The present application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2015-243355, filed on Dec. 14, 2015. The contents of which are incorporated herein by reference in their entirety.
1. Field of the Invention
The present invention relates to a photoelectric conversion element, an image reading device, and an image forming apparatus.
2. Description of the Related Art
A color complementary metal-oxide semiconductor (CMOS) linear image sensor that operates in a global shutter mode simultaneously exposes every pixel at the same instant in time and stores signals at once, and the signals are sequentially read out. In the global shutter mode, such simultaneous exposure can avoid spatial distortion that could occur in a rolling shutter mode, but each of the pixels needs an analog memory for storing the signal.
Such an analog memory and a pixel circuit including a floating diffusion that converts electric charge output from a photo diode into voltage occupy a certain area of a pixel to configure a circuit. In conventional linear image sensors, such an area occupied by the analog memory and the pixel circuit increases the gap between photo diodes in different colors, which is one of the factors that exacerbate color shift.
Japanese Unexamined Patent Application Publication No. 2015-156557 discloses a solid state imaging device including a plurality of pixels, a plurality of first charge accumulation circuits that output first pixel signals in accordance with signal charge, and a plurality of second charge accumulation circuits that output second pixel signals corresponding to signal charge that are reduced to a predetermined number of pixels.
However, such a conventional device cannot reduce color shift or prevent decrease in sensitivity.
According to one aspect of the present invention, a photoelectric conversion element includes a plurality of light-receiving elements, a plurality of pixel circuits, and a plurality of storage units. The light-receiving elements are aligned in a predetermined alignment direction for each color of light to be received, to receive and convert the light into electric charge. The pixel circuits are disposed respectively adjacent to the plurality of light-receiving elements, to convert the electric charge generated by the corresponding light-receiving element into a voltage signal. The storage units are disposed respectively corresponding to the plurality of the pixel circuits, to store therein the voltage signal generated by the corresponding pixel circuit. The storage units are disposed in an adjacent region that is adjacent to a photoelectric conversion region in which the light-receiving elements and the pixel circuits are disposed.
The accompanying drawings are intended to depict exemplary embodiments of the present invention and should not be interpreted to limit the scope thereof. Identical or similar reference numerals designate identical or similar components throughout the various drawings.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present invention.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
In describing preferred embodiments illustrated in the drawings, specific terminology may be employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that have the same function, operate in a similar manner, and achieve a similar result.
An embodiment of the present invention will be described in detail below with reference to the drawings.
An object of an embodiment is to provide a photoelectric conversion element, an image reading device, and an image forming apparatus that can reduce color shift without reducing sensitivity.
A photoelectric conversion element according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The oscillator 10 generates a clock signal at a certain frequency determined in advance. The timing clock generator 12 receives the clock signal generated by the oscillator 10 and generates a timing clock that causes the photoelectric conversion element 2 and the signal interface conversion 14 to operate at predetermined timing.
The photoelectric conversion element 2 is a color CMOS linear sensor including, for example, a pixel unit 3 and an analog processing circuit 4. The pixel unit 3 includes a plurality of pixels that receive light in R, G, and B colors (details will be described with reference to
Each light-receiving element 30 is connected with a pixel circuit 32. The pixel circuit 32 includes, for example, a floating diffusion (FD) that converts electric charge generated by the light-receiving element 30 into voltage, and a reset transistor that resets the floating diffusion.
A plurality of analog memories (AM) 34 are disposed respectively corresponding to the light-receiving elements (and the pixel circuits 32). Each analog memory 34 is configured by, for example, a capacitor and serves as a storage unit that stores voltage output from the corresponding pixel circuit 32. Wires (signal lines) 36 connect these elements with each other.
In other words, in the pixel unit 3, the light-receiving elements 30 accumulate electric charge by photoelectric conversion, the pixel circuits 32 convert the electric charge into voltage, and the analog memories 34 store therein the voltage generated by the pixel circuits 32 for each pixel. Each circuit configuration includes a switch configured by a transistor, and the operation is switched by turning on and off the switch.
As illustrated in
When the floating diffusion in each pixel circuit 32 converts the electric charge accumulated in the corresponding light-receiving element 30 into voltage, the voltage is obtained in accordance with the following relation: V=Q/C, where V represents voltage, Q represents electric charge, and C represents capacitance. In other words, when parasitic capacitance of the floating diffusion is high, a low voltage is obtained, which results in decrease in sensitivity of the photoelectric conversion element 2. Thus, lower parasitic capacitance of the floating diffusion is desirable.
Examples of the parasitic capacitance of the floating diffusion include capacitance between terminals of the switch (transistor) (drain-source capacitance, gate-drain capacitance, gate-source capacitance), and wire capacitance between the light-receiving element 30 and the floating diffusion. In general, a smaller area of a switch circuit achieves a lower capacitance between terminals of the switch, and a shorter wire achieves a lower wire capacitance. Thus, each pixel circuit 32 has a small circuit area and is disposed close to the corresponding light-receiving element 30. The size of the pixel circuit 32 is smaller than that of the analog memory 34. The size of the analog memory 34 is several times to tens of times greater than that of the light-receiving element 30.
The linear image sensor in the image reading device reads an image of a subject while in relative motion to the subject in the sub-scanning direction. This configuration causes the linear image sensor to read the same part of the subject at different timing among different colors. Ideally, such time difference is determined according to the distance between photo diodes of different colors, optical magnification, and reading speed. To correct the time difference, in general, values read by the pixels of each color in the linear image sensor are corrected by delaying image signals of a certain color at a subsequent step.
In practice, however, vibration of the subject, change in reading speed, and change in intensity of the light source may cause color shift that cannot be corrected by the aforementioned method, and quality of a read image may deteriorate. Such color shift becomes significant when the distance between photo diodes of different colors increases. Thus, a shorter distance between photo diodes of different colors is desirable.
In the pixel unit 3, the light-receiving elements 30 are disposed adjacent to their respective pixel circuits 32 in the photoelectric conversion region 300. This configuration reduces color shift while preventing decrease in sensitivity. In the pixel unit 3, the relatively large analog memories 34 are disposed in the adjacent region 340 that is adjacent to the photoelectric conversion region 300. This configuration achieves a shorter distance between the light-receiving elements 30 of different colors and a shorter distance between the light-receiving elements 30 and the respective pixel circuits 32, and thus reduces color shift while preventing decrease in sensitivity.
The order of the colors assigned to the light-receiving elements 30 in the photoelectric conversion region 300 is the same as the order of the colors assigned to their respective analog memories 34 in the adjacent region 340. Specifically, the rows of the light-receiving elements 30 in the photoelectric conversion region 300 are arranged in the order of R, G, and B in the sub-scanning direction, and the rows of the analog memories 34 in the adjacent region 340 are arranged in the order of R, G, and B that are the colors assigned to the analog memories 34 (that are the colors of the signals to be stored in the analog memories 34). The circuit elements and wires in the photoelectric conversion element 2 are arranged in a regular order, thereby preventing a structural difference or production variance and reducing a difference in properties between pixels or colors.
In
Although the example of
With this configuration, the rows of the light-receiving elements 30 and the pixel circuits 32 and the rows of the analog memories 34 are symmetrically disposed in terms of the colors, which enables the wires 36 to connect the pixel circuits 32 with the analog memories 34 without crossing each other. In other words, the third example of the configuration of the pixel unit 3 eliminates the need for disposing the wires 36 in different wiring layers, which is needed when the wires 36 cross each other, thereby preventing parasitic capacitance between the wires 36 in the different wiring layers or preventing increase in the number of layers in the photoelectric conversion element 2.
Specifically, in the configuration of the pixel unit 3 according to the fourth example, the rows of the light-receiving elements 30 and the pixel circuits 32 are arranged in the order of red, green, and blue in the sub-scanning direction. The adjacent region 340a including the analog memories 34 that store therein red signals is disposed at the leading end of the photoelectric conversion region 300 in the sub-scanning direction, and the adjacent region 340b including the analog memories 34 that store therein blue and green signals is disposed at the trailing end thereof. However, the pattern of the arrangement is not limited to this. The order of red, green, and blue may be changed to other orders, analog memories 34 for two colors may be disposed at the leading end of the sub-scanning direction, and analog memories 34 for the remaining one color may be disposed at the trailing end thereof.
With this configuration, the pixel circuits 32 and the analog memories 34 for certain two colors (red and blue in
In other words, the configuration of the pixel unit 3 according to the fifth example is for implementing correlated double sampling (hereinafter referred to as CDS). In the CDS method, a voltage value stored in the analog memory 34a (AM(R)) is subtracted from a voltage value stored in the analog memory 34b (AM(S)) for each pixel to remove a fixed pattern noise. Such a subtraction function for implementing CDS may be included in any one of the components in the reading unit 1. In the fifth example, the analog memories 34a and 34b are alternately arranged in the alignment direction of the light-receiving elements 30. The order of the analog memory 34a and the analog memory 34b may be reversed in the row.
To implement the CDS function, twice the number of analog memories 34 are required compared to a case of no CDS function, but disposing the adjacent region 340c adjacent to the photoelectric conversion region 300 can reduce color shift while preventing decrease in sensitivity. The analog memories 34a and 34b are arranged in a regular order in a pattern symmetrical to that of the light-receiving elements 30 and the pixel circuits 32, thereby preventing a structural difference or production variance and reducing a difference in properties between pixels.
Several examples of the configuration of the pixel unit 3 have been described, and these examples may be combined as appropriate.
Described next is an image forming apparatus including the image reading device including the photoelectric conversion element according to the embodiment.
The image reading device 60 includes, for example, the reading unit 1, a light-emitting diode (LED) driver (LED_DRV) 600, and an LED 602. As described with reference to
The image forming unit 70 includes a processing unit 80 and a printer engine 82. The processing unit 80 and the printer engine 82 are connected with each other via an interface (I/F) 84.
The processing unit 80 includes an LVDS 800, an image processing unit 802, and a CPU 804. The CPU 804 controls the components such as the reading unit 1 that constitute the image forming apparatus 50. The CPU 804 (or the reading unit 1) controls the light-receiving elements 30 to start generating electric charge in accordance with the intensity of light at substantially the same instant in time.
The reading unit 1 outputs, for example, image data of an image read by the image reading device 60, the line synchronization signal, and transmission clock to the LVDS 800. The LVDS 800 converts, for example, the received image data, line synchronization signal, and transmission clock into parallel 10-bit data. The image processing unit 802 performs image processing by using the generated 10-bit data, and outputs, for example, the image data to the printer engine 82. The printer engine 82 performs printing by using the received image data.
According to the present invention, color shift can be reduced without decreasing sensitivity.
The above-described embodiments are illustrative and do not limit the present invention. Thus, numerous additional modifications and variations are possible in light of the above teachings. For example, at least one element of different illustrative and exemplary embodiments herein may be combined with each other or substituted for each other within the scope of this disclosure and appended claims. Further, features of components of the embodiments, such as the number, the position, and the shape are not limited the embodiments and thus may be preferably set. It is therefore to be understood that within the scope of the appended claims, the disclosure of the present invention may be practiced otherwise than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2015-243355 | Dec 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5665959 | Fossum | Sep 1997 | A |
5909026 | Zhou | Jun 1999 | A |
6388241 | Ang | May 2002 | B1 |
8040418 | Murata | Oct 2011 | B2 |
8860858 | Ono | Oct 2014 | B2 |
9491327 | Nakazawa | Nov 2016 | B2 |
9774801 | Hseih | Sep 2017 | B2 |
20070188638 | Nakazawa et al. | Aug 2007 | A1 |
20080252787 | Nakazawa et al. | Oct 2008 | A1 |
20100027061 | Nakazawa | Feb 2010 | A1 |
20100171998 | Nakazawa | Jul 2010 | A1 |
20110026083 | Nakazawa | Feb 2011 | A1 |
20110051201 | Hashimoto et al. | Mar 2011 | A1 |
20110063488 | Nakazawa | Mar 2011 | A1 |
20120008173 | Konno et al. | Jan 2012 | A1 |
20120092732 | Nakazawa | Apr 2012 | A1 |
20120224205 | Nakazawa | Sep 2012 | A1 |
20130063792 | Nakazawa | Mar 2013 | A1 |
20130176468 | Ono | Jul 2013 | A1 |
20130308023 | Sugawa | Nov 2013 | A1 |
20140029065 | Nakazawa | Jan 2014 | A1 |
20140204427 | Nakazawa | Jul 2014 | A1 |
20140204432 | Hashimoto et al. | Jul 2014 | A1 |
20140211273 | Konno et al. | Jul 2014 | A1 |
20140368893 | Nakazawa et al. | Dec 2014 | A1 |
20150098117 | Marumoto et al. | Apr 2015 | A1 |
20150116794 | Nakazawa | Apr 2015 | A1 |
20150163378 | Konno | Jun 2015 | A1 |
20150222790 | Asaba et al. | Aug 2015 | A1 |
20150244959 | Araoka | Aug 2015 | A1 |
20150304517 | Nakazawa et al. | Oct 2015 | A1 |
20150341521 | Asaba | Nov 2015 | A1 |
20160003673 | Hashimoto et al. | Jan 2016 | A1 |
20160006961 | Asaba et al. | Jan 2016 | A1 |
20160088179 | Nakazawa | Mar 2016 | A1 |
20160094787 | Govil | Mar 2016 | A1 |
20160112660 | Nakazawa et al. | Apr 2016 | A1 |
20160119495 | Konno et al. | Apr 2016 | A1 |
20160165159 | Hseih | Jun 2016 | A1 |
20160173719 | Hashimoto et al. | Jun 2016 | A1 |
20160219163 | Shirado et al. | Jul 2016 | A1 |
20160219234 | Nishihara | Jul 2016 | A1 |
20160268330 | Nakazawa et al. | Sep 2016 | A1 |
20160295138 | Asaba et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2014-138406 | Jul 2014 | JP |
2015-156557 | Aug 2015 | JP |
Entry |
---|
U.S. Appl. No. 15/191,035, filed Jun. 23, 2016. |
U.S. Appl. No. 15/176,395, filed Jun. 8, 2016. |
Number | Date | Country | |
---|---|---|---|
20170170225 A1 | Jun 2017 | US |