Photomultiplier tube with an improved dynode aperture mesh design

Information

  • Patent Grant
  • 6462324
  • Patent Number
    6,462,324
  • Date Filed
    Wednesday, December 8, 1999
    24 years ago
  • Date Issued
    Tuesday, October 8, 2002
    21 years ago
Abstract
A photomultiplier tube includes a photocathode and a primary dynode having input and output apertures. A field isolating mesh is positioned at the input aperture of the primary dynode to facilitate the collection of electrons from the photocathode of the photomultiplier to the primary dynode while simultaneously electrostatically shielding secondary emission electrons from the field of the photocathode. The field isolating mesh has a central opening that is dimensioned to maximize the throughput of photoelectrons from the photocathode to the primary dynode while providing effective field isolation in the vicinity of the primary dynode. The central opening in the field isolation mesh provides the further advantage of permitting uniform deposition of photo-emissive materials on the surface of the dynode during manufacture. In an alternative embodiment, the field isolating mesh of the primary dynode is formed in two segments. The first segment is disposed in the input aperture of the primary dynode and the second segment is disposed in offset, spaced parallel relation to the first segment. The photomultiplier according to the disclosed invention provides a significant improvement in electron collection efficiency, pulse height resolution, and magnetic sensitivity compared to known photomultiplier tubes of otherwise similar construction.
Description




FIELD OF THE INVENTION




This invention relates to photomultiplier devices for the detection of radiant energy. More specifically, this invention relates to a photomultiplier having a field isolation mesh that is configured to improve the electron collection efficiency of its associated dynode and the pulse height resolution and magnetic sensitivity of the photomultiplier.




BACKGROUND OF THE INVENTION




A photomultiplier device conducts and amplifies radiant energy by way of a photocathode adapted to release electrons in response to radiation, such as light, incident thereon. The photomultiplier device amplifies the incident radiation by channeling the electrons released from the photocathode through an array of secondary dynodes. Each secondary dynode has an emission surface area that is responsive to electrons incident thereon by releasing a plurality of secondary electrons for each electron impinging on the emission surface of the secondary dynode. The secondary dynodes are arrayed or aligned in cascade such that the secondary electrons emitted in one dynode are transported sequentially to the other dynodes. In this way, multiplication of the photoelectrons released from the photocathode is accomplished, thereby amplifying the initially received radiation energy.




Photoelectrons are channeled first from the photocathode of the photomultiplier to the input of a primary dynode. The dynodes, including the primary dynode, have field isolating mesh or grid sections disposed about their input apertures. The field isolating mesh sections are typically formed of electrically conductive material and may be energized at the same electrical potential as the secondary emission surface of the dynode with which it is associated. The mesh functions to draw primary electrons toward the secondary mission surface while simultaneously electrostatically shielding the secondary mission electrons from the field of the photocathode or next preceding dynode. Thus, secondary emission electrons are channeled away from the input aperture of a dynode to the output surface of the dynode. The electrons passed from the last dynode output aperture of the array are collected by an anode, providing an amplified radiant energy signal.




As can be appreciated, field isolation among dynodes is necessary for the proper functioning of the photomultiplier device. Yet, the physical structure of the known dynode mesh sections limits the efficient performance of electron multiplication. For example, the conductive members of the mesh partially obstruct the path of traveling electrons to the input aperture, which adversely affects the electron collection efficiency of the dynode and the uniformity of secondary electron emissions produced. Moreover, this obstruction impedes the uniform coating of secondary emissive materials on a dynode surface during the manufacturing process.




It is known to utilize proximity-varied density configurations with secondary dynode mesh sections to increase electron transfer efficiency and to facilitate shielding of secondary dynode walls and output apertures, such an arrangement is shown and described in U.S. Pat. No. 4,112,326. However, such non-uniform configurations fail to address the poor collection efficiency between the photocathode and the first or “primary” dynode and the lack of uniformity in secondary electron emissions released therefrom. Moreover, the known mesh configurations do not facilitate the uniform coating of the primary dynode with secondary emissive materials during the manufacturing process.




Presently, a photomultiplier is desired wherein the primary dynode field isolation mesh is dimensioned to provide a significant improvement in the primary dynode electron collection efficiency, magnetic sensitivity, as well as the pulse height resolution of the photomultiplier.




SUMMARY OF THE INVENTION




In accordance with a first aspect of the present invention, there is provided a photomultiplier tube which includes an envelope having a faceplate. A photocathode disposed in the envelope receives radiant energy incident on the faceplate of the envelope and provides photoelectrons in response thereto in the known manner. A first dynode, also disposed in the envelope has an input aperture, an output aperture, and a secondary emissive surface formed between said input and output apertures. The input aperture faces the photocathode and the secondary emissive surface is oriented for receiving the photoelectrons from the photocathode. A field isolating mesh is positioned over the input aperture of the first dynode. The field isolating mesh includes a periphery formed of an electrically conductive material and a central opening. The periphery provides an isolating electric field in the vicinity of the input aperture of the first dynode when energized. The central opening is dimensioned to provide a maximum throughput of photoelectrons from said photocathode to the secondary emissive surface of the first dynode.




In accordance with a further aspect of this invention, the field isolating mesh is formed of two segments including a first segment that is positioned in the input aperture of the first dynode. The second segment is disposed in parallel spaced relation to the input aperture and said first segment. In use, the first segment is energized at the same electric potential as the first dynode and the second segment is energized at a different electric potential, usually that of the focusing electrode used in the photomultiplier tube for focusing the photoelectrons from the photocathode onto the first dynode.




Both of the foregoing arrangements provide a significant increase in the collection efficiency of the first dynode. As a result, the pulse height resolution of a photomultiplier tube in accordance with this invention is significantly improved relative to known devices. Furthermore, the magnetic sensitivity of the photomultiplier tube according to this invention is superior to the known photomultipliers.











BRIEF DESCRIPTION OF THE DRAWINGS




The foregoing summary, and the following detailed description, will be better understood when read in conjunction with the attached drawings, in which:





FIG. 1

is a side elevational view in partial section of a photomultiplier tube in accordance with the present invention;





FIG. 2

is a plan view of a field isolating mesh for the primary dynode of the photomultiplier of

FIG. 1

as viewed along line


2


-


2


therein;





FIG. 3

is a plan view of a second configuration for a field isolating mesh of the type shown in

FIG. 2

;





FIG. 4

is a side elevational view in partial section of a second arrangement of a photomultiplier tube in accordance with the present invention;





FIG. 5

is a plan view of a field isolating mesh for the primary dynode of the photomultiplier of

FIG. 4

as viewed along line


5


-


5


therein; and





FIG. 6

is a plan view of a second arrangement for a field isolating mesh of the type shown in FIG.


5


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring now to the drawings wherein like reference numerals refer to the same or similar components across the several views, and in particular to

FIG. 1

, there is shown a photomultiplier tube


10


in accordance with the present invention. Photomultiplier tube


10


includes an evacuated envelope or vessel


12


which has a cylindrical wall


14


and a light-transmitting faceplate


16


. A photocathode


18


is formed on the interior surface of the faceplate


16


and on a portion of the interior surface of cylindrical wall


14


. Light incident on the faceplate


16


enters the envelope


12


and photocathode


18


emits a plurality of photoelectrons in response to the incident light.




Arranged in the interior of envelope


12


is a first dynode array including a first or “primary” dynode


45


, a second dynode


47


, and a third dynode


49


. In the embodiment illustrated in

FIG. 1

, dynodes


45


,


47


, and


49


are configured as box-and-grid dynodes, but other known or novel configurations could be used as well.




Photomultiplier tube


10


also has a second dynode array


20


which includes an anode (not shown). The second dynode array


20


, is preferably configured as an in-line dynode array, such as that disclosed in a co-pending U.S. application Ser. No. 08/916,097 filed Aug. 21, 1997(U.S. Pat. No. 5,914,561). However, the second dynode array is not limited to such a configuration because other known or novel configurations can be used depending on the particular design requirements. In general, the dynodes of the secondary dynode array


20


are constructed and arranged relative to one another in any suitable manner to facilitate the transfer of the stream of electrons from the first dynode array to the anode. The anode is connected to output terminals


25




a


and


25




b


for providing a signal from the photomultiplier device


10


to appropriate electronic instrumentation.




The first dynode


45


has an input aperture that is oriented for receiving photoelectrons from the photocathode


18


. An output aperture is formed at the opposite end of first dynode


45


through which the secondary electrons are transmitted to the second dynode


47


. A secondary emission surface


56


is disposed between the input aperture and the output aperture. As known to those skilled in the art, the secondary emission surface of the dynodes is responsive to the photoelectrons incident thereon for releasing a plurality of secondary electrons.




The dynodes


45


,


47


, and


49


, and the dynodes of the second dynode array


20


are formed of a suitable conductive material, including, but not limited to, such metals as nickel or stainless steel. The active or emissive surface of each dynode is coated with a suitable secondary emitter material, including, but not limited to, such materials as cesium antimonide (Cs


2


Sb), potassium cesium antimonide (K


2


CsSb), gallium phosphide, gallium arsenide phosphide, beryllium oxide (BeO:Cs), magnesium oxide (MgO:Cs), or silver oxide (AgO:Cs).




In order to facilitate the transfer of electrons from the photocathode


18


to the primary dynode


45


of the first array, the photomultiplier includes a focusing electrode


22


. The focusing electrode


22


is disposed between the photocathode


18


and the inlet aperture of the primary dynode


45


. When energized, the focusing electrode


22


orients or “focuses” the photoelectrons released from peripheral regions of photocathode


18


onto the secondary emission surface


56


of primary dynode


45


. The focusing electrode


22


does not amplify the electron signal between the photocathode


18


and the primary dynode


45


. However, its structure can be arranged to provide a maximum electron transfer from the photocathode


18


to the primary dynode


45


. A field isolation mesh


40


is disposed over the input aperture of primary dynode


45


. Preferably, a field isolation mesh


64


is positioned in the inlet aperture of the second dynode


47


and a field isolation mesh


66


is positioned in the inlet aperture of the third dynode


49


.




Referring now to

FIG. 2

, there is shown a first embodiment of a primary dynode field isolation mesh


40


in accordance with the present invention. The isolation mesh


40


has a ring-shaped periphery


41


formed of a conductive material, preferably nickel, stainless steel, or other suitable metal. The periphery


41


includes a support ring


42


and a grid


43


extending inwardly from the support ring


42


. The isolation mesh


40


does not provide any electron multiplying function and, therefore, is not purposely coated with a secondary emitter material. However, it may be coated circumstantially by virtue of its presence in the photomultiplier tube during photocathode processing. The support ring


42


and the grid


43


are configured and arranged so that when energized, they provide an electric field that isolates the inlet aperture of primary dynode


45


from the electric field of photocathode


18


. In this manner electrons released from secondary emission surface


56


are more readily channeled towards the outlet aperture of primary dynode


45


.




Isolation mesh


40


has a central opening or aperture


34


formed by the inner circumference of the grid


43


. The central opening


34


can have any suitable geometry, including polygonal and circular geometries. Referring to

FIG. 2

, there is shown an isolation mesh


40


having a hexagonal central aperture


34


. Shown in

FIG. 3

is an isolation mesh


40


having a substantially square central opening


34


. Regardless of the geometry used, the central opening


34


is dimensioned to provide a maximum, unobstructed line of sight to the surface


56


from a point outside of the inlet aperture of primary dynode


45


. That arrangement maximizes the unobstructed throughput of photoelectrons from the photocathode


18


to the secondary emission surface


56


of primary dynode


45


. In a similar manner, the size and shape of central opening


34


is selected to provide uniform, unobstructed transfer of the secondary emitter material to the primary dynode


45


during manufacturing of the photomultiplier tube


10


. The unobstructed, line-of-sight path permits a substantially uniform coating of the secondary emission materials on the dynode surface


56


.




The central opening


34


may not be so large that it effectively eliminates the field isolation provided by the field isolation mesh


40


. There does not appear to be any effective limit on the minimum size of the central opening so long as it is large enough to provide the desired functionality. Those skilled in the art can readily determine the minimum and maximum limits for a given photomultiplier by appropriate testing, for example, or by computer simulation. In accordance with this invention, the central opening may be offset toward the outlet aperture of primary dynode


45


or away therefrom with results similar to those obtained with a centralized location of the opening


34


. Those skilled in the art can also readily determine the limits of such offsetting




In the operation of photomultiplier tube


10


, the primary dynode


45


is energized at a first voltage ν


1


by way of terminal


91


which is connected to an external voltage source (not shown). Also during operation of the photomultiplier tube


10


in accordance with this invention, the focus electrode


22


is energized at a second voltage ν


2


by way of terminal


92


which is connected to a second external voltage source (not shown). The voltage ν


2


applied to focus electrode


22


is set at a lower electric potential relative to the voltage ν


1


applied to the primary dynode


45


. In the embodiment shown in

FIG. 1

, the field isolation mesh


40


is in physical contact with the primary dynode


45


and therefore is energized at the voltage ν


1


.




Referring now to

FIG. 4

, there is shown a photomultiplier device


410


in accordance with another aspect of the present invention. The photomultiplier


410


includes all of the same components as the embodiment shown in FIG.


1


and described hereinabove. However, in the photomultiplier


410


, the field isolation mesh is formed in two symmetrical segments


440




a


and


440




b


. Mesh segment


440




a


is attached to primary dynode


445


in the usual manner. Mesh segment


440




b


is attached to a bracket


436


on the focusing electrode


422


. Because of that arrangement, mesh segment


440




b


is in spaced parallel relation to mesh segment


440




a


. However, when viewed from the photocathode


418


, as shown in

FIGS. 5 and 6

, the mesh segments


440




a


and


440




b


appear to be coplanar and thus function in the same way as the field isolation mesh shown in FIG.


1


and described hereinabove.




Mesh segment


440




a


has a periphery


441




a


that includes a grid


442




a


and a support rail


443




a


therefor. Similarly, mesh segment


440




b


has a periphery


441




b


that includes a grid


442




b


and a support rail


443




b


therefor. The mesh segments


440




a


and


440




b


have respective cut-out sections


434




a


and


434




b


formed therein. When the mesh segments


440




a


and


440




b


are assembled in the photomultiplier tube


410


, the cut-out sections


434




a


and


434




b


combine to form a central opening in the field isolation mesh. This central opening provides the same functionality as that described for the embodiment of FIG.


1


. However, in the embodiment shown in

FIG. 4

, because the mesh segment


440




a


is attached to the primary dynode


445


, it is energized at the voltage ν


1


and because the mesh segment


440




b


is attached to the focusing electrode


422


, it is energized at the voltage ν


2


. The net electric field resulting from the difference in electrical potential between mesh segments


440




a


and


440




b


has been found to provide further improvement in electron collection efficiency of the primary dynode


445


.




A photomultiplier tube having improved electron collection efficiency, pulse height resolution, and magnetic sensitivity has been described herein. The photomultiplier of the present invention includes a primary dynode having input and output apertures, the input aperture functioning to channel photoelectrons released by the photocathode to the active surface of the primary dynode. An appropriately energized focusing electrode directs the photoelectrons emitted by the photocathode towards, and into the input aperture of, the primary dynode


445


. A field isolating mesh is positioned about the input aperture of the primary dynode to facilitate the collection of electrons directed away from the photocathode of the photomultiplier to the primary dynode while simultaneously electrostatically shielding secondary emission electrons from the field of the photocathode. The primary dynode mesh has a central opening formed therein which is dimensioned to provide an unobstructed path to the active surface of the dynode for photoelectrons emitted by the photocathode and for photo-emissive material to be deposited on the surface of the dynode.




In an alternative embodiment, the field isolating mesh of the primary dynode is formed of two symmetrical segments. The first mesh segment is mounted on the primary dynode in the usual manner and the second mesh segment is mounted on the focusing electrode of the photomultiplier and is disposed in spaced parallel relation to the first mesh segment. The first mesh segment is energized at the same electrical potential as the first dynode and the second mesh segment is energized at the electric potential of the focusing electrode. The potential difference between the first and second mesh segments provides a net electric field that further enhances the electron collection efficiency of the first dynode.




Those skilled in the art will be able to utilize other primary dynode arrangements that provide desired transfer and collection characteristics for various dynode mesh arrangements in accordance with the present invention. In addition to the embodiments of the field isolating mesh described and shown herein, it is also contemplated that the central aperture of the field isolating mesh of the first dynode can be constructed in a variety of geometric shapes, including circles and polygons other than those specifically described herein. Any shape that permits unobstructed movement of photoelectrons through the mesh is acceptable. It is further contemplated that the field isolating meshes of the other dynodes in the photomultiplier can be formed with a similar central opening. It is believed that the use of such additional meshes will further enhance the pulse height resolution and magnetic sensitivity of the photomultiplier. Further still, potentials other than ν


1


and ν


2


, described above, can be applied to the split mesh embodiment if appropriate means are taken to isolate the mesh segments from the supporting structures, i.e., the focusing electrode


22


and primary dynode


45


, respectively.




It will be recognized by those skilled in the art that changes or modifications may be made to the above-described invention without departing from the broad inventive concepts of this invention. It is understood, therefore, that the invention is not limited to the particular embodiments disclosed herein, but is intended to cover all modifications and changes which are within the scope of the invention as defined in the appended claims.



Claims
  • 1. A photomultiplier tube comprising:an envelope having a faceplate; a photocathode disposed in said envelope for receiving radiant energy incident on the faceplate of said envelope and providing photoelectrons in response thereto; a first dynode disposed in said envelope having an input aperture facing said photocathode, an output aperture, and a secondary emissive surface formed between said input and output apertures, said secondary emissive surface being oriented for receiving photoelectrons from said photocathode; and a field isolating mesh disposed over the input aperture of said first dynode, said field isolating mesh including a) a periphery formed of an electrically conductive material for providing an isolating electric field in the vicinity of the input aperture of said first dynode, when energized, and b) a central opening that is dimensioned to provide a maximum unobstructed path from said photocathode to the secondary emissive surface of said first dynode, and said field isolating mesh having at least a first portion thereof in physical contact with said first dynode such that said first portion of said field isolating mesh is at the same electrical potential as said first dynode when energized.
  • 2. A photomultiplier tube as set forth in claim 1 wherein the periphery of said field isolating mesh comprises a support structure and a grid structure extending from said support structure.
  • 3. A photomultiplier tube as set forth in claim 1 wherein the central opening in said field isolating mesh has a shape that is substantially polygonal.
  • 4. A photomultiplier tube as set forth in claim 3 wherein the shape of the central opening in the field isolating mesh is a hexagon.
  • 5. A photomultiplier tube as set forth in claim 3 wherein the shape of the central opening in the field isolating mesh is a square.
  • 6. A photomultiplier tube as set forth in claim 1 wherein the central opening in said mesh is substantially circular in shape.
  • 7. A photomultiplier tube as set forth in claim 1 comprising a focusing electrode mounted in said envelope and disposed around the input aperture of said first dynode.
  • 8. A photomultiplier tube as set forth in claim 7 wherein said focusing electrode comprises a central opening that coincides with the input aperture of said first dynode.
  • 9. A photomultiplier tube as set forth in claim 7 wherein said field isolating mesh is substantially planar and comprises a second portion that is disposed in spaced relation to the input aperture of said first dynode and is spaced in offset relation to said first portion.
  • 10. A photomultiplier tube as set forth in claim 9 wherein said second portion of said field isolating mesh is attached to said focusing electrode.
  • 11. A photomultiplier tube as set forth in claim 1 further comprising:a second dynode having an input aperture facing the output aperture of said first dynode, an output aperture, and a secondary emissive surface oriented for receiving secondary electrons from said first dynode; a third dynode having an input aperture facing the output aperture of said second dynode, an output aperture, and a secondary emissive surface oriented for receiving secondary electrons from said second dynode; a dynode array having an input aperture facing the output aperture of said third dynode and an output aperture, said dynode array being oriented for receiving secondary electrons from said third dynode; and an anode disposed adjacent to the output aperture of said dynode array for receiving secondary electrons from said dynode array.
  • 12. A photomultiplier tube as set forth in claim 1 wherein the central opening in said field isolating mesh is offset relative to the input aperture of said first dynode.
  • 13. A photomultiplier tube comprising:an envelope having a faceplate; a photocathode disposed in said envelope for receiving radiant energy incident on the faceplate of said envelope and providing photoelectrons in response thereto; a first dynode disposed in said envelope having an input aperture facing said photocathode, an output aperture, and a secondary emissive surface formed between said input and output apertures, said secondary emissive surface being oriented for receiving photoelectrons from said photocathode; and a focusing electrode mounted in said envelope and disposed around the input aperture of said first dynode; a field isolating mesh disposed over the input aperture of said first dynode, said field isolating mesh including: a) a periphery formed of an electrically conductive material for providing an isolating electric field in the vicinity of the input aperture of said first dynode, when energized, b) a central opening that is dimensioned to provide a maximum unobstructed path from said photocathode to the secondary emissive surface of said first dynode, and said field isolating mesh being formed of two segments including a first segment that is disposed in the input aperture of and in physical contact with said first dynode and a second segment that is disposed in spaced relation to the input aperture and is offset relative to said first segment.
  • 14. A photomultiplier tube as set forth in claim 13 wherein said second segment of said field isolating mesh is attached to said focusing electrode such that said second segment can be energized at the same electrical potential as said focusing electrode.
  • 15. A photomultiplier tube as set forth in claim 13 wherein the central opening in said field isolating mesh has a shape that is substantially polygonal.
  • 16. A photomultiplier tube as set forth in claim 15 wherein the shape of the central opening in the isolating mesh is a polygon selected from the group consisting of hexagons and squares.
  • 17. A photomultiplier tube as set forth in claim 13 wherein the central opening. in said mesh is substantially circular in shape.
  • 18. A photomultiplier tube as set forth in claim 13 wherein the central opening in said field isolating mesh is offset relative to the input aperture of said first dynode.
US Referenced Citations (13)
Number Name Date Kind
4006376 Faulkner et al. Feb 1977 A
4060747 Faulkner Nov 1977 A
4112325 Faulkner Sep 1978 A
4306171 Faulkner et al. Dec 1981 A
4431943 Faulkner et al. Feb 1984 A
4456852 Faulkner et al. Jun 1984 A
4649268 Persyk Mar 1987 A
4710675 Stephenson Dec 1987 A
4825066 Nakamura et al. Apr 1989 A
5043628 Boutot et al. Aug 1991 A
5598061 Nakamura Jan 1997 A
5616987 Ohmura et al. Apr 1997 A
5914561 Venkatarao Jun 1999 A
Foreign Referenced Citations (1)
Number Date Country
2106708 Apr 1983 GB
Non-Patent Literature Citations (3)
Entry
Iijima et al., “Study on fine-mesh PMTs for detection of aerogel Cherenkov light”, Nucl. Instr. and Meth. in Phys. Res. A 387, (1997) pp. 64-68).
Hearty, “Detection of small light pulses and pulse height resolution of a fine mesh photomultiplier tube”, Nucl. Instr. and Meth. in Phys. Res. A 376, (1995), pp. 83-87.
Suzuki et al., “New Mesh PMTS For High Magnetic Environments”, IEEE Transactions on Nuclear Science, vol. 33, No. 1, Feb. 1986, pp. 377-380.