Phase-locked loop circuit and radio communication apparatus using the same

Abstract
A phase-locked loop circuit includes a current output type phase comparator for converting a phase difference between a first signal and a second signal into a current signal to be outputted, a low pass filter for filtering the current signal of the current output type phase comparator to produce an output signal, a voltage controlled oscillator for producing an output signal having a frequency corresponding to the output signal of the low pass filter, a current source for supplying a current to an input of the low pass filter, a reset switch for applying to the voltage controlled oscillator a reset voltage for canceling a phase-locked state of the phase-locked loop, and a frequency converter for frequency-converting the output signal of the voltage controlled oscillator to produce the second signal.
Description

BACKGROUND OF THE INVENTION
The present invention relates to a phase-locked loop (hereinafter referred to PLL) for a transmission system included in a portable terminal for converting an intermediate frequency (IF) signal into a radio frequency (RF) signal mainly in the mobile communication and the portable terminal for the radio communication using the PLL.
A PLL system using a local signal frequency f.sub.LO to convert an input signal frequency f.sub.IP into an output signal frequency f.sub.LO -f.sub.IP is described in Chapter 10.3 of "PHASELOCK TECHNIQUES" (ISBN0-471-04294-3) issued by John Wiley & Sons and is shown in FIG. 10. In FIG. 10, a phase comparator 18 compares a phase of an input signal frequency f.sub.IF with a phase of a reference signal frequency f.sub.REF and produces a signal proportional to a phase difference between the two input signals. The output signal of the phase comparator 18 is supplied to a low pass filter (LPF) 19 in which unnecessary harmonic components and noise are removed from the output signal and an output signal of the low pass filter is supplied to a VCO 20. An output frequency f.sub.RF of the VCO 20 is supplied through a coupler 21 to a mixer 22 to be mixed with a local signal frequency f.sub.LO. An output frequency f.sub.REF of the mixer 22 is given by f.sub.REF =f.sub.LO -f.sub.RF. Since the output frequency F.sub.REF of the mixer 22 is equal to the frequency f.sub.IF when the PLL is in the lock state, the input signal frequency f.sub.IF is converted into the output frequency f.sub.RF =f.sub.LO -f.sub.IF of the VCO.
As other examples of the PLL system for the frequency conversion, British Patent No. GB 2 261 345 and U.S. Pat. No. 5,313,173 may be referred to. These references also use the same method as the fundamental principle of the PLL circuit.
In the above-described circuit, the output signal of the phase comparator is directly supplied to the low pass filter. Accordingly, in order to obtain a shorter settling time, it is necessary to broaden the frequency band of the PLL. On the other hand, however, when the frequency band is broadened, there is a problem that output noise is increased. Further, the circuit described in Chapter 10.3 of "PHASELOCK TECHNIQUES" (ISBN0-471-04294-3) issued by John Wiley & Sons is not considered to be used in a portable terminal.
FIG. 11 illustrates an example of a circuit configuration for shortening the settling time when a voltage output type phase comparator is used. The PLL circuit includes the voltage output type phase comparator 23, a voltage controlled oscillator (VCO) 24, a coupler 25, a mixer 26, a reset switch 27, a power supply 28 for use in shortening of a settling time and a low pass filter 29. Usually, in the PLL circuit, the low pass filter, the VCO and the coupler are mounted externally to the PLL circuit. In this example, since the reset switch 27 and the power supply 28 are connected to the low pass filter 29, the reset switch 27 and the power supply 28 are also mounted externally to the PLL circuit.
While the PLL operation is performed, the reset switch 27 is open (off state). When the PLL circuit is in the phase-locked state, the VCO 24 produces an output signal having a fixed frequency as a center frequency. A small radio communication apparatus such as a portable telephone mostly performs transmission in the time division manner. In this operation, a transmission period in which the PLL circuit is locked to perform transmission with the fixed center frequency and a transmission stop period in which the PLL operation is canceled after the transmission period are performed repeatedly. Further, there is a communication system in which the transmission frequency is changed at a certain period. In such a case, the PLL is locked to the same or different frequency after a predetermined period from cancellation of the locked state. For this end, a voltage for resetting the PLL operation is supplied to the VCO. The reset switch 27 is provided in order to apply the reset voltage. When the reset switch 27 is closed (on state), an input potential of the VC0 24 becomes 0 volts and the output frequency becomes a minimum oscillation frequency.
The voltage output type phase comparator 23 requires an operational amplifier 272 for converting a voltage output into a current output in order to supply a current to a low pass filter 271. The operational amplifier 272 is necessarily required to adjust its operation characteristic and accordingly it is difficult to fabricate the operational amplifier into an IC chip. The negative DC voltage power supply 28 applies a negative bias voltage to an inverted input of the operational amplifier 272 to thereby shorten the settling time of the PLL. Since it is difficult to generate this negative voltage within the IC chip, the circuit of the negative voltage power supply 28 must be disposed outside the IC chip.
SUMMARY OF THE INVENTION
A phase-locked loop (PLL) circuit according to the present invention employs a phase comparator of current output type. By using the current output type phase comparator in the PLL circuit, it is not required to use an operational amplifier in a low pass filter (LPF). The PLL circuit including the current output type phase comparator, the LPF and a reset switch can be fabricated within an IC chip. Further, when a current source for supplying a current to the LPF is used together with the current output type phase comparator, a time from the start of control of the PLL to the locked state, that is, the settling time can be shortened. The PLL circuit according to the present invention realizes the compatibility of the short settling time or increased settling speed and low output noise without broadening of the band of the PLL.
Furthermore, the radio communication apparatus according to the present invention includes a transmission unit having the PLL circuit using the current output type phase comparator.
In the PLL circuit of the present invention, since an operational amplifier is not required in the LPF and the reset switch is fabricated in an IC chip, reliability and productivity of the PLL can be improved and the radio communication apparatus can be made small.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram illustrating an embodiment of a PLL circuit according to the present invention;
FIG. 2 illustrates a definite embodiment of a low pass filter used in the PLL circuit of the present invention;
FIG. 3 is a diagram showing a definite example of a closed loop transfer function in the embodiment of the PLL circuit of the present invention;
FIG. 4 is a block diagram illustrating another embodiment of a PLL circuit according to the present invention;
FIG. 5 is a block diagram illustrating another embodiment of a PLL circuit according to the present invention;
FIG. 6 is a block diagram illustrating still another embodiment of a PLL circuit according to the present invention;
FIG. 7 is a block diagram illustrating still another embodiment of a PLL circuit according to present invention;
FIG. 8 is a circuit diagram illustrating a definite embodiment of a current output type phase comparator used in the PLL circuit according to the present invention;
FIG. 9 is a circuit diagram illustrating a definite embodiment of a reset switch used in the PLL circuit of the present invention;
FIG. 10 is a block diagram illustrating a general configuration of a PLL circuit;
FIG. 11 is a block diagram illustrating a PLL circuit using a voltage output type phase comparator;
FIG. 12 is a block diagram illustrating an example of a radio communication terminal apparatus using the PLL circuit of the present invention;
FIG. 13 is a block diagram illustrating a PLL circuit of still another embodiment according to the present invention; and
FIG. 14 is a block diagram illustrating a PLL circuit of still another embodiment according to the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS
A PLL circuit according to an embodiment of the present invention can be used in a transmitter of a radio communication terminal apparatus such as a portable telephone. FIG. 12 is a block diagram illustrating an example of a radio communication terminal apparatus including the PLL circuit according to the embodiment of the present invention. The communication terminal apparatus can use in various communication systems such as GSM (Global System for Mobile Communications), PDC (Personal Digital Cellular), PCN (Personal Communication Network) and PHS (Personal Handyphone System).
A voice produced by a user is converted into an electric audio signal "Audio in" by means of a microphone (not shown) and is inputted to an input terminal of a transmitter 40.
The audio signal "Audio in" is converted by a digital signal processor 30 into I- and Q-channel signals having phases shifted from each other by 90 degrees. The I- and Q-channel signals are then modulated in a modulation mixer 31 and are converted into an IF band frequency. A local oscillation signal is generated by a local signal generator 33 and is phase-shifted by 90 degrees by a 90-degree distributor 32 to be supplied to the modulation mixer 31. Thereafter, the signal produced by the mixer 31 is converted by a PLL circuit 34 of the present invention into a frequency of a transmission frequency band. A local oscillation signal supplied to the PLL circuit 34 is generated by a local signal generator 35. An output signal of the PLL circuit 34 is amplified by an output amplifier 36 and then transmitted from an antenna 38 through a switch 37, which is connected to the antenna 38; to the transmitter 40 including the processor 30, the mixer 31, the 90 degree distributor 32, the local signal oscillator 33, the PLL 34, the local signal oscillator 35 and the amplifier 36; and to and a receiver 39.
The circuit portion including the mixer 31, the 90-degree distributor 32, the PLL 34 and a part of the receiver 39 in an area surrounded by broken line of FIG. 12 can be fabricated in a single IC chip.
Referring now to FIGS. 1 to 9, the structure and operation of the PLL circuit according to the embodiment of the present invention are described.
FIG. 1 illustrates a basic configuration of a PLL circuit according to the embodiment of the present invention. The PLL circuit includes a current output type phase comparator 1, a constant current source 2, a reset switch 3, a low pass filter 4, a VCO 5, a coupler 6 and a mixer 7. The constant current source 2 supplies a constant current (shown by arrow b) from the ground toward an input terminal of the low pass filter 4. The reset switch 3 is connected between the input terminal of the low pass filter 4 and the ground. The reset switch 3 is open during operation of the PLL circuit.
The current output type phase comparator 1 compares a phase of an input signal frequency f.sub.IF with a phase of a reference signal frequency f.sub.REF and produces a current proportional to a phase difference thereof. When the PLL circuit is operated, the reset switch 3 is open. In order to shorten the settling time of the PLL, the output current (shown by arrow a) of the phase comparator 1 is added to the constant current (shown by arrow b) produced from the constant current source 2 in an adder 43 and a sum current thereof is supplied to the low pass filter 4. Incidentally, the adder 43 is merely signal lines combined with each other., When the current output type phase comparator 1 is operated by itself and the phase difference of the two input signals f.sub.IF and f.sub.REF is varied, the condition for causing the PLL to perform the stable settling operation is obtained experimentally and is given by the following equation (1): ##EQU1## where the maximum value and the minimum value of the DC component of the output current are I.sub.MAX and I.sub.MIN, respectively, and the output current of the constant current source 2 is I.sub.OFF.
The low pass filter 4 removes unnecessary harmonic components and noise from the sum current of the outputs of the current output type phase comparator 1 and the constant current source 2 and converts the sum current into a voltage signal to be supplied to the VCO 5. The output frequency f.sub.RF of the VCO 5 is inputted through the coupler 6 to the mixer 7 to be mixed with the local oscillation signal frequency f.sub.LO. The output frequency f.sub.REF of the mixer 7 is given by f.sub.REF =f.sub.LO -f.sub.RF. When the PLL is in the locked state, the output frequency f.sub.REF of the mixer 7 is equal to f.sub.IF. Accordingly, the input signal frequency f.sub.IF is converted into f.sub.RF =f.sub.LO -f.sub.IF.
FIG. 2 illustrates a definite circuit of an embodiment of the low pass filter 4. Electric charges are stored in the low pass filter 4 by a DC component of the output current of the current output type phase comparator 1. A charged voltage is supplied to the VCO 5 as the output voltage of the low pass filter 4. At the same time, electric charges are also stored in capacitors C.sub.1 and C.sub.2 of the low pass filter 4 by the constant current produced from the constant current source 2 and accordingly the speed of storing the electric charges is increased as compared with the case where the constant current source 2 is not provided. Consequently, the settling time of the PLL is shortened.
The current supplied from constant current source 2 to the low pass filter 4 may be controlled to be a predetermined constant current from the beginning or a considerable large current temporarily at the beginning and a slightly small constant current thereafter. In the latter case, the speed of storing the electric charges can be increased as compared with the former case.
The transfer function F(s) of the low pass filter 4 is given by the following equation (2): ##EQU2##
Operation of the PLL circuit is analyzed when the filter circuit shown in FIG. 2 is used as the low pass filter 4 of FIG. 1. When the phase difference conversion gain of the current output type phase comparator 1 is K.sub.d [A/rad] and the sensitivity of the VCO 5 is K.sub.V [rad/s/V], the open loop transfer function Ho(s) of the PLL is given by the following equation (3): ##EQU3##
At this time, a pole .omega..sub.z [rad/s] and a zero .omega..sub.p [rad/s] of the PLL are given by the following equations (4) and (5), respectively: ##EQU4##
FIG. 3 shows an example of a frequency characteristic of a closed loop transfer function Hc(s) of the PLL. As shown in FIG. 3, the loop shows the characteristic of the low pass filter. Accordingly, the frequency modulation and the phase modulation within the loop bandwidth can be reproduced at the output of the VCO and unnecessary signals beyond the bandwidth can be suppressed. However, when the loop bandwidth is made too narrow, the modulation accuracy at the output of the PLL is deteriorated and when the loop bandwidth is made too broad, it is insufficient to suppress noise beyond the bandwidth. In order to satisfy the standard such as GSM, it is necessary to select the loop bandwidth from the range of 1 MHz to 3 MHz.
FIG. 4 illustrates a PLL circuit according to another embodiment of the present invention. The PLL circuit includes a current output type phase comparator 1, a constant current source 2, a reset switch 3, a low pass filter 4, a VCO 5, a coupler 6, a mixer 7 and a power supply 8. The constant current source 2 produces a constant current (shown by arrow b) flowing from an input terminal of the low pass filter 4 to the ground. The reset switch 3 is connected between the input terminal of the low pass filter 4 and the power supply 8.
The current output type phase comparator 1 compares a phase of an input signal frequency f.sub.IF with a phase of a reference signal frequency f.sub.REF and produces a current proportional to a phase difference thereof. When the PLL circuit is operated, the reset switch 3 is open. In order to shorten the settling time of the PLL circuit, the constant current (arrow b) produced from the constant current source 2 is added to an output current (arrow a) of the current output type phase comparator 1 and a sum current thereof is supplied to the low pass filter 4.
Operation of the PLL circuit of FIG. 4 in which the low pass filter 4 shown in FIG. 2 is used is now described. When the reset switch 3 is closed to perform the reset operation, the capacitors C.sub.1 and C.sub.2 of the low pass filter 4 are charged by a positive voltage of the power supply 8. The voltage of the power supply 8 is set to a value higher than an input voltage of the VCO 5 at the time when the PLL circuit has completed the settling operation (upon the locked state). When the reset switch 3 is opened and the PLL operation is started, the electric charges stored in the capacitors C.sub.1 and C.sub.2 are discharged toward the constant current source 2 and the phase comparator 1. The constant current source 2 facilitates the discharge of positive electric charges from the capacitors C.sub.1 and C.sub.2. Consequently, the settling time of the PLL circuit is shortened.
When the current output type phase comparator 1 is operated by itself and the phase difference of the two input signals is varied, the condition for causing the PLL to perform the stable settling operation is obtained experimentally and is given by the following equation (6): ##EQU5## where the maximum value and the minimum value of the DC component of the output current are I.sub.MAX and I.sub.MIN, respectively, and the output current of the constant current source 2 flowing from the input terminal of the low pass filter 4 to the ground is I.sub.OFF.
The low pass filter 4 removes unnecessary harmonic components and noise from the sum current of the outputs of the current output type phase comparator 1 and the constant current source 2 and converts the sum current into a voltage signal to be supplied to the VCO 5. The output frequency f.sub.RF of the VCO 5 is inputted through the coupler 6 to the mixer 7 to be mixed with the local oscillation signal frequency f.sub.LO. The output frequency f.sub.REF of the mixer 7 is given by f.sub.REF =f.sub.LO -f.sub.RF. When the PLL is in the locked state, the output frequency f.sub.REF of the mixer 7 is equal to f.sub.IF. Accordingly, the input signal frequency f.sub.IF is converted into f.sub.RF =f.sub.LO -f.sub.IF.
FIG. 5 illustrates another embodiment of the present invention. The PLL circuit of FIG. 5 is characterized in that limiters 9 and 10 are connected to the input portions of the current output type phase comparator 1 in the same configuration of the PLL circuit of FIG. 1. When a mixer type circuit using bipolar transistors is employed in the current output type phase comparator 1 and an amplitude of an input signal is smaller than kT/q where q is an amount of electric charges of electrons, k is Boltzmann's constant, and T is an absolute temperature, the phase difference conversion gain of the current output type phase comparator 1 has the dependency on the input amplitude. The limiters 9 and 10 amplify the input signals to the current output type phase comparator 1 to increase the amplitude of the input signal f.sub.RF to a constant amplitude larger than kT/q, so that the phase difference conversion gain of the phase comparator 1 can be made constant.
FIG. 6 illustrates another embodiment of the present invention. The PLL circuit of FIG. 6 is characterized in that low pass filters 11, 12, 13 and 14 are connected in the same configuration as the PLL circuit of FIG. 5. The low pass filters 13 and 14 are used to prevent unnecessary harmonics from being inputted to the limiters 9 and 10. Since the limiters 9 and 10 produce the signals having the constant amplitude, the output signals of the limiters 9 and 10 contain unnecessary harmonic components. Accordingly, the low pass filters 11 and 12 removes the unnecessary harmonic components.
FIG. 7 illustrates another embodiment of a PLL circuit according to the present invention. The PLL circuit of FIG. 7 is characterized in that an amplifier 15 is connected between the coupler 6 and the mixer 7 in the same configuration as the PLL circuit of FIG. 1. By connecting the amplifier 15, the PLL circuit can be operated even when the output of the VCO has a small amplitude.
FIG. 8 illustrates an embodiment of the current output type phase comparator 1. Transistors may be of bipolar type. VDD is a power supply voltage. Numeral 16 denotes a so-called Gilbert multiplier. Detail thereof is described in Chapter 10.3 of "DESIGN TECHNIQUE OF ANALOG INTEGRATED CIRCUIT FOR SUPER LSI (Last Volume)" issued by Baifukan. The Gilbert multiplier 16 mixes input signals V.sub.IF.sup.+ and V.sub.IF.sup.- and reference signals V.sup.REF.sup.+ and V.sub.REF.sup.- to produce differential currents I.sub.4 and I.sub.5 having phases opposite to each other. Bases of transistors Q2 and Q3 are applied with the signal V.sub.REF.sup.- having the phase opposite to that of the signal applied to bases of transistors Q1 and Q4. Similarly, a base of a transistor Q6 is applied with the signal V.sub.IF.sup.- having the phase opposite to that of the signal applied to a base of a transistor Q5. When amplitudes of the input signals V.sub.IF.sup.+ and V.sub.IF.sup.- and the reference signals V.sub.REF.sup.+ and V.sub.REF.sup.- are larger than kT/q and a collector current of a transistor Q11 is I.sub.6, the relation of a phase difference .phi. of the input signals V.sub.IF.sup.+ and V.sub.IF.sup.- and the reference signals V.sub.REF.sup.+ and V.sub.REF.sup.- and a differential current I.sub.4 -I.sub.5 produced by the Gilbert multiplier 16 is given by the following equation (7): ##EQU6##
Transistors Q11, Q12 and Q13, resistors R6 and R7 and a constant current source I.sub.REF constitute a bias circuit of the Gilbert multiplier 16 using the current mirror circuit. The transistor Q11 constitutes a current source for the transistors Q5 and Q6 connected to the collector of the transistor Q11.
Numeral 17 denotes a charge pump circuit which converts the output differential currents I.sub.4 and I.sub.5 of the Gilbert multiplier 16 into a single-ended output signal to produce it as a current I.sub.out. Transistors Q7 and Q8 and resistors R1 and R3 constitute a current mirror circuit. When a current mirror ratio determined by characteristics of the resistors R1 and R3 and the transistors Q7 and Q8 is a, the relation of I.sub.3 =a.multidot.I.sub.4 is obtained. Similarly, transistors Q9 and Q10 and resistors R2 and R4 constitute a current mirror circuit. When a current mirror ratio thereof is b, the relation of I.sub.1 =b.multidot.I.sub.5 is obtained. Further, transistors Q14, Q15 and Q16 and resistors R8 and R9 also constitute a current mirror circuit. When a current mirror ratio thereof is c, the relation of I.sub.2 =c.multidot.I.sub.3 is obtained. The currents I.sub.1 and I.sub.2 are used to obtain I.sub.OUT =I.sub.1 -I.sub.2.
FIG. 9 illustrates an embodiment of the reset switch. That is, the reset switch corresponds to the reset switch 3 of FIG. 1. Transistors of bipolar type are used.
VDD is a power supply voltage. A constant current source I.sub.E is a bias circuit for the reset switch 3 and supplies a bias current to transistors Q17 and Q18. Transistors Q19 and Q20 and resistors R11 and R12 constitute a current mirror circuit and when a current mirror ratio thereof is d, the relation of I.sub.8 =d.multidot.I.sub.7 is obtained. When a voltage applied to an input terminal IN for control of the time division operation is larger than the reference voltage V.sub.REF, a transistor Q18 is turned off, so that currents I.sub.7 and I.sub.8 scarcely flow and transistors Q19 and Q20 are also turned off. When a base current of the transistor Q21 is neglected since the base current is small, a base voltage of a transistor Q21 is given by R10.multidot.I.sub.8, while since the current I.sub.8 scarcely flows, the transistor Q21 is turned off, so that a collector current of the transistor Q21 hardly flows. Accordingly, the reset switch 3 becomes the off (open) state. When the voltage applied to the input terminal is smaller than the reference voltage V.sub.REF, the transistor Q18 is turned on and the current I.sub.8 is I.sub.8 =d.multidot.I.sub.7 .about.d.multidot.I.sub.E. Accordingly, the base voltage of the transistor Q21 is substantially equal to R10.multidot.d.multidot.I.sub.E. When the current I.sub.E is set so that the transistor Q21 is turned on when the base voltage is equal to R10.multidot.d.multidot.I.sub.E, the transistor Q21 is turned on, so that a terminal OUT is connected to the ground and the reset switch 3 becomes the on closed state.
The circuits shown in FIGS. 8 and 9 employ bipolar transistors, but transistors of other kinds such as, for example, MOSFET and MESFET may be used to realize the same function.
FIG. 13 illustrates a PLL circuit according to another embodiment of the present invention. The PLL circuit of FIG. 13 is characterized in that a frequency divider 41 is connected between the current output type phase comparator 1 and the coupler 6 instead of the mixer 7 in the same configuration as the PLL circuit of FIG. 1. A frequency division ratio of the frequency divider 41 is given by f.sub.RF /f.sub.IF.
FIG. 14 illustrates a PLL circuit according to still another embodiment of the present invention. The PLL circuit includes a current output type phase frequency comparator 42, a low pass filter 4, a VCO 5, a coupler 6 and a mixer 26. When the phase difference between the input signal f.sub.IF and the reference signal frequency f.sub.REF is small, the current output type phase frequency comparator 42 compares a phase of the input signal f.sub.IF with a phase of the reference signal frequency f.sub.REF and produces an error output current. When the phase difference between the input signal f.sub.IF and the reference signal frequency f.sub.REF is not small, the current output type phase frequency comparator 42 compares a frequency of the input signal f.sub.IF with a frequency of the reference signal frequency f.sub.REF and produces an error output current. The low pass filter 4 removes unnecessary harmonic components and noise from the output current of the comparator 42 and converts the output current into a voltage to be supplied to the VCO 5. An output frequency f.sub.RF of the VCO 5 is inputted to the mixer 26 through the coupler 6 and is mixed with the local oscillation signal frequency f.sub.LO in the mixer 26. An output frequency f.sub.REF of the mixer 26 is equal to f.sub.IF when the PLL circuit is in the locked state. Accordingly, the input signal frequency f.sub.IF is converted into f.sub.RF =f.sub.LO -f.sub.IF.
The phase comparator is named a phase frequency comparator (PFC). Since the PLL circuit is necessarily locked without the provision of a switch when the PFC is used, the reset switch is not required. However, since the output voltage of the phase comparator is not once reduced to 0 volt by means of the reset switch, the PLL circuit may be operated even if the constant current source for increasing the settling speed is provided, while the settling time is not necessarily shortened.
As described above, according to the present invention, since the phase comparator produces the current output and the constant current is further added to the current output, the setting time can be shortened without widening of the bandwidth for the PLL circuit. Furthermore, since the settling time shortening circuit and he reset switch are connected to the phase comparator, the circuit configuration suitable for the integrated circuit can be realized.
Claims
  • 1. A phase-locked loop circuit comprising:
  • a current output type phase comparator for converting a phase difference between a first signal and a second signal into a current signal to be outputted;
  • a low pass filter for filtering the current signal of the current output type phase comparator to produce an output signal;
  • a voltage controlled oscillator for producing an output signal having a frequency corresponding to the output signal of the low pass filter;
  • a current source for supplying a current to an input of the low pass filter;
  • a reset switch for applying to the voltage controlled oscillator a reset voltage for canceling a phase-locked state of the phase-locked loop; and
  • a frequency converter for frequency-converting the output signal of the voltage controlled oscillator to produce the second signal.
  • 2. A phase-locked loop circuit according to claim 1, further comprising a coupler for distributing the output signal of the voltage controlled oscillator to an output terminal of the phase-locked loop circuit and an input of the frequency converter.
  • 3. A phase-locked loop circuit according to claim 2, wherein the low pass filter includes at least one capacitor for shunting a predetermined frequency component of an input signal thereto, the at least one capacitor being supplied with electric charges by the current source.
  • 4. A phase-locked loop circuit according to claim 3, wherein the current source includes a constant current source for supplying a constant current to the input of the low pass filter and supplying electric charges to the at least one capacitor.
  • 5. A phase-locked loop circuit according to claim 4, wherein when the current output type phase comparator is operated by itself and the phase difference between the first signal and the second signal is varied, the current output type phase comparator satisfies the following equation:
  • (0.5(I.sub.MAX -.vertline.I.sub.MIN .vertline.)+I.sub.OFF)/I.sub.MAX .ltoreq.0.6
  • where I.sub.MAX and I.sub.MIN are maximum and minimum values of a DC component of the current signal of the current output type phase comparator, respectively, and I.sub.OFF is a value of an output current of the constant current source flowing toward the input of the low pass filter.
  • 6. A phase-locked loop circuit according to claim 3, further comprising a DC voltage source connected to the reset switch for generating the reset voltage, the reset voltage being higher than an input voltage of the voltage controlled oscillator when the phase-locked loop is in the phase-locked state;
  • wherein the current source includes a constant current source for supplying a constant current so that the current is pulled out from the input of the low pass filter when the reset switch is not operated.
  • 7. A phase-locked loop circuit according to claim 6, wherein when the current output type phase comparator is operated by itself and the phase difference between the first signal and the second signal is varied, the current output type phase comparator satisfies the following equation:
  • (0.5(.vertline.I.sub.MIN 51 -I.sub.MAX)+I.sub.OFF)/.vertline.I.sub.MIN .vertline..ltoreq.0.6
  • where I.sub.MAX and I.sub.MIN are maximum and minimum values of a DC component of the current signal of the current output type phase comparator, respectively, and I.sub.OFF is a value of an output current of the constant current source flowing out from the input terminal of the low pass filter.
  • 8. A phase-locked loop circuit according to any one of claims 1 or 2 to 7, further comprising:
  • a first limiter for limiting an amplitude of an input signal of the phase-locked loop circuit to a fixed amplitude to produce the first signal; and
  • a second limiter for limiting an amplitude of an output signal of the frequency converter to a fixed amplitude to produce the second signal.
  • 9. A phase-locked loop circuit according to claim 8, further comprising:
  • a second low pass filter for filtering the input signal of the phase-locked loop circuit to produce an output signal and supplying the output signal to the first limiter;
  • a third low pass filter for filtering an output signal of the first limiter to produce the first signal and supplying the first signal to the current output type phase comparator;
  • a fourth low pass filter for filtering the output signal of the frequency converter to produce an output signal and supplying the output signal to the second limiter; and
  • a fifth low pass filter for filtering an output signal of the second limiter to produce the second signal and supplying the second signal to the current output type phase comparator.
  • 10. A phase-locked loop circuit according to any one of claims 1 or 2 to 7, further comprising an amplifier for amplifying the output signal of the voltage controlled oscillator and supplying the amplified output signal of the voltage controlled oscillator to the frequency converter.
  • 11. A phase-locked loop circuit according to claim 1, wherein the frequency converter includes a mixer circuit having two inputs, one of the two inputs being supplied with the output signal of the voltage controlled oscillator and the other one of the two inputs being supplied with a signal having a predetermined frequency, the mixer circuit generating an output signal in accordance with a difference frequency of the signals supplied to the two inputs, the output signal of the mixer circuit being supplied to the current output type phase comparator as the second signal.
  • 12. A phase-locked loop circuit according to claim 1, wherein the frequency converter includes a frequency divider for frequency-converting the output signal of the voltage controlled oscillator to produce the second signal.
  • 13. A phase-locked loop circuit according to claim 1, wherein the current output type phase comparator includes:
  • a Gilbert multiplier; a first current mirror circuit;
  • a second current mirror circuit; and
  • a third current mirror circuit;
  • wherein the first signal and the second signal are supplied to differential inputs of the Gilbert multiplier;
  • wherein a third signal and a fourth signal which are differential output currents of the Gilbert multiplier are supplied to the first current mirror circuit and the second current mirror circuit, respectively;
  • wherein an output current of the second current mirror circuit is supplied to the third current mirror circuit;
  • wherein output currents of the first current mirror circuit and the third current mirror circuit are added together to constitute the current signal of the current output type phase comparator.
  • 14. A phase-locked loop circuit according to claim 1, wherein a loop bandwidth of the phase-locked loop circuit is in a range from 1 MHz to 3 MHz.
  • 15. A radio communication apparatus comprising:
  • a transmitter;
  • a receiver;
  • an antenna; and
  • a duplexer for selectively coupling either of an input of the receiver and an output of the transmitter to the antenna;
  • wherein the transmitter includes:
  • a phase-locked loop circuit according to claim 1 for converting a frequency of the first signal to a transmission frequency, the output signal of the voltage controlled oscillator having the transmission frequency and corresponding to the frequency-converted first signal; and
  • an output amplifier for amplifying the output signal of the voltage controlled oscillator to produce an output signal of the transmitter.
  • 16. A phase-locked loop circuit comprising:
  • a current output type phase comparator for converting a phase difference between a first signal and a second signal into a current signal to be outputted;
  • a low pass filter for filtering the current signal of the current output type phase comparator to produce an output signal;
  • a voltage controlled oscillator for producing an output signal having a frequency corresponding to the output signal of the low pass filter;
  • a frequency converter for frequency-converting the output signal of the voltage controlled oscillator to produce the second signal;
  • a first limiter for limiting an amplitude of an input signal of the phase-locked loop circuit to a fixed amplitude to produce the first signal; and
  • a second limiter for limiting an amplitude of an output signal of the frequency converter to a fixed amplitude to produce the second signal.
  • 17. A phase-locked loop circuit according to claim 16, further comprising a current source for supplying a current to an input of the low pass filter.
  • 18. A phase-locked loop circuit according to claim 17, further comprising:
  • a second low pass filter for filtering the input signal of the phase-locked loop circuit to produce an output signal and supplying the output signal to the first limiter;
  • a third low pass filter for filtering an output signal of the first limiter to produce the first signal and supplying the first signal to the current output type phase comparator;
  • a fourth low pass filter for filtering the output signal of the frequency converter to produce an output signal and supplying the output signal to the second limiter; and
  • a fifth low pass filter for filtering an output signal of the second limiter to produce the second signal and supplying the second signal to the current output type phase comparator.
  • 19. A phase-locked loop circuit according to claim 16, further comprising:
  • a second low pass filter for filtering the input signal of the phase-locked loop circuit to produce an output signal and supplying the output signal to the first limiter;
  • a third low pass filter for filtering an output signal of the first limiter to produce the first signal and supplying the first signal to the current output type phase comparator;
  • a fourth low pass filter for filtering the output signal of the frequency converter to produce an output signal and supplying the output signal to the second limiter; and
  • a fifth low pass filter for filtering an output signal of the second limiter to produce the second signal and supplying the second signal to the current output type phase comparator.
  • 20. A phase-locked loop circuit comprising:
  • a current output type phase comparator for converting a phase difference between a first signal and a second signal into a current signal to be outputted;
  • a low pass filter for filtering the current signal of the current output type phase comparator to produce an output signal;
  • a voltage controlled oscillator for producing an output signal having a frequency corresponding to the output signal of the low pass filter;
  • a current source for supplying a current to an input of the low pass filter; and
  • a frequency converter for frequency-converting the output signal of the voltage controlled oscillator to produce the second signal;
  • wherein the current output type phase comparator includes:
  • a Gilbert multiplier;
  • a first current mirror circuit;
  • a second current mirror circuit; and
  • a third current mirror circuit;
  • wherein the first signal and the second signal are supplied to differential inputs of the Gilbert multiplier;
  • wherein a third signal and a fourth signal which are differential output currents of the Gilbert multiplier are supplied to the first current mirror circuit and the second current mirror circuit, respectively;
  • wherein an output current of the second current mirror circuit is supplied to the third current mirror circuit;
  • wherein output currents of the first current mirror circuit and the third current mirror circuit are added together to constitute the current signal of the current output type phase comparator.
Priority Claims (1)
Number Date Country Kind
9-017217 Jan 1997 JPX
US Referenced Citations (13)
Number Name Date Kind
4562410 O'Rourke Dec 1985
4714900 Sata Dec 1987
4745372 Miwa May 1988
4952889 Irwin et al. Aug 1990
5103191 Werker Apr 1992
5313173 Lampe May 1994
5359297 Hodel et al. Oct 1994
5424689 Gillig et al. Jun 1995
5436597 Dunlap et al. Jul 1995
5511236 Umstattd et al. Apr 1996
5635879 Sutardja et al. Jun 1997
5825254 Lee Oct 1998
5890051 Schlang et al. Mar 1999
Foreign Referenced Citations (3)
Number Date Country
0410029 Jan 1991 EPX
0519562 Dec 1992 EPX
2261345 May 1993 GBX
Non-Patent Literature Citations (3)
Entry
Phaselock Techniques, Chapter 10.3, "Translation Loops", pp. 204-207, date unknown, John Wiley & Sons, ISBN 0-471-04294-3.
Design Technique of Analog Integrated Circuit for Super LSI, Last Volume, Chapters 10.3.2, 10.3.3, and 10.3.4, pp. 172-183, Baikufan, date unknown (in Japanese).
D. Turner, "Phase-Locked Loop Phase Adjustment", IBM Technical Disclosure Bulletin, vol. 15, No. 7, Dec. 1972, pp. 2080-2081.