This disclosure relates generally to analog phase shifters and more particularly to phase adjustable analog phase shifters.
As is known in the art, one type of analog phase shifter includes a branchline coupler. One such branchline coupler, sometimes also referred to as a reflective coupler or a shunt hybrid combiner, Quadrature Hybrid, having an input port (Input 1), a pair of output ports (Output 2, Output 3) and an isolated port (Isolate 4), is shown in
One technique used to adjust phase shift of the branchline coupler type phase shifter is to connect a phase adjusting section connected to each one of the pair of shunt transmission lines as described in a paper entitled “A Low-Loss Voltage-Controlled Analog Phase-Shifter Using Branchline Coupler and Varactor Diodes” by Gupta et al., (Gupta, Nishant, Raghuvir Tomar, and Prakash Bhartia. “A low-loss voltage-controlled analog phase-shifter using branchline coupler and varactor diodes.” Microwave and Millimeter Wave Technology, 2007. ICMMT'07. International Conference on. IEEE, 2007). In that paper a pair of varactor diodes is controlled by voltages to adjust the phase shift provided by the phase shifter. Another branchline coupler type phase shifter having a phase adjusting section connected to each one of the pair of shunt transmission lines is shown in
In accordance with present disclosure, a method is provided to forming a phase shifter, comprising providing a branchline coupler on an upper surface of a substrate with a pair of phase adjusting section, each one of the phase adjusting sections is coupled to a corresponding one of a pair of shunt transmission line sections of the branchline coupler. Each one of the pair of phase adjusting sections includes: a first conductive pad disposed on the upper surface of a substrate of the branchline coupler and is connected to the ground plane conductor on a bottom surface of the substrate. A second conductive pad is disposed on the upper surface of the substrate, the first conductive pad and the second conductive pad being separated by a gap. The method includes sequentially depositing a series of conductive layer segments on the upper surface of the substrate in the gap electrically connected to sidewalls of the first conductive pad and the second conductive pad. Measuring phase shift through the phase shifter after each one of the segments is deposited. The depositing process is terminated when the measuring detects a predetermined phase shift through the phase shifter.
With such a method, the use of additive manufacturing (printing or depositing) allows for fine levels of phase tuning.
In one embodiment, a phase shifter is provided having a branchline coupler; and a pair of phase adjusting sections, each one of the phase adjusting sections being coupled to a corresponding one of a pair of shunt transmission line sections of the branchline coupler, Each one of the pair of phase adjusting sections comprises; a first conductive pad disposed on the upper surface of a substrate of the branchline coupler and connected to a ground plane conductor on a bottom surface of the substrate; a second conductive pad disposed on the upper surface of the substrate, the first conductive pad and the second conductive pad being separated by a gap; and a conductive layer disposed on the upper surface of the substrate in the gap and having sidewalls electrically connected to sidewalls of the first conductive pad and the second conductive pad, such conductive layer having a length selected to provide a predetermined phase shift to a signal passing between the input port and the output port; the conductive layer being a material different from the first conductive pad and the second conductive pad.
The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring now to
Each one of the pair of phase adjusting sections 20a, 20b comprises; a first conductive pad 42a, 42b, respectively, as shown, disposed on the upper surface 15 of the substrate 12 and connected to the ground plane conductor 14 through one or more electrically conductive vias 41 passing through the substrate 12; a second conductive pad 44a, 44b, respectively, as shown, disposed on the upper surface 15 of the substrate 12 and connected to the output ends 38, 40, respectively, of a corresponding one of the pair of shunt transmission line sections 28, 30, respectively, as shown. The first conductive pad 42a and the second conductive pad 44a have a gap 46a between them and the first conductive pad 42b and the second conductive pad 44b have a gap 46b between them, as shown.
After providing the branchline coupler 18 and pair of partially formed phase adjusting sections 20a, 20b, as shown in
More particularly, and referring to
At microwave frequencies, the wire bond solution typically has granularity of 10-15 degrees per wire bond. However, using the additive manufacturing (depositing or printing) described above, produces a much higher degree of granularity to the phase tuning capability of the shunt hybrid combiner technique. For example, segments having a length L of 2 mils create a 0.5 degree phase shift at upper C-Band frequencies. This compares to a 5-7 degree phase shift at C-Band frequencies from the above described prior wire bond solutions.
A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. For example, layouts and orientation may vary and still be within the spirit of the disclosure as well as the process of monitoring and adjusting the phase shift. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4751453 | Foti | Jun 1988 | A |
8177348 | Sidhu et al. | May 2012 | B2 |
20160014906 | Ilic et al. | Jan 2016 | A1 |
Entry |
---|
Tehrani et al.; Inkjet-Printed 3D Interconnects for Millimeter-Wave System-on-Package Solutions. 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA; Jan. 1, 2016; 4 pages. |
Nishant Gupta, Raghuvir Tomar, A Low-Loss Voltage-Controlled Analog Phase-Shifter Using Branchline Coupler and Varactor Diodes, The LNM Institute of Information Technology and Natel Engineering Co., Inc., IEEE, Jul. 2, 2007, (2 pages). |
J. Piotr Starski, Optimization of the Matching Network for a Hybrid Coupler Phase Shifter, IEEE, vol. MTT-25, No. 8, Aug. 1977, pp. 662-666 (5 pages). |
F. Ferrero, C. Luxey, G. Jacquemod, R. Staraj, G. Kossiavas, V.Fusco, Reconfigurable phased-arrays based on hybrid couplers in reflection mode, Université de Nice-Sophia Antipolis, IEEE Feb. 13, 2017, (4 pages). |
M.H. Kori, Me, Prof. S. Mahapatra, PhD., Integral analysis of hybrid coupled semiconductor phase shifters, IEEE, vol. 134, Pt. H, No. 2, Apr. 1987, pp. 156-162 (7 pages). |
Ozan Dogan Gurbuz, Gabriel M. Rebeiz, A. 1.6-2.3-GHz RF MEMS Reconfigurabie Quadrature Coupler and Its Application to a 300 Reflective-Type Phase Shifter, IEEE, vol. 63, No. 2, Feb. 2015, pp. 414-421 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20190036189 A1 | Jan 2019 | US |