This application claims priority to and the benefit of Korean Patent Application No. 10-2009-0118339, filed Dec. 2, 2009, the disclosure of which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to a photoconductor device which generates or detects a terahertz (THz) wave, and more particularly, to a material for a photoconductor device.
2. Discussion of Related Art
A terahertz (THz) wave is an electromagnetic wave which corresponds to a frequency domain between 0.1 THz to 10 THz and is an intermediate wave between a radio wave and a light wave. The THz wave has a shorter wavelength than a radio wave with the shortest wavelength, a millimeter wave, and a longer wavelength than a light wave with the longest wavelength, a far infrared ray. One (1) THz is a value which corresponds to a wavelength of 30 μm, a wave number of 33.3 cm−1, a time of one pico (10−12) second, a energy of 4.1 meV, and an absolute temperature of 46 K. Research and development on the THz wave has not been as actively conducted as that on radio wave technology such as microwaves and millimeter waves and light wave technology such as far infrared rays and mid infrared rays since there was no appropriate technique for generating and detecting the THz wave. With brilliant development of science and technology, there have been many achievements in this field over the past decades. Interests on the THz wave have increased, and the prospects of the THz wave for expansion of application fields and economical efficiency as a future frequency resource are bright.
The THz wave has its own unique characteristics and thus various applications such as medical diagnosis, biological sample analysis, security observation, farm product and foodstuff inspection, environmental inspection, and wireless communications are being anticipated. That is, the THz wave has both transmittivity of the radio wave and directionality of the light wave, and spectroscopic analysis which is carried out in infrared rays, visible rays, or x-rays can be performed. Particularly, since time-domain spectroscopy detects and analyzes the THz wave having data in time units, it can simultaneously acquire amplitude information and phase information, so that various data for samples can be obtained, compared to other spectroscopies.
A frequency domain of the THz wave corresponds to an intermolecular vibration frequency of organic and inorganic materials, and it is possible to obtain information such as a fingerprint inherent to a sample for movement and twist of molecules and a molecular binding state. Due to the above-described characteristics, a technique using the THz wave can be usefully used in identifying unidentified materials or detecting a specific component such as a drug. This technique can be used in analyzing a unique characteristic of information of a biological material containing water such as a foodstuff or biological sample.
Further, the THz wave has high transmittance for organic materials excluding metal and thus can obtain a transmission image such as an x-ray fluoroscopic image. This is a result of adding transmittivity of the radio wave to directionality of the light wave. Unlike x rays, the THz wave is very low in photon energy and does not cause a photoionization reaction in samples, and thus the THz wave does not damage biological samples. This is the reason why the THz wave is called T rays as a relative concept of x rays as a function of obtaining a fluoroscopic image which does not harm a human body. Using the THz wave which has both a spectroscopic function and a transmitting function, a dangerous material, a drug, and a weapon contained in mail can be detected without opening the mail.
Further, the THz wave is evaluated as a very important alternative which makes ultra-high capacity broadband wireless communication possible in the wireless communication field in which frequency will be exhausted in the future due to limitations of current frequency resources. When high-quality moving pictures of a HD TV level are generally used in portable information devices in the future, a wireless transmission function is expected as an indispensable technique. However, since current techniques use data compression, problems such as time delay or deterioration of image quality occur. In order to wirelessly transmit data without compression, a data transmission rate has to increases in units of 1 to 10 Gbps, but a band of current of several GHz as a carrier frequency for realizing the transmission rate is expected to face its limit soon. Therefore, high frequency resources of higher than 100 GHz, i.e., 0.1 THz, are required.
Many methods of generating and detecting the THz wave have been developed, and an appropriate technique is applied according to a usage, a bandwidth, and a frequency domain. A photoconductive switching technique is commonly used for spectrum and image. Embodiments of the present invention are suggested to solve a problem of the photoconductive switching technique. The photoconductive switching technique involves irradiating a femtosecond laser, which is an ultra-short pulse laser, to a photoconductor and generating electron-hole pairs. The photoconductor uses a single crystalline thin film which is grown on a substrate at a low temperature and forms an electrode of a dipole or parallel line form thereon using metal.
where ETHz(t) denotes an electromagnetic field of a generated THz wave, and jem(t) denotes a photoelectric current density. In order to generate an electric field of a THz area, the photocurrent should be generated and disappear in short time. To this end, the photoconductor needs characteristics of high dark resistivity, high mobility, and short carrier lifetime.
There are many materials for the photoconductor which satisfy the characteristics. A single crystalline material which is grown at a low temperature is commonly used because the material characteristics can be adjusted by artificially adjusting a crystal defect. Particularly, a method of adjusting density and distribution of the crystal defect by high-density ion implantation of an element with a large atomic number is commonly used. This brings an effect of increasing recombination opportunities of generated electron-hole pairs and thereby shortening a life time of a charge carrier, due to the crystal defect present inside the thin film. Further, since a thin film is deposited in a single crystalline form using ultra-high vacuum equipment such as a molecular beam epitaxy system, mobility is improved and dark resistivity is increased.
A photoconductive switching device which is almost the same as in the case of generating the THz wave is used to detect the THz wave. For the sake of detection efficiency, a configuration of electrodes is slightly changed, and a bias is not applied between the electrodes. A femtosecond laser pulse is irradiated with a predetermined time delay compared to the case of generation. Electron-hole pairs are generated even in the photoconductor of the detector by the laser pulse, but since a bias voltage is not applied, a photocurrent is not detected therein. However, when a signal THz wave is irradiated to the photoconductor, a voltage is generated between the electrodes due to the electric field generated by the THz wave, and this current follows a waveform of the THz wave. Therefore, the THz waveform can be detected by sequentially irradiating an ultra-short pulse with a time delay. This is referred to as a photoconductive switching sampling technique.
There are many factors for determining the performance of the generator and detector, but characteristics of the photoconductor and device serve as one of the most important factors. Generally, when a signal to noise ratio of the detected THz wave is equal to or more than 104, it is determined as a usable level, and when equal to or more than 106, it is determined as an excellent level. As a frequency range widens toward a short wavelength domain according to its usage, a spectrum range also widens. To this end, characteristics of a photoconductive material and device may be precisely controlled.
The present invention is directed to a photoconductor device having a polycrystalline GaAs thin film and a method of manufacturing the same in which the above-mentioned problems of a single crystalline material used in the photoconductor are solved. In order to obtain an existing single crystalline material, high-price equipment called a molecular beam epitaxy system has to be used, and the crystal defect has to be controlled through a very precise process. Further, long-term use changes a defect distribution and a characteristic, leading to low reliability. This reduces productivity and increases the price in the case of commercialization. Further, in the case of actual use, in order to obtain spectrum information, it is necessary to obtain a reference spectrum of the terahertz (THz) wave itself. However, since the status of the photoconductor and device varies from time to time depending on ambient temperature, an electrical characteristic, and the frequency of practical use, it is necessary to continuously measure and detect for actual stable application. Therefore, the method most commonly used now employs the single crystalline material, but in order to prepare for future mass demand, reliability, reproducibility, and economical efficiency of a material have to be secured.
An aspect of the present invention provides a photoconductor device, including: a photoconductor substrate; a photoconductor thin film deposited on the photoconductor substrate; and a photoconductive antenna electrode formed on the photoconductor thin film. Here, the photoconductor thin film includes polycrystalline GaAs.
The photoconductor device may further include a voltage source which applies a bias voltage to the photoconductive antenna electrode to generate a THz wave.
The photoconductor device may further include a current meter which measures an electric current flowing through the photoconductive antenna electrode to detect a THz wave.
The photoconductor device may further include a hemispherical lens disposed on a surface of the photoconductor substrate which is opposite to a surface on which the photoconductor thin film is deposited.
The photoconductor substrate may be made of sapphire or high-resistive silicon.
The photoconductor thin film may be formed by a sputtering technique or a metalorganic chemical vapor deposition (MOCVD) technique.
The photoconductor thin film may be formed by growing a thin film without doping an impurity.
Another aspect of the present invention provides a method of manufacturing a photoconductor device, including: preparing a photoconductor substrate; depositing a photoconductor thin film including polycrystalline GaAs on the photoconductor substrate; and forming a photoconductive antenna electrode on the photoconductor thin film.
The method may further include: patterning the photoconductor thin film; and cutting the photoconductor substrate on which the photoconductor thin film is deposited through a sawing process.
The above and other features and advantages of the present invention will become more apparent to those of ordinary skill in the art by describing in detail preferred embodiments thereof with reference to the attached drawings in which:
Hereinafter, exemplary embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various forms. The following embodiments are described in order for this disclosure to be complete and enabling to those of ordinary skill in the art.
When an element is referred to as being “on” or “below” another element, it can be directly on or directly below the other element or layer, or intervening elements may be present. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.
A photoconductive antenna device using a polycrystalline GaAs thin film according to an exemplary embodiment of the present invention will be described below with reference to
Referring to
In order to generate the THz wave, a femtosecond laser pulse 105 with a pulse time of 10 to 100 fs generated by an ultra-short pulse laser is needed. In order to concentrate the generated THz wave 106 in a predetermined direction, a hemispherical lens 107 which is transparent to the THz wave and has a large refractive index is used. The hemispherical lens 107 may be made of high-resistive silicon. The hemispherical lens 107 is disposed on a surface of the photoconductor substrate 104 which is opposite to a surface on which the photoconductor thin film 103 is deposited.
A principle of generating the THz wave will be described below with reference to
Referring to
A photoconductor material for generating and detecting the THz wave needs to satisfy requirements in which a life span of a charge carrier is short, mobility is large, and a breakdown voltage is high.
In the single crystalline GaAs thin film which is grown at low temperature, since a high quality thin film is grown at low temperature in the atmosphere having a lot of arsenic (As) by using molecular beam epitaxy (MBE), arsenic ions are excessively present in the thin film, and arsenic precipitates are generated by subsequent heat treatment to form the crystal defect. Therefore, the recombination speed of the charge carriers such as electrons or holes increases, so that the above-mentioned material requirements are satisfied. However, according to an exemplary embodiment of the present invention, a polycrystalline GaAs thin film is used instead of the single crystalline thin film. An experiment has shown that a THz wave generating characteristic in the polycrystalline GaAs thin film is the same as or more excellent than the single thin film. The polycrystalline thin film has advantages in that it can be deposited on silicon, sapphire, and glass substrates without depending on the characteristics of the substrate and it does not need to use high-priced equipment such as the MBE system. In selecting a substrate material, crystallinity related to the growth of the thin film and transmittivity of the generated THz wave should be considered. In the case of using the polycrystalline GaAs thin film, a range of selecting the substrate material is broadened. Therefore, there is a large influence from a technical point of view as well as an economical point of view.
As described above, in generating and detecting the THz wave using the photoconductive switching method, a characteristic of the photoconductor material is one of the most important factors, and particularly, a characteristic of the THz wave depends on a change in the photoelectric current. In the low temperature (LT)-GaAs of the single crystalline state, a method of artificially generating the crystal defect when growing the high quality single crystalline thin film is used in order to reduce the lifetime of the electron carrier. In this case, however, there are problems in that it is difficult to grow the thin film having high reliability and reproducibility depending on a processing method and a reference value easily changes during use depending on a change in the ambient environmental. However, the problems are solved by using the polycrystalline GaAs thin film.
According to an exemplary embodiment of the present invention, suggested is a method of forming the polycrystalline GaAs thin film by further reducing growth temperature when growing the LT-GaAs thin film or using a substrate having different crystallinity.
In the grain boundary inside the polycrystalline thin film, a bond between GaAs atoms is unstable, a crystalline structure is not perfect, and it is a portion having high energy. Therefore, generated electron-hole pairs are easily recombined in the grain boundary. This plays the same role as the crystal defects artificially formed in the single crystalline LT GaAs thin film, and since there are many grain boundaries in the polycrystalline structure, this greatly reduces the lifetime of the carriers. Further, inside the grain, the same crystalline structure as the single crystal is present, and mobility of the electron carriers is high. Therefore, the photocurrent flows rapidly during a short time. A general poly crystal causes a dark current since impurities are precipitated in the grain boundaries and thus frequently causes an abnormal operation of a device. This is one of the reasons that the poly crystal is not widely used in thin films requiring high quality. However, according to an exemplary embodiment of the present invention, since the thin film is grown without doping impurities, the dark current is not increased, and the THz wave has a signal to noise ratio of more than 104. Therefore, the requirements of the photoconductor for generating the THz wave are satisfied, and there are effects in reliability, reproducibility and from an economical point of view.
Next, a method of manufacturing a photoconductor device according to an exemplary embodiment of the present invention will be described.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Thereafter, as illustrated in
A GaAs thin film which was grown on a sapphire substrate showed almost the same result, and all showed a value higher than the single crystalline GaAs thin film. This represents that low-priced equipment can be used instead of the high-priced MBE system, and the low-priced sapphire substrate can be used instead of the high-priced GaAs substrate. Since sapphire is transparent to the THz wave, there is no need to worry about a phenomenon that the efficiency is reduced at the time of optical detection and generation.
As described above, according to an exemplary embodiment of the present invention, a polycrystalline GaAs thin film is used as a photoconductor material instead of a single crystalline thin film, and thus the price for forming a poly crystal is lowered and reliability is increased. Since the polycrystalline GaAs thin film is grown regardless of crystallinity and a crystalline direction of a substrate, there is no limitation in which only a substrate of a semi-insulating material has to be used like an existing single crystalline material, and it can be grown on a silicon substrate or a sapphire substrate. Further, as a growing technique, a sputtering technique or a MOCVD technique can be used instead of using high-priced equipment such as an MBE system. This makes mass production possible, and thus a thin film in which a process price is low and reliability is high can be manufactured.
While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0118339 | Dec 2009 | KR | national |