1. Field of the Invention
The present invention relates to a photo conductor that has a protective surface layer, the photo conductor being utilized in image forming apparatus that uses the photo conductor, and a method for producing photo conductor that has the protective surface layer.
2. Description of Related Art
Conventionally, the characteristics of photo conductor (in particular, sensitivity and residual potential) with excellent durability and which sufficiently satisfy functions as a photo conductor have existed as organic photo conductor that has a protective surface layer. This is an organic photo conductor provided with a plasma polymerized membrane on a protective surface layer.
For example, a technique is known to form on and over a resin layer a composition of a protective surface layer of an organic photo conductor that has an organic light conductive layer into a two layer composition of a very protective surface layer having an amorphous hydrocarbon membrane (a -C membrane: amorphous carbon) created by a plasma polymerization method to achieve a product with photo conductor properties that is especially sensitive without losing any residual potential and also has excellent durability (for example, Related Art 1).
A conventional organic photo conductor provided with a protective surface layer having amorphous carbon has problems such as poor adhesion between the carrier transport layer that has the protective surface layer and organic resin, the protective surface layer being scraped due to scratches which occur when printing if the number of prints increases thereby reducing the lifespan of the organic photo conductor itself.
Furthermore, an organic photo conductor provided with a protective surface layer having amorphous carbon also has a problem of the decreased electrical resistance of a protective surface layer having deposition layers of amorphous carbon created by plasma CVD (chemical vapor deposition) of hydrocarbon gas diluted by argon gas or hydrocarbon gas only. Therefore, the image resolution becomes worsened.
Even further, an organic photo conductor provided with a protective surface layer having amorphous carbon also has a problem in which if the number of prints increases, the surface electrical resistance of foreign material adhering to the protective surface layer will decrease thereby worsening the image resolution after the image forming apparatus has not been used for a long period of time or during operation in high temperature/high humidity.
The present invention takes these problems into consideration and has an objective of providing a photo conductor that has a protective surface layer that can improve the density between the protective surface layer and the substrate layer, and lengthen the lifespan of the organic photo conductor. Another purpose of the present invention is to provide an image forming apparatus that uses this photo conductor and a manufacturing method of a photo conductor that has a protective surface layer.
The present invention is a photo conductor that has a protective surface layer whereon at least a carrier generation layer and a carrier transport layer are provided onto a conductive base and has a two layer construction on the protective surface layer comprising a first protective surface layer formed using a hydrocarbon gas-based amorphous carbon with ion implantation layer, and a second protective surface layer formed using a hydrocarbon gas-based amorphous carbon without an ion implantation layer.
Moreover, the present invention is a photo conductor that has a protective surface layer whereon at least a carrier generation layer and a carrier transport layer are provided onto a conductive base and the protective surface layer has a three layer construction comprising a first protective surface layer formed using a hydrocarbon gas-based amorphous carbon with an ion implantation layer, a second protective surface layer formed using a hydrocarbon gas-based amorphous carbon, and a third protective surface layer formed using an amorphous carbon and comprising an insulation layer set with an electrical resistance higher than the second protective surface layer.
The present invention is further described in the detailed description which follows, with reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
The embodiments of the present invention are explained in the following, in reference to the above-described drawings.
As shown in this figure, the related image forming apparatus is configured with an electric charging apparatus 102 close to an organic photo conductor (hereinafter referred to as photo conductor) 101, an exposure apparatus 103, an image developing apparatus 104, and a transfer apparatus 105. The photo conductor 101 has a protective surface layer although the composition of the related protective surface layer will be described later. A drive mechanism (not shown in the figure) rotates the photo conductor 101 in the direction shown by the arrow in the figure.
The electric charging apparatus 102 uniformly charges the surface of the photo conductor 101. Although the figure shows the electric charging apparatus 102 that uniformly charges the surface of the photo conductor 101 using a non-contact electric charging method, the method is not limited to this and an apparatus can be applied that uses a contact electric charging method. The exposure apparatus 103 uses laser light to expose the charged surface. A latent image is formed on the surface of the photo conductor 101 by this action. The image developing apparatus 104 supplies a non-magnetic developing agent (toner) to an internal developing roller 106 and then adheres a fixed amount of toner to the latent image formed on the surface of the photo conductor 101. The transfer apparatus 105 transfers the toner adhering to the latent image to a recording paper 108 that is transported by a feed roller 107.
A cleaning apparatus 109 is arranged on the downstream side of the transfer apparatus 105 in the direction of rotation of the photo conductor 101. The cleaning apparatus 109 removes toner remaining on the surface of the photo conductor 101 after transfer to the recording paper 108. The cleaning apparatus 109 is provided with a cleaning blade 110 that makes direct contact with and removes toner remaining on the surface of the photo conductor 101.
As shown in this figure, the photo conductor 101 related to the first embodiment is formed such that a carrier generation layer 202 and a carrier transport layer 203 are deposited onto a conductive base material 201 and a protective surface layer 204 is further deposited onto the layers. The protective surface layer 204 has a two layer construction of a first protective surface layer 205 and a second protective surface layer 206. These first and second protective surface layers 205 and 206 are formed in the photo conductor 101 that has the protective surface layer related to the first embodiment by a plasma CVD method.
As shown in
A DC bias power supply 305 is connected to the substrate holder 302 and applies a DC bias voltage to the substrate B through the substrate holder 302. A gas introduction port 306 is provided on the CVD deposition apparatus 300 to introduce CVD gas from the top of the inside of the electrode 303. A discharge port 307 is also provided that discharges to a vacuum container 301 any CVD gas that is introduced from the gas introduction port 306 and escapes from the gap between the substrate holder 302 and the electrode 303.
When forming a protective surface layer in this type of CVD deposition apparatus 300, the surface of the substrate B held in the substrate holder 302 is cleaned using hydrogen gas etching before forming the first protective surface layer 205. In more concrete terms, the surface of the substrate B is cleaned by introducing hydrogen gas from the gas introduction port 306 and applying a bias voltage of −500 V to −1,000 V to the substrate B. This type of cleaning operation can remove foreign matter on the surface of the substrate B and improve the adhesiveness between the carrier transport layer 203 and the first protective surface layer 205 even more. The first protective surface layer 205 and the second protective surface layer 206 are formed after the surface of the substrate B is cleaned in this manner.
As shown in
As shown in
In contrast, as shown in
As shown in
Furthermore, the CVD deposition apparatus 300 related to the first embodiment controls the voltage applied to the substrate B and the electrode 303 as described above and also controls the gas pressure applied to the vacuum container 301 when forming the protective surface layer 204. In more concrete terms, as shown in
In addition, in particular
The CVD gas introduced from the gas introduction port 306 uses methane gas as a hydrocarbon gas and a methane gas diluted by hydrogen gas (hereinafter referred to as hydrogen diluted methane gas) as a hydrogen diluted hydrocarbon gas. A methane gas diluted by argon gas (hereinafter referred to as argon diluted methane gas) is also used as a target of the comparison.
As shown in this figure, the adhesiveness between the protective surface layer and the carrier transport layer on a photo conductor that has a single layer protective surface layer was in a worsened state after 1,000 prints when methane gas, hydrogen diluted methane gas, and argon diluted methane gas were used. Because of this, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself could occur.
In the resolution of prints in the initial state, degradation in the image resolution was avoided only when hydrogen diluted methane gas was used. When methane gas and argon diluted methane gas were used, degradation in the image resolution occurred. This is based on avoiding reductions in the electrical resistance of the protective surface layer through the use of hydrogen diluted methane gas.
In contrast, worsening of the adhesiveness between the protective surface layer and the carrier transport layer on a photo conductor that has the protective surface layer (two layer CVD) related to this embodiment after 1,000 prints was avoided when methane gas, hydrogen diluted methane gas, and argon diluted methane gas were used on the second protective surface layer 206 (second layer). This is based on carbon being injected into the carrier transport layer 203 although the first protective surface layer 205 does not simply adhere to the carrier transport layer 203. The first protective surface layer 205 is formed along with a mixing layer (transition layer on the carrier transport layer 203. Because of this, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided.
In the resolution of prints in the initial state, degradation in the image resolution was reliably avoided when hydrogen diluted methane gas was used on the second protective surface layer 206. When methane gas was used on the second protective surface layer 206, degradation in the image resolution was avoided to a certain degree. And when argon diluted methane gas was used on the second protective surface layer 206, degradation in the image resolution occurred. This is based on avoiding reductions in the electrical resistance of the protective surface layer through the use of hydrogen diluted methane gas.
Because the first protective surface layer 205 is formed using amorphous carbon that is associated with a hydrocarbon gas ion implantation layer according to the photo conductor that has the protective surface layer related to the first embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 205 can be improved. Because this makes it possible to reliably avoid scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself, the lifespan of the photo conductor can be lengthened.
Moreover, because the second protective surface layer 206 is formed using an amorphous carbon deposition layer of hydrogen diluted hydrocarbon gas according to the photo conductor that has the protective surface layer related to the first embodiment, reductions in the electrical resistance of the protective surface layer can be reliably avoided. This makes it possible to maintain the electrical resistance of the protective surface layer at a high resistance, which in turn makes it possible to reliably avoid degradation in the resolution of images due to reductions in the electrical resistance of the protective surface layer.
The composition when the photo conductor that has the protective surface layer related to the first embodiment comprises the first protective surface layer 205 formed using amorphous carbon that is associated with a hydrocarbon gas ion implantation layer and the second protective surface layer 206 formed using an amorphous carbon deposition layer of hydrogen diluted hydrocarbon gas is described. However, even if the second protective surface layer 206 is not formed using an amorphous carbon deposition layer of hydrogen diluted hydrocarbon gas, results that improve the adhesiveness between the carrier transport layer 203 and the first protective surface layer 205 can still be obtained.
As shown in
The related ion energy is decreased by setting the gas pressure applied to the vacuum container 301 to a high pressure and is increased by setting the gas pressure to a low pressure. Consequently, in the CVD deposition apparatus 300 related to the first embodiment, the gas pressure when forming the second protective surface layer 206 is set high relative to the gas pressure when forming the first protective surface layer 205.
Because the gas pressure when forming the first protective surface layer 205 is set low relative to the gas pressure when forming the second protective surface layer 206 according to the photo conductor that has the protective surface layer related to the first embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 205 can be improved. Because of this, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the gas pressure when forming the second protective surface layer 206 is set high relative to the gas pressure when forming the first protective surface layer 205 according to the photo conductor that has the protective surface layer related to the first embodiment, the electrical resistance of the second protective surface layer 206 can be set higher than the first protective surface layer 205. Because of this, the image resolution in the second protective surface layer 206 can be maintained at a high quality.
In contrast, when viewing fluctuations of ion energy from the viewpoint of a DC bias voltage applied to the substrate B, the ion energy is decreased (for example, when the DC bias voltage shown in
Because the DC bias voltage applied to the substrate B when forming the first protective surface layer 205 is set larger than the DC bias voltage when forming the second protective surface layer 206 according to the photo conductor that has the protective surface layer related to the first embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 205 can be improved. Because of this, even if the number of prints is increased, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the DC bias voltage when forming the second protective surface layer 206 is set smaller than the DC bias voltage when forming the first protective surface layer 205 according to the photo conductor that has the protective surface layer related to the first embodiment, the electrical resistance of the second protective surface layer 206 can be set higher than the first protective surface layer 205. Because of this, the image resolution in the second protective surface layer 206 can be maintained at a high quality.
The CVD deposition apparatus 800 shown in
The photo conductor 101 that has the protective surface layer related to the second embodiment is produced by the CVD deposition apparatus 800 that has the above-mentioned composition. Therefore, compared to the CVD deposition apparatus 300 related to the first embodiment, the space required for the electrode 303 can be eliminated and the substrate B placed in that space thereby making it ideal when producing large quantities of photo conductor.
Forming a protective surface layer the CVD deposition apparatus 800 related to the second embodiment is similar to the CVD deposition apparatus 300 related to the first embodiment in that the surface of the substrate B held in the substrate holder 302 is cleaned using hydrogen gas etching before forming the first protective surface layer 205.
As shown in
As shown in
In contrast, as shown in
As shown in
In particular,
As shown in
The ion energy is decreased by setting the bias voltage pulse applied to the substrate B to a lower voltage and is increased by setting the bias voltage pulse to a higher voltage. Because of this, the bias voltage pulse applied to the substrate B when forming the second protective surface layer 206 is set lower than the bias voltage pulse when forming the first protective surface layer 205 in the CVD deposition apparatus 800 related to the second embodiment.
Because the bias voltage pulse applied to the substrate B when forming the first protective surface layer 205 is set larger than the bias voltage pulse when forming the second protective surface layer 206 in the photo conductor that has the protective surface layer related to the second embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 205 can be improved. Because of this, even if the number of prints is increased, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the bias voltage pulse when forming the second protective surface layer 206 is set smaller than the bias voltage pulse when forming the first protective surface layer 205 according to the photo conductor that has the protective surface layer related to the second embodiment, the electrical resistance of the second protective surface layer 206 can be set higher than the first protective surface layer 205. Because of this, the image resolution in the second protective surface layer 206 can be maintained at a high quality.
In contrast, when viewing fluctuations of ion energy from the viewpoint of a bias pulse width applied to the substrate B, the ion energy is decreased (for example, when the bias pulse width shown in
Because the bias pulse width applied to the substrate B when forming the first protective surface layer 205 is set smaller than the bias pulse width when forming the second protective surface layer 206 in the photo conductor that has the protective surface layer related to the second embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 205 can be improved. Because of this, even if the number of prints is increased, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the bias pulse width when forming the second protective surface layer 206 is set larger than the bias pulse width when forming the first protective surface layer 205 according to the photo conductor that has the protective surface layer related to the second embodiment, the electrical resistance of the second protective surface layer 206 can be set higher than the first protective surface layer 205. Because of this, the image resolution in the second protective surface layer 206 can be maintained at a high quality.
In contrast, when viewing fluctuations of ion energy from the viewpoint of a high-frequency pulse width applied to the substrate B, the ion energy is decreased (for example, when the high-frequency pulse width shown in
Because the high-frequency pulse width applied to the substrate B when forming the first protective surface layer 205 is set smaller than the high-frequency pulse width when forming the second protective surface layer 206 in the photo conductor that has the protective surface layer related to the second embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 205 can be improved. Because of this, even if the number of prints is increased, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the high-frequency pulse width when forming the second protective surface layer 206 is set larger than the high-frequency pulse width when forming the first protective surface layer 205 according to the photo conductor that has the protective surface layer related to the second embodiment, the electrical resistance of the second protective surface layer 206 can be set higher than the first protective surface layer 205. Because of this, the image resolution in the second protective surface layer 206 can be maintained at a high quality.
Even further, as shown in
The related electron temperature of the plasma varies in proportion to variations in the voltage application timing between the high-frequency voltage pulse and the bias voltage pulse superimposed and applied to the substrate. In more concrete terms, the electron temperature varies in proportion to the lengthening and shortening of the time from when the high-frequency voltage pulse is turned OFF until the bias voltage pulse is applied (hereinafter referred to as forming time). In even more concrete terms, as shown in
Because the forming time when forming the first protective surface layer 205 is set longer than the forming time when forming the second protective surface layer 206 according to the photo conductor that has the protective surface layer related to the second embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 205 can be improved. Because of this, even if the number of prints is increased, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the forming time when forming the first protective surface layer 205 is set longer than the forming time when forming the second protective surface layer 206 according to the photo conductor that has the protective surface layer related to the second embodiment, the electrical resistance of the second protective surface layer 206 can be set higher than the first protective surface layer 205. Because of this, the image resolution in the second protective surface layer 206 can be maintained at a high quality.
An example in which the forming time when forming the second protective surface layer 206 is set shorter than the forming time when forming the first protective surface layer 205 is cited here. Conversely, the forming time when forming the second protective surface layer 206 can also be set longer than the forming time when forming the first protective surface layer 205. For example, the forming time when forming the first protective surface layer 205 can be set to 0 μs to 5 μs and the forming time when forming the second protective surface layer 206 can also be set 10 μs to 50 μs. Results related to the second embodiment can be obtained when changing and setting the forming time in this manner.
Hereupon, FIGS. 14 to 17 are used to describe the principle of the above-mentioned electron temperature being increased by setting the forming time shorter (0 μs to 5 μs) or longer (75 μs to 100 μs) and being decreased by setting the forming time to a length in between these (15 μs to 50 μs).
In
As shown in
Furthermore, as shown in
Here, the bias voltage pulse is applied after 80 μs (forming time D) has elapsed from when the application of the high-frequency voltage pulse was stopped. The electron temperature, however, will not suddenly increase when the forming time D is equal to or later than time T6 and a time that does not pass 50 μs from time T2 is set. This is due to the fact that electrons existing in the plasma impede increases in the electron temperature after the application of the high-frequency voltage pulse is stopped.
As described in
In other words, during a period of 50 μs from time T2 when the application of the high-frequency voltage pulse was stopped, electrons are remaining within the plasma. Because of this, the electron temperature is impeded from suddenly increasing when the forming time D is set in this period. In contrast, electrons are remaining when the forming time D is set to a period from time T2 until time T6, after 8 μs has elapsed from time T2, but the electron temperature itself has not decreased substantially thereby resulting in a high electron temperature. Furthermore, because the electrons have already vanished when the forming time D is set to time T10 or later after 50 μs has elapsed from time T2, the electron temperature increases suddenly. Consequently, the electron temperature is a high temperature when the forming time D is set shorter (0 μs to 5 μs) or longer (75 μs to 100 μs) and is a low temperature when the forming time is set to a length in between these (15 μs to 50 μs).
As shown in
In like manner to the first embodiment, the photo conductor that has the protective surface layer related to the second embodiment also controls the gas pressure applied to the vacuum container 301 when forming the protective surface layer 204. This makes it possible to obtain results based on differences in the gas pressure described using
The photo conductor that has the protective surface layer related to the third embodiment differs from the photo conductor that has the protective surface layer related to the first embodiment in that the protective surface layer 204 has a three layer construction.
As shown in this figure, the photo conductor 1801 related to the third embodiment comprises a carrier generation layer 202 and a carrier transport layer 203 deposited onto a conductive base material 201, and a protective surface layer 1802 further deposited onto the layers. The protective surface layer 1802 has a three later construction of a first protective surface layer 1803, a second protective surface layer 1804, and a third protective surface layer 1805. Because the protective surface layer 1802 has a three later construction, superior durability and a longer lifespan of the photo conductor are possible compared to a photo conductor comprising a second protective surface layer with a two layer construction. These first, second, and third protective surface layers 1803 to 1805 are formed on the photo conductor 1801 related to the third embodiment using a plasma CVD method.
The CVD deposition apparatus 300 (
The CVD gas utilized when forming the first protective surface layer 1803 is similar to the gas when forming the first protective surface layer 205 in the photo conductor 101 related to the first embodiment. Because of this, the first protective surface layer 1803 is formed on the surface of the substrate B by amorphous carbon accompanied by an ion implantation layer with a membrane thickness of 0.01 μm to 0.1 μm in like manner to the first protective surface layer 205 related to the first embodiment.
The CVD gas utilized when forming the second protective surface layer 1804 differs from the CVD gas utilized when forming the second protective surface layer 206 related to the first embodiment in that a negative DC bias voltage is applied to the substrate B. A bias voltage of −200 V to −500 V is applied to the substrate B when forming the second protective surface layer 1804 related to the third embodiment in contrast to a bias voltage of −100 V to −500 V being applied to the substrate B when forming the second protective surface layer 206 related to the first embodiment.
Furthermore, the relative values of the gas pressure between the first protective surface layers are also different. The gas pressure when forming the second protective surface layer 1804 related to the third embodiment is set almost identical to the gas pressure when forming the first protective surface layer 1803 in contrast to the gas pressure when forming the second protective surface layer 206 related to the first embodiment that is set higher than the gas pressure when forming the first protective surface layer 205.
On the other hand, as shown in
As shown in
As shown in
In particular,
As shown in
As described in the first embodiment, the related ion energy is decreased by setting the gas pressure applied to the vacuum container 301 to a high pressure and is increased by setting the gas pressure to a low pressure. Consequently, in the CVD deposition apparatus 300 related to the third embodiment, the gas pressure when forming the third protective surface layer 1805 is set high relative to the gas pressure when forming the second protective surface layer 1804.
Because the gas pressure when forming the first protective surface layer 1803 and the second protective surface layer 1804 is set low relative to the gas pressure when forming the third protective surface layer 1805 according to the photo conductor that has the protective surface layer related to the third embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 1803, as well as the adhesiveness between the first protective surface layer 1803 and the second protective surface layer 1804 can be improved. Because of this, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the gas pressure when forming the third protective surface layer 1805 is set high relative to the gas pressure when forming the first protective surface layer 1803 and the second protective surface layer 1804 according to the photo conductor that has the protective surface layer related to the third embodiment, the electrical resistance of the third protective surface layer 1805 can be set higher than the second protective surface layer 1804. Because of this, the image resolution in the third protective surface layer 1805 can be maintained at a high quality.
In contrast, when viewing fluctuations of ion energy from the viewpoint of a DC bias voltage applied to the substrate B, the ion energy is decreased (for example, when the DC bias voltage shown in
Because the DC bias voltage applied to the substrate B when forming the first protective surface layer 1803 and the second protective surface layer 1804 is set low larger than the DC bias voltage when forming the third protective surface layer 1805 in the photo conductor that has the protective surface layer related to the third embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 1803, as well as the adhesiveness between the first protective surface layer 1803 and the second protective surface layer 1804 can be improved. Because of this, even if the number of prints increases, scrapes on the protective surface layer due to scratches when printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the DC bias voltage when forming the third protective surface layer 1805 is set smaller than the DC bias voltage when forming the first protective surface layer 1803 and the second protective surface layer 1804 according to the photo conductor that has the protective surface layer related to the third embodiment, the electrical resistance of the third protective surface layer 1805 can be set higher than the second protective surface layer 1804. Because of this, the image resolution in the third protective surface layer 1805 can be maintained at a high quality.
As shown in
In contrast to the photo conductor that has the protective surface layer related to the third embodiment that is produced using the CVD deposition apparatus 300 related to the third embodiment, the photo conductor that has the protective surface layer related to the fourth embodiment differs in the fact that is it produced using the CVD deposition apparatus 800 related to the second embodiment (
The CVD gas utilized when forming the first protective surface layer 1803 is identical to the gas when forming the first protective surface layer 205 in the photo conductor 101 related to the second embodiment. Because of this, the first protective surface layer 1803 is formed on the surface of the substrate B by amorphous carbon accompanied by an ion implantation layer with a membrane thickness of 0.01 μm to 0.1 μm in like manner to the first protective surface layer 205 related to the second embodiment.
The CVD gas utilized when forming the second protective surface layer 1804 differs from the gas utilized when forming the second protective surface layer 206 related to the second embodiment in that a bias voltage pulse is applied to the substrate B. A bias voltage pulse of −1,000 V to −2,000 V is applied to the substrate B when forming the second protective surface layer 1804 in contrast to a bias voltage pulse of −500 V to −1,000 V being applied to the substrate B when forming the forming the second protective surface layer 206 related to the second embodiment.
Furthermore, the relative values of the gas pressure between the first protective surface layers are also different. The gas pressure when forming the second protective surface layer 1804 related to the fourth embodiment is set almost identical to the gas pressure when forming the first protective surface layer 1803 in contrast to the gas pressure when forming the second protective surface layer 206 related to the second embodiment that is set higher than the gas pressure when forming the first protective surface layer 205.
Even further, the high-frequency pulse width, bias pulse width, and forming time when forming the second protective surface layer 1804 are also different. The high-frequency pulse width, bias pulse width, and forming time when forming the second protective surface layer 1804 related to the fourth embodiment are set to 10 μs to 20 μs, 3 μs to 10 μs, and 80 μs to 150 μs, respectively in contrast to the high-frequency pulse width, bias pulse width, and forming time when forming the second protective surface layer 206 related to the second embodiment being set to 50 μs to 200 μs, 20 μs to 50 μs, and 10 μs to 50 μs, respectively.
Conversely, as shown in
As shown in
As shown in
As described in
Because the bias voltage pulse applied to the substrate B when forming the first protective surface layer 1803 and the second protective surface layer 1804 is set larger than the bias voltage pulse when forming the third protective surface layer 1805 in the photo conductor that has the protective surface layer related to the fourth embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 1803, as well as between the first protective surface layer 1803 and the second protective surface layer 1804 can be improved. Because of this, even if the number of prints is increased, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the bias voltage pulse when forming the third protective surface layer 1805 is set smaller than the bias voltage pulse when forming the first protective surface layer 1803 and the second protective surface layer 1804 according to the photo conductor that has the protective surface layer related to the fourth embodiment, the electrical resistance of the third protective surface layer 1805 can be set higher than the second protective surface layer 1804. Because of this, the image resolution in the third protective surface layer 1805 can be maintained at a high quality.
In contrast, when viewing fluctuations of ion energy from the viewpoint of a bias pulse width applied to the substrate B, the ion energy is decreased by setting the bias pulse width to a larger value (for example, when the bias pulse width shown in
Because the bias pulse width applied to the substrate B when forming the first protective surface layer 1803 and the second protective surface layer 1804 is set smaller than the bias pulse width when forming the third protective surface layer 1805 in the photo conductor that has the protective surface layer related to the fourth embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 1803 as well as the adhesiveness between the protective surface layer 1803 and the second protective surface layer 1804 can be improved. Because of this, even if the number of prints is increased, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the bias voltage pulse when forming the third protective surface layer 1805 is set larger than the bias voltage pulse when forming the first protective surface layer 1803 and the second protective surface layer 1804 according to the photo conductor that has the protective surface layer related to the fourth embodiment, the electrical resistance of the third protective surface layer 1805 can be set higher than the second protective surface layer 1804. Because of this, the image resolution in the third protective surface layer 1805 can be maintained at a high quality.
Furthermore, when viewing fluctuations of ion energy from the viewpoint of a high-frequency pulse width applied to the substrate B, the ion energy is decreased by setting the high-frequency pulse width to a larger value (for example, when the bias pulse width shown in
Because the high-frequency pulse width applied to the substrate B when forming the first protective surface layer 1803 and the second protective surface layer 1804 is set smaller than the high-frequency pulse width when forming the third protective surface layer 1805 in the photo conductor that has the protective surface layer related to the fourth embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 1803 as well as the adhesiveness between the protective surface layer 1803 and the second protective surface layer 1804 can be improved. Because of this, even if the number of prints is increased, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the high-frequency pulse when forming the third protective surface layer 1805 is set larger than the high-frequency pulse when forming the first protective surface layer 1803 and the second protective surface layer 1804 according to the photo conductor that has the protective surface layer related to the fourth embodiment, the electrical resistance of the third protective surface layer 1805 can be set higher than the second protective surface layer 1804. Because of this, the image resolution in the third protective surface layer 1805 can be maintained at a high quality.
Even further, as shown in
Because the forming time when forming the first protective surface layer 1803 and the second protective surface layer 1804 is set longer than the forming time when forming the third protective surface layer 1805 in the photo conductor that has the protective surface layer related to the fourth embodiment, the adhesiveness between the carrier transport layer 203 and the first protective surface layer 1803 as well as the adhesiveness between the protective surface layer 1803 and the second protective surface layer 1804 can be improved. Because of this, even if the number of prints is increased, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor.
At the same time, because the forming time when forming the third protective surface layer 1805 is set shorter than the forming time when forming the first protective surface layer 1803 and the second protective surface layer 1804 according to the photo conductor that has the protective surface layer related to the fourth embodiment, the electrical resistance of the third protective surface layer 1805 can be set higher than the second protective surface layer 1804. Because of this, the image resolution in the third protective surface layer 1805 can be maintained at a high quality.
An example is shown here in which the forming time when forming the third protective surface layer 1805 is set shorter than the forming time when forming the first protective surface layer 1803 and the second protective surface layer 1804. Contrary to this, however, the forming time when forming the third protective surface layer 1805 can also be set longer than the forming time when forming the first protective surface layer 1803 and the second protective surface layer 1804. For example, the forming time when forming the first protective surface layer 1803 and the second protective surface layer 1804 can be set to 0 μs to 50 μs and the forming time when forming the third protective surface layer 1805 set to 10 μs to 50 μs. The results related to the fourth embodiment can be obtained when changing and setting the forming time in this manner.
The photo conductor that has the protective surface layer related to the fifth embodiment differs from the photo conductor that has the protective surface layer related to the first embodiment in the fact that the second protective surface layer of the photo conductor produced by the CVD deposition apparatus 300 related to the first embodiment undergoes some type of processing to form an oxidation layer (insulation layer) on the surface. Because this oxidation layer (insulation layer) forms the third protective surface layer, the photo conductor that has the protective surface layer related to the fifth embodiment has a three layer construction. And because the protective surface layer 1802 is produced using a three layer construction, superior durability and a longer lifespan of the photo conductor are possible compared to a photo conductor comprising a protective surface layer with a two layer construction. The numbers and symbols shown in
In the fifth embodiment, as a first step, a method is utilized to form the third protective surface layer 1805 by a plasma CVD process that uses oxygen gas as the CVD gas as a method to oxidize the surface of the second protective surface layer 1804 of the photo conductor produced by the CVD deposition apparatus 300 and form the third protective surface layer 1805. Then, as a second step, a method is utilized to form the third protective surface layer 1805 by applying a heat treatment within air.
As shown in
As shown in
In contrast, when using the second method to form the third protective surface layer 1805 in the fifth embodiment, the photo conductor 1801 formed up to the second protective surface layer 1804 by the CVD deposition apparatus 300 is placed into a device that can apply a heat treatment within air, such as a separately provided oven, for a fixed period of time (hereinafter, referred to as a heating device). Because of this, the third protective surface layer 1805 is formed on the surface of the substrate B (the second protective surface layer 1804) by an amorphous carbon with a membrane thickness of 0.01 μm to 0.1 μm. An appropriate time to leave the photo conductor in the heating device will be described later. The related third protective surface layer 1805 also functions as a layer (insulation layer) that has an insulation effect in the photo conductor that has the protective surface layer related to this embodiment.
The electrical resistance of the oxidized layer (insulation layer) that acts as the third protective surface layer 1805 formed in this manner is set higher than the electrical resistance possessed by the second protective surface layer 1804. Therefore, the quality of the image resolution can be improved when printing the image.
As shown in this figure, when a heat treatment within air is applied to the photo conductor 1801 produced up to the second protective surface layer 1804 by the CVD deposition apparatus 300, differences in the image resolution after 500 prints appear. Compared to a photo conductor 1801 that does not has a heat treatment applied to it, improvement to the image resolution appeared to a certain degree when applying a heat treatment of 50° C. for 120 minutes or 70° C. for 30 minutes. In contrast, improvements to the quality of the image resolution clearly appeared when applying a heat treatment of 80° C. for 30 minutes, 90° C. for 30 minutes, or 100° C. for 30 minutes. In particular, when applying a heat treatment of 90° C. for 30 minutes, the quality of the resolution is noticeably improved.
Care must be taken for the exterior appearance when applying a heat treatment to the surface of the photo conductor 1801. Namely, a heat treatment for a period of time appropriate for the photo conductor 1801 will produce an effect that improves the resolution. However, a heat treatment for a period of time excessive for the photo conductor 1801 will have a bad influence on the exterior appearance of the photo conductor 1801 itself. In the example shown in
In contrast to this, when forming the third protective surface layer 1805 using the first method (oxygen plasma process), obvious improvements appeared in the image resolution using 5 minutes of oxygen plasma processing. For this case, the processing can be completed within a short period such as 5 minutes. Furthermore, the heat treatment will not have a bad influence on the exterior appearance.
Because some type of processing is applied to the second protective surface layer 1804 to form the third protective surface layer 1805, that forms the insulation layer (oxidized layer) in the photo conductor 1801 related to the fifth embodiment, the electrical resistance of the surface of the photo conductor 1801 can be maintained at a high level and the image resolution also maintained at a high quality.
As shown in
The photo conductor that has the protective surface layer related to the sixth embodiment differs from the photo conductor that has the protective surface layer related to the second embodiment in the fact that the second protective surface layer of the photo conductor produced by the CVD deposition apparatus 300 related to the second embodiment undergoes some type of processing to form an oxidation layer (insulation layer) on the surface. Because this oxidation layer (insulation layer) forms the third protective surface layer, the photo conductor that has the protective surface layer related to the sixth embodiment has a three layer construction. And because the protective surface layer 1802 is produced using a three layer construction, superior durability and a longer lifespan of the photo conductor are possible compared to a photo conductor comprising a protective surface layer with a two layer construction. The numbers and symbols shown in
In like manner to the fifth embodiment, in the sixth embodiment, as a first step, a method is utilized to form the third protective surface layer 1805 by a plasma CVD process that uses oxygen gas as the CVD gas as a method to oxidize the surface of the second protective surface layer 1804 of the photo conductor produced by the CVD deposition apparatus 800 and form the third protective surface layer 1805. Then, as a second step, a method is utilized to form the third protective surface layer 1805 by applying a heat treatment within air.
As shown in
As shown in
On the other hand, using the second method to form the third protective surface layer 1805 in the sixth embodiment is similar to the fifth embodiment and the description will be omitted.
The electrical resistance of the oxidized layer (insulation layer) that acts as the third protective surface layer 1805 formed in this manner is set higher than the electrical resistance possessed by the second protective surface layer 1804. Because of this, an effect appeared that improved the quality of the image resolution when printing images. In like manner to the fifth embodiment, related effects appeared as shown in
Because some type of processing is applied to the second protective surface layer 1804 to form the third protective surface layer 1805, that forms the insulation layer (oxidized layer), in the photo conductor 1801 related to the sixth embodiment, the electrical resistance of the surface of the photo conductor 1801 can be maintained at a high level and the image resolution also maintained at a high quality.
Furthermore, as shown in
In the afore-mentioned descriptions, a composition was described when directly transferring images to recording paper from the photo conductor that has the protective surface layer related to the first to the sixth embodiments. This invention is not limited to this however. The invention can also be applied to an image forming apparatus that transfers images from the photo conductor to an intermediate transfer body, such as an intermediate transfer belt, and then transfers the images from this intermediate transfer body to recording paper.
In this figure, this color image forming apparatus is provided with an reading unit 1 on the upper portion that reads original documents and a main body unit 2 on the lower portion that executes paper feed, transfer, record, and fix processes.
A paper feed cassette 3 that forms multiple levels is arranged at the lower region of the main body unit 2. Recording paper positioned at the highest position is extracted from a recording paper ream, set in the paper feed cassette 3, by a pick-up roller 4. The recording paper extracted from the paper feed cassette 3 is sent from the bottom of the main body unit 2 by a paper feed roller 5 and fed into a paper path 6 formed upwards. Multiple feeding rollers 7 and 8 are arranged in the paper path 6 to further feed recording paper upwards.
The recording paper fed by the feeding roller 8 is fed by a feeding roller 9 and then transferred to a registration roller 10. A secondary transfer roller 11 is arranged at the feed destination of the recording paper using the registration roller 10. The secondary transfer roller 11 is arranged opposite a belt feed roller 12a from among belt feed rollers 12a, 12b that wind the afore-mentioned intermediate transfer belt. The secondary transfer roller 11 transfers color images formed on the intermediate transfer belt to the fed recording paper. Positioning adjustments between the images on the intermediate transfer belt and the recording region of the recording paper are controlled by the registration roller 10.
The belt feed roller 12a is arranged close to the right edge shown in
Process cartridges 14Y to K are arranged in parallel on the surface of the intermediate transfer belt 13. These cartridges form the various colors, yellow (Y), magenta (M), cyan (C), and black (K) of an image on the surface of the intermediate transfer belt 13. Each process cartridge 14 is provided with a photo conductor drum 15Y to K that includes the photo conductor having the protective surface layer related to this embodiment. Each photo conductor drum 15 holds an image transferred to the intermediate transfer belt 13. Each process cartridge 14 is arranged opposite to each photo conductor drum 15 and are housed in housing units 18Y to K including the outer wall of developing assemblies 17Y to K, which have developing rollers 16Y to K which make images visible by adhering toner to latent images formed on each photo conductor drum 15, and the inner wall of the boxed shape main body unit 2.
Primary transfer rollers 19Y to K are provided at positions opposite to each photo conductor drum 15 on the inside of the intermediate transfer belt 13. Each primary transfer roller 19 transfers images formed on each photo conductor drum 15 to the intermediate transfer belt 13. Color images are formed on the intermediate transfer belt 13 by the primary transfer rollers 19Y to K transferring an image of each color on top of one another at the same position. Color images on this intermediate transfer belt 13 are transferred to recording paper by the secondary transfer roller 11.
A fixing unit 20 is arranged at the feed destination of the recording paper where the color image is transferred. The fixing unit 20 is provided with a fixing roller 21, and a pressurization roller 22 arranged opposite to the fixing roller 21. Images are fixed to the recording paper by the fixing roller 21 applying heat to the surface of the recording paper and the pressurization roller 22 pressing the recording paper between the fixing roller 21. Recording paper discharged from the fixing unit 20 is discharged onto a delivery tray 24 by a discharge roller 23. The delivery tray 24 is formed in the interior region of the main body unit 2 in this color image forming apparatus 3000.
Results similar to directly transferring an image from the photo conductor to the recording paper can be obtained when applied to the color image forming apparatus 3000 that transfers images to recording paper through an intermediate transfer body in this manner. In other words, even if the number of prints is increased, scrapes on the protective surface layer due to scratches while printing and shortened lifespan of the organic photo conductor itself can be reliably avoided thereby making it possible to lengthen the lifespan of the photo conductor in addition to reliably avoiding degradation in image resolution due to drops in the electrical resistance of the protective surface layer.
It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to exemplary embodiments, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular structures, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
The present invention is not limited to the above described embodiments, and various variations and modifications may be possible without departing from the scope of the present invention. The above described embodiments are explained using a cylindrical photo conductor, but the present invention is not limited to these embodiments. The present invention comprises e.g. a belt-type of photo conductor.
This application is based on the Japanese Patent Application Nos. 2004-1695 filed on Jan. 7, 2004, and 2004-096923 filed on Mar. 29, 2004, entire content of which is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
P2004-096923 | Mar 2004 | JP | national |
P2004-1695 | Jan 2004 | JP | national |