Photo-acoustic leak detection system

Information

  • Patent Grant
  • 6327896
  • Patent Number
    6,327,896
  • Date Filed
    Monday, March 20, 2000
    24 years ago
  • Date Issued
    Tuesday, December 11, 2001
    23 years ago
Abstract
The present invention is a photo-acoustic leak detection system that detects whether gas is leaking from a component. The system includes multiple beams wherein one beam is not absorbed by the gas and is used as a baseline measurement, while another beam absorbs the gas and emits an increased signal. Upon contact with the gas, an acoustic sensor senses the reaction or lack thereof between the gas and the beams, thereby allowing a signal processor to receive the respective alternating sensor signals after which the processor calculates the difference between the first and second signals to determine whether a leak exists. The photo-acoustic leak detection system also includes a beam combining means which forces the multiple beams to enter an acousto-optic cell at the same location. The acousto-optic cell, in turn, which is controlled by a signal controlling apparatus, sequentially and alternately diffracts the multiple beams at the same predetermined angle. Use of an acousto-optic cell removes the limitations inherent with mechanical parts, which, in turn, increases the sensitivity of the photo-acoustic leak detection system.
Description




TECHNICAL FIELD




This invention relates a photo-acoustic leak detection system, and more particularly a photo-acoustic leak detection system utilizing a single acousto-optic cell to diffract multiple beams.




BACKGROUND ART




Leak testing of various components (or systems) which are required to be gas-tight or liquid-tight, such as heat exchanger coils, fuel tanks, pressure vessels, fuel or hydraulic lines, etc., is a common step in the manufacturing process of such components. It is known in the art of leak testing to detect various structural flaws in components, such as leaky joints, cracks, porosity, and the like, by pressurizing the component with a gas and detecting trace quantities of the gas leaking from such components.




One way to detect such leaking gas is to use a known “photo-acoustic” effect. The photo-acoustic effect, as is known, occurs when the gas absorbs a beam of light having a particular wavelength. When the gas absorbs the beam, the absorbed optical energy heats the gas, thereby causing it to expand. As the heated gas expands, it produces pressure or acoustic waves (i.e., sound) which propagate from the point of heating. An acoustic sensor, such as a microphone, detects the acoustic waves and produces an electrical signal indicative of the acoustic waves.




The electrical signal may also represent acoustic waves produced from background noise, which is generated by two distinct sources. The first source of background noise is the component. When the component being tested absorbs the beam energy, the component produces background noise in the form of an acoustic wave. The second source of acoustic background noise is the surrounding environment such as machinery, passing vehicles, compressed air, etc. As discussed in pending U.S. patent application Ser. No. 08/835,043, now U.S. Pat. No. 5,834,633, a second beam can be used to generate a baseline acoustic signal indicative of the acoustic background noise. The second beam, having a wavelength which the leaking gas does not absorb, scans the component. The acoustic sensor detects and delivers an electrical signal indicative of the background noise to a processor, which also receives an electrical signal indicative of the acoustic wave produced by the gas and the background noise. The processor then subtracts the baseline acoustic signal from the electrical signal generated by the first beam yielding a signal indicative of only the leaking gas.




The comparative acoustic signals are produced by contacting the same point on the component with alternating first and second beams. The sensitivity of the leak detection system is proportional to the rate at which the comparative acoustic signals are produced, which, in turn, is a function of the rate at which the first and second beams alternatively contact the point under test. The comparison rate of the electrical signals generated by the first and second beams, however, limits the sensitivity of the leak detection system since the comparison rate is restrained by the rate at which the alternating first and second beams are produced. Existing switching techniques used to produce alternating first and second beams utilize the mechanical movement of numerous components, such as multiple mirrors, beam combiners, etc., thereby demanding excess space and increased cost. Relying upon the mechanical movement of the above mentioned components to produce alternating beams, thereby limits the production of alternating first and second beams to about 100 HZ. The rate of mechanical switching does not ensure that the first and second beams contact the same point on the component. Specifically, it is possible that the component or device directing the first and second beams may move between the alternating cycle, thereby allowing one of the alternating beams to contact a different point on the component which decreases the accuracy of the leak detection system. Although existing switching techniques may be used to alternate the first and second beams, the existing switching techniques are limited in speed to a rate of mechanical switching, thereby decreasing the sensitivity and accuracy of the leak detection system.




DISCLOSURE OF INVENTION




Accordingly, the present invention is a method for diffracting each of at least two coincident beams of different wavelengths by passing the coincident beams through an acousto-optic cell which diffracts the beams according to their respective wavelengths and the frequency of a signal applied to the acousto-optic cell, and applying signals sequentially and repetitively thereto, the frequency of each signal being selected such that the acousto-optic cell sequentially and repetitively diffracts each of the coincident beams at the same angle.




In one embodiment of the present invention, two light beams consisting of different wavelengths are continuously introduced to the acousto-optic cell, and two signals having different frequencies are selected and rapidly and alternately introduced to the acousto-optic cell such that the diffracted portions of the two beams are alternately and rapidly emitted from the acousto-optic cell along the same path.




This process may be used to rapidly and alternately direct two light beams having different wavelengths into a beam delivery device, such as for contacting a component containing a gas which upon absorbing one of the beams emits an acoustic signal indicating the presence of a leak within the component. Although designed originally for use in a leak detection system, the present invention may be used in a wide variety of applications.




The foregoing and other features and advantages of the present invention will become more apparent in light of the following detailed description of exemplary embodiments thereof as illustrated in the accompanying drawings.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a schematic diagram of the apparatus of the present invention for diffracting multiple beams.





FIG. 2

is a schematic diagram of a single acousto-optic cell diffracting a beam.





FIG. 3

is schematic diagram of a photo-acoustic leak detection system employing the multiple beam diffracting apparatus of the present invention.





FIG. 4

is a schematic diagram of a photo-acoustic leak detection system having the ability to control the power level of multiple beams exiting a beam delivery device.











BEST MODE FOR CARRYING OUT THE INVENTION




Referring to

FIG. 1

, a multiple beam diffracting apparatus


2


comprises an acousto-optic cell


24


, a coincident beam source


69


, and a signal controlling apparatus


59


.




The cell


24


is best understood with reference to FIG.


2


. The acousto-optic cell


24


has a single beam


100


incident thereon and receives a signal


102


having a frequency (f


a


) which is the acoustic drive frequency of the cell


24


. The signal


102


creates acoustic waves, illustrated by a series of equally spaced lines


108


, thereby creating a diffraction grating within the acousto-optic cell


24


. The distance between the lines


108


is the acoustic wavelength (Λ


a


) of the acousto-optic cell


24


. The acoustic wavelength (Λ


a


) is a function of the acoustic velocity (V


a


) and the acoustic drive frequency (f


a


) of the acousto-optic cell


24


. Specifically, the acoustic wavelength (Λ


a


) can be expressed according to the following formula:










Λ
a

=


V
a


f
a






Eq.  1













where,




V


a


=acoustic velocity




f


a


=acoustic drive frequency




The acoustic velocity (V


a


) of the acousto-optic cell


24


is a function of the material from which the acousto-optic cell


24


is constructed. Possible materials may include germanium, fused quartz, dense flint glass, gallium phosphide, lithium niobate, lead molybdate and tellurium dioxide, among others. For example, Model AGM-406B21, manufactured by IntraAction Corporation, is constructed of germanium and has an acoustic velocity (V


a


) of about 5.5 mm/μs. With the acoustic velocity (V


a


) constant, the acoustic drive frequency (f


a


) and the acoustic wavelength (Λ


a


) are inversely related. Hence, altering the acoustic drive frequency (f


a


) alters the acoustic wavelength (Λ


a


), thereby changing the spacing between the waves forming the grating.




While operating at the acoustic drive frequency (fa), the acousto-optic cell


24


diffracts a beam


100


, having a wavelength (λ): incident thereon, at an angle, (α), into a first order beam


104


and a zero order beam


106


. The zero order beam


106


exits the acousto-optic cell


24


at angle (α), and the first order beam


104


exits the acousto-optic cell


24


at angle (β). The power level of the first order beam


104


is a function of the angle (α) at which the beam


100


enters the acousto-optic cell


24


. The power level of the first order beam


104


is greatest when the beam


100


enters the acousto-optic cell


24


at the Bragg angle (θ


B


). Therefore, when attempting to maximize the power level of the first order beam


104


, it is preferred that the beam


100


enter the acousto-optic cell


24


at the Bragg angle (θ


B


). When the beam


100


enters the acousto-optic cell


24


at the Bragg angle (θ


B


), the first order beam


104


exits the acousto-optic cell


24


at an angle equal to twice the Bragg angle (θ


B


) relative to the zero order beam


106


. In other words, when the angle (α) is equal to the Bragg angle (θ


B


), the sum of angle (α) and angle (β) is equal to twice the Bragg angle (θ


B


).




The Bragg angle (θ


B


) can be expressed in the following formula:










θ
B



λ

2


Λ
a







Eq.  2













where,




θ


B


=Bragg angle




λ=beam wavelength




Λ


a


=acoustic wavelength of the acousto-optic cell Replacing the acoustic wavelength (Λ


a


) in Eq. 2 with its formulaic equation in Eq. 1 produces the following Bragg angle (θ


B


) formula:










θ
B




λ






f
a



2






V
a







Eq.  3













The Bragg angle (θ


B


) is, therefore, a function of beam wavelength (λ), acoustic velocity (V


a


), and acoustic drive frequency (f


a


). With the acoustic velocity (V


a


) and acoustic drive frequency (f


a


) held constant, the Bragg angle (θ


B


) differs for beams having different wavelengths. Therefore, when two beams having different wavelengths are coincident on an acousto-optic cell


24


, the angles at which the first order beams exit the acousto-optic cell


24


differ.




It has been discovered that an acousto-optic cell


24


can alternately diffract multiple beams at the same angle by supplying the acousto-optic cell


24


with selected signals such that the frequency of the signal causes the acousto-optic cell


24


to diffract one of the multiple beams at a predetermined angle. It is preferred that the Bragg angle (θ


B


) of each of the multiple beams approximate each other in order to maximize the power level of the first order beams exiting the acousto-optic cell


24


. It is also preferred that each of the multiple beams contact the acousto-optic cell


24


at a common point and common angle. One method of ensuring that each beam contacts the acousto-optic cell


24


at a common point and common angle is to create a coincident beam.




Referring back to

FIG. 1

, the coincident beam source


69


comprises a first laser


10


, a second laser


14


and a means for combining the multiple beams. The first laser


10


produces a first beam


12


, having a first wavelength (λ


1


), which is incident on a beam combiner


20


. The second laser


14


produces a second beam


15


, having a second wavelength (λ


2


), which is incident on a mirror


18


. In lieu of using individual discrete lasers to produce multiple beams having different wavelengths, a dual laser


16


could be used. The mirror


18


reflects the beam


15


toward the beam combiner


20


which combines the first beam


12


and the second beam


15


into a coincident beam


22


. Although the coincident beam


22


actually consists of two (2) beams (i.e., the first beam


12


and the second beam


15


), the coincident beam


22


appears as one beam because both the first and second beams


12


,


15


occupy the same space at the same time.




The coincident beam


22


contacts the acousto-optic cell


24


, capable of operating at a range of acoustic frequencies, at a coincident angle (θ


I


). The acoustic drive frequency (f


a


) at which the acousto-optic cell


24


operates is equal to the frequency of the signal supplied by a signal controlling apparatus


59


. The signal controlling apparatus


59


comprises a switch


26


, a first signal controller


68


and a second signal controller


70


. The first signal controller


68


, such as a crystal control oscillator, emits a first signal, having a first frequency (f


1


), along line


34


to the switch


26


. The second signal controller


70


emits a second signal, having


30


a second frequency (f


2


), along line


36


to the switch


26


. The switch


26


has a first position


38


and a second position


39


. When the switch


26


is in the first position


38


, the switch


26


emits the first signal along line


27


, and when the switch


26


is in the second position


39


, the switch


26


emits the second signal along line


27


. A radio frequency (RF) amplifier


29


increases the amplitude (i.e., power level) of the first and second signals being introduced thereto along line


27


and emits an acoustic drive signal along line


31


to the acousto-optic cell


24


. The acoustic drive signal is equal to the first or second frequency (f


1


), (f


2


), depending upon the position of the switch


26


, and becomes the acoustic drive frequency (f


a


) of the acousto-optic cell


24


. Specifically, when the switch


26


is in the first position


38


, the acoustic drive frequency (f


a


) of the acousto-optic-cell


24


is equal to the frequency of the first signal, and when the switch


26


is in the second position


39


, the acoustic drive frequency (f


a


) is equal to the frequency of the second signal. Although an amplifier


29


is not a necessary component of the present invention, incorporating an amplifier


29


between the signal controlling apparatus


59


and the acousto-optic cell


24


allows the use of lower level signals within the signal controlling apparatus


59


.




When the switch


26


is in the first position


38


, the acousto-optic cell


24


diffracts the first beam


12


into a first wavelength zero order beam


28


and a first wavelength first order beam


40


. The first wavelength zero order beam


28


exits the acousto-optic cell


24


at the coincident angle (θ


1


) and contacts a beam absorber


52


. The first wavelength first order beam


40


, however, exits the acousto-optic cell


24


at a predetermined angle (φ). While the switch


26


remains in the first position


38


, the acousto-optic


24


diffracts the second wavelength (λ


2


) into a second wavelength zero order beam


30


and a second wavelength first order beam


42


. The second wavelength zero order beam


30


exits the acousto-optic cell


24


at the coincident angle (θ


1


), while the second wavelength first order beam


42


exits the acousto-optic cell


24


at the second angle (θ


2


). The beam absorber


52


absorbs the second wavelength zero order beam


30


, and another absorber


54


absorbs the second wavelength first order beam


42


, while a third beam absorber


56


absorbs the first wavelength first order beam


40


′. For example, when the switch


26


is in the first position


38


, the acousto-optic cell


24


(Model AGM-406B21, manufactured by IntraAction Corporation) operating at a first frequency (f


1


) of about 46 MHz, diffracts the first wavelength (λ


1


) of 9.07 μm into first wavelength first order beam


40


at an angle of about 0.0759 radians (about 4.35 degrees). The acousto-optic cell


24


also diffracts the second wavelength (λ


2


) of 10.55 μm into a second wavelength first order beam


42


at the second angle (θ


2


) of about 0.0882 radians (about 5.06 degrees).




When the position of the switch


26


is changed from the first position


38


to the second position


39


, the first wavelength and second wavelength zero order beams


28


,


30


continue to exit the acousto-optic cell


24


at the coincident angle (θ


I


). However, the acousto-optic cell


24


diffracts the second wavelength first order beam


42


′ at the predetermined angle (φ) and diffracts the first wavelength first order beam


40


′ at a third angle (θ


3


). Changing the position of the switch


26


to the second position


39


changes the acoustic drive frequency (f


a


) to the frequency of the second signal and moves the second wavelength first order beam


42


′ from the second angle (θ


2


) to the predetermined angle (φ).




The frequency (f


2


) of the second signal is a function of the frequency (f


1


) of the first signal. Equating the angle at which the first wavelength first order beam


40


exits the acousto-optic cell


24


, when operating at a first frequency (f


1


), to the angle at which the second wavelength first order beam


42


exits the acousto-optic cell


24


, when operating at the second frequency (f


2


), and equating each angle to the predetermined angle (φ) produces the following equation.












λ
1



f
1



2


V
a



=



λ
2



f
2



2






V
a







Eq.  4













Since the acoustic velocity (V


a


) remains constant, the second frequency can be expressed according to the following equation:










f
2

=



λ
1


λ
2




f
1






Eq.  5













Therefore, when the second frequency (f


2


) is equal to the product of the first frequency (f


1


) and ratio of the first wavelength (λ


1


) to the second wavelength (λ


2


), the second wavelength first order beam


42


exits the acousto-optic cell


24


, operating at the second frequency (f


2


), at the predetermined angle (φ). By changing the position of the switch


26


from first position


38


to the second position


39


, the beam exiting the acousto-optic cell


24


, at the predetermined angle (φ), changes from the first wavelength first order beam


40


to the second wavelength first order beam


42


and vice versa.




For example, when the switch


26


is in the second position


39


, the acousto-optic cell


24


(Model AGM-406B21, manufactured by IntraAction Corporation) operating at a second frequency (f


2


) of about 39.55 MHz, diffracts the second wavelength (λ


2


) of 10.55 μm into a second wavelength first order beam


42


′ at an angle of about 0.0759 radians (about 4.35 degrees). This is the same angle at which the acousto-optic cell


24


, operating at the first frequency (f


1


) of 46 MHz, diffracted the first wavelength first order beam


40


. The acousto-optic cell


24


also diffracts the first wavelength (λ) of 9.07 μm into a first wavelength first order beam


40


′ at a third angle (θ


3


) of about 0.0642 radians (about 3.74 degrees).




A preferred embodiment of signal controlling apparatus


59


includes a control


60


, which produces a control signal along line


62


to the switch


26


, thereby causing the switch


26


to alternate between the first position


38


and the second position


39


. The rate at which the switch


26


alternates positions is limited by the bandwidth of the acousto-optic cell


24


. Commercially available acousto-optic cells are capable of operating at 500 kHz and beyond. It is preferred that the control signal causes the switch


26


to alternate between the first and second position


38


,


39


at a rate greater than 100 HZ. Alternating the position of the switch


26


at such a rate, thereby causes the acousto-optic cell


24


to emit alternating first and second beams


12


,


15


at the predetermined angle (φ) at a rate greater than possible with mechanical switching techniques. It is more preferable that the control signal cause the switch


26


to alternate between the first and second position


38


,


39


at a rate of at least 50 kHz. It is even more preferable that the control signal cause the switch


26


to alternate between the first and second position


38


,


39


at a rate of at least 75 kHz. It is especially preferable to alternate the position of the switch


26


at a rate up to 500 kHz. Alternating the first and second positions


38


,


39


of the switch


26


at such rates creates a pulsing effect such that the acousto-optic cell


24


emits alternating pulsed first and second wavelength first order beams


40


,


42


′ at the predetermined angle (φ).




Although the present invention describes a multiple beam diffracting apparatus


2


comprising an acousto-optic cell


24


capable of diffracting two beams at a predetermined angle (φ), the acousto-optic cell


24


is capable of diffracting more than two beams. Such a system would include an increased number of corresponding lasers, signal controllers and switch positions. When the switch is in a position other than the first or second position, the switch would transmit an additional signal having a frequency (f


x


), produced by the corresponding signal controller, to the acousto-optic cell


24


. The additional frequency (f


x


) would be a frequency such that the acousto-optic cell


24


would diffract an additional corresponding beam having a wavelength (λ


x


) at the predetermined angle (φ). The additional frequency can be expressed according to the following formula:










f
x

=




λ
1


λ
x




f
1


=



λ
2


λ
x




f
2







Eq.  6













where,




f


x


=acoustic frequency to diffract additional beam at predetermined angle (φ)




λ


x


=wavelength of additional beam




Therefore, in order for the acousto-optic cell


24


to diffract additional first order beams at the predetermined angle (i), the necessary acoustic frequency (f


x


) must be equal to the product of the first frequency (f


1


) and the ratio of the first wavelength (λ


1


) to the wavelength (λ


x


) of the additional beam; or the necessary frequency (f


x


) must be equal to the product of the second frequency (f


2


) and the ratio of the second wavelength (f


2


) to the wavelength λ


x


) of the additional beam. Switching between the necessary acoustic frequency (f


x


), the first frequency (f


1


), and the second frequency (f


2


) changes which wavelength exits the acousto-optic cell


24


at the predetermined angle (φ).




Referring to

FIG. 3

, a further embodiment of the present invention is a photo-acoustic leak detection system


150


. The photo-acoustic leak detection system


150


comprises the multiple beam diffracting apparatus


2


(discussed hereinbefore), a beam delivery device


50


, an acoustic sensor


84


, a signal processor


88


and a component


82


containing a gas. The beam delivery device


50


is aligned with the predetermined angle (φ), such that when the multiple beam diffracting apparatus


2


emits a beam at the predetermined angle (φ), the beam enters the beam delivery device


50


. The beam delivery device


50


is a means of transmitting the beam from one location to another location. Certain types of beam delivery devices include a waveguide, an articulated arm, and a free space propagation system. Although the present invention may be used with any type of beam delivery device, the figures, herein, illustrate a waveguide as the beam delivery device. A waveguide typically includes an optical fiber, which transmits the beam from one end to the other end. Although it may be rigid, the flexible waveguide illustrated in

FIG. 3

provides the capability of directing the beam


80


toward the component


82


at substantially any location and angle.




The gas is capable of absorbing the first beam


12


but is incapable of absorbing the second beam


15


. For example, a tracer gas, such as sulfur hexafloride (SF


6


), does not absorb the first beam


12


having a wavelength about a 9.07 μm, but the tracer gas absorbs the second beam


15


having a wavelength of about a 10.55 μm wavelength. A refrigerant, however, absorbs a wavelength of about 9.07 μm, but does not absorb a wavelength of about 10.55 μm. Selection of the 9.07 μm and 10.55 μm wavelengths, therefore, allows one leak detection system to be used for determining the existence of both refrigerants and sulfur hexafloride.




When the switch


26


is in the first position


38


, the acousto-optic cell


24


directs the first beam


12


into the beam delivery device


50


, which, in turn, emits a beam


80


, containing first wavelength (λ


1


). The beam


80


, containing the first wavelength (λ


1


), contacts the component


82


being tested for leaks and any leaking gas. Upon such contact, the component


82


produces a first acoustic signal indicative of the background noise. An acoustic sensor


84


, such as a microphone, senses the first acoustic signal and produces a first sensor signal along line


86


to a signal processor


88


, which uses such signal as a non-leak baseline measurement.




When the switch


26


is in the second position


39


, the acousto-optic cell


24


directs the second wavelength (λ


2


) into the beam delivery device


50


which emits a beam


80


, containing second wavelength (λ


2


). The beam


80


, containing the second wavelength (λ


2


) contacts the component and any leaking gas. The gas and the component absorb the beam


80


upon such contact and produce a second acoustic signal. The acoustic sensor


84


senses the second acoustic signal and produces a second sensor signal along line


86


to the signal processor


88


. It is also preferred that the control


60


, within the signal controlling apparatus


59


, deliver a synchronization signal along line


62


to the signal processor


88


, thereby synchronizing the first and second beams


12


,


15


with their respective acoustic signals. The signal processor


88


uses the first sensor signal as a non-leak baseline measurement and subtracts the first sensor signal from the second sensor signal and produces an output signal indicative of whether a leak exists.




Referring to

FIG. 4

, a further embodiment of the present invention is a system to control the power level of multiple beams exiting the beam delivery device


50


. The system comprises a coincident beam source


69


, an acousto-optic cell


24


, an alternate embodiment of the signal controlling apparatus


59


A, a beam delivery device


50


, a beam splitter


92


, and a beam detector


200


. The coincident beam source


69


, acousto-optic cell


24


, and beam delivery device


50


have been discussed hereinbefore in reference to

FIGS. 1 and 3

.




The signal controlling apparatus


59


A comprises all items comprised within the signal controlling apparatus


59


illustrated in FIG.


1


and additional items which have been added to control the intensity of the beam


80


by adjusting the amplitude of the acoustic drive frequency (fa). The items similar to signal controlling apparatus


59


A and the signal controlling apparatus


59


have the same reference numerals. The signal controlling apparatus


59


A comprises a control


60


, an inverter


232


, a switch


26


and corresponding first and second signal controllers


68


,


70


, mixers


206


,


208


, filters


214


,


216


, error detectors


222


,


224


(i.e., error amplifier), and variable amplitude sources


76


,


78


(i.e., variable gain amplifier or attenuator). Although it is not necessary, it is preferred that the frequency alternating device


59


A include filters


214


,


216


in order to minimize any undesired electric feedback noise within the system. The filters


214


,


216


may be low pass filters, bandpass filters, etc.




Regardless of whether the beam


80


contains the first wavelength (λ


1


) or the second wavelength (λ


2


), the beam splitter


92


splits the beam


80


into a passthrough beam


90


and a reference beam


202


. For example, the beam splitter


92


splits about 99.8 percent of the beam


80


into the passthrough beam


90


and about 0.2 percent of the beam


80


into the reference beam


202


. The choice of percentages at which the beam splitter


92


divides beam


80


into a passthrough beam


90


and a reference beam


202


is related to the sensitivity of the beam detector


200


.




The reference beam


202


contacts a beam detector


200


which senses the power level of the reference beam


202


and produces a beam power signal, indicative of the power level of the beam


80


, along line


204


to the signal controlling apparatus


59


A. The beam detector


200


may be placed at other locations, such as between the acousto-optic cell


24


and the beam delivery device


50


. The control system will maintain constant power at the location where the beam detector


200


is placed. Within the signal controlling apparatus


59


A, the line


204


splits into line


205


such that the first mixer


206


receives the beam power signal from line


205


and the second mixer


208


receives the beam power signal along line


204


. The first and second mixers


206


,


208


also continually receive the control signal, produced by the control


60


. Specifically, the control emits a control signal along line


62


, which splits into lines


230


and


231


. The switch


26


receives the control signal along line


62


. The first mixer


206


receives the control signal along line


231


. The inverter


232


receives the control signal along line


230


and emits an inverse control signal along line


234


to the second mixer


208


.




When the control signal causes the switch


26


to be in the first position


38


, the control signal prevents the second mixer


208


from emitting the beam power signal to the second filter


216


. However, when the control signal causes the switch


26


to be in the first position


38


, the control signal causes the first mixer


206


to advance the beam power signal to the first filter


214


along line


210


. The first low pass filter


214


produces a filtered control signal, which travels along line


218


to the first error detector


222


. The first error detector


222


includes a set point controller


223


which is set at a first set-point such that the power level of the beam


80


, containing the first wavelength (λ


1


), exiting the beam delivery device


50


is equal to a first predetermined power level. If the filtered power signal is different than the first set-point, the first error detector


222


produces a correction signal which travels along line


226


to the first variable amplitude source


76


. The first variable amplitude source


76


adjusts the amplitude of frequency of the first signal and produces an adjusted first signal such that the power level of the beam


80


is equal to the first predetermined power level when the beam


80


contains the first wavelength (λ


1


). The adjusted first signal travels along line


64


to the first position


38


of the switch


26


. Therefore, when the switch


26


is in the first position


38


, the acousto-optic cell


24


diffracts the first beam


12


at the predetermined angle (φ), and the beam delivery device


50


emits the beam


80


containing the first wavelength (λ


1


) at a power level equal to the first predetermined power level.




When the control signal causes the switch


26


to be in the second position


39


, the control signal prevents the first mixer


206


from emitting the beam power signal to the first filter


214


. However, when the control signal causes the switch


26


to be in the second position


39


, the control signal causes the second mixer


208


to advances the beam power signal to the second filter


216


along line


212


. The second low pass filter


216


produces a filtered control signal, which travels along line


220


to the second error detector


224


. The second error detector


224


includes a set point controller


225


which is set at a second set-point such that the power level of the beam


80


, containing the second wavelength (λ


2


), exiting the beam delivery device


50


is equal to a second predetermined power level. If the filtered power signal is different then the second set-point, the second error detector


224


produces a correction signal which travels along line


228


to the second variable amplitude source


78


. The second variable amplitude source


78


adjusts the amplitude of the frequency of the second signal and produces an adjusted second signal such that the power level of the beam


80


is equal to the second predetermined power level when the beam


80


contains the second wavelength (λ


2


). The adjusted second signal travels along line


66


to the second position


39


of the switch


26


. Therefore, when the switch


26


is in the second position


39


, the acousto-optic cell


24


diffracts the second beam


15


at the predetermined angle (φ), and the beam delivery device


50


emits the beam


80


containing the second wavelength (λ


2


) at a power level equal to the second predetermined power level. When the set point controllers


223


,


225


are set such that first set-point is equal to the second set-point, the beam


80


will have the same power level regardless of whether the beam


80


contains the first wavelength (λ


1


) or the second wavelength (λ


2


).




The present invention represents a significant improvement over the prior art switching techniques used to alternate between beams because the present invention electrically alternates multiple beams rather than mechanically alternating such beams. Specifically, the present invention alternates multiple beams without any mechanical movement. Unlike the present invention, the prior art fails to teach a simplified, unique means of alternatively emitting, at a predetermined angle, two or more beams, each having a different wavelength using minimal equipment. Additionally, the present invention provides a switching technique capable of alternating between multiple beams at speeds greater than possible with mechanical switching. Specifically, the present invention employs a single acousto-optic cell to diffract multiple beams at a predetermined angle while the prior art may require more than one acousto-optic cell. Incorporating the high speed switching technique of the present invention into a leak detection system, therefore, increases the efficiency and sensitivity of the leak detection system.




Although the invention has been described and illustrated with respect to the exemplary embodiments thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omissions and additions may be made without departing from the spirit and scope of the invention.



Claims
  • 1. A photo-acoustic leak detection system for determining whether a gas is leaking from a component, comprising:(a) an acousto-optic cell capable of operating at a range of frequencies and diffracting a plurality of beams incident upon said acousto-optic cell at a common entry location and common angle, wherein a first of said beams has a first wavelength that is substantially incapable of being absorbed by the gas, wherein a second of said beams has a second wavelength that is capable of being absorbed by the gas; (b) a signal controlling apparatus comprising: (1) a first signal controller producing a first frequency selected such that when said acousto-optic cell operates at said first frequency, said acousto-optic cell diffracts said first beam at a predetermined angle; (2) a second signal controller producing a second frequency selected such that when said acousto-optic cell operates at said second frequency, said acousto-optic cell diffracts said second beam at said predetermined angle; and (3) a switch receiving said first signal and said second signal, said switch having a first position and a second position such that when said switch is in said first position said switch emits said first signal to said acousto-optic cell, which operates at said first frequency and diffracts said first beam at said predetermined angle, and when said switch is in said second position, said switch emits said second signal to said acousto-optic cell, which operates at said second frequency and diffracts said second beam at said predetermined angle; (c) an acoustic sensor which receives a first acoustic signal and a second acoustic signal, said first acoustic signal emitted by the gas and/or the component upon the gas substantially failing to absorb said first beam, said second acoustic signal emitted by the gas and/or the component upon the gas absorbing said second beam, said acoustic sensor providing a first and second sensor signal indicative of said first and second acoustic signals, respectively; and (d) a signal processor which receives said first and second sensor signals, said signal processor using said first sensor signal as a non-leak baseline measurement and providing an output signal, which is the difference between said first and second signals and indicative of whether a leak exists.
  • 2. The photo-acoustic leak detection system of claim 1 wherein said signal controlling apparatus further comprises a control which produces a control signal to said switch wherein said control signal causes said switch to sequentially and repetitively alternate between said first and second positions thereby causing said acousto-optic cell to sequentially and repetitively diffract said first and second beams at said predetermined angle.
  • 3. The photo-acoustic leak detection system of claim 2 wherein said control signal causes said switch to sequentially and repetitively alternate between said first and second positions at a rate greater than 100 Hz.
  • 4. The photo-acoustic leak detection system of claim 2 wherein said control signal causes said switch to sequentially and repetitively alternate between said first and second positions at a rate of at least 50 kHz.
  • 5. The photo-acoustic leak detection system of claim 4 wherein said control signal causes said switch to sequentially and repetitively alternate between said first second positions at a rate of at least 75 kHz.
  • 6. The photo-acoustic leak detection system of claim 2 wherein said control signal causes said switch to sequentially and repetitively alternate between said first and second positions at a rate of up to 500 kHz.
  • 7. The photo-acoustic leak detection system of claim 2 further comprising a beam delivery device which receives said first and second beams and directs said first and second beams at the gas and/or said component.
  • 8. The photo-acoustic leak detection system of claim 7, wherein said beam delivery device directs said first and second beams at said component, said component emitting a first acoustic signal upon absorbing said first beam, said component and said gas emitting a second acoustic signal upon absorbing said second beam.
  • 9. The photo-acoustic leak detection system of claim 1, wherein said second frequency is equal to the product of said first frequency and a ratio of said wavelength for said first beam to said wavelength for said second beam.
  • 10. The photo-acoustic leak detection system of claim 1, further comprising a laser capable of emitting said first beam having said first wavelength.
  • 11. The photo-acoustic leak detection system of claim 10, further comprising another laser capable of emitting said second beam having said second wavelength.
  • 12. The photo-acoustic leak detection system of claim 11, further comprising beam combining means for combining said first and second beams into a coincident beam and directing said coincident beam at said acousto-optic cell.
  • 13. The photo-acoustic leak detection system of claim 10, wherein said laser is also capable of emitting said second beam having said second wavelength.
  • 14. The photo-acoustic leak detection system of claim 13, further comprising beam combining means for combining said first and second beams into a coincident beam and directing said coincident beam at said acousto-optic cell.
  • 15. A photo-acoustic leak detection system, comprising:(a) a component containing a gas, the gas being incapable of absorbing a first wavelength and capable of absorbing a second wavelength; (b) a first laser emitting a first beam having said first wavelength; (c) a second laser emitting a second beam having said second wavelength; (d) an acousto-optic cell capable of operating at a range of frequencies and diffracting said first and second beams; (e) beam combining means for combining said first and second beams into a coincident beam and directing said coincident beam at said acousto-optic cell; (f) a signal controlling apparatus comprising: (1) a first signal controller producing a first frequency selected such that when said acousto-optic cell operates at said first frequency, said acousto-optic cell diffracts said first beam at a predetermined angle; (2) a second signal controller producing a second frequency selected such that when said acousto-optic cell operates at said second frequency, said acousto-optic cell diffracts said second beam at said same predetermined angle; and (3) a switch receiving said first signal and said second signal, said switch having a first position and a second position such that when said switch is in said first position said switch emits said first signal to said acousto-optic cell, which operates at said first frequency and diffracts said first beam at said predetermined angle, and when said switch is in said second position, said switch emits said second signal to said acousto-optic cell, which operates at said second frequency and diffracts said second beam at said predetermined angle; (g) an acoustic sensor which receives a first acoustic signal and a second acoustic signal, said first acoustic signal emitted by the gas and/or said component upon the gas substantially failing to absorb said first wavelength, said second acoustic signal emitted by said gas and/or said component upon the gas absorbing said second wavelength, said acoustic sensor providing a first and second sensor signal indicative of said first and second acoustic signals, respectively; and (h) a signal processor which receives said first and second sensor signals, said signal processor using said first sensor signal as a non-leak baseline measurement and providing an output signal which is the difference between said first and second signals and indicative of whether a leak exists.
  • 16. The photo-acoustic leak detection system of claim 15 wherein said signal controlling apparatus further comprises a control which produces a control signal to said switch wherein said control signal causes said switch to sequentially and repetitively alternate between said first and second positions thereby causing said acousto-optic cell to sequentially and repetitively diffract said first and second beams at said predtermined angle.
  • 17. The photo-acoustic leak detection system of claim 16 wherein said control signal causes said switch to sequentially and repetitively alternate between said first and second positions at a rate greater than 100 Hz.
  • 18. The photo-acoustic leak detection system of claim 15, wherein said second frequency is equal to the product of said first frequency and a ratio of said wavelength for said first beam to said wavelength for said second beam.
  • 19. The photo-acoustic leak detection system of claim 15 further comprising a beam delivery device which receives said first and second beams and directs said first and second beams at the gas and/or said component.
  • 20. The photo-acoustic leak detection system of claim 19, wherein said beam delivery device directs said first and second beams at said component, said component emitting a first acoustic signal upon absorbing said first beam, said component and said gas emitting a second acoustic signal upon absorbing said second beam.
CROSS REFERENCES TO RELATED APPLICATIONS

This is a division of U.S. patent application Ser. No. 09/157,235, filed Sep. 18, 1998 now U.S. patent Ser. No. 6,154,307 issued Nov. 28, 2000, entitled “Method and Apparatus to Diffract Multiple Beams.” U.S. application Ser. No. 09/156,338 filed Sep. 18, 1998 U.S. Pat. No. 6,089,076, issued Jul. 18, 2000 entitled “System to Control The Power of A Beam”, also contains subject matter related to the disclosure herein.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with United States Government support under contract number 70NANB5H1122, awarded by the National Institute of Standards and Technology. The Government has certain rights in this invention.

US Referenced Citations (27)
Number Name Date Kind
2449166 Herschberger Sep 1948
3925666 Allan et al. Dec 1975
4112461 Owens Sep 1978
4163382 Amer Aug 1979
4172382 Murphy et al. Oct 1979
4372149 Zharov Feb 1983
4394573 Correa et al. Jul 1983
4412445 Spellicy Nov 1983
4457162 Rush et al. Jul 1984
4555627 McRae, Jr. Nov 1985
4622845 Ryan et al. Nov 1986
4635042 Andrews Jan 1987
4743119 Ida May 1988
4772789 Maram et al. Sep 1988
4785659 Rose et al. Nov 1988
4822168 Nogami et al. Apr 1989
5002391 Wolfrum et al. Mar 1991
5103675 Komninos Apr 1992
5129255 Corbin Jul 1992
5161408 McRae et al. Nov 1992
5296843 Wohlstein et al. Mar 1994
5450193 Carlsen et al. Sep 1995
5581017 Bejtlich, III Dec 1996
5616826 Pellaux et al. Apr 1997
5780724 Olender et al. Jul 1998
5824884 Olender et al. Oct 1998
5834632 Olender et al. Nov 1998
Non-Patent Literature Citations (6)
Entry
Isomet Corp., “All About Bragg Angle Errors in Acousto-Optic Modulators & Deflectors.” Springfield, VA, AN772A, May 1993, pp. 1-23.
Lekavich, John “Basics of Acousto-Optic Devices—Acousto-Optic Beam Modulators and Deflectors Control Laserbeams Control Laserbeams inMany Applications.” Lasers & Applications, Apr. 1986, pp. 59-64.
Laser Imaging Systems, “LaserSonic LSA-3.” Punta Gorda, FL, 2 pages.
Photonics Spectra, Apr. 1994, “Laser Applications,” Assembly-Line Leak Testing, p. 114.
Brassington, D. J., “Photo-acoustic detection and ranging—a new technique for the remote detection of gases.” J. Phys. D: Appl. Phys., 15 (1982), pp. 219-228.
Allen, Jr., John E. et al., “Optoacoustic pulses in a flame,” Optics Letters, vol. 1, No. 4, Oct. 1977, pp. 118-120.