7.852
3.880
48.492
1.00
17.13
1RHP
1798





ATOM
1689
O
HIS D
23
−7.412
4.442
47.479
1.00
17.03
1RHP
1799





ATOM
1690
CB
HIS D
23
−8.929
1.874
47.605
1.00
15.74
1RHP
1800





ATOM
1691
CG
HIS D
23
−8.431
0.568
46.992
1.00
17.47
1RHP
1801





ATOM
1692
ND1
HIS D
23
−8.648
−0.688
47.378
1.00
16.93
1RHP
1802





ATOM
1693
CD2
HIS D
23
−7.561
0.489
45.938
1.00
18.53
1RHP
1803





ATOM
1694
CE1
HIS D
23
−7.965
−1.509
46.631
1.00
15.03
1RHP
1804





ATOM
1695
NE2
HIS D
23
−7.306
−0.785
45.772
1.00
16.07
1RHP
1805





ATOM
1696
N
ILE D
24
−8.369
4.499
49.550
1.00
18.03
1RHP
1806





ATOM
1697
CA
ILE D
24
−8.432
5.934
49.687
1.00
18.95
1RHP
1807





ATOM
1698
C
ILE D
24
−7.064
6.409
50.192
1.00
20.11
1RHP
1808





ATOM
1699
O
ILE D
24
−6.382
5.658
50.907
1.00
20.85
1RHP
1809





ATOM
1700
CB
ILE D
24
−9.648
6.175
50.659
1.00
17.52
1RHP
1810





ATOM
1701
CG1
ILE D
24
−10.891
5.704
49.899
1.00
16.34
1RHP
1811





ATOM
1702
CG2
ILE D
24
−9.782
7.632
51.130
1.00
17.30
1RHP
1812





ATOM
1703
CD1
ILE D
24
−12.131
5.690
50.760
1.00
13.45
1RHP
1813





ATOM
1704
N
THR D
25
−6.636
7.590
49.732
1.00
19.08
1RHP
1814





ATOM
1705
CA
THR D
25
−5.447
8.241
50.240
1.00
15.38
1RHP
1815





ATOM
1706
C
THR D
25
−5.832
9.524
50.960
1.00
16.64
1RHP
1816





ATOM
1707
O
THR D
25
−5.372
9.769
52.072
1.00
15.78
1RHP
1817





ATOM
1708
CB
THR D
25
−4.505
8.520
49.085
1.00
13.02
1RHP
1818





ATOM
1709
OG1
THR D
25
−3.958
7.269
48.745
1.00
10.87
1RHP
1819





ATOM
1710
CG2
THR D
25
−3.412
9.502
49.416
1.00
12.73
1RHP
1820





ATOM
1711
N
SER D
26
−6.676
10.345
50.367
1.00
16.68
1RHP
1821





ATOM
1712
CA
SER D
26
−7.075
11.586
50.991
1.00
17.91
1RHP
1822





ATOM
1713
C
SER D
26
−8.586
11.493
51.093
1.00
18.00
1RHP
1823





ATOM
1714
O
SER D
26
−9.203
10.628
50.455
1.00
19.53
1RHP
1824





ATOM
1715
CB
SER D
26
−6.685
12.745
50.101
1.00
18.18
1RHP
1825





ATOM
1716
OG
SER D
26
−6.792
14.036
50.687
1.00
23.68
1RHP
1826





ATOM
1717
N
LEU D
27
−9.217
12.320
51.882
1.00
14.21
1RHP
1827





ATOM
1718
CA
LEU D
27
−10.647
12.373
51.887
1.00
13.34
1RHP
1828





ATOM
1719
C
LEU D
27
−10.821
13.804
52.295
1.00
13.17
1RHP
1829





ATOM
1720
O
LEU D
27
−10.345
14.106
53.400
1.00
14.10
1RHP
1830





ATOM
1721
CB
LEU D
27
−11.293
11.502
52.964
1.00
13.24
1RHP
1831





ATOM
1722
CG
LEU D
27
−12.827
11.578
53.122
1.00
11.80
1RHP
1832





ATOM
1723
CD1
LEU D
27
−13.441
10.447
52.349
1.00
12.67
1RHP
1833





ATOM
1724
CD2
LEU D
27
−13.253
11.413
54.564
1.00
13.21
1RHP
1834





ATOM
1725
N
GLU D
28
−11.380
14.712
51.485
1.00
10.72
1RHP
1835





ATOM
1726
CA
GLU D
28
−11.626
16.022
52.055
1.00
11.24
1RHP
1836





ATOM
1727
C
GLU D
28
−13.097
16.215
52.302
1.00
12.43
1RHP
1837





ATOM
1728
O
GLU D
28
−13.936
15.641
51.612
1.00
13.85
1RHP
1838





ATOM
1729
CB
GLU D
28
−11.087
17.184
51.171
1.00
9.42
1RHP
1839





ATOM
1730
CG
GLU D
28
−11.613
17.656
49.840
1.00
6.58
1RHP
1840





ATOM
1731
CD
GLU D
28
−10.889
18.899
49.332
1.00
7.81
1RHP
1841





ATOM
1732
OE1
GLU D
28
−10.561
19.776
50.137
1.00
11.12
1RHP
1842





ATOM
1733
OE2
GLU D
28
−10.661
19.006
48.129
1.00
8.16
1RHP
1843





ATOM
1734
N
VAL D
29
−13.371
16.950
53.352
1.00
12.49
1RHP
1844





ATOM
1735
CA
VAL D
29
−14.704
17.227
53.792
1.00
15.01
1RHP
1845





ATOM
1736
C
VAL D
29
−14.803
18.732
53.597
1.00
16.20
1RHP
1846





ATOM
1737
O
VAL D
29
−13.949
19.470
54.112
1.00
15.11
1RHP
1847





ATOM
1738
CB
VAL D
29
−14.775
16.785
55.260
1.00
18.12
1RHP
1848





ATOM
1739
CG1
VAL D
29
−16.103
17.242
55.850
1.00
17.46
1RHP
1849





ATOM
1740
CG2
VAL D
29
−14.655
15.245
55.373
1.00
18.58
1RHP
1850





ATOM
1741
N
ILE D
30
−15.784
19.230
52.842
1.00
13.04
1RHP
1851





ATOM
1742
CA
ILE D
30
−15.895
20.672
52.556
1.00
10.04
1RHP
1852





ATOM
1743
C
ILE D
30
−17.252
21.176
53.111
1.00
12.59
1RHP
1853





ATOM
1744
O
ILE D
30
−18.275
20.610
52.682
1.00
17.79
1RHP
1854





ATOM
1745
CB
ILE D
30
−15.804
20.880
51.016
1.00
2.74
1RHP
1855





ATOM
1746
CG1
ILE D
30
−14.807
19.946
50.374
1.00
2.57
1RHP
1856





ATOM
1747
CG2
ILE D
30
−15.326
22.277
50.758
1.00
2.68
1RHP
1857





ATOM
1748
CD1
ILE D
30
−14.731
19.871
48.856
1.00
2.71
1RHP
1858





ATOM
1749
N
LYS D
31
−17.390
22.173
54.027
1.00
11.90
1RHP
1859





ATOM
1750
CA
LYS D
31
−18.684
22.575
54.577
1.00
10.69
1RHP
1860





ATOM
1751
C
LYS D
31
−19.553
23.137
53.476
1.00
14.10
1RHP
1861





ATOM
1752
O
LYS D
31
−19.125
23.522
52.376
1.00
11.71
1RHP
1862





ATOM
1753
CB
LYS D
31
−18.588
23.669
55.662
1.00
12.98
1RHP
1863





ATOM
1754
CG
LYS D
31
−18.547
25.123
55.149
1.00
11.99
1RHP
1864





ATOM
1755
CD
LYS D
31
−18.463
26.265
56.193
1.00
15.56
1RHP
1865





ATOM
1756
CE
LYS D
31
−18.652
27.688
55.572
1.00
17.04
1RHP
1866





ATOM
1757
NZ
LYS D
31
−17.893
27.975
54.352
1.00
14.84
1RHP
1867





ATOM
1758
N
ALA D
32
−20.823
23.198
53.803
1.00
15.76
1RHP
1868





ATOM
1759
CA
ALA D
32
−21.836
23.727
52.922
1.00
15.43
1RHP
1869





ATOM
1760
C
ALA D
32
−21.710
25.219
52.915
1.00
14.22
1RHP
1870





ATOM
1761
O
ALA D
32
−21.466
25.845
53.940
1.00
14.48
1RHP
1871





ATOM
1762
CB
ALA D
32
−23.208
23.359
53.430
1.00
17.06
1RHP
1872





ATOM
1763
N
GLY D
33
−21.897
25.814
51.761
1.00
14.74
1RHP
1873





ATOM
1764
CA
GLY D
33
−21.833
27.256
51.671
1.00
13.58
1RHP
1874





ATOM
1765
C
GLY D
33
−22.236
27.626
50.270
1.00
12.95
1RHP
1875





ATOM
1766
O
GLY D
33
−22.691
26.771
49.515
1.00
10.21
1RHP
1876





ATOM
1767
N
PRO D
34
−21.995
28.835
49.815
1.00
13.16
1RHP
1877





ATOM
1768
CA
PRO D
34
−22.200
29.263
48.420
1.00
14.80
1RHP
1878





ATOM
1769
C
PRO D
34
−21.594
28.412
47.301
1.00
15.73
1RHP
1879





ATOM
1770
O
PRO D
34
−21.952
28.530
46.131
1.00
16.73
1RHP
1880





ATOM
1771
CB
PRO D
34
−21.658
30.655
48.375
1.00
16.22
1RHP
1881





ATOM
1772
CG
PRO D
34
−20.598
30.567
49.474
1.00
13.82
1RHP
1882





ATOM
1773
CD
PRO D
34
−21.329
29.850
50.592
1.00
13.38
1RHP
1883





ATOM
1774
N
HIS D
35
−20.591
27.585
47.598
1.00
15.17
1RHP
1884





ATOM
1775
CA
HIS D
35
−20.069
26.769
46.535
1.00
13.73
1RHP
1885





ATOM
1776
C
HIS D
35
−21.142
25.760
46.197
1.00
14.51
1RHP
1886





ATOM
1777
O
HIS D
35
−21.399
25.500
45.029
1.00
16.02
1RHP
1887





ATOM
1778
CB
HIS D
35
−18.743
26.059
46.931
1.00
10.05
1RHP
1888





ATOM
1779
CG
HIS D
35
−18.638
25.442
48.306
1.00
8.65
1RHP
1889





ATOM
1780
ND1
HIS D
35
−18.259
26.085
49.387
1.00
9.12
1RHP
1890





ATOM
1781
CD2
HIS D
35
−18.916
24.144
48.651
1.00
7.85
1RHP
1891





ATOM
1782
CE1
HIS D
35
−18.301
25.233
50.372
1.00
7.93
1RHP
1892





ATOM
1783
NE2
HIS D
35
−18.697
24.073
49.926
1.00
9.30
1RHP
1893





ATOM
1784
N
CYS D
36
−21.880
25.306
47.204
1.00
15.89
1RHP
1894





ATOM
1785
CA
CYS D
36
−22.815
24.195
47.056
1.00
16.88
1RHP
1895





ATOM
1786
C
CYS D
36
−23.610
24.094
48.377
1.00
17.77
1RHP
1896





ATOM
1787
O
CYS D
36
−22.965
24.112
49.439
1.00
18.78
1RHP
1897





ATOM
1788
CB
CYS D
36
−21.932
22.975
46.775
1.00
14.78
1RHP
1898





ATOM
1789
SG
CYS D
36
−22.637
21.338
46.581
1.00
13.26
1RHP
1899





ATOM
1790
N
PRO D
37
−24.952
24.021
48.467
1.00
16.82
1RHP
1900





ATOM
1791
CA
PRO D
37
−25.700
23.817
49.720
1.00
13.31
1RHP
1901





ATOM
1792
C
PRO D
37
−25.486
22.543
50.536
1.00
11.73
1RHP
1902





ATOM
1793
O
PRO D
37
−26.054
22.406
51.607
1.00
11.94
1RHP
1903





ATOM
1794
CB
PRO D
37
−27.109
23.978
49.261
1.00
13.25
1RHP
1904





ATOM
1795
CG
PRO D
37
−27.101
23.473
47.830
1.00
15.07
1RHP
1905





ATOM
1796
CD
PRO D
37
−25.876
24.245
47.353
1.00
16.67
1RHP
1906





ATOM
1797
N
THR D
38
−24.682
21.589
50.101
1.00
13.27
1RHP
1907





ATOM
1798
CA
THR D
38
−24.491
20.298
50.737
1.00
11.38
1RHP
1908





ATOM
1799
C
THR D
38
−23.041
20.142
51.174
1.00
13.71
1RHP
1909





ATOM
1800
O
THR D
38
−22.159
20.678
50.492
1.00
16.45
1RHP
1910





ATOM
1801
CB
THR D
38
−24.827
19.213
49.744
1.00
9.92
1RHP
1911





ATOM
1802
OG1
THR D
38
−24.622
18.028
50.452
1.00
9.34
1RHP
1912





ATOM
1803
CG2
THR D
38
−23.948
19.134
48.518
1.00
7.06
1RHP
1913





ATOM
1804
N
ALA D
39
−22.780
19.405
52.265
1.00
10.86
1RHP
1914





ATOM
1805
CA
ALA D
39
−21.424
19.061
52.674
1.00
7.71
1RHP
1915





ATOM
1806
C
ALA D
39
−20.839
18.218
51.547
1.00
7.61
1RHP
1916





ATOM
1807
O
ALA D
39
−21.628
17.761
50.719
1.00
10.19
1RHP
1917





ATOM
1808
CB
ALA D
39
−21.470
18.231
53.924
1.00
4.74
1RHP
1918





ATOM
1809
N
GLN D
40
−19.552
17.981
51.337
1.00
6.87
1RHP
1919





ATOM
1810
CA
GLN D
40
−19.091
17.089
50.260
1.00
8.38
1RHP
1920





ATOM
1811
C
GLN D
40
−17.955
16.238
50.792
1.00
10.17
1RHP
1921





ATOM
1812
O
GLN D
40
−17.213
16.748
51.639
1.00
15.35
1RHP
1922





ATOM
1813
CB
GLN D
40
−18.556
17.859
49.039
1.00
5.42
1RHP
1923





ATOM
1814
CG
GLN D
40
−19.572
18.551
48.148
1.00
2.36
1RHP
1924





ATOM
1815
CD
GLN D
40
−18.994
19.628
47.256
1.00
2.27
1RHP
1925





ATOM
1816
OE1
GLN D
40
−18.462
19.386
46.193
1.00
3.32
1RHP
1926





ATOM
1817
NE2
GLN D
40
−19.055
20.881
47.595
1.00
4.17
1RHP
1927





ATOM
1818
N
LEU D
41
−17.773
14.979
50.391
1.00
9.47
1RHP
1928





ATOM
1819
CA
LEU D
41
−16.705
14.135
50.893
1.00
7.65
1RHP
1929





ATOM
1820
C
LEU D
41
−16.061
13.608
49.635
1.00
8.17
1RHP
1930





ATOM
1821
O
LEU D
41
−16.790
12.938
48.901
1.00
8.28
1RHP
1931





ATOM
1822
CB
LEU D
41
−17.273
12.993
51.724
1.00
6.93
1RHP
1932





ATOM
1823
CG
LEU D
41
−17.650
13.257
53.194
1.00
6.51
1RHP
1933





ATOM
1824
CD1
LEU D
41
−18.895
14.098
53.320
1.00
7.73
1RHP
1934





ATOM
1825
CD2
LEU D
41
−17.982
11.947
53.861
1.00
6.45
1RHP
1935





ATOM
1826
N
ILE D
42
−14.786
13.910
49.311
1.00
7.03
1RHP
1936





ATOM
1827
CA
ILE D
42
−14.143
13.517
48.045
1.00
8.69
1RHP
1937





ATOM
1828
C
ILE D
42
−12.906
12.646
48.301
1.00
10.63
1RHP
1938





ATOM
1829
O
ILE D
42
−11.869
13.088
48.826
1.00
12.71
1RHP
1939





ATOM
1830
CB
ILE D
42
−13.757
14.807
47.227
1.00
5.48
1RHP
1940





ATOM
1831
CG1
ILE D
42
−14.948
15.662
46.949
1.00
7.77
1RHP
1941





ATOM
1832
CG2
ILE D
42
−13.331
14.468
45.828
1.00
3.68
1RHP
1942





ATOM
1833
CD1
ILE D
42
−14.559
17.113
46.717
1.00
7.45
1RHP
1943





ATOM
1834
N
ALA D
43
−12.995
11.378
47.916
1.00
13.19
1RHP
1944





ATOM
1835
CA
ALA D
43
−11.946
10.400
48.190
1.00
14.18
1RHP
1945





ATOM
1836
C
ALA D
43
−11.135
10.107
46.954
1.00
13.61
1RHP
1946





ATOM
1837
O
ALA D
43
−11.704
9.711
45.924
1.00
12.69
1RHP
1947





ATOM
1838
CB
ALA D
43
−12.492
9.056
48.639
1.00
14.96
1RHP
1948





ATOM
1839
N
THR D
44
−9.841
10.421
47.099
1.00
12.34
1RHP
1949





ATOM
1840
CA
THR D
44
−8.836
10.184
46.087
1.00
8.88
1RHP
1950





ATOM
1841
C
THR D
44
−8.455
8.779
46.361
1.00
9.47
1RHP
1951





ATOM
1842
O
THR D
44
−8.077
8.357
47.449
1.00
9.36
1RHP
1952





ATOM
1843
CB
THR D
44
−7.576
11.009
46.235
1.00
8.71
1RHP
1953





ATOM
1844
OG1
THR D
44
−7.915
12.396
46.225
1.00
9.42
1RHP
1954





ATOM
1845
CG2
THR D
44
−6.593
10.641
45.142
1.00
9.32
1RHP
1955





ATOM
1846
N
LEU D
45
−8.644
8.052
45.326
1.00
12.98
1RHP
1956





ATOM
1847
CA
LEU D
45
−8.349
6.637
45.370
1.00
18.61
1RHP
1957





ATOM
1848
C
LEU D
45
−6.844
6.481
45.165
1.00
19.13
1RHP
1958





ATOM
1849
O
LEU D
45
−6.201
7.493
44.855
1.00
20.48
1RHP
1959





ATOM
1850
CB
LEU D
45
−9.131
5.947
44.234
1.00
18.47
1RHP
1960





ATOM
1851
CG
LEU D
45
−9.709
4.594
44.498
1.00
17.21
1RHP
1961





ATOM
1852
CD1
LEU D
45
−10.935
4.848
45.358
1.00
21.32
1RHP
1962





ATOM
1853
CD2
LEU D
45
−9.971
3.832
43.194
1.00
19.52
1RHP
1963





ATOM
1854
N
LYS D
46
−6.294
5.257
45.246
1.00
18.64
1RHP
1964





ATOM
1855
CA
LYS D
46
−4.897
5.030
44.895
1.00
16.74
1RHP
1965





ATOM
1856
C
LYS D
46
−4.631
5.440
43.446
1.00
17.50
1RHP
1966





ATOM
1857
O
LYS D
46
−3.608
6.051
43.145
1.00
17.84
1RHP
1967





ATOM
1858
CB
LYS D
46
−4.544
3.557
45.062
1.00
17.22
1RHP
1968





ATOM
1859
CG
LYS D
46
−3.928
3.306
46.423
1.00
18.95
1RHP
1969





ATOM
1860
CD
LYS D
46
−3.573
1.840
46.578
1.00
21.44
1RHP
1970





ATOM
1861
CE
LYS D
46
−2.727
1.637
47.831
1.00
24.05
1RHP
1971





ATOM
1862
NZ
LYS D
46
−3.394
2.150
49.021
1.00
26.12
1RHP
1972





ATOM
1863
N
ASN D
47
−5.575
5.189
42.516
1.00
16.43
1RHP
1973





ATOM
1864
CA
ASN D
47
−5.367
5.447
41.095
1.00
15.76
1RHP
1974





ATOM
1865
C
ASN D
47
−5.664
6.898
40.732
1.00
19.51
1RHP
1975





ATOM
1866
O
ASN D
47
−6.066
7.166
39.596
1.00
20.94
1RHP
1976





ATOM
1867
CB
ASN D
47
−6.262
4.587
40.172
1.00
12.81
1RHP
1977





ATOM
1868
CG
ASN D
47
−6.898
3.315
40.691
1.00
11.36
1RHP
1978





ATOM
1869
OD1
ASN D
47
−7.040
3.077
41.891
1.00
11.50
1RHP
1979





ATOM
1870
ND2
ASN D
47
−7.342
2.450
39.809
1.00
11.65
1RHP
1980





ATOM
1871
N
GLY D
48
−5.541
7.902
41.609
1.00
22.36
1RHP
1981





ATOM
1872
CA
GLY D
48
−5.848
9.292
41.231
1.00
24.24
1RHP
1982





ATOM
1873
C
GLY D
48
−7.298
9.577
40.820
1.00
25.06
1RHP
1983





ATOM
1874
O
GLY D
48
−7.620
10.667
40.356
1.00
24.23
1RHP
1984





ATOM
1875
N
ARG D
49
−8.191
8.595
40.964
1.00
23.39
1RHP
1985





ATOM
1876
CA
ARG D
49
−9.624
8.662
40.673
1.00
20.79
1RHP
1986





ATOM
1877
C
ARG D
49
−10.148
9.470
41.844
1.00
18.16
1RHP
1987





ATOM
1878
O
ARG D
49
−9.646
9.277
42.956
1.00
19.05
1RHP
1988





ATOM
1879
CB
ARG D
49
−10.262
7.250
40.725
1.00
22.21
1RHP
1989





ATOM
1880
CG
ARG D
49
−11.439
6.807
39.823
1.00
23.16
1RHP
1990





ATOM
1881
CD
ARG D
49
−11.042
6.460
38.360
1.00
26.45
1RHP
1991





ATOM
1882
NE
ARG D
49
−10.199
5.265
38.248
1.00
28.79
1RHP
1992





ATOM
1883
CZ
ARG D
49
−9.907
4.629
37.080
1.00
28.01
1RHP
1993





ATOM
1884
NH1
ARG D
49
−10.314
5.003
35.852
1.00
26.05
1RHP
1994





ATOM
1885
NH2
ARG D
49
−9.148
3.537
37.129
1.00
25.25
1RHP
1995





ATOM
1886
N
LYS D
50
−11.136
10.334
41.627
1.00
15.17
1RHP
1996





ATOM
1887
CA
LYS D
50
−11.798
11.097
42.682
1.00
11.03
1RHP
1997





ATOM
1888
C
LYS D
50
−13.204
10.565
42.721
1.00
9.74
1RHP
1998





ATOM
1889
O
LYS D
50
−13.815
10.510
41.664
1.00
10.47
1RHP
1999





ATOM
1890
CB
LYS D
50
−11.971
12.546
42.365
1.00
8.93
1RHP
2000





ATOM
1891
CG
LYS D
50
−10.708
13.303
42.174
1.00
7.28
1RHP
2001





ATOM
1892
CD
LYS D
50
−10.103
13.566
43.499
1.00
3.80
1RHP
2002





ATOM
1893
CE
LYS D
50
−9.380
14.807
43.157
1.00
4.95
1RHP
2003





ATOM
1894
NZ
LYS D
50
−9.737
15.780
44.150
1.00
9.23
1RHP
2004





ATOM
1895
N
ILE D
51
−13.760
10.162
43.839
1.00
9.86
1RHP
2005





ATOM
1896
CA
ILE D
51
−15.164
9.781
43.929
1.00
8.48
1RHP
2006





ATOM
1897
C
ILE D
51
−15.732
10.697
45.007
1.00
12.32
1RHP
2007





ATOM
1898
O
ILE D
51
−14.958
11.337
45.748
1.00
16.76
1RHP
2008





ATOM
1899
CB
ILE D
51
−15.332
8.346
44.378
1.00
5.63
1RHP
2009





ATOM
1900
CG1
ILE D
51
−14.603
8.069
45.671
1.00
4.49
1RHP
2010





ATOM
1901
CG2
ILE D
51
−14.840
7.465
43.266
1.00
4.95
1RHP
2011





ATOM
1902
CD1
ILE D
51
−14.665
6.598
46.093
1.00
6.76
1RHP
2012





ATOM
1903
N
CYS D
52
−17.044
10.846
45.149
1.00
11.92
1RHP
2013





ATOM
1904
CA
CYS D
52
−17.556
11.649
46.256
1.00
12.01
1RHP
2014





ATOM
1905
C
CYS D
52
−18.356
10.654
47.074
1.00
12.93
1RHP
2015





ATOM
1906
O
CYS D
52
−18.693
9.596
46.535
1.00
14.85
1RHP
2016





ATOM
1907
CB
CYS D
52
−18.439
12.756
45.749
1.00
11.15
1RHP
2017





ATOM
1908
SG
CYS D
52
−17.648
14.013
44.695
1.00
9.14
1RHP
2010





ATOM
1909
N
LEU D
53
−18.674
10.808
48.348
1.00
13.33
1RHP
2019





ATOM
1910
CA
LEU D
53
−19.412
9.767
49.060
1.00
12.89
1RHP
2020





ATOM
1911
C
LEU D
53
−20.682
10.369
49.674
1.00
13.93
1RHP
2021





ATOM
1912
O
LEU D
53
−20.765
11.601
49.828
1.00
14.10
1RHP
2022





ATOM
1913
CB
LEU D
53
−18.551
9.184
50.167
1.00
9.53
1RHP
2023





ATOM
1914
CG
LEU D
53
−17.108
8.806
49.952
1.00
5.90
1RHP
2024





ATOM
1915
CD1
LEU D
53
−16.479
8.468
51.288
1.00
4.94
1RHP
2025





ATOM
1916
CD2
LEU D
53
−17.035
7.688
48.965
1.00
7.43
1RHP
2026





ATOM
1917
N
ASP D
54
−21.698
9.584
50.054
1.00
14.18
1RHP
2027





ATOM
1918
CA
ASP D
54
−22.917
10.204
50.566
1.00
18.28
1RHP
2028





ATOM
1919
C
ASP D
54
−22.789
10.634
52.005
1.00
18.78
1RHP
2029





ATOM
1920
O
ASP D
54
−22.518
9.809
52.874
1.00
16.53
1RHP
2030





ATOM
1921
CB
ASP D
54
−24.151
9.266
50.469
1.00
21.16
1RHP
2031





ATOM
1922
CG
ASP D
54
−25.415
9.850
51.111
1.00
22.28
1RHP
2032





ATOM
1923
OD1
ASP D
54
−25.803
10.950
50.738
1.00
25.28
1RHP
2033





ATOM
1924
OD2
ASP D
54
−25.976
9.235
52.024
1.00
22.53
1RHP
2034





ATOM
1925
N
LEU D
55
−23.139
11.895
52.228
1.00
18.08
1RHP
2035





ATOM
1926
CA
LEU D
55
−23.042
12.546
53.513
1.00
19.91
1RHP
2036





ATOM
1927
C
LEU D
55
−23.631
11.797
54.710
1.00
23.01
1RHP
2037





ATOM
1928
O
LEU D
55
−23.383
12.129
55.872
1.00
23.55
1RHP
2038





ATOM
1929
CB
LEU D
55
−23.662
13.907
53.265
1.00
18.17
1RHP
2039





ATOM
1930
CG
LEU D
55
−24.361
14.797
54.294
1.00
18.62
1RHP
2040





ATOM
1931
CD1
LEU D
55
−23.435
15.247
55.396
1.00
18.28
1RHP
2041





ATOM
1932
CD2
LEU D
55
−24.913
16.013
53.544
1.00
19.09
1RHP
2042





ATOM
1933
N
GLN D
56
−24.431
10.761
54.543
1.00
27.77
1RHP
2043





ATOM
1934
CA
GLN D
56
−24.948
10.061
55.720
1.00
30.72
1RHP
2044





ATOM
1935
C
GLN D
56
−24.556
8.578
55.603
1.00
31.55
1RHP
2045





ATOM
1936
O
GLN D
56
−25.171
7.698
56.243
1.00
34.65
1RHP
2046





ATOM
1937
CB
GLN D
56
−26.501
10.241
55.769
1.00
30.02
1RHP
2047





ATOM
1938
CG
GLN D
56
−27.076
11.692
55.798
1.00
29.97
1RHP
2048





ATOM
1939
CD
GLN D
56
−27.142
12.439
54.452
1.00
28.27
1RHP
2049





ATOM
1940
OE1
GLN D
56
−26.974
11.869
53.360
1.00
26.71
1RHP
2050





ATOM
1941
NE2
GLN D
56
−27.358
13.755
54.502
1.00
26.59
1RHP
2051





ATOM
1942
N
ALA D
57
−23.546
8.224
54.783
1.00
28.28
1RHP
2052





ATOM
1943
CA
ALA D
57
−23.280
6.814
54.575
1.00
24.44
1RHP
2053





ATOM
1944
C
ALA D
57
−22.567
6.238
55.784
1.00
25.24
1RHP
2054





ATOM
1945
O
ALA D
57
−21.932
6.984
56.539
1.00
25.01
1RHP
2055





ATOM
1946
CB
ALA D
57
−22.411
6.631
53.367
1.00
22.94
1RHP
2056





ATOM
1947
N
PRO D
58
−22.608
4.916
56.019
1.00
26.00
1RHP
2057





ATOM
1948
CA
PRO D
58
−21.625
4.245
56.900
1.00
26.49
1RHP
2058





ATOM
1949
C
PRO D
58
−20.152
4.497
56.505
1.00
23.58
1RHP
2059





ATOM
1950
O
PRO D
58
−19.323
4.900
57.325
1.00
23.38
1RHP
2060





ATOM
1951
CB
PRO D
58
−22.076
2.764
56.862
1.00
26.11
1RHP
2061





ATOM
1952
CG
PRO D
58
−23.058
2.641
55.694
1.00
27.60
1RHP
2062





ATOM
1953
CD
PRO D
58
−23.722
4.029
55.656
1.00
26.28
1RHP
2063





ATOM
1954
N
LEU D
59
−19.843
4.326
55.214
1.00
22.75
1RHP
2064





ATOM
1955
CA
LEU D
59
−18.540
4.544
54.593
1.00
21.40
1RHP
2065





ATOM
1956
C
LEU D
59
−17.496
5.416
55.269
1.00
22.52
1RHP
2066





ATOM
1957
O
LEU D
59
−16.397
4.939
55.541
1.00
24.31
1RHP
2067





ATOM
1958
CB
LEU D
59
−18.713
5.133
53.222
1.00
19.55
1RHP
2068





ATOM
1959
CG
LEU D
59
−19.472
4.337
52.225
1.00
19.62
1RHP
2069





ATOM
1960
CD1
LEU D
59
−19.721
5.209
50.999
1.00
18.42
1RHP
2070





ATOM
1961
CD2
LEU D
59
−18.710
3.034
51.967
1.00
19.57
1RHP
2071





ATOM
1962
N
TYR D
60
−17.783
6.670
55.608
1.00
22.05
1RHP
2072





ATOM
1963
CA
TYR D
60
−16.737
7.536
56.108
1.00
22.16
1RHP
2073





ATOM
1964
C
TYR D
60
−16.451
7.308
57.573
1.00
23.88
1RHP
2074





ATOM
1965
O
TYR D
60
−15.463
7.799
58.133
1.00
26.76
1RHP
2075





ATOM
1966
CB
TYR D
60
−17.113
8.988
55.891
1.00
23.16
1RHP
2076





ATOM
1967
CG
TYR D
60
−18.163
9.546
56.829
1.00
23.33
1RHP
2077





ATOM
1968
CD1
TYR D
60
−19.489
9.279
56.604
1.00
25.03
1RHP
2078





ATOM
1969
CD2
TYR D
60
−17.758
10.331
57.883
1.00
23.74
1RHP
2079





ATOM
1970
CE1
TYR D
60
−20.436
9.796
57.451
1.00
27.72
1RHP
2080





ATOM
1971
CE2
TYR D
60
−18.698
10.846
58.738
1.00
26.83
1RHP
2081





ATOM
1972
CZ
TYR D
60
−20.042
10.582
58.516
1.00
28.65
1RHP
2082





ATOM
1973
OH
TYR D
60
−21.001
11.124
59.370
1.00
30.10
1RHP
2083





ATOM
1974
N
LYS D
61
−17.346
6.607
58.241
1.00
24.74
1RHP
2084





ATOM
1975
CA
LYS D
61
−17.075
6.284
59.626
1.00
25.38
1RHP
2085





ATOM
1976
C
LYS D
61
−15.881
5.317
59.620
1.00
23.26
1RHP
2086





ATOM
1977
O
LYS D
61
−14.920
5.534
60.361
1.00
22.10
1RHP
2087





ATOM
1978
CB
LYS D
61
−18.353
5.695
60.223
1.00
26.71
1RHP
2088





ATOM
1979
CG
LYS D
61
−19.422
6.814
60.307
1.00
26.47
1RHP
2089





ATOM
1980
CD
LYS D
61
−20.616
6.690
59.286
1.00
23.38
1RHP
2090





ATOM
1981
CE
LYS D
61
−21.839
7.553
59.600
1.00
21.99
1RHP
2091





ATOM
1982
NZ
LYS D
61
−22.205
7.387
60.998
1.00
18.61
1RHP
2092





ATOM
1983
N
LYS D
62
−15.848
4.323
58.717
1.00
20.56
1RHP
2093





ATOM
1984
CA
LYS D
62
−14.671
3.472
58.642
1.00
19.69
1RHP
2094





ATOM
1985
C
LYS D
62
−13.576
4.345
58.069
1.00
19.69
1RHP
2095





ATOM
1986
O
LYS D
62
−12.590
4.598
58.760
1.00
20.23
1RHP
2096





ATOM
1987
CB
LYS D
62
−14.838
2.244
57.715
1.00
21.51
1RHP
2097





ATOM
1988
CG
LYS D
62
−15.325
0.992
58.474
1.00
22.74
1RHP
2098





ATOM
1989
CD
LYS D
62
−15.881
−0.172
57.627
1.00
23.56
1RHP
2099





ATOM
1990
CE
LYS D
62
−14.791
−0.933
56.839
1.00
26.97
1RHP
2100





ATOM
1991
NZ
LYS D
62
−15.291
−2.204
56.325
1.00
26.58
1RHP
2101





ATOM
1992
N
ILE D
63
−13.788
4.887
56.870
1.00
17.99
1RHP
2102





ATOM
1993
CA
ILE D
63
−12.800
5.677
56.165
1.00
17.65
1RHP
2103





ATOM
1994
C
ILE D
63
−12.032
6.621
57.058
1.00
19.02
1RHP
2104





ATOM
1995
O
ILE D
63
−10.816
6.479
57.052
1.00
19.06
1RHP
2105





ATOM
1996
CB
ILE D
63
−13.517
6.423
55.024
1.00
17.89
1RHP
2106





ATOM
1997
CG1
ILE D
63
−13.783
5.397
53.934
1.00
19.31
1RHP
2107





ATOM
1998
CG2
ILE D
63
−12.712
7.580
54.462
1.00
16.42
1RHP
2108





ATOM
1999
CD1
ILE D
63
−14.860
5.870
52.941
1.00
19.55
1RHP
2109





ATOM
2000
N
ILE D
64
−12.568
7.462
57.933
1.00
19.14
1RHP
2110





ATOM
2001
CA
ILE D
64
−11.678
8.363
58.623
1.00
18.43
1RHP
2111





ATOM
2002
C
ILE D
64
−10.891
7.583
59.653
1.00
21.19
1RHP
2112





ATOM
2003
O
ILE D
64
−9.752
7.983
59.907
1.00
24.24
1RHP
2113





ATOM
2004
CB
ILE D
64
−12.474
9.491
59.259
1.00
15.95
1RHP
2114





ATOM
2005
CG1
ILE D
64
−13.266
10.226
58.178
1.00
14.71
1RHP
2115





ATOM
2006
CG2
ILE D
64
−11.521
10.464
59.936
1.00
15.17
1RHP
2116





ATOM
2007
CD1
ILE D
64
−14.040
11.471
58.632
1.00
14.68
1RHP
2117





ATOM
2008
N
LYS D
65
−11.376
6.454
60.206
1.00
21.90
1RHP
2118





ATOM
2009
CA
LYS D
65
−10.604
5.642
61.166
1.00
21.89
1RHP
2119





ATOM
2010
C
LYS D
65
−9.392
4.981
60.485
1.00
20.01
1RHP
2120





ATOM
2011
O
LYS D
65
−8.233
5.177
60.856
1.00
18.28
1RHP
2121





ATOM
2012
CB
LYS D
65
−11.474
4.533
61.771
1.00
23.01
1RHP
2122





ATOM
2013
CG
LYS D
65
−12.628
5.075
62.601
1.00
23.16
1RHP
2123





ATOM
2014
CD
LYS D
65
−13.655
3.966
62.928
1.00
23.33
1RHP
2124





ATOM
2015
CE
LYS D
65
−14.907
4.624
63.547
1.00
20.65
1RHP
2125





ATOM
2016
NZ
LYS D
65
−15.738
3.636
64.207
1.00
19.75
1RHP
2126





ATOM
2017
N
LYS D
66
−9.633
4.283
59.386
1.00
17.38
1RHP
2127





ATOM
2018
CA
LYS D
66
−8.581
3.565
58.691
1.00
16.82
1RHP
2128





ATOM
2019
C
LYS D
66
−7.553
4.553
58.138
1.00
19.37
1RHP
2129





ATOM
2020
O
LYS D
66
−6.385
4.195
57.906
1.00
22.16
1RHP
2130





ATOM
2021
CB
LYS D
66
−9.162
2.746
57.545
1.00
16.19
1RHP
2131





ATOM
2022
CG
LYS D
66
−10.495
2.063
57.845
1.00
16.53
1RHP
2132





ATOM
2023
CD
LYS D
66
−10.758
0.912
56.884
1.00
16.55
1RHP
2133





ATOM
2024
CE
LYS D
66
−10.129
−0.375
57.431
1.00
16.55
1RHP
2134





ATOM
2025
NZ
LYS D
66
−10.078
−1.415
56.424
1.00
16.54
1RHP
2135





ATOM
2026
N
LEU D
67
−7.976
5.817
57.915
1.00
17.16
1RHP
2136





ATOM
2027
CA
LEU D
67
−7.072
6.835
57.411
1.00
12.69
1RHP
2137





ATOM
2028
C
LEU D
67
−6.407
7.472
58.593
1.00
12.91
1RHP
2138





ATOM
2029
O
LEU D
67
−5.391
8.120
58.441
1.00
12.92
1RHP
2139





ATOM
2030
CB
LEU D
67
−7.788
7.923
56.649
1.00
10.85
1RHP
2140





ATOM
2031
CG
LEU D
67
−8.389
7.646
55.296
1.00
8.81
1RHP
2141





ATOM
2032
CD1
LEU D
67
−9.375
8.725
55.005
1.00
6.81
1RHP
2142





ATOM
2033
CD2
LEU D
67
−7.337
7.603
54.226
1.00
10.59
1RHP
2143





ATOM
2034
N
LEU D
68
−6.910
7.392
59.793
1.00
14.40
1RHP
2144





ATOM
2035
CA
LEU D
68
−6.173
7.974
60.886
1.00
18.35
1RHP
2145





ATOM
2036
C
LEU D
68
−5.102
7.018
61.446
1.00
21.78
1RHP
2146





ATOM
2037
O
LEU D
68
−3.961
7.432
61.767
1.00
24.70
1RHP
2147





ATOM
2038
CB
LEU D
68
−7.212
8.385
61.908
1.00
15.58
1RHP
2148





ATOM
2039
CG
LEU D
68
−7.607
9.831
62.025
1.00
15.30
1RHP
2149





ATOM
2040
CD1
LEU D
68
−7.470
10.611
60.741
1.00
13.31
1RHP
2150





ATOM
2041
CD2
LEU D
68
−9.018
9.809
62.477
1.00
12.44
1RHP
2151





ATOM
2042
N
GLU D
69
−5.448
5.716
61.560
1.00
21.92
1RHP
2152





ATOM
2043
CA
GLU D
69
−4.530
4.739
62.118
1.00
22.44
1RHP
2153





ATOM
2044
C
GLU D
69
−3.549
4.133
61.117
1.00
24.23
1RHP
2154





ATOM
2045
O
GLU D
69
−3.892
3.590
60.055
1.00
19.20
1RHP
2155





ATOM
2046
CB
GLU D
69
−5.304
3.618
62.789
1.00
23.09
1RHP
2156





ATOM
2047
CG
GLU D
69
−6.117
4.100
63.991
1.00
21.18
1RHP
2157





ATOM
2048
CD
GLU D
69
−7.498
4.553
63.546
1.00
24.14
1RHP
2158





ATOM
2049
OE1
GLU D
69
−8.351
3.701
63.295
1.00
24.62
1RHP
2159





ATOM
2050
OE2
GLU D
69
−7.724
5.748
63.388
1.00
20.63
1RHP
2160





ATOM
2051
N
SER D
70
−2.315
4.440
61.536
1.00
26.05
1RHP
2161





ATOM
2052
CA
SER D
70
−1.032
4.058
60.962
1.00
28.78
1RHP
2162





ATOM
2053
C
SER D
70
−0.163
5.334
60.961
1.00
31.93
1RHP
2163





ATOM
2054
O
SER D
70
−0.642
6.465
61.239
1.00
34.97
1RHP
2164





ATOM
2055
CB
SER D
70
−1.101
3.571
59.506
1.00
26.86
1RHP
2165





ATOM
2056
OG
SER D
70
−0.003
2.730
59.169
1.00
27.94
1RHP
2166





TER
2057

SER D
70





1RHP
2167





HETATM
2058
O
HOH D
71
−23.973
16.779
44.740
1.00
13.95
1RHP
2168





HETATM
2059
O
HOH D
72
−17.180
28.365
48.480
1.00
23.72
1RHP
2169





HETATM
2060
O
HOH D
73
−9.171
13.988
48.326
1.00
31.83
1RHP
2170





HETATM
2061
O
HOH D
74
−22.795
1.635
43.626
1.00
26.68
1RHP
2171





HETATM
2062
O
HOH D
75
−10.471
19.184
45.434
1.00
22.67
1RHP
2172





HETATM
2063
O
HOH D
76
−18.191
22.704
45.485
1.00
21.44
1RHP
2173





HETATM
2064
O
HOH D
77
−20.572
30.070
43.583
1.00
27.27
1RHP
2174





HETATM
2065
O
HOH D
76
−21.589
12.323
61.827
1.00
17.42
1RHP
2175





HETATM
2066
O
HOH D
79
−21.689
21.199
55.389
1.00
18.48
1RHP
2116





HETATM
2067
O
HOH D
80
−24.007
5.555
44.718
1.00
24.26
1RHP
2177





HETATM
2068
O
HOH D
81
−8.147
−0.132
40.099
1.00
31.46
1RHP
2178





HETATM
2069
O
HOH D
82
−18.108
30.796
47.146
1.00
21.51
1RHP
2179





HETATM
2070
O
HOH D
83
0.640
0.298
58.176
1.00
28.28
1RHP
2180





HETATM
2071
O
HOH D
84
−9.364
0.859
62.217
1.00
31.94
1RHP
2181





HETATM
2072
O
HOH D
85
−21.347
1.353
50.812
1.00
15.69
1RHP
2182





HETATM
2073
O
HOH D
86
−22.976
−4.191
45.150
1.00
39.39
1RHP
2183





HETATM
2074
O
HOH D
87
−26.514
7.814
46.052
1.00
21.45
1RHP
2184





HETATM
2075
O
HOH D
88
−4.948
−0.311
44.657
1.00
44.64
1RHP
2185





HETATM
2076
O
HOH D
89
−27.810
10.314
46.717
1.00
5.64
1RHP
2186





HETATM
2077
O
HOH D
90
−17.325
−3.329
54.771
1.00
35.52
1RHP
2187





HETATM
2078
O
HOH D
91
−22.204
15.952
48.642
1.00
26.24
1RHP
2188





HETATM
2079
O
HOH D
92
−8.632
2.408
34.626
1.00
18.65
1RHP
2189





HETATM
2080
O
HOH D
93
−10.155
−1.758
40.779
1.00
31.61
1RHP
2190





HETATM
2081
O
HOH D
94
−27.841
11.796
49.192
1.00
33.30
1RHP
2191





HETATM
2082
O
HOH D
95
−9.773
−4.065
58.208
1.00
19.84
1RHP
2192





HETATM
2083
O
HOH D
96
−7.550
1.318
37.396
1.00
28.59
1RHP
2193

















CONECT
31
30
230

1RHP
2194






CONECT
45
44
349

1RHP
2195





CONECT
230
31
229

1RHP
2196





CONECT
349
45
348

1RHP
2197





CONECT
554
553
753

1RHP
2198





CONECT
568
567
872

1RHP
2199





CONECT
753
554
752

1RHP
2200





CONECT
872
568
871

1RHP
2201





CONECT
1076
1075
1275

1RHP
2202





CONECT
1090
1089
1394

1RHP
2203





CONECT
1275
1076
1274

1RHP
2204





CONECT
1394
1090
1393

1RHP
2205





CONECT
1590
1589
1789

1RHP
2206





CONECT
1604
1603
1908

1RHP
2207





CONECT
1789
1590
1788

1RHP
2208





CONECT
1908
1604
1907

1RHP
2209














MASTER
   42  0  0  4  12  0  0  6 2079  4  16  24
1RHP
2210













END
1RHP
2211








Claims
  • 1-12. (canceled)
  • 13. A compound that modulates PF4 activity comprising functional groups I, II, III, IV, VIII, IX and X wherein the distance between the functional groups in three-dimensions is about: 2.25±0.05 Å between groups I and II;6.03±1.37 Å between groups I and III;6.92±1.60 Å between groups I and IV;8.57±2.60 Å between groups I and VIII;14.20±1.53 Å between groups I and IX;12.54±1.51 Å between groups I and X;6.00±2.43 Å between groups II and III;7.01±1.84 Å between groups II and IV;9.09±1.22 Å between groups II and VIII;14.45±0.24 Å between groups II and IX;13.28±0.37 Å between groups II and X;2.31±0.07 Å between groups III and IV;9.19±1.40 Å between groups III and VIII;10.91±1.74 Å between groups III and IX;7.06±2.49 Å between groups III and X;9.02±0.63 Å between groups IV and VIII;10.46±0.46 Å between groups IV and IX;6.52±1.26 Å between groups IV and X;6.87±0.96 Å between groups VIII and IX9.84±1.05 Å between groups VIII and X; and7.25±0.49 Å between groups 1× and Xwherein functional group I corresponds to the OD1 atom of the amino acid side chain Asp7, functional group II corresponds to the OD2 atom of the amino acid side chain Asp7, functional group III corresponds to the NE2 atom of the amino acid side chain Gln9, functional group IV corresponds to the OE1 atom of the amino acid side chain Gln9, functional group VIII corresponds to the CG atom of the amino acid side chain Leu8, and functional group X corresponds to the CG atom of the amino acid side chain Leu11 in the PF4 sequence set forth in FIG. 1C (SEQ ID NO:1), andwherein said compound is not PF4, IL-8, a PF4 Mutant or a peptide having the amino acid sequence selected from the group consisting of SEQ ID NOS:34-154.
  • 14. The compound of claim 13 further comprising functional groups V, VI, and VII wherein the distance between the functional groups in three-dimensions is about 30.27±2.92 Å between groups I and V;29.94±2.49 Å between groups I and VI;30.41±4.31 Å between groups I and VII;30.83±1.99 Å between groups II and V;30.33±1.97 Å between groups II and VI;31.24±4.03 Å between groups II and VII;26.35±2.76 Å between groups III and V;26.57±2.02 Å between groups III and VI;26.31±3.05 Å between groups III and VII;25.58±1.40 Å between groups IV and V;25.80±1.31 Å between groups IV and VI;25.34±2.81 Å between groups IV and VII;3.85±1.54 Å between groups V and VI;10.21±2.21 Å between groups V and VII;23.10±2.21 Å between groups V and VIII;17.29±1.68 Å between groups V and IX;19.25±2.12 Å between groups V and X;14.07±0.94 Å between groups VI and VII;21.84±2.74 Å between groups VI and VIII;16.42±2.03 Å between groups VI and IX;19.95±2.02 Å between groups VI and X;25.38±4.39 Å between groups VII and VIII;20.60±3.57 Å between groups VII and IX; and18.76±3.72 Å between groups VII and Xwherein functional group V corresponds to the OE1 atom of the amino acid side chain Gln18, functional group VI corresponds to the NE2 atom of the amino acid side chain Gln18, functional group VII corresponds to the NE2 atom of the amino acid side chain His23, and functional group IX corresponds to the CB atom of the amino acid side chain Val13 in the PF4 sequence set forth in FIG. 1C (SEQ ID NO:1).
  • 15-24. (canceled)
  • 25. The compound of claim 13 wherein the root-mean-squared deviation of the functional group distances is less than 1.0 angstroms.
  • 26-27. (canceled)
  • 28. The compound of claim 13 that is a PF4 antagonist or a PF4 antagonist.
  • 29. (canceled)
  • 30. The compound of claim 28 further comprising a detectable label.
  • 31. The compound of claim 13, wherein said compound is a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:157 and SEQ ID NO:159.
  • 32. A method for identifying a compound that modulates PF4 activity, which method comprises comparing: (a) a three-dimensional structure of a candidate compound, to(b) a three-dimensional structure of a PF4 pharmacophore,wherein said PF4 pharmacophore comprises functional groups I, II, III, IV, VIII, IX and Xwherein the distance between the functional groups in three-dimensions is about:2.25±0.05 Å between groups I and II;6.03±1.37 Å between groups I and III;6.92±1.60 Å between groups I and IV;8.57±2.60 Å between groups I and VIII;14.20±1.53 Å between groups I and IX;12.54±1.51 Å between groups I and X;6.00±2.43 Å between groups II and III;7.01±1.84 Å between groups II and IV;9.09±1.22 Å between groups II and VIII14.45±0.24 Å between groups II and IX;13.28±0.37 Å between groups II and X;2.31±0.07 Å between groups III and IV;9.19±1.40 Å between groups III and VIII10.91±1.74 Å between groups III and IX;7.06±2.49 Å between groups III and X;9.02±0.63 Å between groups IV and VIII;10.46±0.46 Å between groups IV and IX;6.52±1.26 Å between groups IV and X;6.87±0.96 Å between groups VIII and IX9.84±1.05 Å between groups VIII and X; and7.25±0.49 Å between groups 1× and Xwherein functional group I corresponds to the OD1 atom of the amino acid side chain Asp7, functional group II corresponds to the OD2 atom of the amino acid side chain Asp7, functional group III corresponds to the NE2 atom of the amino acid side chain Gln9, functional group IV corresponds to the OE1 atom of the amino acid side chain Gln9, functional group VIII corresponds to the CG atom of the amino acid side chain Leu8, and functional group X corresponds to the CG atom of the amino acid side chain Leu11 in the PF4 sequence set forth in FIG. 1C (SEQ ID NO:1),wherein said candidate compound is not PF4, IL-8, a PF4 Mutant or a peptide having the amino acid sequence selected from the group consisting of SEQ ID NOS:34-156; andwherein similarity between the three-dimensional structures of the candidate compound and the PF4 pharmacophore is indicative of the candidate compound's ability to modulate PF4 activity.
  • 33. The method according to claim 32 wherein the root-mean square deviation (RMSD) between the three-dimensional structures of the candidate compound and the PF4 pharmacophore is not greater than about 1.0 angstrom.
  • 34. The method according to claim 32 wherein the candidate compound is a peptidomimetic, a PF4 agonist or a PF4 antagonist.
  • 35-45. (canceled)
  • 46. The method according to claim 32 wherein the PF4 pharmacophore further comprising functional groups V, VI, and VII wherein the distance between the functional groups in three-dimensions is about 30.27±2.92 Å between groups I and V;29.94±2.49 Å between groups I and VI;30.41±4.31 Å between groups I and VII;30.83±1.99 Å between groups II and V;30.33±1.97 Å between groups II and VI;31.24±4.03 Å between groups II and VII;26.35±2.76 Å between groups III and V;26.57±2.02 Å between groups III and VI;26.31±3.05 Å between groups III and VII;25.58±1.40 Å between groups IV and V;25.80±1.31 Å between groups IV and VI;25.34±2.81 Å between groups IV and VII;3.85±1.54 Å between groups V and VI;10.21±2.21 Å between groups V and VII;23.10±2.21 Å between groups V and VIII;17.29±1.68 Å between groups V and IX;19.25±2.12 Å between groups V and X;14.07±0.94 Å between groups VI and VII;21.84±2.74 Å between groups VI and VIII;16.42±2.03 Å between groups VI and IX;19.95±2.02 Å between groups VI and X;25.38±4.39 Å between groups VII and VIII;20.60±3.57 Å between groups VII and IX; and18.76±3.72 Å between groups VII and Xwherein functional group V corresponds to the OE1 atom of the amino acid side chain Gln18, functional group VI corresponds to the NE2 atom of the amino acid side chain Gln18, functional group VII corresponds to the NE2 atom of the amino acid side chain His23, and functional group IX corresponds to the CB atom of the amino acid side chain Val13 in the PF4 sequence set forth in FIG. 1C (SEQ ID NO:1).
  • 47-56. (canceled)
  • 57. A PF4 polypeptide having the amino acid sequence set forth in FIG. 1C (SEQ ID NO:1) and comprising at least one amino acid substitution that modulates interaction of the PF4 with heparan sulfate.
  • 58. The PF4 polypeptide according to claim 57, wherein said mutation is selected from the group consisting of: Lys61→Gln, Lys62→Glu, Lys65→Gln and Lys66→Glu.
  • 59. A PF4 polypeptide having the amino acid sequence set forth in FIG. 1C (SEQ ID NO:1) and comprising at least one amino acid substitution selected from the group consisting of Gln9→Arg, Gln9→Ala and Asp7→Ala.
  • 60. A PF4 polypeptide having the amino acid sequence set forth in FIG. 1C (SEQ ID NO:1) and comprising at least one amino acid substitution selected from the group consisting of: Leu11→Ser, Val13→Gln, and Thr16→Ala.
  • 61. A PF4 polypeptide having the amino acid sequence set forth in FIG. 1C (SEQ ID NO:1) and comprising at least one amino acid substitution selected from the group consisting of: Gln18→Ala, Val19→Ser, and His23→Ala.
  • 62. A mutant PF4 polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NOS:2-30.
  • 63. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:157-160.
  • 64. A compound according to claim 13, selected from the group consisting of the compound of Formula (I):
  • 65-67. (canceled)
  • 68. The compound according to claim 30, wherein the PF4 antagonist has a chemical structure as provided by Formula VII (FIG. 9A).
  • 69. The compound according to claim 68, which has a chemical structure as provided by Formula VIII (FIG. 9B).
  • 70-71. (canceled)
  • 72. The compound according to claim 30, wherein the PF4 antagonist comprises a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOS:34-156 and SEQ ID NO:159.
  • 73. (canceled)
  • 74. The compound according to claim 30, wherein the detectable label is selected from the group consisting of: a metal, a radioactive isotope, a radioopaque agent, a radiolucent agent, a contrast agent, a dye, and an enzyme that catalyzes a calorimetric or fluorometric reaction.
  • 75. A method for detecting PF4 binding sites in an individual, which method comprises: (c) administering, to the individual, a detectable marker according to claim 30; and(d) detecting the presence of said detectable marker in the individual.
  • 76. A method for detecting sites of angiogenesis in an individual, which method comprises: (e) administering, to the individual, a detectable marker according to claim 30; and(f) detecting the presence of said detectable marker in the individual.
  • 77. A method for detecting an infection in an individual, which method comprises: (g) administering, to the individual, a detectable marker according to claim 30; and(h) detecting the presence of said detectable marker in the individual.
  • 78-81. (canceled)
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US05/42386 11/21/2005 WO 00 8/1/2007
Provisional Applications (3)
Number Date Country
60629883 Nov 2004 US
60634433 Dec 2004 US
60637428 Dec 2004 US