The technology described herein relates to a photoluminescent, or glow-in-the-dark, coupling. In particular, the technology described herein may be used in connection with enteral feeding.
There have been many advancements in the field of gastric feeding devices, such as gastric button devices. Original devices had only one port that provided direct access to a patient's stomach for food and medication administration. With a single port, the use of the device was somewhat simple and straightforward. Newer devices provide two and three ports. For example, newer gastric feeding buttons have a balloon that allows the device to be maintained in the stomach of a user. A port, which is positioned next to the gastric feeding port, is used for introducing water, or in some cases air, into the balloon. More advanced feeding devices, known as Gastric-Jejunal Buttons or (G-J Buttons) have a third port that is used for jejunal feeding. The addition of additional ports provides a greater potential for user error.
Manufacturers have taken steps to design unique characteristics that are used to distinguish the three ports, including dimensional differences, incompatible connections, color differences, printed labels, and indicators molded directly into the devices themselves. Despite all of these steps to ensure that the feeding button is used properly by the end-user, there remains a risk of an accidental connection to an incorrect port. Due to the types of patients that necessitate these particular medical devices, administering food intended for the jejunal port into the gastric port could lead to vomiting and aspiration of stomach contents—a potentially dangerous situation. Thus, care must be taken by the end user to avoid accidental device misuse.
One target patient population for gastric feeding devices is pediatric patients with poor gastric motility. Since these patients will receive most of their nutrition through the jejunal-access port, they will be connected to a feeding pump most of the day and night. Consequently, the patient's caregivers may have to connect and disconnect adapters to the jejunal-access port at night while the patient is asleep. This gives the caregivers two options—they can either turn on a light in order to visually see the device and its different ports, or they can keep the lights off (trying not to disturb the child's sleep) and attempt to make any necessary adjustments to the device by memory and “feel.”
The first option of turning on the light presents a risk of waking the child, who is already in compromised health. The second option deprives the caregiver of the benefits of many of the unique characteristics that are used to distinguish between the three access ports, as described above, and, thus, presents a risk of accidental connection or administration errors.
In accordance with the teachings described herein, a coupling for administering food or medication to a patient is described.
The technology described herein relates generally to a coupling 10 that has an example glow-in-the-dark or photoluminescent feature 12 that is used to help a user to locate and/or properly orient an adapter or connector 14, 16 with an input port 18, 20 in a dark environment. The example portions of the coupling 10 are generally made of plastic and allow the part to glow-in-the-dark when ambient light is too low to visualize the coupling 10 properly. It is desirable to be able to avoid turning on the lights when a child is sleeping. Thus, the example glow-in-the-dark feature 12 allows a caregiver to access the coupling 10 without turning on the lights. It should be noted that when the term glow-in-the-dark is utilized, it is also meant to encompass photoluminescent and other glow-in-the-dark materials. In addition, when the term photoluminescent is used, it is meant to encompass any number of glow-in-the-dark materials. The terms should be considered to be interchangeable when used herein. In addition, the terms adapter and connector 14, 16 should be considered to be interchangeable when used herein, but can refer to any type of device that may be associated with an opening, a port, or a coupling.
The coupling 10 with the example glow-in-the-dark features 12 may include a glow-in-the dark input port 18, 20, 22 and a glow-in-the-dark connector 14, 16 for coupling with the port 18, 20, such as a feeding tubes 24, 26. Other types of devices may also be useful with the examples described herein, including those not limited to enteral use, such as those relating to parenteral and other uses, as will be discussed in greater detail below.
In one example, a coupling 10 includes an input port 18, 20 and a connector 14, 16 for coupling with the input port 18, 20. The input port 18, 20 includes at least a portion that glows-in-the-dark 12. The connector 14, 16 may also include a glow-in-the-dark portion 12 that is meant to couple with the glow-in-the-dark input port 18, 20. The input port 18, 20 and connector 14, 16 glow-in-the-dark portions 12 may be made of the same glow-in-the-dark resins, if desired, or of different glow-in-the-dark resins.
The glow-in-the-dark resins that are used with the example couplings 10 need minimal light exposure to charge because, in general, the couplings 10 will only have limited exposure times to ambient light. Glow-in-the-dark plastic resins should emit enough light to help the caregiver ensure proper coupling of the connector 14, 16 to the input port 18, 20 during low-light conditions. The glow-in-the-dark plastic resins should emit enough light throughout the night without necessitating a “re-charge” and should be biocompatible.
By providing a glow-in-the-dark material 12 that has the above-describe properties, caregivers (either healthcare professionals or parents) may confidently access different ports 18, 20, 22 within a feeding tube 24, 26 in low-level light conditions. Furthermore, as will be discussed below, the example couplings 10 help to prevent dangerous incorrect connections while giving the patient a better chance to sleep through the night uninterrupted.
The types of materials that may be used for the example glow-in-the-dark features 12 are non-limiting, as long as they charge upon exposure to ambient light and they remain charged for an extended period of time, such as 4, 6, 8 or 12 hours. Different glow colors and glow strength may be desirable under certain circumstances. Thus, different types of glow-in-the-dark materials may be useful instead of the use of a single glow in the dark material. Materials that charge quickly are useful, although those that don't charge quickly may also be useful. The expense of the material along with the particular strengths of the material, such as color, glow strength, length to charge, length to remain changed, etc., should be considered when selecting a glow-in-the-dark material. Any number of other materials may be used, as known by those of skill in the art, as well as materials that may be developed in the future.
Referring now to the figures,
In the case of the G-J tube, one troubling type of misconnection involves administering feeding intended for the jejunal-access port 20 into the gastric-access port 18. One way to deter this type of mishap under low-light conditions is to only make the jejunal-access port 20 and the jejunal feeding tube coupling adapter 16 glow-in-the-dark. This way the caregiver would be forced to focus on the access port 20 that is glowing-in-the-dark, helping to lessen the possibility of connecting to the incorrect port (which would not be glowing). An example of this is shown in
Another possibility for the G-J tube would be to use two totally different glow-in-the-dark colors for the gastric-access port 18 and the jejunal-access port 20 and connectors 14, 16. If the gastric-access port 18 and its matching adapter 14 was glow-in-the-dark green, for example, while the jejunal-access port 20 and its matching adapter 16 was glow-in-the-dark orange, for example, the caregiver would be able to distinguish both ports 18, 20 in low-level light conditions. Glowing strength or intensity may also be adjusted such that the primary jejunal port 20 glows much brighter than the secondary gastric port 18. Thus, a caregiver could distinguish between the connectors 14, 16 to associate them with the proper port 18, 20.
Importantly, different types of feeding compounds are administered for jejunal feeding as compared to gastric feeding. Thus, it is important that a user does not accidentally administer gastric feeding matter to the jejunal port 20 and vice versa. Such accidental feeding can result in harm to a patient. Thus, it is important to properly label and/or identify the ports 18, 20 so that a user can easily determine which port is used for jejunal feeding and which port is used for gastric feeding.
As shown in
However, in low light conditions, such as in a bedroom of a patient at night, a caregiver may have difficulty in determining which connector 14, 16 should be used with which port 18, 20. The present example port 18, 20, 22 and connector 14, 16 helps to remedy any difficulty that a caregiver may experience by providing a portion of the input port 18, 20, 22 with a glow-in-the-dark portion 12. As shown in
The port 16 alone may be glow-in-the-dark, or the connector 20 may also glow in the dark. In the example of
In addition, as shown in
As with the example shown in
In the device 50, shown in
In addition, the connector 54 may also be made of a photoluminescent material 12 that matches the photoluminescent material 12 of the input port ring 56. Alternatively, the connector 54 may be non-photoluminescent or the connector 54 may be a different color or glow intensity from the photoluminescent material of the input port 52. The input port 52 may have a shape that is conducive to a single orientation for the connector 54, or that only allows one size of connector 54 to be inserted into the port 52. This may assist in preventing accidental connection of the wrong connector. In addition, the connector 54 and/or input port 52 may have labels, such as markings, symbols, or wording, that are used to assist a user in properly orienting the connector 54 relative to the input port 52. In addition, labels 58 may be used to properly identify the port 52 and/or connector 54.
The device shown in
Instead of a black ink line 66 that is printed or otherwise disposed on the surface of the input port 52, a break 46 in the photoluminescent material 12 of the input port 52 may be used to provide a line for orientation purposes, such as shown in
As shown in
The input port 52 may have disposed on a lower surface thereof a ledge 78 that is positioned directly adjacent the notch 68. The ledge 78 is designed to hold the key 72 under the ledge 78 in order to hold the connector 54 in the input port 52. Other types of connection mechanisms may alternatively be utilized. The ledge 78 can be positioned on part of the coupling 50 instead of or in addition to being positioned on the input port ring 52. The connector 54 is designed to prevent leakage from the input port 52 when properly connected. Other indicia or markings may be provided on the connector 54 or on the input port 52 or coupling 50 in order to assist a user in locking, aligning, or otherwise using the connector 54 and input port 52.
In addition to the ports and connectors described above, other ports and connectors may also utilize glow-in-the-dark characteristics. For example, as shown in
The Y-port and bolus port connectors 82, 84 may be made of a medical-grade, low durometer, highly flexible, PVC resin, but can be any suitable elastomeric or other material. For example, silicone, polyurethane, thermoplastic elastomer, SEBS block copolymers, etc., may be used. Elastomeric materials in these connectors allow for the accommodation of a variety of different coupling possibilities, as well as aiding in the retention force for the coupling. The Y-port and bolus port connectors 82, 84 are examples of the types of ports that utilize a glow-in-the-dark feature. Any rigid connector that can be connected to a food source may alternatively be glow-in-the-dark.
As shown in
Similarly, the bolus connector 84 has an input port 90 that is configured to mate with a connector, such as a Christmas tree connector 94 that comes directly from a feeding bag 96, as shown in
As shown in
In low light conditions, such as in a bedroom or hospital room of a patient at night, a caregiver may have difficulty locating the Y-port or bolus port connector 82, 84, and Christmas tree connector 94. The present example Y-port or bolus port connector 82, 84, and Christmas tree connector 94 help to remedy any difficulty that a caregiver may experience by providing a portion or all of the Y-port and bolus port connectors 82, 84, and Christmas tree connector 94 with a glow-in-the-dark portion 12. The glow-in-the-dark portion 12 will help a caregiver locate the Y-port or bolus port connector 82, 84 and Christmas tree connector 94, and connect/disconnect feedings without having to unlock the connectors 14, 16 from the coupling 10 positioned at the opposite end of the tube 86. Moreover, glow-in-the-dark Y-port or bolus port connector 82, 84 and Christmas tree connector 94 would assist caregivers during connections and disconnections at night lessening the likelihood of interrupting the sleep of the patient.
The entire Y-port or bolus port connector 82, 84 and Christmas tree connector 94 may glow-in-the-dark. Alternatively, a portion of the connectors 82, 84, and 94 could glow-in-the-dark. For example, a removable glow-in-the-dark ring or band (not shown) could be installed around the various connectors 82, 84, 94, 102 if desired. The glow-in-the-dark portion could be formed around the opening to the connectors 82, 84, 94 in order to make it easier for the caregiver to find the opening of the connectors 82, 84, 94. Alternatively, the glow-in-the-dark portion could be coupled to the connectors in any known manner. In addition, the coupling 102 or spike that couples to the feeding bag 96 could glow-in-the-dark in order to assist in changing feeding bags. The port for the feeding back could glow-in-the-dark in order to make it easier for a caregiver to utilize the spike 102 in order to open the feeding bag. In addition, part or all of the tubing 86 could glow-in-the-dark, if desired.
As shown in
The glow-in-the-dark features described above are applicable to all of the parts of a gravity feeding set as well as a pump feeding system. In addition, the glow-in-the-dark features are applicable to nasogastric, gastric, and jejunal feeding, either alone or in combinations thereof, or any other types of feeding. Moreover, the glow-in-the-dark features are applicable to other types of couplings used in low light conditions, such as parenteral nutrition as well as other intravenous therapy.
The glow-in-the-dark principles discussed herein may also be applied to other medical devices that require connections and disconnections in low-level light conditions. Nightly rounds are a common practice in hospitals, and patients are often woken up simply because the lights need to be turned on to make adjustments to devices and couplings. Glow-in-the-dark resins could be used in various couplings including intravenous and arterial lines, dialysis connections, Foley catheter connections, chest tubes, or any other type of liquid, gas, or vacuum connection used for patient care. The housings of the couplings can be color coded for different uses, and the dimensions of the glow-in-the-dark connectors can be varied to prevent misconnections. Glow-in-the-dark catheters and inter-lumen catheters can also be made using the above-described technology. This can help healthcare professionals visualize catheter placement in vessels near the surface of the patient's skin simply by turning the lights down low. If the glow-in-the-dark resins can be made to emit enough light, connectors can be made to help illuminate body cavities as well.
According to one example of the invention, an enteral coupling comprises a first input port and a photoluminescent portion associated with the first input port. The first input port is one or more of a gastric port, a jejunal port, or a balloon port. The first connector is for inserting into the first input port and may include a photoluminescent portion. The second input port may have a photoluminescent portion associated with the second input port and a second connector having a photoluminescent portion. The second connector is for inserting into the second input port. A third input port may also be provided with a third device for insertion into the third input port. The third input port and third device may or may not include a photoluminescent portion.
The photoluminescent portion of the first input port may be integrally coupled to the first input port or externally positioned on the first input port. A second photoluminescent portion having a color that is different from a color of the photoluminescent portion of the first input port may be utilized for indicating orientation. A break in the photoluminescent portion of the first input port for indicating orientation, wherein the break is provided by a second photoluminescent portion that has a different color from the photoluminescent portion of the first input port, or by a break in the material of the photoluminescent portion of the first input port, or by a darkened portion associated with the photoluminescent portion of the first input port.
The photoluminescent portion of the first input port may have a first color and the photoluminescent portion of the second input port may have a second color that is different from the first color. The photoluminescent portion of the first port may have a first color, the photoluminescent portion of the first connector may have a second color, the photoluminescent portion of the second input port may have a third color, and the photoluminescent portion of the second connector may have a fourth color. The first and second colors may be the same and the third and fourth colors may be the same. Alternatively, the first and second colors may be different from one another and the third and fourth colors may be different from one another.
The first input port may have an opening with a discontinuous portion for indicating orientation. The discontinuous portion may be provided by a notch, by black ink pad printing, by a break in the photoluminescent material of the first input port, by a blackened portion, or by a combination thereof.
In one example of the invention, the material of the photoluminescent portion of the first input port, second input port, first connector, or second connector charges with minimal light exposure and lasts for 8 or more hours. One or more of the photoluminescent portions may glow brighter than another of the photoluminescent portions.
The various parts of the coupling may include labels that are visible in the dark. The labels may be positioned on the photoluminescent portion of the first input port and may include black ink or another different photoluminescent portion.
The example coupling may include an orientation indicating means, wherein the orientation indicating means includes black ink, a different colored photoluminescent material, labeling, different shapes, darkened portions, or a combination thereof. Alternatively, the photoluminescent portion may be bright enough to illuminate a body cavity.
In another example of the invention, a coupling comprises a first port having a first glow-in-the dark feature and a second port having a second glow-in-the-dark feature. The first glow-in-the dark feature is different from the second glow-in-the-dark feature. The first glow-in-the dark feature may be a first glow-in-the dark color and the second glow-in-the dark feature may be a second glow-in-the dark color. Alternatively, or in addition thereto, the first glow-in-the dark feature may have a first glow-in-the dark intensity and the second glow-in-the dark feature may have a second glow-in-the dark intensity. Alternatively, or in addition thereto, the first glow-in-the dark feature may have a first glow-in-the dark shape and the second glow-in-the dark feature may have a second glow-in-the dark shape. Alternatively, or in addition thereto, the first glow-in-the dark feature may have a first glow-in-the dark labeling and the second glow-in-the dark feature may have a second glow-in-the dark labeling. A combination of any of the foregoing features may be utilized, as desired.
The coupling may be an enteral feeding tube. The coupling may also include a first connector for coupling with the first port and a second connector for coupling with the second port. The first connector may have a first glow-in-the-dark feature and the second connector may have a second glow-in-the-dark feature.
In another example of the invention, a coupling for administering food or medication comprises a first port having a glow-in-the-dark feature and means for orientation that assists a user in properly orienting a connector to be mounted in the first port in proper orientation, and a first connector coupled to the first port. The first connector is guided by the means for orientation in order to properly couple the first connector to the first port. The means for orientating may be one or more of a shape, a glow intensity, labeling, color, a break in the glow-in-the-dark features, texture, a darkened portion, or a combination thereof.
Another example of an enteral coupling includes a first input port and a first connector for coupling with the first input port. At least one of the first input port and the first connector has a glow-in-the-dark portion associated with at least a part thereof. In addition, the glow-in-the dark portion may comprise only a portion of the device or the entire device at issue.
The coupling may include tubing and a coupling for mating with a food source. The tubing may or may not have a glow-in-the dark portion. The coupling is for mating with a food source and may or may not have a glow-in-the-dark portion. The first input port may be one of a gastric button port, a gastric jejunal button port, jejunal button port, a Y-port connector, or a bolus port connector. The first connector may be a connector for coupling with one of said buttons, or a connector for coupling with the Y-port or bolus port connector.
The coupling may also include a second input port and a second connector. One or both of first and second connectors may at least in part glow-in-the-dark and one or both of the first and second ports may at least in part glow-in-the-dark. The first input port may be a gastric button port, a gastric jejunal button port, jejunal button port. The second input port may be a Y-port connector or bolus port connector. The second connector may couple with the Y-port or the bolus port connector.
The glow-in-the-dark portion of the first input port may have a first feature and the glow-in-the-dark portion of the second input port may have a second feature that is different from the first feature, and the feature may be one or both of color and intensity. The glow-in-the-dark portion of the first port may have a first color, the glow-in-the-dark portion of the first connector may have a second color, the glow-in-the-dark portion of the second input port may have a third color, and the glow-in-the-dark portion of the second connector may have a fourth color. The first and second colors may be the same as one another and the third and fourth colors may be the same as one another. The first and second colors may be different from one another and the third and fourth colors may be different from one another.
The material of the glow-in-the-dark portion of one or more of the first input port, second input port, first connector, and second connector may charge with minimal light exposure and lasts for 8 or more hours. At least one of the glow-in-the-dark ports or connectors has one or both of an intensity and a color that is different from another of the glow-in-the-dark ports or connectors.
In another example, a feed set system includes tubing, a first input port, a first connector, and a coupling for mating with a feed bag. At least one of the tubing, the first input port, the first connector, and the coupling are for mating with a feed bag has a glow-in-the-dark property.
The glow-in-the-dark property may have one or both of a glow-in-the-dark color and a glow-in-the-dark intensity. The first input port may be one of a gastric button, a gastric jejunal button, a jejunal button, a Y-port connector, or a bolus port connector. The first connector may be a connector for coupling with the first input port.
A second input port and a second connector may also be included. One or both of the first and second connectors at least in part glow-in-the-dark and one or both of the first and second input ports at least in part glow-in-the-dark. The first input port may be part of a gastric, gastric-jejunal, or jejunal button. The first connector may be a connector for coupling with the first input port. The second input port may be a Y-port connector or a bolus port connector. The second connector may be a Christmas tree connector for coupling with the Y-port or bolus port connector.
The first input port may have a glow-in-the-dark color, the first connector may have a second glow-in-the-dark color, the second input port may have a third glow-in-the-dark color, and the second connector may have a fourth glow-in-the-dark color. The first and second colors may be the same and the third and fourth colors may be the same. The first and second colors may be the same as or different from the third and fourth colors, or the first and second colors may be different from one another and the third and fourth colors are different from one another. The glow-in-the-dark property charges with minimal light exposure and lasts for 8 or more hours.
An alternative example coupling for use in feeding and/or medicating a patient includes a port and a connector for coupling with the port. Both the port and the connector are at least in part made of a material having glow-in-the-dark properties.
The input port and the connector may be associated with enteral or parenteral feeding. The coupling may further comprise tubing coupled to the connector and one or both of a food and a medicine source coupled to the tubing. The entire port and the entire connector have glow-in-the-dark properties.
The term “substantially,” if used herein, is a term of estimation.
While various features are presented above, it should be understood that the features may be used singly or in any combination thereof. Further, it should be understood that variations and modifications may occur to those skilled in the art to which the claimed examples pertain. The examples described herein are exemplary. The disclosure may enable those skilled in the art to make and use alternative designs having alternative elements that likewise correspond to the elements recited in the claims. The intended scope may thus include other examples that do not differ or that insubstantially differ from the literal language of the claims. The scope of the disclosure is accordingly defined as set forth in the appended claims.
This application is a continuation-in-part application of copending U.S. patent application Ser. No. 13/557,850, filed on Jul. 25, 2012, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 13557850 | Jul 2012 | US |
Child | 13886457 | US |