Photomultiplier with particular stem/pin structure

Information

  • Patent Grant
  • 7238928
  • Patent Number
    7,238,928
  • Date Filed
    Tuesday, July 26, 2005
    18 years ago
  • Date Issued
    Tuesday, July 3, 2007
    16 years ago
Abstract
The edges of portions of a base member that are joined to stem pins are arranged as bottom surfaces of recesses formed in the stem so that the stem pins are joined to the base member at gradual angles and so that even when a bending force acts on the stem pins, the stem pins will contact the peripheral portions at the open sides of the recesses, thereby preventing further bending of the stem pins and preventing the forming of cracks at both sides of the portions at which the stem pins are joined to the base member. Furthermore, triple junctions, at which the conductive stem pins, the insulating base member to which the stem pins are joined, and vacuum intersect, are positioned inside the recesses and put in concealed-like states.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention concerns a photomultiplier that makes use of the photoelectric effect and a radiation detector that uses this photomultiplier.


2. Related Background of the Invention


As one type of photomultiplier, a so-called head-on photomultiplier is known. With this head-on photomultiplier, a sealed vacuum container is arranged by providing a light receiving plate at an end portion at one side of a cylindrical side tube and providing a stem at an end portion at the other side of the side tube, and a photoelectric surface is disposed on the inner surface of the light receiving plate. An arrangement is provided wherein an electron multiplier unit, with a plurality of stages of dynodes, and an anode are layered and positioned opposite the photoelectric surface, and a plurality of stem pins, respectively connected to the respective dynodes and the anode, are insertedly mounted in the stem so as to lead to the exterior from inside the sealed container. Incident light that is made incident through the light receiving plate is converted into electrons at the photoelectric surface, the electrons that are emitted from the photoelectric surface are successively multiplied at the electron multiplier unit, wherein predetermined voltages are applied via the respective stem pins to the respective diodes, and the electrons that reach the anode upon being multiplied are taken out as an electrical signal via an anode pin, which is one of the stem pins.


Among such photomultipliers, there is an arrangement, wherein the stem pins are respectively insertedly mounted in a metal stem via tapered hermetic glass portions, and an arrangement, wherein the respective stem pins are directly mounted insertedly in a stem formed of a large, tapered hermetic glass portion (see, for example, FIG. 1 and FIG. 7 of Japanese Published Unexamined Patent Application No. Hei. 5-290793).


SUMMARY OF THE INVENTION

With both of the above-described arrangements (shown in FIG. 1 and FIG. 7 of Japanese Published Unexamined Patent Application No. Hei 5-290793), since the peripheries of the portions at which the tapered hermetic glass is joined to the stem pins (the peripheries of the joined portions at the periphery of the stem in the case of FIG. 7 of Japanese Published Unexamined Patent Application No. Hei 5-290793) become bulged portions of acute angles, cracks are formed in the tapered hermetic glass when a bending force acts on the stem pins, causing a functional defect as well as an appearance defect of the sealed container. Also, with both of the above-described arrangements, since triple junctions, each of which is a point at which a conductive stem pin, the tapered hermetic glass that is an insulator, and the vacuum intersect, are positioned at positions where the junctions are bare, the voltage endurance degrades.


This invention has been made to resolve these issues and an object thereof is to provide a photomultiplier, with which airtightness and good outer appearance of the sealed container and a predetermined voltage endurance are secured, and a radiation detector equipped with such a photomultiplier.


This invention's photomultiplier comprises: a photoelectric surface, disposed inside a sealed container, which is put in a vacuum state, and converting incident light made incident through a light receiving plate into electrons, which forms an end portion at one side of the sealed container; an electron multiplier unit, disposed inside the sealed container and multiplying electrons emitted from the photoelectric surface; an anode, disposed inside the sealed container and used for taking out the electrons multiplied by the electron multiplier unit as an output signal; a stem, forming an end portion at the other side of the sealed container and having a base member with an insulating property; and a plurality of stem pins, insertedly mounted in the stem and leading to the exterior from inside the sealed container and electrically connected to the anode and the electron multiplier unit; with the stem pins being passed through and joined to the base member and the full circumferences of the stem pin passing portions of the inner surface and the outer surface of the stem being arranged as recesses having the base member as the bottom surfaces.


With such a photomultiplier, the peripheries of the portions at which the base member is joined to the stem pins become the bottom surfaces of the recesses formed in the stem so that the base member is joined to the stem pins at gradual angles (angles that are gradual in comparison to the abovementioned acute angles), and since even when a bending force acts on the stem pins, the stem pins will contact the peripheral portions at the open sides of the recesses and this prevents further bending of the stem pins, cracks are prevented from being formed at both sides of the stem pin joining portions of the base member. Consequently, airtightness and good appearance of the sealed container are secured. Also, since triple junctions, at which the conductive stem pins, the insulating base member to which the stem pins are joined, and vacuum intersect, are positioned inside the recesses, the triple junctions are put in concealed-like states. As a result, the predetermined voltage endurance is secured.


Here, the abovementioned stem may have a single layer structure. As a specific arrangement in this case, an arrangement, wherein the stem is a single layer structure of the base member and the recesses are formed in both the inner surface and the outer surface of the base member, can be cited.


The abovementioned stem may also be a two-layer structure. As a specific arrangement of a two-layer structure, an arrangement can be cited wherein the stem has a structure, having a base member and a holding member, which is joined to one of either the inner surface or the outer surface of the base member and has openings through which the stem pins that are joined to the base member are inserted, the recesses are formed on the surface of the base member at the side opposite the surface joined to the holding member, and the recesses are formed by the openings of the holding member.


The abovementioned stem may also have a structure of three or more layers. As a specific arrangement of a three-layer structure, an arrangement can be cited wherein the stem has a structure having a base member and holding members, which are joined to the inner surface and the outer surface, respectively, of the base member and have openings through which the stem pins that are joined to the base member are inserted, and the recesses are formed by the openings of the holding members.


Here, at least two of the openings of each holding member may be made larger in diameter than the other openings. With this arrangement, the entry of positioning jigs into the openings is enabled, thus facilitating the positioning of the base member and the holding members and enabling the lowering of the manufacturing cost. Also, since openings, through which the stem pins are inserted, are made large in diameter and the positioning jigs are made to enter these openings for positioning of the base member and the holding members, the concentricity of the stem pins and the openings of the holding members are secured. In the case where a stem of four layers or more is arranged by joining other members to the holding members, preferably each of these other members is provided, as with the holding members, with openings, through which the stem pins joined to the base member are inserted, and among these openings, at least two are made larger in diameter than the other openings.


With an arrangement wherein a conductive side tube, which forms the sealed container and surrounds the stem from the side, is provided and members of the stem that face the interior of the sealed container have an insulating property, since the triple junctions are positioned in the recesses as described above, the creeping distances from the side tube to the triple junctions are made long in comparison to the case where the triple junctions exist at positions where the junctions are bare, and the predetermined voltage endurance is thus secured further.


Here, by installing a scintillator, which converts radiation into light and emits the light, at the outer side of the light receiving plate of the above-described photomultiplier, a favorable radiation detector that exhibits the above-mentioned actions is provided.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a photomultiplier of a first embodiment of this invention.



FIG. 2 is a bottom view of the photomultiplier shown in FIG. 1.



FIG. 3 is a sectional view taken along line III—III of the photomultiplier shown in FIG. 1.



FIG. 4 is a plan view of a base member making up a stem of the first embodiment.



FIG. 5 is a plan view of an upper holding member making up the stem of the first embodiment.



FIG. 6 is a plan view of a lower holding member making up the stem of the first embodiment.



FIG. 7 shows an example of manufacturing the stem of the first embodiment, with (a) being a sectional side view and (b) being an enlarged view of the principal portions of the stem in a state prior to sintering.



FIG. 8 shows the example of manufacturing the stem of the first embodiment, with (a) being a sectional side view and (b) being an enlarged view of the principal portions of the stem in a state after sintering.



FIG. 9 is an enlarged view of the principal portions near an anode pin and shows a triple junction and the creeping distance of the photomultiplier shown in FIG. 3.



FIG. 10 is an enlarged view of the principal portions near an anode pin and shows a triple junction and the creeping distance of a comparative example.



FIG. 11 is a sectional side view of a photomultiplier of a modification example.



FIG. 12 is a sectional side view of a photomultiplier of another modification example.



FIG. 13 is a sectional side view of an example of a radiation detector.



FIG. 14 is a sectional view of the principal portions of the radiation detector shown in FIG. 13.



FIG. 15 is a sectional side view of another example of a radiation detector.



FIG. 16 is a sectional view of the principal portions of the radiation detector shown in FIG. 15.



FIG. 17 is a sectional side view of a photomultiplier of a second embodiment of this invention.



FIG. 18 is a plan view of a base member making up a stem of the second embodiment.



FIG. 19 is a bottom view of the base member making up the stem of the second embodiment.



FIG. 20 shows an example of manufacturing the stem of the second embodiment, with (a) being a sectional side view and (b) being an enlarged view of the principal portions of the stem in a state prior to sintering.



FIG. 21 shows the example of manufacturing the stem of the second embodiment, with (a) being a sectional side view and (b) being an enlarged view of the principal portions of the stem in a state after sintering.



FIG. 22 is a sectional side view of a photomultiplier of a modification example of the second embodiment.



FIG. 23 is a plan view of a base member making up a stem of the modification example of the second embodiment.



FIG. 24 is a bottom view of the base member making up the stem of the modification example of the second embodiment.



FIG. 25 shows an example of manufacturing the stem of the modification example of the second embodiment, with (a) being a sectional side view and (b) being an enlarged view of the principal portions of the stem in a state prior to sintering.



FIG. 26 shows the example of manufacturing the stem of the modification example of the second embodiment, with (a) being a sectional side view and (b) being an enlarged view of the principal portions of the stem in a state after sintering.



FIG. 27 is a sectional side view of a photomultiplier of a third embodiment of this invention.



FIG. 28 is a plan view of a base member making up a stem of the third embodiment.



FIG. 29 is a bottom view of the base member making up the stem of the third embodiment.



FIG. 30 shows an example of manufacturing the stem of the third embodiment, with (a) being a sectional side view and (b) being an enlarged view of the principal portions of the stem in a state prior to sintering.



FIG. 31 shows the example of manufacturing the stem of the third embodiment, with (a) being a sectional side view and (b) being an enlarged view of the principal portions of the stem in a state after sintering.



FIG. 32 is a sectional side view of a photomultiplier of another modification example.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of this invention's photomultiplier and radiation detector shall now be described with reference to the drawings. The terms, “upper,” “lower,” etc., in the following description are descriptive terms based on the states illustrated in the drawings. In the drawings, portions that are the same or correspond to each other are provided with the same symbol and overlapping description shall be omitted.


First Embodiment


FIG. 1 and FIG. 2 are a plan view and a bottom view, respectively, of a first embodiment of a photomultiplier by this invention, and FIG. 3 is a sectional view taken along line III—III in FIG. 1. In FIG. 1 to FIG. 3, a photomultiplier 1 is arranged as a device that emits electrons upon incidence of light from the exterior and multiplies and outputs the electrons as a signal.


As shown in FIG. 1 to FIG. 3, the photomultiplier 1 has a metal side tube 2 with a substantially cylindrical shape. As shown in FIG. 3, a glass light receiving plate 3 is fixed in an airtight manner to an open end at the upper side (one side) of the side tube 2, and a photoelectric surface 4, for converting the light made incident through the light receiving plate 3 into electrons, is formed on the inner surface of the light receiving plate 3. Also, a disk-like stem 5 is positioned at an open end at the lower side (other side) of the side tube 2 as shown in FIG. 2 and FIG. 3. A plurality (15) of conductive stem pins 6, which are positioned apart from each other in the circumferential direction at positions substantially along a circle, are insertedly mounted in an airtight manner in the stem 5, and a metal, ring-like side tube 7 is fixed in an airtight manner so as to surround the stem 5 from the side. As shown in FIG. 3, a flange portion 2a, formed at a lower end portion of the upper side tube 2, and a flange portion 7a of the same diameter, formed at the lower ring-like side tube 7, are welded together, and by the side tube 2 and the ring-like side tube 7 being thereby fixed in an airtight manner, a sealed container 8, the interior of which is kept in a vacuum state, is formed.


Inside the sealed container 8, which is formed thus, is housed an electron multiplier unit 9 for multiplying the electrons emitted from the photoelectric surface 4. With this electron multiplying portion 9, a plurality of stages (ten in the present embodiment) of thin, plate-like dynodes 10, each having a plurality of electron multiplying holes, are laminated and formed as a block and installed on the upper surface of the stem 5. As shown in FIG. 1 and FIG. 3, at a predetermined peripheral portion of each dynode 10 is formed a dynode connecting tab 10c, which protrudes to the exterior, and a tip portion of a predetermined stem pin 6, insertedly mounted in the stem 5, is fixed by welding to the lower surface side of each dynode connecting tab 10c. The respective dynodes 10 are thus electrically connected respectively to the stem pins 6.


Furthermore, inside the sealed container 8, a plate-like focusing electrode 11, for converging and guiding the electrons emitted from the photoelectric surface 4 to the electron multiplier unit 9, is formed between the electron multiplier unit 9 and the photoelectric surface 4, and a plate-like anode 12, for taking out the electrons, multiplied by the electron multiplier unit 9 and emitted from the dynode 10b of the final stage, as an output signal, is layered at the stage one stage above the dynode 10b of the final stage as shown in FIG. 3. As shown in FIG. 1, protruding tabs 11a, which protrude outward, are formed respectively at the four corners of the focusing electrode 11, and by the predetermined stem pins 6 being fixed by welding to the respective protruding tabs 11a, the stem pins 6 are electrically connected to the focusing electrode 11. Also, an anode connecting tab 12a, which protrudes outward, is formed at a predetermined peripheral portion of the anode 12, and by an anode pin 13, which is one of the stem pins 6, being fixed by welding to the anode connecting tab 12a, the anode pin 13 is electrically connected to the anode 12. And when predetermined voltages are applied to the electron multiplier unit 9 and the anode 12 by means of the stem pins 6 connected to an unillustrated power supply circuit, the photoelectric surface 4 and the focusing electrode 11 are set to the same potential and the potentials of the respective dynodes 10 are set so as to increase in the order of layering from the upper stage to the lower stage. The anode 12 is set to a higher potential than the dynode 10b of the final stage. Though in the present embodiment, the final dynode 10b is directly set and fixed on the upper surface of the stem 5, an arrangement, wherein the final dynode 10b is supported, for example, by a supporting member installed on the upper surface of the stem 5 and a space is interposed between final dynode 10b and the upper surface of the stem 5, is also possible.


With the photomultiplier 1, arranged as described above, when light (hv) is made incident on the photoelectric surface 4 from the light receiving plate 3 side, the light at the photoelectric surface 4 is photoelectrically converted and electrons (e−) are emitted into the sealed container 8. The emitted electrons are focused by the focusing electrode 11 onto the first dynode 10a of the electron multiplier unit 9. The electrons are then multiplied successively inside the electron multiplier unit 9 and a set of secondary electrons are emitted from final dynode 10b. This group of secondary electrons is guided to the anode 12 and output to the exterior via the anode pin 13, which is connected to the anode 12.


The arrangement of the above-mentioned stem 5 shall now be described in further detail. Here, with the stem 5, the side, which is to be put in a vacuum state upon forming of the sealed container 8 of photomultiplier, shall be referred to as the “inner side” (upper side).


As shown in FIG. 3, the stem 5 has a three-layer structure formed of a base member 14, an upper holding member 15, which is joined to the upper side (inner side) of the base member 14, and a lower holding member 16, which is joined to the lower side (outer side) of the base member 14, and the above-mentioned ring-like side tube 7 is fixed to the side surface of this structure. In the present embodiment, the stem 5 is fixed to the ring-like side tube 7 by joining the side surface of the base member 14, which makes up the stem 5, to the inner wall surface of the ring-like side tube 7. Here, although the lower (outer) surface of the lower holding member 16 protrudes below the lower end of the ring-like side tube 7, the position of fixing of the stem 5 with respect to the ring-like side tube 7 is not restricted to that described above.


The base member 14 is a disk-like member formed of an insulating glass having, for example, covar as the main component and having a melting point of approximately 780 degrees, and is made black in color to a degree to which light will not be transmitted into the sealed container 8 from the lower surface. Also as shown in FIG. 4, a plurality (15) of openings 14a, of substantially the same diameter as the outer diameter of the stem pins 6, are formed in the base member 14 so as to be aligned along the outer circumferential portion of the base member 14.


The upper holding member 15 is a disk-like member, formed of insulating glass that has been made to have a higher melting point than the base member 14, that is for example, a melting point of approximately 1100 degrees by, for example, the addition of an alumina-based powder to covar, and is made black in color in order to effectively absorb light emitted inside the sealed container 8. Also as shown in FIG. 5, the upper holding member 15 has a plurality (15) of the openings 15a, positioned in the same manner as those of the base member 14. Each opening 15a is made larger in diameter than the openings 14a formed in the base member 14, and furthermore, among the openings 15a, the openings of at least two predetermined locations are arranged as large-diameter openings 15b, which are made even larger in diameter than the other openings 15a in order to enable the entry of a positioning jig 18 (to be described later) into the base member 14. In the upper holding member 15, the large-diameter openings 15b are positioned at three locations, other than the location of the opening 15a into which the anode pin 13 is passed, which are separated by a phase angle of 90 degrees. Also with the upper holding member 15, a peripheral portion near the opening 15a, through which the anode pin 13 is passed, is made as the chamfered shape 15c.


As with the upper holding member 15, the lower holding member 16 is a disk-like member, formed of insulating glass that has been made to have a higher melting point than the base member 14, that is for example, a melting point of approximately 1100 degrees by, for example, the addition of an alumina-based powder to cover and, by the difference in the composition of the alumina-based powder added, is made to exhibit a white color and have a higher physical strength than the base member 14 and the upper holding member 15. Also as shown in FIG. 6, the lower holding member 16 has a plurality of openings 16a formed in the same manner as the upper holding member 15, and among the openings 16a, the openings of at least two predetermined locations are arranged as large-diameter openings 16b to enable the entry of a positioning jig 18. In the lower holding member 16, the large-diameter openings 16b are positioned at four locations separated by a phase angle of 90 degrees, including the location of the opening 16a through which the anode pin 13 passes, and the large-diameter openings 16b at the three locations besides the large-diameter opening 16b, through which the anode pin 13 is passed, are positioned coaxial to the large-diameter openings 15b of the upper holding member 15. Furthermore, a circular base member seep opening 16c, serving as a base member seep portion into which the base member 14 seeps upon melting, is formed at a central portion of the lower holding member 16.


As shown in FIG. 3, the base member 14, the upper holding member 15, and the lower holding member 16 are overlapped in a state, in which the axial center positions of the respective openings 14a, 15a, and 16a and large-diameter openings 15b and 16b are matched, and are joined by fusing by the melting of the base member 14 in the state in which the stem pins 6 are inserted through the respective openings 14a, 15a, 16a, 15b, and 16b. More specifically, the upper holding member 15 and the lower holding member 16 are joined in close contact with the respective surfaces of the base member 14, the respective stem pins 6 are inserted through the respective openings 15a, 16a, 15b, and 16b of the upper holding member 15 and the lower holding member 16 so that recesses 5a, having the base member 14 as the bottom surfaces, are formed along the full circumferences of the portions of both the upper (inner) surface and lower (outer) surface of the stem 5 through which the respective stem pin 6 pass, and the respective stem pins 6 are joined in close contact with the base member 14 at the bottom surfaces of these recesses 5a.


An example of manufacturing the stem 5, arranged in the above-described manner shall now be described with reference to FIG. 7 and FIG. 8.


In manufacturing the stem 5, a pair of positioning jigs 18, which sandwich and hold the base member 14, the upper holding member 15, the lower holding member 16, and the respective stem pins 6 in a positioned state, are used as shown in FIG. 7(a) and FIG. 7(b).


The positioning jigs 18 are block-like members formed, for example, of highly heat resistant carbon with a melting point of no less than 1100 degrees, and at one side of each, insertion holes 18a, into and by which the stem pins 6 are inserted and supported, are formed in correspondence with the positions of the respective stem pins 6. At the peripheries of the openings of the insertion holes 18a, which, among the insertion holes 18a, correspond to the large-diameter opening 15b of the upper holding member 15 and the large-diameter opening 16b of the lower holding member 16, are formed substantially cylindrical protrusions 18b, which position the upper holding member 15 and the lower holding member 16 with respect to the base member 14 by entering inside the large-diameter openings 15b and 16b and thereby secure the concentricities of the respective stem pins 6 that pass through the base member 14 with respect to the respective openings 15a and 16a.


In setting the stem 5 using the positioning jigs 18, firstly, one positioning jig 18 (the jig at the lower side of the figure) is set, with the protrusions 18b facing upward, on a working surface (not shown) and the stem pins 6 are respectively inserted and fixed in the insertion holes 18a of this positioning jig 18. The lower holding member 16 is then set on the positioning jig 18 by making the protrusions 18b of the positioning jig 18 enter the large-diameter openings 16b while passing the respective stem pins 6, fixed to the positioning jig 18, through the openings 16a. Furthermore, while roughly matching the axial center positions of the respective openings 14a and 15a and the respective large-diameter openings 15b to the respective openings 16a and the large-diameter openings 16b of the lower holding member 16, the stem pins 6 are passed through the respective openings 14a and 15a and the respective large-diameter openings 15b to overlap the base member 14 and the upper holding member 15, in this order, onto the lower holding member 16, and thereafter, the ring-like side tube 7 is fitted onto the base member 14. Lastly, the other positioning jig 18 (the jig at the upper side of the figure) is set on the upper holding member 15 by making the protrusions 18b enter into the large-diameter openings 15b of the upper holding member 15 while inserting the respective stem pins 6, protruding from the upper holding member 15, into the insertion holes 18a. The setting of the stem 5 is thereby completed. The ring-like side tube 7 and the respective stem pins 6 that are set are subject to a surface oxidizing process in advance in order to heighten the property of fusion with the base member 14.


The stem 5, which is set thus, is then loaded inside an electric oven (not shown) along with the positioning jigs 18 and sintered at a temperature of approximately 850 to 900 degrees (a temperature that is higher than the melting point of the base member 14 but lower than the melting points of the upper holding member 15 and the lower holding member 16) while pressurizing the stem 5 sandwichingly by the positioning jigs 18. In this sintering process, just the base member 14, which has a melting point of approximately 780 degrees, melts and the base member 14 and the respective holding members 15 and 16, the base member 14 and the respective stem pins 6, and the base member 14 and the ring-like side tube 7 become fused as shown in FIG. 8(a) and FIG. 8(b). Here, although in order to achieve improved close adhesion with the other components, the volume of the base member 14 is adjusted to be somewhat high, the positioning of the base member 14 in the height direction within the large-diameter openings 15b and 16b is achieved by means of the end faces of the protrusions 18b of the positioning jigs 18 and the excess volume of the molten base member 14 is made to escape into the base member seep opening 16c of the lower holding member 16 as shown in FIG. 8(b). When the sintering process ends, the stem 5 is taken out from the electric oven and the upper and lower positioning jigs 18 are removed, thereby completing the manufacture of the stem 5.


With such a method of manufacturing the stem 5, since the base member 14 can be readily positioned with respect to the upper holding member 15 and the lower holding member 16 by making the protrusions 18b of the positioning jigs 18 enter into the large-diameter openings 15b of the upper holding member 15 and the large-diameter openings 16b of the lower holding member 16, the manufacturing process is simplified and the manufacturing cost can be reduced. Furthermore, the concentricities of the respective stem pins 6 and the respective openings 15a and 16a are secured by the positioning jigs 18. By then fixing dynodes 10, the focusing electrode 11, and the anode 12, which are layered on the inner (upper) surface of the stem 5 of the stem assembly thus obtained, welding dynode connecting tabs 10a, the anode connecting tabs 12a, and the protruding tabs 11a, provided on the focusing electrode 11, respectively to the corresponding stem pins 6, and fixing by welding and thereby assembling together the side tube 2, to which the light receiving plate 3 is fixed, onto the ring-like side tube 7 in a vacuum state, the photomultiplier 1 of the so-called head-on type that is shown in FIG. 1 to FIG. 3 is obtained.


With this arrangement of the photomultiplier 1, since the full circumferences of the stem pin 6 passing portions of the upper (inner) surface and the lower (outer) surface of a stem 5 are arranged as the recesses 5a, having the base member 14 as the bottom surfaces, the base member 14 is joined to the stem pins 6 at gradual angles (substantially right angles), and since even when a bending force acts on the stem pins 6, the stem pins 6 will contact the peripheral portions at the open sides of the recesses 5a and this prevents further bending of the stem pins 6, cracks are prevented from being formed at both sides of the portions at which the stem pins 6 are joined to the base member 14, and airtightness and good appearance of the sealed container 8 are thus secured.


Furthermore with the photomultiplier 1, in addition to the full circumferences of the stem pin 6 passing portions of the stem 5 being arranged as the recesses 5a, having the base member 14 as the bottom surfaces, the upper holding member 15, which is the member at the upper side of the base member 14, has an insulating property. Also in the upper holding member 15, the peripheral portion near the opening 15a through which the anode pin 13 passes is arranged as a chamfered shape 15c (see FIG. 5). The actions of this arrangement shall now be described in detail using FIG. 9 and FIG. 10.



FIG. 9 is an enlarged sectional view of the principal portions near the anode pin 13 of the present embodiment and FIG. 10 is an enlarged sectional view of the principal portions near the anode pin 13 of a comparative example. In the comparative example, the recesses 5a are not formed at portions of the stem 5 through which the stem pins 6, including the anode pin 13, are passed, and an upper holding member 17, in which the chamfered shape 15c is not formed near the anode pin 13, is used. For the sake of description, the respective members are indicated by broken lines.


As shown in FIG. 9, with the present embodiment, since the full circumferences of the portions of the stem 5, through which the stem pins 6, including the anode pin 13, pass, are formed as recesses 5a, having the base member 14 as the bottom surfaces, triple junctions X1, at which any of the conductive stem pins 6, including the anode pin 13, insulating the base member 14, joined to the stem pins 6 including the anode pin 13, and vacuum intersect, are positioned at peripheral portions of the junctions of the bottom surface of the recess 5a of the stem 5 with the stem pins 6 including the anode pin 13 and are put in concealed-like states inside the recesses 5a. By thus concealing triple junctions X1 inside the recesses 5a, the occurrence of creeping discharge is restrained and the voltage endurance of the photomultiplier 1 is improved in comparison to the case where the triple junctions are put in bare states on the upper surface of the upper holding member 17 as is the case with triple junctions X2 of the comparative example shown in FIG. 10. In regard to the concealing of triple junctions X1 by the recesses 5a, the upper holding member 15, which is a member positioned above the base member 14, may be conductive.


Also, the creeping distance Y1 along insulators from a triple junction X1 to the ring-like side tube 7 is elongated by an amount corresponding to the height of the recess 5a in comparison to the creeping distance Y2 along insulators from a triple junction X2 to the side tube 2 in the comparative example shown in FIG. 10. By thus elongating the creeping distance Y1, the occurrence of creeping discharge is restrained further and the voltage endurance of the photomultiplier 1 is improved further. By the forming of the recess 5a, the creeping distances along insulators between the stem pins 6 are elongated at the same time and the voltage endurance of the photomultiplier 1 is thereby improved further. Furthermore in regard to the vicinity of the anode pin 13, since the creeping distance Y1 is elongated especially by the distance along the chamfered shape 15c of the upper holding member 15, dielectric breakdown and current leakage caused by creeping discharge in the vicinity of the anode pin 13 are prevented more definitely and the mixing of noise into the electrical signal taken out from the anode pin 13 is prevented.


Since the concentricities of the respective stem pins 6 and the respective openings 15a of the upper holding member 15 and the respective openings 16a of the lower holding member 16 are secured by the positioning jigs 18, the stem pins 6 can be prevented from approaching the inner wall surfaces of the openings 15a and 16a. Triple junctions X1 can thus be concealed definitely inside the recesses 5a and the voltage endurance of the photomultiplier 1 is thus secured further.


Also with the photomultiplier 1, since the stem 5 is arranged as a three-layer structure formed of the base member 14, the upper holding member 15, joined to the upper side (inner side) of the base member 14, and the lower holding member 16, joined to the lower side (outer side) of the base member 14, the positional precision, flatness, and levelness of both surfaces of the stem 5 are improved. Consequently with the photomultiplier 1, the positional precision of the interval between the photoelectric surface 4 and the electron multiplier unit 9, which is installed on the upper surface (inner surface) of the stem 5, and the seating property of the electron multiplier unit 9 are improved, thus enabling photoelectric conversion efficiency and other characteristics to be obtained satisfactorily, and the dimensional precision of the total length of the photomultiplier 1 and the mounting property regarding surface mounting of the photomultiplier 1 are also improved.


Also, since the base member seep opening 16c (see FIG. 6) is formed in the lower holding member 16, the excess volume of the molten base member 14 can be made to escape satisfactorily into the base member seep opening 16c. Thus in the process of melting the base member 14, the base member 14 will hardly overflow onto the surface of the stem 5 via the openings 15a of the upper holding member 15 and the openings 16a of the lower holding member 16 and the positional precision, flatness, and levelness of both surfaces of the stem 5 are thus secured.


Although with the above-described embodiment, the stem 5 is arranged as a three-layer structure formed of the base member 14 and the holding members 15 and 16, for example, other layers may be provided further on the upper surface of the upper holding member 15 to make the entirety of the stem 5 four layers or more, and the electron multiplier unit 9 may be installed on the upper surface of such another layer. In this case, an arrangement is preferably employed wherein each of the other layers is provided with a plurality of openings for insertion of the stem pins 6 joined to the base member 14 in the same manner as in the upper holding member 15 and at least two of these openings are made larger in diameter than the other openings in order to enable the entry of the positioning jigs 18 into the base member 14.


Also, although with the above-described embodiment, the base member seep opening 16c is provided only in the lower holding member 16, it is sufficient that such a base member seep opening be provided in at least one of the holding members, and for example, a base member seep opening may be provided in just the upper holding member 15 or base member seep openings may be provided in both the upper holding member 15 and the lower holding member 16.


As a modification example of the present embodiment, a photomultiplier tube 20, having a metal exhaust tube 19 disposed at a central portion of the stem 5 as shown in FIG. 11, may be employed. This exhaust tube 19 can be used to exhaust air by a vacuum pump (not shown), etc., and put the interior of the sealed container 8 in a vacuum state after completion of assembly of the photomultiplier 20. As yet another modification example, a photomultiplier 26 may be employed that has an arrangement, wherein a side tube 27, which is longer in length than the side tube 2, is fitted to the ring-like side tube 7, provided with a flange portion at its lower end, and the flange portions of the side tubes are fixed together by welding as shown in FIG. 12.


Examples of a radiation detector equipped with the photomultiplier 1 shown in FIG. 1 to FIG. 3 shall now be described. With a radiation detector 21 of the example shown in FIG. 13 and FIG. 14, a scintillator 22, which converts radiation into light and emits the light, is installed at the outer side of the light receiving plate 3 of the photomultiplier 1 and the photomultiplier 1 is mounted onto a circuit board 24, having a processing circuit 23 at the lower surface side. With a radiation detector 25 of another example shown in FIG. 15 and FIG. 16, processing circuit 23 is installed above circuit board 24, and the photomultiplier 1 is mounted onto circuit board 24 in a manner such that the stem pins 6 surround processing circuit 23. By these arrangements, the radiation detectors 21 and 25, which exhibit the above-described actions and effects and are especially suitable for surface mounting, can be provided.


Second Embodiment

As shown in FIG. 17, a photomultiplier 28 of a second embodiment has a stem 29 arranged as a two-layer structure of a disk-like base member 30, of the same quality as the base member 14, and the upper holding member 15, joined to the upper side (inner side) of the base member 30, and thus differs from the photomultiplier 1 of the first embodiment, wherein the stem 5 is arranged as a three-layer structure of the base member 14, the upper holding member 15, and the lower holding member 16.


That is, the stem 29 of the photomultiplier 28 is not provided with the lower holding member 16, and the base member 30 has, along outer peripheral portions of the base member 30, a plurality (15) of openings 30a, with each of which the diameter of the upper half is made substantially equal to the outer diameter of each stem pin 6 as shown in FIG. 18 and the diameter of the lower half is made larger than the outer diameter of each stem pin 6 as shown in FIG. 19. Of the openings 30a of the base member 30, those of four predetermined locations, including the opening 30a through which the anode pin 13 passes, are arranged as large-diameter openings 30b, with each of which the outer diameter of the lower half is made larger than the outer diameter of the lower half of each of the other openings 30a in order to enable the entry of the positioning jig 18. Furthermore, a circular base member seep recess 30c (see FIG. 20), serving as a base member seep portion into which the base member 30 seeps upon melting, is formed at a central portion of the lower portion of the base member 30.


As shown in FIG. 17, the base member 30 and the upper holding member 15 are overlapped in a state, in which the axial center positions of the respective openings 30a and 15a and the large-diameter openings 30b and 15b are matched, and are joined by fusing by the melting of the base member 30 in the state in which the stem pins 6 are inserted through the respective openings 30a and 15a. More specifically, the upper holding member 15 is joined in close contact with the upper surface of the base member 30, the respective stem pins 6 are inserted through the lower halves of the respective openings 30a of the base member 30 and the respective openings 15a of the upper holding member 15 so that recesses 29a, having the base member 30 as the bottom surfaces, are formed along the full circumferences of the portions of both the upper (inner) surface and the lower (outer) surface of the stem 29 through which the respective stem pins 6 pass, and the respective stem pins 6 are joined in close contact with the base member 30 at the bottom surfaces of the recesses 29a.


The same method as that for the stem 5 of the first embodiment can be employed to manufacture such a stem 29 as well. Specifically as shown in FIG. 20, firstly, one positioning jig 18 (the jig at the lower side of the figure) is set, with protrusions 18b facing upward, on a working surface (not shown) and the stem pins 6 are respectively inserted and fixed in the insertion holes 18a of this positioning jig 18, and then the base member 30 is set on the positioning jig 18 by making the protrusions 18b of the positioning jig 18 enter the large-diameter openings 30b while passing the respective stem pins 6, fixed to the positioning jig 18, through the openings 30a. Furthermore, while roughly matching the axial center positions of the respective openings 15a and the respective large-diameter openings 15b to the respective openings 30a and large-diameter openings 30b of the base member 30, the stem pins 6 are passed through the respective openings 15a and the respective large-diameter openings 15b to overlap the upper holding member 15 onto the base member 30, and thereafter, the ring-like side tube 7 is fitted onto the base member 30. Lastly, the other positioning jig 18 (the jig at the upper side of the figure) is set on the upper holding member 15 by making the protrusions 18b enter into the large-diameter openings 15b of the upper holding member 15 while inserting the respective stem pins 6, protruding outward from the upper holding member 15, into the insertion holes 18a. The setting of the stem 29 is thereby completed. As with the first embodiment, the ring-like side tube 7 and the respective stem pins 6 that are set are subject to a surface oxidizing process in advance in order to heighten the property of fusion with the base member 30.


The stem 29, which is set thus, is then loaded inside an electric oven and subject to a sintering process under the same conditions as those mentioned above. In this sintering process, the base member 30 and the upper holding member 15, the base member 30 and the respective stem pins 6, and the base member 30 and the ring-like side tube 7 become fused by the melting of the base member 30 as shown in FIG. 21(a) and FIG. 21(b). Here, the positioning of the base member 30 in the height direction within the large-diameter openings 30b and 15b is achieved by means of the end faces of the protrusions 18b of the positioning jigs 18, and the excess volume of the molten base member 30 is made to escape into the base member seep recess 30c as shown in FIG. 21(b). When the sintering process ends, the stem 29 is taken out from the electric oven and the upper and lower positioning jigs 18 are removed, thereby completing the manufacture of the stem 29.


With such a method of manufacturing the stem 29, since, as with the first embodiment, the base member 30 can be readily positioned with respect to the upper holding member 15 by means of the positioning jigs 18, the manufacturing process is simplified and the manufacturing cost can be reduced. Furthermore, the concentricities of the respective stem pins 6 and the respective openings 15a are secured by the positioning jigs 18. By then fixing the dynodes 10, the focusing electrode 11, and the anode 12, which are layered on the inner (upper) surface of the stem 29 of the stem assembly thus obtained, by welding the dynode connecting tabs 10a, the anode connecting tabs 12a, and the protruding tabs 11a, provided on the focusing electrode 11, respectively to the corresponding stem pins 6, and fixing by welding and thereby assembling together a side tube 2, to which a light receiving plate 3 is fixed, onto the ring-like side tube 7 in a vacuum state, the head-on photomultiplier 28 shown in FIG. 17 is obtained.


As with the photomultiplier 1 of the first embodiment, with the photomultiplier 28 arranged as described above, since the full circumferences of the stem pin 6 passing portions of the upper (inner) surface and the lower (outer) surface of the stem 29 are arranged as the recesses 29a, having the base member 30 as the bottom surfaces, cracks are prevented from forming at both sides of the portions at which the stem pins 6 are joined to the base member 30, and airtightness and good appearance of the sealed container 8 are thus secured.


Also, since as mentioned above, the full circumferences of the stem pin 6 passing portions are arranged as the recesses 29a, having the base member 30 as the bottom surfaces, the triple junctions are concealed inside the recesses 29a and the predetermined voltage endurance is secured. Furthermore, since the recesses 29a are formed thus and the upper holding member 15, which is a member at the upper side of the base member 30 that makes up the recesses 29a, has an insulating property, the creeping distances are elongated. Furthermore as with the first embodiment, since with the upper holding member 15, which is an insulator, the peripheral portion near the anode pin 13 is arranged as the chamfered shape 15c (see FIG. 5), the mixing of noise into the electrical signal taken out from the anode pin 13 is prevented.


As with the first embodiment, since the concentricities of the respective stem pins 6 and the respective openings 15a of the upper holding member 15 are secured by the positioning jigs 18, the triple junctions can be concealed definitely inside the recesses 29a and the voltage endurance of the photomultiplier 28 is secured further.


Also with the photomultiplier 28, since the stem 29 is arranged as a two-layer structure formed of the base member 30 and the upper holding member 15, joined to the upper side (inner side) of the base member 30, the positional precision, flatness, and levelness of the upper surface of the stem 29 are improved. Consequently with the photomultiplier 28, the positional precision of the interval between the photoelectric surface 4 and the electron multiplier unit 9, which is installed on the upper surface (inner surface) of the stem 29, and the seating property of the electron multiplier unit 9 are improved, thus enabling photoelectric conversion efficiency and other characteristics to be obtained satisfactorily.


Also, since the base member seep recess 30c (see FIG. 20) is formed in the base member 30, the excess volume of the molten base member 30 can be made to escape satisfactorily into the base member seep recess 30c. Thus in the process of melting the base member 30, the base member 30 will hardly overflow onto the surface of the stem 29 via the openings 15a of the upper holding member 15 and the lower halves of the openings 30a of the base member 30 and the positional precision, flatness, and levelness of both surfaces of the stem 29 are thus secured.


As a modification example of this embodiment, a structure, wherein a metal exhaust tube 19 is disposed at a central portion of the stem 29 in the same manner as the photomultiplier 20 shown in FIG. 11, may be employed. Also, an arrangement may be employed wherein the side tube 27, which is longer in length than the side tube 2, is fitted to the ring-like side tube 7, provided with a flange portion at its lower end, and the flange portions of the side tubes are fixed together by welding as in the photomultiplier 26 shown in FIG. 12.


Also, although with the above-described embodiment, the base member seep recess 30c is provided as the base member seep portion at a lower portion of the base member 30, it is sufficient that such a base member seep portion be provided in at least one of the base member 30 and the upper holding member 15, and for example, a base member seep opening of the same form as that described for the first embodiment may be provided in just the upper holding member 15 or a base member seep opening may be provided in the upper holding member 15 and the base member seep recess 30c may be provided in the base member 30.


In arranging a radiation detector equipped with the photomultiplier 28 shown in FIG. 17, by arranging in the same manner as the radiation detectors 21 and 25 shown in FIG. 13 to FIG. 14 and FIG. 15 to FIG. 16, a radiation detector, exhibiting the same actions and effects described above and is especially suitable for surface mounting, can be provided.


As yet another modification example of the present embodiment, a stem with a two-layer structure may be arranged by joining a holding member to the lower surface (outer surface) of a base member. As shown in FIG. 22, with a photomultiplier 31 of this other modification example, a stem 32 is arranged as a two-layer structure of a disk-like base member 33, of the same quality as the base member 14, and the lower holding member 16, joined to the lower side (inner side) of the base member 33.


That is, the stem 32 of the photomultiplier 31 is not provided with the upper holding member 15, and the base member 33 has, along outer peripheral portions of the base member 33, a plurality (15) of openings 33a, with each of which the diameter of the lower half is made substantially equal to the outer diameter of each stem pin 6 as shown in FIG. 24 and the diameter of the upper half is made larger than the outer diameter of each stem pin 6 as shown in FIG. 23. Of the openings 33a of the base member 33, those of three predetermined locations, other than that of the opening 33a through which the anode pin 13 passes, are arranged as large-diameter openings 33b, with each of which the outer diameter of the upper half is made larger than the outer diameter of the upper half of each of the other openings 33a in order to enable the entry of the positioning jig 18. Furthermore, a peripheral portion of the base member 33 at the upper side near the opening 33a, through with the anode pin 13 passes, is arranged as a chamfered shape 33c.


As shown in FIG. 22, the base member 33 and the lower holding member 16 are overlapped in a state in which the axial center positions of the respective openings 33a and 16a and large-diameter openings 33b and 16b are matched and are joined by fusing by the melting of the base member 33 in the state in which the stem pins 6 are inserted through the respective openings 33a and 16a. More specifically, the lower holding member 16 is joined in close contact with the lower surface of the base member 33, the respective stem pins 6 are inserted through the upper halves of the respective openings 33a of the base member 33 and the respective openings 16a of the lower holding member 16 so that recesses 32a, having the base member 33 as the bottom surfaces, are formed along the full circumferences of the portions of both the lower (inner) surface and lower (outer) surface of the stem 32 through which the respective stem pins 6 pass, and the respective stem pins 6 are joined in close contact with the base member 33 at the bottom surfaces of the recesses 32a.


The same method as that for the stem 5 of the first embodiment can be employed to manufacture such a stem 32 as well. Specifically as shown in FIG. 25, firstly, one positioning jig 18 (the jig at the lower side of the figure) is set, with the protrusions 18b facing upward, on a working surface (not shown) and the stem pins 6 are respectively inserted and fixed in the insertion holes 18a of this positioning jig 18, and then the lower holding member 16 is set on the positioning jig 18 by making the protrusions 18b of the positioning jig 18 enter the large-diameter openings 16b while passing the respective stem pins 6, fixed to the positioning jig 18, through the openings 16a. Furthermore, while roughly matching the axial center positions of the respective openings 33a and the respective large-diameter openings 33b to the respective openings 16a and the large-diameter openings 16b of the lower holding member 16, the stem pins 6 are passed through the respective openings 33a and the respective large-diameter openings 33b to overlap the base member 33 onto the lower holding member 16, and thereafter, the ring-like side tube 7 is fitted onto the base member 33. Lastly, the other positioning jig 18 (the jig at the upper side of the figure) is set on the base member 33 by making the protrusions 18b enter into the large-diameter openings 33b of the base member 33 while inserting the respective stem pins 6, protruding outward from the base member 33, into the insertion holes 18a. The setting of the stem 32 is thereby completed. As with the first embodiment, the ring-like side tube 7 and the respective stem pins 6 that are set are subject to a surface oxidizing process in advance in order to heighten the property of fusion with the base member 33.


The stem 32, which is set thus, is then loaded inside an electric oven and subject to a sintering process under the same conditions as those mentioned above. In this sintering process, the base member 33 and the lower holding member 16, the base member 33 and the respective stem pins 6, and the base member 33 and the ring-like side tube 7 become fused by the melting of the base member 33 as shown in FIG. 26(a) and FIG. 26(b). Here, the positioning of the base member 33 in the height direction within the large-diameter openings 33b and 16b is achieved by means of the end faces of the protrusions 18b of the positioning jigs 18, and the excess volume of the molten base member 33 is made to escape into the base member seep opening 16c as shown in FIG. 26(b). When the sintering process ends, the stem 32 is taken out from the electric oven and the upper and lower positioning jigs 18 are removed, thereby completing the manufacture of the stem 32.


With such a method of manufacturing the stem 32, since, as with the first embodiment, the base member 33 can be readily positioned with respect to the lower holding member 16 by means of the positioning jigs 18, the manufacturing process is simplified and the manufacturing cost can be reduced. Furthermore, the concentricities of the respective stem pins 6 and the respective openings 16a are secured by the positioning jigs 18 by then fixing the dynodes 10, the focusing electrode 11, and the anode 12, which are layered on the inner (upper) surface of the stem 32 of the stem assembly thus obtained, by welding the dynode connecting tabs 10a, the anode connecting tabs 12a, and the protruding tabs 11a, provided on the focusing electrode 11, respectively to the corresponding stem pins 6, and fixing by welding and thereby assembling together the side tube 2, to which the light receiving plate 3 is fixed, onto the ring-like side tube 7 in a vacuum state, the head-on photomultiplier 31 shown in FIG. 22 is obtained.


With the photomultiplier 31 arranged as described above, since the full circumferences of the stem pin 6 passing portions of the upper (inner) surface and the lower (outer) surface of the stem 32 are arranged as the recesses 32a, having the base member 33 as the bottom surfaces, cracks are prevented from being formed at both sides of the portions at which the base member 33 is joined to the stem pins 6, and airtightness and good appearance of the sealed container 8 are thus secured.


Also, since as mentioned above, the full circumferences of the stem pin 6 passing portions are arranged as the recesses 32a, having the base member 33 as the bottom surfaces, the triple junctions are concealed inside the recesses 32a and the predetermined voltage endurance is secured. Furthermore, since the recesses 32a are formed thus and the base member 33, which makes up the recesses 32a, has an insulating property in itself, the creeping distances are elongated. Furthermore, since with the base member 33, which is an insulator, the peripheral portion of the upper side near the anode pin 13 is arranged as the chamfered shape 33c (see FIG. 23), the mixing of noise into the electrical signal taken out from the anode pin 13 is prevented.


Also with the photomultiplier 31, since the stem 32 is arranged as a two-layer structure formed of the base member 33 and the lower holding member 16, joined to the lower side (outer side) of the base member 33, the positional precision, flatness, and levelness of the lower surface of the stem 32 are improved. Consequently with the photomultiplier 31, the dimensional precision of the total length of the photomultiplier 31 and the mounting property regarding surface mounting of the photomultiplier 31 are improved.


Also as in the first embodiment, since the base member seep opening 16c (see FIG. 6) is formed in the lower holding member 16, the base member 33 will hardly overflow onto the surface of the stem 32 via the openings 16a of the lower holding member 16 and the upper halves of the openings 33a of the base member 33 in the process of melting the base member 33, and the positional precision, flatness, and levelness of both surfaces of the stem 32 are thus secured.


As in the photomultiplier 20 shown in FIG. 11, a structure, wherein a metal exhaust tube 19 is disposed at a central portion of the stem 32, may be employed in the photomultiplier 31 shown in FIG. 22 as well. Also, as in the photomultiplier 26 shown in FIG. 12, an arrangement may be employed wherein the side tube 27, which is longer in length than the side tube 2, is fitted to the ring-like side tube 7, provided with a flange portion at its lower end, and the flange portions of the side tubes are fixed together by welding.


Also, although with the present embodiment, the base member seep opening 16c is provided as the base member seep portion in just the lower holding member 16, it is sufficient that such a base member seep portion be provided in at least one of the base member 33 and the lower holding member 16, and for example, a base member seep recess of the same form as that described above may be provided in just the base member 33 or the base member seep opening 16c may be provided in the lower holding member 16 and a base member seep recess may be provided in the base member 33.


In arranging a radiation detector equipped with the photomultiplier 31, by arranging in the same manner as the radiation detectors 21 and 25 shown in FIG. 13 to FIG. 14 and FIG. 15 to FIG. 16, a radiation detector, exhibiting the same actions and effects described above and is especially suitable for surface mounting, can be provided.


Third Embodiment

As shown in FIG. 27, a photomultiplier 34 of a third embodiment has a stem 35 arranged as a single-layer structure of a disk-like base member 36, of the same quality as the base member 14, and thus differs from photomultiplier 1 of the first embodiment, wherein the stem 5 is arranged as a three-layer structure of the base member 14, the upper holding member 15, and the lower holding member 16.


That is, the stem 35 of the photomultiplier 34 is not provided with the upper holding member 15 and the lower holding member 16, and the base member 36 has, along outer peripheral portions of base member 36, a plurality (15) of openings 36a, with each of which the diameter of an intermediate portion is made substantially equal to the outer diameter of each stem pin 6 and the diameters of upper and lower portions are made larger than the outer diameter of each stem pin 6 as shown in FIG. 27 to FIG. 29. Of the openings 36a of the base member 36, the upper and lower portions of three predetermined locations, other than that of the opening 36a through which the anode pin 13 passes, and the lower portion of the opening 36a through which the anode pin 13 passes are arranged as large-diameter openings 36b, each of which is larger in outer diameter than the outer diameter of each of the upper and lower portions of the other openings 36a, in order to enable the entry of the holding jigs 18 that are of the same arrangement as the positioning jigs. Furthermore, a circular base member seep recess 36c (see FIG. 30), serving as a base member seep portion into which the base member 36 seeps upon melting, is formed at a central portion of the lower portion of the base member 36 and a peripheral portion of the base member 36 at the upper side near the opening 36a, through with the anode pin 13 passes, is arranged as a chamfered shape 36d.


As shown in FIG. 27, the base member 36 is joined to the stem pins 6 by fusing by the melting of the base member 36 in the state in which the stem pins 6 are inserted through the respective openings 36a. More specifically, the respective stem pins 6 are inserted through the upper portions and lower portions of the respective openings 36a of the base member 36 so that recesses 35a, having the base member 36 as the bottom surfaces, are formed along the full circumferences of the portions of both the upper (inner) surface and the lower (outer) surface of the stem 35 through which the respective stem pins 6 pass, and the respective stem pins 6 are joined in close contact with the base member 36 at the bottom surfaces of the recesses 35a.


The same method as that for the stem 5 of the first embodiment can be employed to manufacture such a stem 35. Specifically as shown in FIG. 30, firstly, one of the holding jigs 18 (the jig at the lower side of the figure), of the same arrangement as the above-described positioning jigs, is set, with the protrusions 18b facing upward, on a working surface (not shown) and the stem pins 6 are respectively inserted and fixed in the insertion holes 18a of this holding jig 18, and then the base member 36 is set on the holding jig 18 by making the protrusions 18b of the holding jig 18 enter the large-diameter openings 36b at the lower side of the base member 36 while passing the respective stem pins 6, fixed to the holding jig 18, through the openings 36a. Thereafter, the ring-like side tube 7 is fitted onto the base member 36, and lastly, the other holding jig 18 (the jig at the upper side of the figure) is set on the base member 36 by making the protrusions 18b enter into the large-diameter openings 36b at the upper side of the base member 36 while inserting the respective stem pins 6, protruding outward from the base member 36, into the insertion holes 18a. The setting of the stem 35 is thereby completed. As with the first embodiment, the ring-like side tube 7 and the respective stem pins 6 that are set are subject to a surface oxidizing process in advance in order to heighten the property of fusion with the base member 36.


The stem 35, which is set thus, is then loaded inside an electric oven and subject to a sintering process under the same conditions as those mentioned above. In this sintering process, the base member 36 and the respective stem pins 6 and the base member 36 and the ring-like side tube 7 become fused by the melting of the base member 36 as shown in FIG. 31(a) and FIG. 31(b). Here, the positioning of the base member 36 in the height direction within the large-diameter openings 36b is achieved by means of the end faces of the protrusions 18b of the holding jigs 18, and the excess volume of the molten base member 36 is made to escape into the base member seep recess 36c as shown in FIG. 31(b). When the sintering process ends, the stem 35 is taken out from the electric oven and upper and the lower holding jigs 18 are removed, thereby completing the manufacture of the stem 35.


With such a method of manufacturing the stem 35, the manufacturing process is simplified and the manufacturing cost can be reduced as mentioned above. By then the fixing dynodes 10, the focusing electrode 11, and the anode 12, which are layered on the inner (upper) surface of the stem 35 of the stem assembly thus obtained, by welding the dynode connecting tabs 10a, the anode connecting tabs 12a, and the protruding tabs 11a, provided on the focusing electrode 11, respectively to the corresponding stem pins 6, and fixing by welding and thereby assembling together the side tube 2, to which the light receiving plate 3 is fixed, onto the ring-like side tube 7 in a vacuum state, the head-on photomultiplier 34 shown in FIG. 27 is obtained.


As with photomultiplier 1 of the first embodiment, with the photomultiplier 34 arranged as described above, since the full circumferences of the stem pin 6 passing portions of the upper (inner) surface and the lower (outer) surface of the stem 35 are arranged as the recesses 35a, having the base member 36 as the bottom surfaces, cracks are prevented from being formed at both sides of the portions at which the base member 36 is joined to the stem pins 6, and airtightness and good appearance of the sealed container 8 are thus secured.


Also, since as mentioned above, the full circumferences of the stem pin 6 passing portions are arranged as the recesses 35a, having the base member 36 as the bottom surfaces, the triple junctions are concealed inside the recesses 35a and the predetermined voltage endurance is secured. Furthermore, since the recesses 35a are formed thus and the base member 36, which makes up the recesses 35a, has an insulating property in itself, the creeping distances are elongated. Furthermore, since with the base member 36, which is an insulator, the edge portion of the upper side near the anode pin 13 is arranged as the chamfered shape 36d (see FIG. 28), the mixing of noise into the electrical signal taken out from the anode pin 13 is prevented.


Also, since the base member seep recess 36c (see FIG. 30) is formed in the base member 36, the excess volume of the molten base member 36 can be made to escape satisfactorily into the base member seep recess 36c. Thus in the process of melting the base member 36, the base member 36 will hardly overflow onto the surface of the stem 35 via the upper and lower portions of the openings 36a and the positional precision, flatness, and levelness of both surfaces of the stem 35 are thus secured.


As a modification example of this embodiment, a structure, wherein a metal exhaust tube 19 is disposed at a central portion of the stem 35 in the same manner as the photomultiplier 20 shown in FIG. 11, may be employed. Also, an arrangement wherein the side tube 27, which is longer in length than the side tube 2, is fitted and fixed by welding to the ring-like side tube 7, provided with a flange portion at its lower end, may be employed as in the photomultiplier 26 shown in FIG. 12.


Also, although with the above-described embodiment, the base member seep recess 36c is provided as the base member seep portion at a lower portion of the base member 36, such a base member seep portion may be provided at an upper portion of the base member 36.


In arranging a radiation detector equipped with the photomultiplier 34 shown in FIG. 27, by arranging in the same manner as the radiation detectors 21 and 25 shown in FIG. 13 to FIG. 14 and FIG. 15 to FIG. 16, a radiation detector, exhibiting the same actions and effects described above and is especially suitable for surface mounting, can be provided.


As another modification example of this invention's photomultiplier, a disk-like metal stem 5A may be employed as the stem. That is, as shown in FIG. 32, the metal stem 5A has a hermetic glass 14A, serving as an insulating base member, through and to which the stem pins 6 are passed and joined, and the full circumferences of the portions of both the upper (inner) surface and the lower (outer) surface of the metal stem 5A through which the stem pins 6, including the anode pin 13, are passed are arranged as recesses, having the hermetic glass 14A as the bottom surfaces. The respective stem pins 6 are joined in close contact with the hermetic glass 14A at the bottom surfaces of the recesses. Even in this arrangement, cracks are prevented from being formed at both sides of the portions of the hermetic glass 14A that are joined to the stem pins and consequently, airtightness and good outer appearance of the sealed container 8 are secured as in the respective embodiments described above. Also, the triple junctions are put in a concealed-like state in the recesses and the predetermined voltage endurance is secured. An insulator 40 is preferably interposed between the metal stem 5 and the final dynode 10b.


As described above, with this invention's photomultiplier and radiation detector, airtightness and good outer appearance of the sealed container and the predetermined voltage endurance can be secured.

Claims
  • 1. A photomultiplier comprising: a photoelectric surface disposed inside a sealed container, which is put in a vacuum state, and converting incident light made incident through a light receiving plate into electrons, which forms an end portion at one side of the sealed container;an electron multiplier unit, disposed inside the sealed container and multiplying electrons emitted from the photoelectric surface;an anode disposed inside the sealed container which is used for extracting the electrons multiplied by the electron multiplier unit as an output signal;a stem forming an end portion at the other side of the sealed container and having a base member with an insulating property; anda plurality of stem pins insertedly mounted in the stem and leading to an exterior of the sealed container from inside the sealed container and being electrically connected to the anode and the electron multiplier unit,wherein the stem pins are passed through stem pin passing portions of both an inner surface and an outer surface of the stem and joined to the base member, andeach of the stem pin passing portions of both the inner surface and the outer surface comprises a recess through which the stem pin is passed with the recess having a bottom surface and the base member forming the bottom surface of the recess.
  • 2. The photomultiplier according to claim 1, wherein the stem is arranged as a single-layer structure of the base member, andthe recesses are formed on both inner and outer surfaces of the base member.
  • 3. The photomultiplier according to claim 1, wherein the stem has a holding member joined to one of either an inner surface or an outer surface of the base member and having openings through which are inserted the stem pins joined to the base member, andthe recesses are formed on the surface at the opposite side of the surface of a junction of the base member with the holding member, andthe recesses are formed by the openings of the holding member.
  • 4. The photomultiplier according to claim 1, wherein the stem has holding members, respectively joined to both an inner surface and an outer surface of the base member and having openings through which are inserted the stem pins joined to the base member, andthe recesses are formed by the openings of the holding members.
  • 5. The photomultiplier according to claim 3, wherein at least two of the openings of the holding member are larger in diameter than the other openings.
  • 6. The photomultiplier according to claim 4, wherein at least two of the openings of the holding members are larger in diameter than the other openings.
  • 7. The photomultiplier according to claim 1, further comprising a side tube having conductivity, which forms the sealed container and surrounds the stem from the side, wherein members of the stem that face the interior of the sealed container have an insulating property.
  • 8. A radiation detector having a scintillator, converting radiation into light and emitting the light, installed at the outer side of the light receiving plate of the photomultiplier according to claim 1.
Priority Claims (1)
Number Date Country Kind
P2004-316506 Oct 2004 JP national
US Referenced Citations (8)
Number Name Date Kind
2114488 Görlich Apr 1938 A
5498926 Kyushima et al. Mar 1996 A
5504386 Kyushima et al. Apr 1996 A
5864207 Kume et al. Jan 1999 A
6198221 Suyama et al. Mar 2001 B1
6472664 Kyushima et al. Oct 2002 B1
RE38234 Warashina et al. Aug 2003 E
20030102802 Kyushima et al. Jun 2003 A1
Foreign Referenced Citations (4)
Number Date Country
0 565 247 Oct 1993 EP
1 276 135 Jan 2003 EP
05-290793 Nov 1993 JP
2002-203508 Jul 2002 JP
Related Publications (1)
Number Date Country
20060091318 A1 May 2006 US