The present disclosed subject matter relates generally to devices and methods for impinging light on tissue (e.g., phototherapy or light therapy) to induce one or more biological effects. Additionally, disclosed are methods and devices for delivering light as a therapeutic treatment for tissue that comes into contact with or is infected by pathogens. This disclosure additionally relates to systems and methods for phototherapeutic stimulation of nitric oxide production and/or release in tissues of mammalian subjects.
The term “phototherapy” relates to the therapeutic use of light. Various light therapies (e.g., including low level light therapy (LLLT) and photodynamic therapy (PDT)) have been publicly reported or claimed to provide various health related medical benefits—including, but not limited to: promoting hair growth; treatment of skin or tissue inflammation; promoting tissue or skin healing or rejuvenation; enhancing wound healing; pain management; reduction of wrinkles, scars, stretch marks, varicose veins, and spider veins; treating cardiovascular disease; treating erectile dysfunction; treating microbial infections; treating hyperbilirubinemia; and treating various oncological and non-oncological diseases or disorders.
Various mechanisms by which phototherapy has been suggested to provide therapeutic benefits include: increasing circulation (e.g., by increasing formation of new capillaries); stimulating the production of collagen; stimulating the release of adenosine triphosphate (ATP); enhancing porphyrin production; reducing excitability of nervous system tissues; modulating fibroblast activity; increasing phagocytosis; inducing thermal effects; stimulating tissue granulation and connective tissue projections; reducing inflammation; and stimulating acetylcholine release.
Phototherapy has also been suggested to stimulate cells to generate nitric oxide. Various biological functions attributed to nitric oxide include roles as signaling messenger, cytotoxin, antiapoptotic agent, antioxidant, and regulator of microcirculation. Nitric oxide is recognized to relax vascular smooth muscles, dilate blood vessels, inhibit aggregation of platelets, and modulate T cell-mediate immune response.
Nitric oxide is produced by multiple cell types in tissue, and is formed by the conversion of the amino acid L-arginine to L-citrulline and nitric oxide, mediated by the enzymatic action of nitric oxide synthases (NOSs). NOS is a NADPH-dependent enzyme that catalyzes the following reaction:
L-arginine+3/2NADPH+H++2O2citrulline+nitric oxide+3/2NADP+
In mammals, three distinct genes encode NOS isozymes: neuronal (nNOS or NOS-1), cytokine-inducible (iNOS or NOS-II), and endothelial (eNOS or NOS-III). iNOS and nNOS are soluble and found predominantly in the cytosol, while eNOS is membrane associated. Many cells in mammals synthesize iNOS in response to inflammatory conditions.
Skin has been documented to upregulate inducible nitric oxide synthase expression and subsequent production of nitric oxide in response to irradiation stress. Nitric oxide serves a predominantly anti-oxidant role in the high levels generated in response to radiation.
Nitric oxide is a free radical capable of diffusing across membranes and into various tissues; however, it is very reactive, with a half-life of only a few seconds. Due to its unstable nature, nitric oxide rapidly reacts with other molecules to form more stable products. For example, in the blood, nitric oxide rapidly oxidizes to nitrite, and is then further oxidized with oxyhaemoglobin to produce nitrate. Nitric oxide also reacts directly with oxyhaemoglobin to produce methaemoglobin and nitrate. Nitric oxide is also endogenously stored on a variety of nitrosated biochemical structures including nitrosoglutathione (GSNO), nitrosoalbumin, nitrosohemoglobin, and a large number of nitrosocysteine residues on other critical blood/tissue proteins. The term “nitroso” is defined as a nitrosated compound (nitrosothiols (RSNO) or nitrosamines (RNNO)), via either S- or N-nitrosation. Examples of nitrosated compounds include GSNO, nitrosoalbumin, nitrosohemoglobin, and proteins with nitrosated cysteine residue. Metal nitrosyl (M-NO) complexes are another endogenous store of circulating nitric oxide, most commonly found as ferrous nitrosyl complexes in the body; however, metal nitrosyl complexes are not restricted to complexes with iron-containing metal centers, since nitrosation also occurs at heme groups and copper centers. Examples of metal nitrosyl complexes include cytochrome c oxidase (CCO—NO) (exhibiting 2 heme and 2 copper binding sites), cytochrome c (exhibiting heme center binding), and nitrosylhemoglobin (exhibiting heme center binding for hemoglobin and methemoglobin), embodying endogenous stores of nitric oxide.
When nitric oxide is auto-oxidized into nitrosative intermediates, the nitric oxide is bound covalently in the body (in a “bound” state). Thus, conventional efforts to produce nitric oxide in tissue may have a limited therapeutic effect, since nitric oxide in its “gaseous” state is short-lived, and cells being stimulated to produce nitric oxide may become depleted of NADPH or L-Arginine to sustain nitric oxide production.
Viral infections pose a great challenge to human health, particularly respiratory tract infections of the Orthomyxoviridae (e.g. influenza) and Coronaviridae (e.g. SARS-CoV-2) families. Additionally, DNA viruses including the Papovaviridae family (e.g. human papillomavirus (HPV)) have extremely wide prevalence that result in low risk papillomas of the skin and high risk papillomas of mucosal epithelial tissue. Infection by the human papillomavirus (HPV) is currently the most common sexually transmitted disease (STD). While most HPV infections are asymptomatic and resolve without treatment, some infections result in warts or precancerous lesions. The presence and persistence of precancerous lesions increase the risk for a cancer developing, particularly in the cervix, vulva, vagina, penis, anus, mouth, or throat. The genotype of the HPV is significant as HPV type 16 and HPV type 18 appear to cause about 70% of cervical cancer cases. Furthermore, up to 90% of the other cancers are also linked to HPV. Fifteen HPV types are currently believed to be responsible for all cervical cancers. While HPV type 16 is most commonly associated with cervical precancerous lesions and cancerous lesions, HPV types 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 73, and 82 are also implicated in cervical cancer. When affecting the cervix, the precancerous lesions are referred to as cervical dysplasia. It is estimated that there are around 500,000 patients per year in the United States surgically treated for cervical dysplasia. Conventional management of cervical dysplasia calls for colposcopy with endocervical sampling which allows the dysplasia to be rated as cervical intraepithelial neoplasia I, II or III (CIN I, II, or III). With CIN I and a satisfactory colposcopy, one approach is to “watch and wait” to determine whether the condition worsens over 6 months to a year as determined by colposcopy. Another approach is to perform an invasive (e.g. surgical) treatment involving the cervix. Commonly used treatment methods include medication, electro-cauterization, cryosurgery, laser vaporization, and surgery. Cryotherapy involves cooling cervical tissue to sub-zero temperature which results in freezing. While simple and relatively inexpensive, abnormal cells below the surface are untreated making the approach unsuitable for large or severe dysplasia. Loop excision, LEEP (loop electrosurgical excision procedure), is a treatment that uses a loop of wire to remove infected tissue. The wire loop is electrically energized to facilitate removal of abnormal portions of the cervix. Cramping and bleeding are common side-effects. A cone biopsy involves removal of tissue from the cervix and the endocervical canal, performed conventionally or using a laser. Bleeding and pain are common after the procedure, which is typically done under anesthesia. A hysterectomy may also be done to resolve the infection, but it is a major surgical procedure unsuitable for women who wish to become pregnant in the future. The goal of these procedures is to remove those abnormal cells from the cervix. Cervical cancer has been reported to have a global survival rate of about 52%. A non-surgical treatment that reduced or eradicated HPV viral infections could have a significant impact on women's health.
Aspects of the present disclosure relate to devices and methods for impinging light on a tissue, for example within a body of a patient, where the light may include at least one characteristic that exerts or induces at least one biological effect within or on the tissue. Biological effects may include at least one of inactivating and inhibiting growth of one or more combinations of microorganisms and pathogens, including but not limited to viruses, bacteria, fungi, and other microbes, among others. Biological effects may also include one or more of upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light may be selected based on at least one intended biological effect for one or more of the targeted tissue and the targeted microorganisms or pathogens. In certain aspects, wavelengths of light may include visible light in any number of wavelength ranges based on the intended biological effect. Further aspects involve light impingement on tissue for multiple microorganisms and/or multiple pathogenic biological effects, either with light of a single peak wavelength or a combination of light with more than one peak wavelength. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity. Light doses may include various combinations of irradiances, wavelengths, and exposure times, and such light doses may be administered continuously or discontinuously with a number of pulsed exposures.
Because of the relative costs, both economically and on the health and well-being of patients, new treatments to inhibit or eradicate viral infections in tissues, particularly the mucosal epithelial surfaces like the cervix, mouth, nose, throat and anus, are greatly needed. Such treatments and devices therefore are provided for herein.
Phototherapy has attracted significant attention as a therapeutic treatment for various maladies and conditions. Devices for delivering phototherapy to inhibit or eradicate viral infections and methods of using the same are disclosed herein. Irradiances of light represented in milliwatts per square centimeter (mW/cm2) have been proposed at a specific wavelength for a threshold time over a given duration to yield therapeutic dosages represented in joules per square centimeter (J/cm2) which are effective for inactivating viruses or treating viral infections while maintaining the viability of epithelial tissues. These treatments can be tailored to the particular tissue being treated, as well as to the various fluids in the media, such as blood, sputum, saliva, cervical fluid, and mucous. The total dosage (J/cm2) to treat an infection can be spread out over multiple administrations, with each dose applied over seconds or minutes, and with multiple doses over days or weeks, at individual doses that treat the infection while minimizing damage to the particular tissue.
Certain aspects of the disclosure relate to phototherapeutic modulation of nitric oxide in living mammalian tissue, including use of light having a first peak wavelength and a first radiant flux to release nitric oxide from endogenous stores of nitric oxide, and use of light having a second peak wavelength and a second radiant flux to stimulate enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, wherein the second peak wavelength differs from the first peak wavelength.
In a first aspect, the disclosure relates to a method of modulating nitric oxide in living mammalian tissue. The method includes impinging light having a first peak wavelength on the tissue at a first radiant flux, wherein the first peak wavelength and the first radiant flux are selected to stimulate enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide. The method further includes impinging light having a second peak wavelength on the tissue at a second radiant flux, wherein the second peak wavelength and the second radiant flux are selected to release nitric oxide from the endogenous stores, wherein the second peak wavelength is greater than the first peak wavelength by at least 25 nm, by at least 50 nm, or another threshold specified herein. In certain embodiments, each of the first radiant flux and the second radiant flux is in a range of from 5 mW to 60 mW.
In certain embodiments, the enzymatic generation of nitric oxide is mediated by iNOS, nNOS, and/or eNOS in or proximate to the tissue. In certain embodiments, the endogenous stores of nitric oxide comprise nitrosoglutathione, nitrosoalbumin, nitrosohemoglobin, nitrosothiols, nitrosamines, and/or metal nitrosyl complexes in or proximate to the tissue.
In certain embodiments, the method further includes sensing a temperature condition on or proximate to (a) a therapeutic device arranged to emit at least one of the light having the first peak wavelength or the light having the second peak wavelength, or (b) the tissue; generating at least one signal indicative of the temperature condition; and controlling at least one of the following items (i) or (ii) responsive to the at least one signal: (i) impingement of light having the first peak wavelength on the tissue, or (ii) impingement of light having the second peak wavelength on the tissue.
In another aspect, the disclosure relates to a device for modulating nitric oxide in living mammalian tissue. The device includes means for impinging light having a first peak wavelength on the tissue at a first radiant flux, wherein the first peak wavelength and the first radiant flux are selected to stimulate enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide. The device further includes means for impinging light having a second peak wavelength on the tissue at a second radiant flux, wherein the second peak wavelength and the second radiant flux are selected to release nitric oxide from the endogenous stores, wherein the second peak wavelength is greater than the first peak wavelength by at least 25 nm.
In certain embodiments, the device further includes means for sensing a temperature condition on or proximate to (a) the device or (b) the tissue; means for generating at least one signal indicative of the temperature condition; and means for controlling at least one of the following items (i) or (ii) responsive to the at least one signal: (i) impingement of light having the first peak wavelength on the tissue, or (ii) impingement of light having the second peak wavelength on the tissue.
In another aspect, the disclosure relates to another device for modulating nitric oxide in living mammalian tissue. The device includes at least one first light emitting device configured to impinge light having a first peak wavelength on the tissue at a first radiant flux, wherein the first peak wavelength and the first radiant flux are selected to release nitric oxide from endogenous stores of nitric oxide. The device further includes at least one second light emitting device configured to impinge light having a second peak wavelength on the tissue at a second radiant flux, wherein the second peak wavelength and the second radiant flux are selected to stimulate enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, wherein the second peak wavelength exceeds the first peak wavelength by at least 25 nm, at least 50 nm, or another threshold specified herein. In certain embodiments, the device further includes driver circuitry configured to drive the at least one first light emitting device and the at least one second light emitting device. In certain embodiments, each of the first radiant flux and the second radiant flux is in a range of from 5 mW to 60 mW.
In certain embodiments, the device further includes at least one third light emitting device configured to impinge light having a third peak wavelength on the tissue, wherein the third peak wavelength differs from each of the first peak wavelength and the second peak wavelength by at least 10 nm.
In certain embodiments, the device further includes a temperature sensor arranged to sense a temperature condition on or proximate to at least one of (a) a portion of the device or (b) the tissue, wherein at least one of initiation of operation, deviation of operation, or termination of operation of any of (i) the at least one first light emitting device or (ii) the at least one second light emitting device is responsive to an output signal of the temperature sensor.
In certain embodiments, the device further includes a flexible substrate supporting the at least one first light emitting device and the at least one second light emitting device.
In certain embodiments, the device further includes a light-transmissive (e.g., encapsulant) material layer covering the at least one first light emitting device, the at least one second light emitting device, and at least a portion of the flexible substrate.
In certain embodiments, the device further includes a plurality of holes defined in the flexible substrate and the light-transmissive material layer, wherein the plurality of holes are arranged to permit transit therethrough of at least one of air, vapor, or exudate.
In certain embodiments, the device is configured to contact, be connected to, or conform to a skin or other tissue of a patient with at least a portion of the light-transmissive material layer arranged in contact with the skin or other tissue of the patient. In other embodiments, the device is configured to be spatially separated from a targeted irradiation area, such as being arranged not to contact tissue of the patient.
In certain embodiments, the device further includes a substantially rigid substrate supporting the at least one first light emitting device and the at least one second light emitting device, wherein at least a portion of the device is configured for insertion into a body cavity of a patient.
In certain embodiments, the device further includes at least one waveguide arranged between (i) the tissue and (ii) at least one of the at least one first light emitting device or the at least one second light emitting device.
In certain embodiments, the device further includes a light scattering material, a textured light scattering surface, or a patterned light scattering surface arranged between (i) the tissue and (ii) at least one of the at least one first light emitting device or the at least one second light emitting device.
In certain embodiments, the device further includes an energy storage element arranged to supply power to the driver circuitry.
In another aspect, the disclosure relates to a device for delivering light energy to tissue of a patient. The device includes at least one first solid state light emitting device configured to impinge light having a first peak wavelength on the tissue. The device further includes at least one second solid state light emitting device configured to impinge light having a second peak wavelength on the tissue. The device additionally includes driver circuitry configured to drive the at least one first solid state light emitting device and the at least one second solid state light emitting device. The first peak wavelength and the second peak wavelength are selected from one of the following combinations (a) to (g): (a) the first peak wavelength is in a range of from 410 nm to 490 nm and the second peak wavelength is in a range of from 500 nm to 600 nm; (b) the first peak wavelength is in a range of from 620 nm to 640 nm and the second peak wavelength is in a range of from 650 nm to 670 nm; (c) the first peak wavelength is in a range of from 520 nm to 540 nm and the second peak wavelength is in a range of from 650 nm to 670 nm; (d) the first peak wavelength is in a range of from 400 nm to 420 nm and the second peak wavelength is in a range of from 620 nm to 640 nm; (e) the first peak wavelength is in a range of from 400 nm to 420 nm and the second peak wavelength is in a range of from 650 nm to 670 nm; (f) the first peak wavelength is in a range of from 400 nm to 420 nm and the second peak wavelength is in a range of from 495 nm to 515 nm; or (g) the first peak wavelength is in a range of from 400 nm to 420 nm and the second peak wavelength is in a range of from 516 nm to 545 nm. In certain embodiments, the first peak wavelength is in a range of from 400 nm to 420 nm and the second peak wavelength is in a range of from 525 nm to 535 nm.
In certain embodiments, the device further includes a temperature sensor arranged to sense a temperature condition on or proximate to at least one of (a) a portion of the device or (b) the tissue, wherein at least one of initiation of operation, deviation of operation, or termination of operation of at least one of (i) the at least one first solid state light emitting device or (ii) the at least one second solid state light emitting device is responsive to an output signal of the temperature sensor.
In another aspect, the disclosure relates to a method of modulating nitric oxide in living mammalian tissue, the method comprising: impinging light on the tissue, wherein the light impinged on the tissue comprises incoherent light emissions including a first peak wavelength in a range of from 410 nm to 440 nm and a first radiant flux, and wherein the first peak wavelength and the first radiant flux are selected to stimulate at least one of (i) enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide or (ii) release of nitric oxide from endogenous stores of nitric oxide; wherein the light impinged on the tissue is substantially devoid of light emissions having a peak wavelength in a range of from 600 nm to 900 nm.
In certain embodiments, the light impinged on the tissue is devoid of emissions of any wavelength conversion material stimulated by incoherent light emissions including a first peak wavelength in a range of from 410 nm to 440 nm. In certain embodiments, the tissue is devoid of an applied or received photosensitive therapeutic compound or agent. In certain embodiments, at least 65% (or at least 80%, or at least 90%) of a fluence of light impinged on the tissue consists of the incoherent light emissions including a first peak wavelength in a range of from 410 to 440 nm. In certain embodiments, the light impinged on the tissue is substantially devoid of light emissions having a peak wavelength in a range of from 441 nm to 490 nm. In certain embodiments, the incoherent light emissions including a first peak wavelength in a range of from 410 nm to 440 nm are provided as a plurality of discrete pulses. In certain embodiments, the light impinged on the tissue further comprises incoherent light emissions including a second peak wavelength in a range of from 500 nm to 540 nm. In certain embodiments, the incoherent light emissions including a first peak wavelength in a range of from 410 nm to 440 nm are impinged on the tissue during a first time window, the incoherent light emissions including a second peak wavelength in a range of from 500 nm to 540 nm are impinged on the tissue during a second time window, and at least a portion of the second time window is non-overlapping with the first time window. In certain embodiments, the first peak wavelength and the first radiant flux are selected to release endogenous stores of nitric oxide. In certain embodiments, the second peak wavelength and the second radiant flux are selected to stimulate enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide. In certain embodiments, the tissue comprises at least one of epithelial tissue, mucosal tissue, bone, connective tissue, muscle tissue, or cervical tissue. In certain embodiments, the tissue comprises dermal tissue. In certain embodiments, a method further comprises sensing a temperature condition on or proximate to (a) a therapeutic device arranged to impinge light on the tissue, or (b) the tissue; generating at least one signal indicative of the temperature condition; and controlling impingement of light on the tissue responsive to the at least one signal. In certain embodiments, the light impinged on the tissue comprises a fluence of from about 0.5 J/cm2 to about 100 J/cm2, or from about 5 J/cm2 to about 50 J/cm2.
In another aspect, the disclosure relates to a device for modulating nitric oxide in living mammalian tissue, the device comprising: an ambient light blocking element; and at least one first light emitting element positioned between the ambient light blocking element and the tissue, wherein the at least one first light emitting element is configured to impinge incoherent light on the tissue, said incoherent light having a first peak wavelength and a first radiant flux, wherein the first peak wavelength and the first radiant flux are selected to stimulate at least one of (i) enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide or (ii) release of nitric oxide from endogenous stores of nitric oxide; wherein the device is substantially devoid of any light emitting element configured to impinge light on the tissue, said light having a peak wavelength in a range of from 600 nm to 900 nm.
In certain embodiments, the device is substantially devoid of any light emitting element configured to impinge light having a peak wavelength in a range of from 441 nm to 490 nm on the tissue. In certain embodiments, the device is devoid of any wavelength conversion material configured to be stimulated by the at least one first light emitting element. In certain embodiments, the device further comprises a flexible substrate supporting the at least one first light emitting element. In certain embodiments, the device is configured to contact, be connected to, or conform to the tissue with a light-transmissive material. In certain embodiments, light impinged on the tissue is substantially devoid of light emissions having a peak wavelength in a range of from 441 nm to 490 nm. In certain embodiments, the device further comprises driver circuitry configured to generate incoherent light emissions including the first peak wavelength, wherein the first peak wavelength is in a range of from 410 nm to 440 nm, and said incoherent light emissions comprise a plurality of discrete pulses.
In certain embodiments, the device further comprises at least one second light emitting element configured to impinge incoherent light on the tissue, said incoherent light having a second peak wavelength and a second radiant flux, wherein the second peak wavelength is in a range of from 500 nm to 540 nm. In certain embodiments, the device is configured to impinge incoherent light emissions including the first peak wavelength during a first time window, wherein the first peak wavelength is in a range of from 410 nm to 440 nm, and being configured to impinge incoherent light emissions including the second peak wavelength in a range of from 500 nm to 540 nm during a second time window, wherein at least a portion of the second time window is non-overlapping with the first time window. In certain embodiments, the device further comprises a probe configured for insertion into a mammalian body cavity or opening defined in a mammalian body, wherein the at least one first light emitting element is supported by the probe.
In another aspects, devices and/or methods disclosed herein may be used to modulate nitric oxide for managing or eliminating pathogens (such as bacteria, viruses, fungi, protists, or the like) in or on mammalian tissue. In additional aspects, devices and/or methods disclosed herein may be used to modulate nitric oxide for inhibiting 5α-reductase in mammalian tissue. In additional aspects, devices and/or methods disclosed herein may be used to modulate nitric oxide to promote collagen synthesis. In additional aspects, devices and/or methods disclosed herein may be used to increase NO to levels suitable to induce cell death. In further aspects, devices and/or methods disclosed herein may be used for generation of, or promoting reaction with, reactive oxygen species and free radicals. In additional aspects, devices and/or methods disclosed herein may be used to increase vasodilation and decrease inflammation.
In illustrative embodiments, provided is a method for treating a viral-infected tissue, the method comprises irradiating the tissue with a light from a light source with a particular dose (J/cm2), and repeating the irradiating step for N iterations to constitute a treatment duration, wherein N is an integer greater than 1. In one embodiment, the method comprises delivering a light dosage of at least about 10 J/cm2 per day. In another embodiment, the method comprises delivering a light dosage of between about 10 to about 100 J/cm2 per day. In certain examples, N is between 2 and 21 and the irradiating step could occur once, twice, or thrice a day. In some embodiments, N is 10 or greater. As an example, the period of time could be for 1 to about 10 minutes. In other embodiments, repeating occurs at least daily for at least 3 days. In still other embodiments, the period of time is at greater than 10 minutes, irradiating occurs at least twice daily for at least 3 days.
In preferred embodiments, the light source, such as laser light, LED light, OLED light, and the like, any of which can be pulsed, is visible light ranging from 400 to 700 nm that provides minimal damage to epithelial tissue. In one illustrative embodiment, the light source includes an LED with a spectral maximum between about 420 nm and about 430 nm. In another embodiment, the light source or the light therefrom is devoid of emissions of any wavelength conversion material stimulated by the incoherent light emissions including a first peak wavelength in a range of from 410 nm to 440 nm. In another embodiment, the tissue is devoid of an applied or received photosensitive therapeutic compound or agent. In another embodiment, at least 65% of a fluence of light irradiating the tissue consists of the incoherent light emissions including a first peak wavelength in a range of from 410 to 440 nm. In another embodiment, the light source or the light therefrom is substantially devoid of light emissions having a peak wavelength in a range of from 441 nm to 490 nm.
Embodiments of antiviral phototherapy detailed in this disclosure can be effective against both DNA and RNA virus infections. According to some embodiments, provided herein are methods of treating and/or preventing a viral infection. A method of treating and/or preventing a viral infection may comprise administering light to the skin of a subject, thereby treating and/or preventing the viral infection in the subject. In some embodiments, a method may suppress and/or inhibit viral replication of a virus and/or enhance the local immune response of a subject. In some embodiments, a method of treating and/or preventing a virus-related gastrointestinal condition may comprise administering light via colorectal administration via a probe inserted into the body cavity of a subject, thereby treating and/or preventing the virus-related colorectal or intestinal condition in the subject. Viruses in the GI tract include rotavirus, picornavirus, and coronavirus. In other embodiments, a method of treating and/or preventing a virus-related central nervous system (CNS) infection may comprise administering light transcranially, through the nose of a patient, or upon implantation of a light source into the tissue of a subject, thereby treating and/or preventing the virus-related CNS condition in the subject. In specific embodiments, intranasal administration to the nasal mucosa can be used as a method of treating and/or preventing a virus-related infection. According to other embodiments, a method of treating and/or preventing a virus-related bloodstream infection may comprise transdermal administration of light to superficial vasculature, administering light to blood passed through an extra-corporeal loop, shining light on a blood product derived from the patient for use on other patients, and other methods for illumination of biological fluids of a subject, thereby treating and/or preventing the virus-related blood stream infection in the subject. In other embodiments, the light is applied external to the body to the joints including those in the feet and hands, as well as the ankles, elbows, knees, and shoulders as a method of treating and/or preventing a joint arthritis related to side effects caused by autoimmune reactions to viruses.
Further embodiments of the present disclosure describe an intravaginal light delivery device configured for delivering illumination to treatment areas in and around a cervix, the device comprising a cylindrical shaft removably inserted within a flexible light cover having a light transmission portion, wherein, the cylindrical shaft comprises a light source and control hardware therefore being oriented to transmit light in an axial direction from the cylindrical shaft, and the flexible light cover is a hollow cylinder having an inside diameter matched to an outer diameter of the cylindrical shaft so that sliding the flexible light cover over the cylindrical shaft nests the cylindrical shaft within so that the light source is positioned to transmit light through a light transmission portion.
In one embodiment, the light source comprises an LED with a spectral maximum between about 420 nm and about 430 nm. In another embodiment, the light source is devoid of emissions of any wavelength conversion material stimulated by the incoherent light emissions including a first peak wavelength in a range of from 410 nm to 440 nm. In one embodiment, the light source provides at least 65% of a fluence of light having a first peak wavelength in a range of from 410 to 440 nm. In another embodiment, the light source is substantially devoid of light emissions having a peak wavelength in a range of from 441 nm to 490 nm. In yet another embodiment, the light source delivers a radiant flux of 5 mW to 60 mW. In other embodiments, the light source has at least one of the following features: a light output of between 1 and 15 J cm−2 min−1, a first peak wavelength between about 410 and 440 nm with a full width half maximum (FWHM) of less than about 20 nm, is substantially devoid of ultraviolet radiation emissions, is substantially devoid of light emissions having a peak wavelength in a range of from 441 to 490 nm, or is capable of delivering about 100 J cm−2 in 10 minutes, 30 minutes, 1 hour, or 4 hours. In illustrative embodiments, the intravaginal light delivery device further includes a battery or power supply capable of delivering about 100 J cm−2 in 10 minutes, 30 minutes, 1 hour, or 4 hours.
In illustrative embodiments, the intravaginal light delivery device includes a flexible light cover with a treatment cup disposed about the light transmission portion. In another embodiment, the flexible light cover further comprises a cervical probe configured to spread cervical surfaces such that the cervical probe extends within the cervix, the cervical probe being configured to transmit light. In another embodiment, the flexible light cover includes a reversibly extendible cup. In another embodiment, the treatment cup is asymmetric. As such, the treatment cup may be non-axially oriented to provide light delivery at an angle of greater than about 5 degrees from an axis defined by the center of the cylindrical shaft.
In another aspect, a method comprises: providing a light source configured to emit light comprising a first light characteristic; and irradiating mammalian tissue within a body with the light to induce a biological effect, wherein the biological effect comprises altering a concentration of one or more pathogens within the body and altering growth of the one or more pathogens within the body. In certain embodiments, the first light characteristic comprises at least one of a first peak wavelength and a radiant flux. In certain embodiments, the first light characteristic is the first peak wavelength and the first peak wavelength is in a range from 400 nanometers (nm) to 900 nm, or in a range from 400 nm to 450 nm, or in a range from 410 nm to 440 nm. In certain embodiments, less than 5% of the light is in a wavelength range that is less than 400 nm. In certain embodiments, a full width half maximum of the first peak wavelength is less than or equal to 100 nm, or less than or equal to 40 nm. In certain embodiments, the first light characteristic is the radiant flux and the radiant flux is in a range from 5 milliwatts (mW) to 5000 mW. In certain embodiments, the radiant flux is configured to provide an irradiance to the tissue in a range from 5 mW per square centimeter (mW/cm2) to 200 mW/cm2.
In certain embodiments, the biological effect comprises inactivating the one or more pathogens that are in a cell-free environment in the body and inhibiting replication of the one or more pathogens that are in a cell-associated environment in the body. In certain embodiments, the biological effect further comprises upregulating a local immune response within the body. In certain embodiments, the biological effect comprises stimulating at least one of enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide and releasing nitric oxide from endogenous stores of nitric oxide.
In certain embodiments, impinging light to the tissue within the body comprises administering a dose of light in a range from 0.5 joules per square centimeter (J/cm2) to 100 J/cm2, or in a range from 2 J/cm2 to 50 J/cm2. In certain embodiments, administering the dose of light comprises providing light with an irradiance to the tissue that is in a range from 5 mW/cm2 to 200 mW/cm2 over a time period in a range from 10 seconds to 1 hour. In certain embodiments, the irradiance is delivered in a continuous manner. In certain embodiments, the irradiance is delivered in a plurality of discrete pulses. In certain embodiments, the plurality of discrete pulses comprises a plurality of equal pulses that is delivered during the time period. In certain embodiments, the plurality of discrete pulses comprises a plurality of dissimilar pulses that is delivered during the time period In certain embodiments, the dose of light is repeatably administered to provide a cumulative dose in a range from 1 J/cm2 to 1000 J/cm2 over a cumulative time period. In certain embodiments, the dose of light is in a range from 0.5 J/cm2 to 50 J/cm2 and the dose of light is repeatably administered at least two times over the cumulative time period. In certain embodiments, administering the dose of light comprises providing light with an irradiance in a range from 0.1 mW/cm2 to 10 watts per square centimeter (W/cm2) over a time period in a range from 10 seconds to 1 hour, wherein the irradiance is delivered in a plurality of discrete pulses.
In certain embodiments, impinging light to the tissue within the body comprises administering a dose of light with a light therapeutic index of greater than or equal to 2, the light therapeutic index being defined as a dose concentration that reduces tissue viability by 25% divided by a dose concentration that reduces cellular percentage of the pathogens by 50%. In certain embodiments, light therapeutic index is in a range from 2 to 250.
In certain embodiments, the one or more pathogens comprise at least one of a virus, a bacteria, and a fungus. In certain embodiments, the one or more pathogens comprise coronaviridae. In certain embodiments, the one or more pathogens comprise orthomyxoviridae. In certain embodiments, one or more pathogens comprise at least two types of viruses. In certain embodiments, the one or more pathogens comprise coronaviridae and orthomyxoviridae.
In certain embodiments, the light is provided by at least one of a light-emitting diode, an organic light-emitting diode, and a laser.
In certain embodiments, the tissue comprises mucosal epithelial tissue. In certain embodiments, the light is provided at a tissue depth of less than or equal to 2.5 mm.
In certain embodiments, the first light characteristic is a first peak wavelength and the first peak wavelength is in a range from 400 nm to 900 nm and the light further comprises a second peak wavelength that is in a range from 400 nm to 900 nm, wherein the second peak wavelength differs from the first peak wavelength by at least 10 nm. In certain embodiments, a full width half maximum of the second peak wavelength is less or equal to 100 nm. In certain embodiments, impinging light to the tissue within the body comprises administering first dose of light and a second dose of light for a single type of microorganism.
In another aspect, a method comprises: providing light comprising a first peak wavelength and a second peak wavelength; and irradiating mammalian tissue with the light; wherein the first peak wavelength differs from the second wavelength by at least 5 nm, the first peak wavelength is configured to induce a first biological effect, and the second peak wavelength is configured to induce a second biological effect that is different than the first biological effect. In certain embodiments, the first biological effect and the second biological effect comprise different ones of inactivating pathogens that are in a cell-free environment, inhibiting replication of pathogens that are in a cell-associated environment, upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. In certain embodiments, the first peak wavelength is in a range from 400 nm to 900 nm and the second peak wavelength is in a range from 400 nm to 900 nm. In certain embodiments, the first peak wavelength is in a range from 400 nm to 490 nm and the second peak wavelength is in a range from 490 nm to 900 nm. In certain embodiments, the first peak wavelength is in a range from 400 nm to 490 nm and the second peak wavelength is in a range from 320 nm to 400 nm. In certain embodiments, the first peak wavelength is a range of from 410 nm to 440 nm. In certain embodiments, the light further comprises a third peak wavelength that is configured to induce a third biological effect that is different than the first biological effect and the second biological effect, wherein: the first peak wavelength is in a range from 400 nm to 490 nm; the second peak wavelength is in a range from 490 nm to 900 nm; and the third peak wavelength is in a range from 200 nm to 400 nm.
In certain embodiments, impinging light to the tissue comprises administering the first peak wavelength in a first time window and the second peak wavelength in a second time window. In certain embodiments, the first time window is the same as the second time window. In certain embodiments, the first time window is different than the second time window. In certain embodiments, the first time window overlaps with the second time window. In certain embodiments, the first time window is non-overlapping with the second time window.
In another aspect, a method comprises: providing a first dose of light to mammalian tissue that is configured to induce a first biological effect for a first pathogen; and providing a second dose of light to the mammalian tissue that is configured to induce a second biological effect for at least one of the first pathogen and a second pathogen, wherein the first pathogen is different than the second pathogen. In certain embodiments, the first biological effect comprises at least one of inactivating the first pathogen in a cell-free environment, inhibiting replication of the first pathogen in a cell-associated environment, upregulating a local immune response in the mammalian tissue, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide in the mammalian tissue, releasing nitric oxide from endogenous stores of nitric oxide in the mammalian tissue, and inducing an anti-inflammatory effect in the mammalian tissue. In certain embodiments, the second biological effect comprises at least one of inactivating the second pathogen in a cell-free environment, inhibiting replication of the second pathogen in a cell-associated environment, upregulating a local immune response in the mammalian tissue, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide in the mammalian tissue, releasing nitric oxide from endogenous stores of nitric oxide in the mammalian tissue, and inducing an anti-inflammatory effect in the mammalian tissue. In certain embodiments, the first pathogen comprises at least one of a virus, a bacteria, and a fungus and the second pathogen comprises a different one of a virus, a bacteria, and a fungus.
In certain embodiments, the first dose of light is administered with a first light therapeutic index of greater than or equal to 2, the first light therapeutic index being defined as a dose concentration of the first dose that reduces viability of the mammalian tissue by 25% divided by a dose concentration of the first dose that reduces cellular percentage of the first pathogen by 50%; and the second dose of light is administered with a second light therapeutic index of greater than or equal to 2, the second light therapeutic index being defined as a dose concentration of the second dose that reduces viability of the mammalian tissue by 25% divided by a dose concentration of the second dose that reduces cellular percentage of the second pathogen by 50%. In certain embodiments, the first light therapeutic index and the second light therapeutic index are both in a range from 2 to 250.
In certain embodiments, the first dose of light comprises a first peak wavelength in a range from 400 nm to 490 nm, and the second dose of light comprises a second peak wavelength in a range from 490 nm to 900 nm. In certain embodiments, the first dose of light comprises a first peak wavelength in a range from 400 nm to 490 nm, and the second dose of light comprises a second peak wavelength in a range from 320 nm to 400 nm. In certain embodiments, each of the first dose of light and the second dose of light are in a range from 0.5 J/cm2 to 100 J/cm2. In certain embodiments, the first dose of light and the second dose of light are repeatably administered to provide a cumulative dose in a range from 1 J/cm2 to 1000 J/cm2. In certain embodiments, the first dose of light comprises a first peak wavelength in a range from 410 nm to 440 nm.
In another aspect, an illumination device comprises: at least one light source arranged to impinge light on mammalian tissue within a body, the light comprising a first light characteristic and configured to induce a biological effect; and driver circuitry configured to drive the at least one light source; wherein the biological effect comprises altering a concentration of one or more pathogens within the body and altering growth of the one or more pathogens within the body. In certain embodiments, the illumination device further comprises an optic that is arranged to pass the light from the at least one light source for irradiating the mammalian tissue within the body. In certain embodiments, the optic is further arranged in optical communication with a camera for viewing the mammalian tissue within the body. In certain embodiments, the optic resides on an illumination head of the illumination device and the illumination head is angled from a lengthwise direction of the illumination device. In certain embodiments, the illumination head is removably attached to the illumination device. In certain embodiments, the illumination device further comprises a light guide that is arranged between the optic and the at least on light source. In certain embodiments, the illumination device further comprises a protective covering that comprises a same material as the optic. In certain embodiments, the illumination device is configured to be user controlled.
In certain embodiments, the illumination device is configured to be at least partially inserted within a body cavity, wherein the mammalian tissue is included within the body cavity. In certain embodiments, the at least one light source is arranged outside of the body cavity when the illumination device is partially inserted within the body cavity. In certain embodiments, the at least one light source is arranged within the body cavity when the illumination device is partially inserted within the body cavity. In certain embodiments, the illumination device is configured to be fully inserted within a body cavity, wherein the mammalian tissue is included within the body cavity. In certain embodiments, the illumination device further comprises a cable that is configured to retrieve the illumination device from the body cavity.
In certain embodiments, the illumination device further comprises a microcontroller that is configured to control the driver circuitry. In certain embodiments, the microcontroller is further configured to receive an input from at least one sensor for controlling the at least one light source. In certain embodiments, the at least one sensor comprises one or more of a temperature sensor and a proximity sensor.
In certain embodiments, the biological effect further comprises upregulating a local immune response within the body. In certain embodiments, the biological effect comprises stimulating at least one of enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide and releasing nitric oxide from endogenous stores of nitric oxide. In certain embodiments, the biological effect comprises inactivating the one or more pathogens that are in a cell-free environment within the body. In certain embodiments, the biological effect comprises inhibiting replication of the one or more pathogens that are in a cell-associated environment within the body.
In certain embodiments, impinging the light on the mammalian tissue within the body comprises administering a dose of light in a range from 0.5 J/cm2 to 100 J/cm2. In certain embodiments, the first light characteristic comprises at least one of a first peak wavelength and a radiant flux. In certain embodiments, the first light characteristic is the first peak wavelength and the first peak wavelength is in a range from nm to 900 nm. In certain embodiments, the first peak wavelength is in a range from 410 nm to 440 nm. In certain embodiments, the light further comprises a second peak wavelength in a range from 400 nm to 900 nm, and the second peak wavelength is different than the first peak wavelength.
In another aspect, a method comprises: providing light comprising a first peak wavelength in a range from 400 nm to 900 nm; and administering a dose of the light to mammalian tissue within a body to induce a biological effect, the dose of light comprising providing an irradiance to the mammalian tissue over a time period of at most 1 hour, the irradiance being delivered in a plurality of discrete pulses; wherein the biological effect comprises altering a concentration of one or more pathogens within the body and altering growth of the one or more pathogens within the body. In certain embodiments, the irradiance is a range from 0.1 mW/cm2 to 10 W/cm2. In certain embodiments, the dose of light is a range from 0.5 (J/cm2 to 100 J/cm2. In certain embodiments, the dose of light is in a range from 2 J/cm2 to 50 J/cm2. In certain embodiments, the plurality of discrete pulses comprises a plurality of equal pulses that is delivered during the time period. In certain embodiments, the plurality of discrete pulses comprises a plurality of dissimilar pulses that is delivered during the time period. In certain embodiments, the irradiance progressively increases during the plurality of dissimilar pulses. In certain embodiments, the irradiance progressively decreases during the plurality of dissimilar pulses. In certain embodiments, the dose of light is repeatably administered to provide a cumulative dose in a range from one J/cm2 to 1000 J/cm2 over a cumulative time period. In certain embodiments, the dose of light is provided with a light therapeutic index of greater than or equal to 2, the light therapeutic index being defined as a dose concentration that reduces tissue viability by 25% divided by a dose concentration that reduces cellular percentage of the one or more pathogens by 50%.
In another aspect, any of the foregoing aspects, and/or various separate aspects and features as described herein, may be combined for additional advantage. Any of the various features and elements as disclosed herein may be combined with one or more other disclosed features and elements unless indicated to the contrary herein.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It should be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It should be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It should also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
It should be understood that, although the terms “upper,” “lower,” “bottom,” “intermediate,” “middle,” “top,” and the like may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed an “upper” element and, similarly, a second element could be termed an “upper” element depending on the relative orientations of these elements, without departing from the scope of the present disclosure.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having meanings that are consistent with their meanings in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Embodiments are described herein with reference to schematic illustrations of embodiments of the disclosure. As such, the actual dimensions of the layers and elements can be different, and variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are expected. For example, a region illustrated or described as square or rectangular can have rounded or curved features, and regions shown as straight lines may have some irregularity. Thus, the regions illustrated in the figures are schematic and their shapes are not intended to illustrate the precise shape of a region of a device and are not intended to limit the scope of the disclosure. Additionally, sizes of structures or regions may be exaggerated relative to other structures or regions for illustrative purposes and, thus, are provided to illustrate the general structures of the present subject matter and may or may not be drawn to scale. Common elements between figures may be shown herein with common element numbers and may not be subsequently re-described.
Aspects of the present disclosure relate to devices and methods for impinging light on a tissue, for example within a body of a patient, where the light may include at least one characteristic that exerts or induces at least one biological effect within or on the tissue. Biological effects may include at least one of inactivating and inhibiting growth of one or more combinations of microorganisms and pathogens, including but not limited to viruses, bacteria, fungi, and other microbes, among others. Biological effects may also include one or more of upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light may be selected based on at least one intended biological effect for one or more of the targeted tissue and the targeted microorganisms or pathogens. In certain aspects, wavelengths of light may include visible light in any number of wavelength ranges based on the intended biological effect. Further aspects involve light impingement on tissue for multiple microorganisms and/or multiple pathogenic biological effects, either with light of a single peak wavelength or a combination of light with more than one peak wavelength. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity. Light doses may include various combinations of irradiances, wavelengths, and exposure times, and such light doses may be administered continuously or discontinuously with a number of pulsed exposures.
Certain aspects of the disclosure relate to phototherapeutic modulation of nitric oxide in living mammalian tissue, including use of light having a first peak wavelength and a first radiant flux to release nitric oxide from endogenous stores of nitric oxide, and use of light having a second peak wavelength and a second radiant flux to increase endogenous stores of nitric oxide (e.g., to increase expression of nitric oxide synthase enzymes), wherein the second peak wavelength differs from the first peak wavelength. The photoinitiated release of endogenous stores of nitric oxide effectively regenerates “gaseous” (or unbound) nitric oxide that was autooxidized into nitrosative intermediates and bound covalently in the body in a “bound” state. By stimulating release of nitric oxide from endogenous stores, nitric oxide may be maintained in a gaseous state for an extended duration and/or a spatial zone of nitric oxide release may be expanded.
Certain aspects of the disclosure relate to phototherapeutic modulation of nitric oxide in living mammalian tissue, including use of light having a first peak wavelength and a first radiant flux to stimulate enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide (e.g., to increase expression of nitric oxide synthase enzymes), and release nitric oxide from the endogenous stores. The photoinitiated release of endogenous stores of nitric oxide effectively regenerates “gaseous” (or unbound) nitric oxide that was autooxidized into nitrosative intermediates and bound covalently in the body in a “bound” state. By stimulating release of nitric oxide from endogenous stores, nitric oxide may be maintained in a gaseous state for an extended duration and/or a spatial zone of nitric oxide release may be expanded.
As noted previously, nitric oxide is endogenously stored on a variety of nitrosated biochemical structures. Upon receiving the required excitation energy, both nitroso and nitrosyl compounds undergo hemolytic cleavage of S—N, N—N, or M-N bonds to yield free radical nitric oxide. Nitrosothiols and nitrosamines are photoactive and can be phototriggered to release nitric oxide by wavelength specific excitation.
Light having a first peak wavelength and a first radiant flux to release nitric oxide from endogenous stores of nitric oxide may be referred to herein as “endogenous store releasing light” or “ES releasing light;” and light having a second peak wavelength and a second radiant flux to stimulate enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide may be referred to herein as “endogenous store increasing light” or “ES increasing light.”
In certain embodiments, the second peak wavelength (of the ES increasing light) is greater than the first peak wavelength (of the ES releasing light) by at least 25 nm, at least 40 nm, at least 50 nm, at least 60 nm, at least 75 nm, at least 85 nm, at least 100 nm, or another threshold specified herein.
In certain embodiments, each of the ES increasing light and the ES releasing light has a radiant flux in a range of at least 5 mW, or at least 10 mW, or at least 15 mW, or at least 20 mW, or at least 30 mW, or at least 40 mW, or at least 50 mW, or in a range of from 5 mW to 60 mW, or in a range of from 5 mW to 30 mW, or in a range of from 5 mW to 20 mW, or in a range of from 5 mW to 10 mW, or in a range of from 10 mW to 60 mW, or in a range of from 20 mW to 60 mW, or in a range of from 30 mW to 60 mW, or in a range of from 40 mW to 60 mW, or in another range specified herein.
In certain embodiments, the ES increasing light has a greater radiant flux than the ES releasing light. In certain embodiments, the ES releasing light has a greater radiant flux than the ES increasing light.
In certain embodiments, one or both of the ES increasing light and the ES releasing light has a radiant flux profile that is substantially constant during a treatment window. In certain embodiments, at least one of the ES increasing light and the ES releasing light has a radiant flux profile that increases with time during a treatment window. In certain embodiments, at least one of the ES increasing light and the ES releasing light has a radiant flux profile that decreases with time during a treatment window. In certain embodiments, one of the ES increasing light or the ES releasing light has a radiant flux profile that decreases with time during a treatment window, while the other of the ES increasing light or the ES releasing light has a radiant flux profile that increases with time during a treatment window.
In certain embodiments, ES releasing light is applied to tissue during a first time window, ES increasing light is applied to the tissue during a second time window, and the second time window overlaps with the first time window. In other embodiments, ES releasing light is applied to tissue during a first time window, ES increasing light is applied to the tissue during a second time window, and the second time is non-overlapping or is only partially overlapping with the first time window. In certain embodiments, the second time window is initiated more than one minute, more than 5 minutes, more than 10 minutes, more than 30 minutes, or more than one hour after conclusion of the first time window. In certain embodiments, ES releasing light is applied to tissue during a first time window, ES increasing light is applied to the tissue during a second time window, and the first time window and the second time window are substantially the same. In other embodiments, the second time window is longer than the first time window.
In certain embodiments, one or both of ES increasing light and ES releasing light may be provided by a steady state source providing a radiant flux that is substantially constant over a prolonged period without being pulsed.
In certain embodiments, one or both of ES increasing light and ES releasing light may include more than one discrete pulse (e.g., a plurality of pulses) of light. In certain embodiments, more than one discrete pulse of ES releasing light is impinged on tissue during a first time window, and/or more than one discrete pulse of ES increasing light is impinged on tissue during a second time window. In certain embodiments, the first time window and the second time window may be coextensive, may be overlapping but not coextensive, or may be non-overlapping.
In certain embodiments, at least one of radiant flux and pulse duration of ES releasing light may be reduced from a maximum value to a non-zero reduced value during a portion of a first time window. In certain embodiments, at least one of radiant flux and pulse duration of ES releasing light may be increased from a non-zero value to a higher value during a portion of a first time window. In certain embodiments, at least one of radiant flux and pulse duration of ES increasing light may be reduced from a maximum value to a non-zero reduced value during a portion of a second time window. In certain embodiments, at least one of radiant flux and pulse duration of ES increasing light may be increased from a non-zero value to a higher value during a portion of a second time window.
In certain embodiments, each of ES increasing light and ES releasing light consists of non-coherent light. In certain embodiments, each of ES increasing light and ES releasing light consists of coherent light. In certain embodiments, one of the ES increasing light or the ES releasing light consists of non-coherent light, and the other of the ES increasing light or the ES releasing light consists of coherent light.
In certain embodiments, the ES releasing light is provided by at least one first light emitting device and the ES increasing light is provided by at least one second light emitting device. In certain embodiments, the ES releasing light is provided by a first array of light emitting devices and the ES increasing light is provided by a second array of light emitting devices.
In certain embodiments, at least one of the ES increasing light or the ES releasing light is provided by at least one solid state light emitting device. Examples of solid state light emitting devices include (but are not limited to) light emitting diodes, lasers, thin film electroluminescent devices, powdered electroluminescent devices, field induced polymer electroluminescent devices, and polymer light-emitting electrochemical cells. In certain embodiments, the ES releasing light is provided by at least one first solid state light emitting device and the ES increasing light is provided by at least one second solid state light emitting device. In certain embodiments, ES increasing light and ES releasing light may be generated by different emitters contained in a single solid state emitter package, wherein close spacing between adjacent emitters may provide integral color mixing. In certain embodiments, the ES releasing light may be provided by a first array of solid state light emitting devices and the ES increasing light may be provided by a second array of solid state light emitting devices. In certain embodiments, an array of solid state emitter packages each including at least one first emitter and at least one second emitter may be provided, wherein the array of solid state emitter packages embodies a first array of solid state emitters arranged to generate ES releasing light and embodies a second array of solid state emitters arranged to generate ES increasing light. In certain embodiments, an array of solid state emitter packages may embody packages further including third, fourth, and/or fifth solid state emitters, such that a single array of solid state emitter packages may embody three, four, or five arrays of solid state emitters, wherein each array is arranged to generate emissions with a different peak wavelength.
In certain embodiments, at least one of the ES increasing light or the ES releasing light is provided by at least one light emitting device devoid of a wavelength conversion material. In other embodiments, at least one of the ES increasing light or the ES releasing light is provided by at least one light emitting device arranged to stimulate a wavelength conversion material, such as a phosphor material, a fluorescent dye material, a quantum dot material, and a fluorophore material.
In certain embodiments, the ES increasing light and the ES releasing light consist of substantially monochromatic light. In certain embodiments, the ES releasing light includes a first spectral output having a first full width at half maximum value of less than 25 nm (or less than 20 nm, or less than 15 nm, or in a range of from 5 nm to 25 nm, or in a range of from 10 nm to 25 nm, or in a range of from 15 nm to 25 nm), and/or the ES increasing light includes a second spectral output having a second full width at half maximum value of less than 25 nm (or less than 20 nm, or less than 15 nm, or in a range of from 5 nm to 25 nm, or in a range of from 10 nm to 25 nm, or in a range of from 15 nm to 25 nm). In certain embodiments, less than 5% of the first spectral output is in a wavelength range of less than 400 nm, and less than 1% of the second spectral output is in a wavelength range of less than 400 nm.
In certain embodiments, the ES releasing light is produced by one or more first light emitters having a single first peak wavelength, and the ES increasing light is produced by one or more second light emitters having a single second peak wavelength. In other embodiments, the ES increasing light may be produced by at least two light emitters having different peak wavelengths (e.g., differing by at least 5 nm, at least 10 nm, at least 15 nm, at least 20 nm, or at least 25 nm), and/or the ES releasing light may be produced by at least two light emitters having different peak wavelengths (e.g., differing by at least 5 nm, at least 10 nm, at least 15 nm, at least 20 nm, or at least 25 nm).
Ultraviolet light (e.g., UV-A light having a peak wavelength in a range of from 350 nm to 395 nm, and UV-B light having a peak wavelength in a range of from 320 nm to 350 nm) may be effective as ES increasing or ES releasing light; however, overexposure to ultraviolet light may lead to detrimental health effects including premature skin aging and potentially elevated risk for certain types of cancer. In certain embodiments, UV light (e.g., having peak wavelengths in a range of from 320 nm to 399 nm) may be used as ES increasing or ES releasing light; however, in other embodiments, UV light may be avoided.
In certain embodiments, ES increasing light and ES releasing light are substantially free of UV light. In certain embodiments, less than 5% of the ES increasing light is in a wavelength range of less than 400 nm, and less than 1% of the ES releasing light output is in a wavelength range of less than 400 nm. In certain embodiments, ES increasing light includes a peak wavelength in a range of from 400 nm to 490 nm, or from 400 nm to 450 nm, or from 400 nm to 435 nm, or from 400 nm to 420 nm, or from 410 nm to 440 nm, or from 420 nm to 440 nm.
In certain embodiments, ES increasing light may include a wavelength range and flux that may alter the presence, concentration, or growth of pathogens (e.g., bacteria, viruses, fungi, protists, and/or other microbes) in or on living mammalian tissue receiving the light. UV light and near-UV light (e.g., having peak wavelengths from 400 nm to 435 nm, or more preferably from 400 nm to 420 nm) in particular may affect microbial growth. Effects on microbial growth may depend on the wavelength range and dose. In certain embodiments, ES increasing or ES releasing light may include near-UV light having a peak wavelength in a range of from 400 nm to 420 nm to provide a bacteriostatic effect (e.g., with pulsed light having a radiant flux of <9 mW), provide a bactericidal effect (e.g., with substantially steady state light having a radiant flux in a range of from 9 mW to 17 mW), or provide an antimicrobial effect (e.g., with substantially steady state light having a radiant flux in a range of greater than 17 mW, such as in a range of from 18 mW to 60 mW). In certain embodiments, ES increasing or ES releasing light in a near-UV range (e.g., from 400 nm to 420 nm) may also affect microbial growth (whether in a bacteriostatic range, bactericidal range, or an antimicrobial range) for uses such as wound healing, reduction of acne blemishes, or treatment of atopic dermatitis. Such function(s) may be in addition to the function of the ES increasing light to increase endogenous stores of nitric oxide in living tissue.
In certain embodiments, ES increasing light may include a peak wavelength in a range of from 500 nm to 900 nm, or in a range of from 490 nm to 570 nm, or in a range of from 510 nm to 550 nm, or in a range of from 520 nm to 540 nm, or in a range of from 525 nm to 535 nm, or in a range of from 528 nm to 532 nm, or in a range of about 530 nm.
Applicant has found that the ability to generate and release nitric oxide is dependent on the wavelength and fluence of light used. To investigate whether certain wavelengths of light may be more effective than others at releasing endogenous stores of NO (i.e., to serve as ES releasing light), Applicant performed various experiments. One series of experiments included generating nitric oxide-loaded hemoglobin (Hb-NO), irradiating the Hb-NO with different wavelengths of light produced by substantially monochromatic LEDs, and comparing absorbance spectra for Hb, for the Hb-NO prior to the LED irradiation, and for the Hb-NO after the LED irradiation. The Hb-NO was generated by mixing 10 μM Hb with 1 μM Prolino (a NO source). The mixture was then stirred and incubated one hour, and then was allowed to rest for 5 minutes. Irradiation with LED light was performed under vacuum to facilitate removal of NO liberated from the Hb-NO.
Nine LED light sources providing nine different peak wavelengths (i.e., 410 nm, 447 nm, 470 nm, 505 nm, 530 nm, 597 nm, 630 nm, 660 nm, and 850 nm) were tested to determine their relative effectiveness in releasing NO from Hb-NO.
Another series of experiments included generating nitric oxide-loaded cytochrome c (Cytochrome c-NO), irradiating the Cytochrome c-NO with different wavelengths of light produced by substantially monochromatic LEDs, and comparing absorbance spectra for Cytochrome c, for the Cytochrome c-NO prior to the LED irradiation, and for the Cytochrome c-NO after the LED irradiation. 60 μM Cytochrome c was used according to a procedure otherwise similar to that described above in connection with Hb.
The results shown in
To determine whether various combinations of two peak wavelengths might be more or less effective than single peak wavelengths in releasing NO from Hb-NO, additional experiments were performed using Hb-NO. Hb-NO was generated by mixing 10 μM Hb with 1 μM Prolino (a NO source), then the mixture was stirred and incubated one hour, and the mixture was allowed to rest for 5 minutes. Irradiation with two peak wavelengths of LED light was performed under vacuum to facilitate removal of NO liberated from the Hb-NO. Results for three different combinations of two peak wavelengths are shown in
Notably, as shown in
In certain embodiments, ES releasing light that includes light having a first peak wavelength is impinged on living tissue, ES increasing light that includes light having a second peak wavelength is impinged on the living tissue, and furthermore a light having a third peak wavelength may be impinged on the living tissue. In certain embodiments, the light having a third peak wavelength may be provided at substantially the same time as (or during a time window overlapping at least one time window of) one or both of the ES increasing light and the ES releasing light. In certain embodiments, the light having a third peak wavelength differs from each of the first peak wavelength and the second peak wavelength by at least 10 nm. In certain embodiments, the light having a third peak wavelength exceeds the second peak wavelength by at least 20 nm. In certain embodiments, the light having a third peak wavelength is provided with a radiant flux in a range of from 5 mW to 60 mW. In certain embodiments, the third peak wavelength is in a range of from 600 nm to 900 nm, or in a range of from 600 nm to 700 nm. In certain embodiments, the third peak wavelength is in a range of from 320 nm to 399 nm.
In certain embodiments, light having a third peak wavelength in a range of from 620 nm to 670 nm (e.g., including specific wavelengths of about 630 nm and about 660 nm) may be useful to provide anti-inflammatory effects and/or to promote vasodilation. Anti-inflammatory effects may be useful to promote wound healing, to reduce acne blemishes, to promote facial aesthetics, and/or to treat atopic dermatitis and other topical dermatological disorders. Vasodilation may also be beneficial to treat androgenic alopecia or other topical dermatological disorders.
In certain embodiments, light having a third peak wavelength may be useful to promote thermal and/or infrared heating of living mammalian tissue, such as may be useful in certain contexts including wound healing.
In certain embodiments utilizing modulated light therapy to control NO generation and release, human immune response may be altered and/or controlled. Such responses may include, but are not limited to: ATP production; DNA and RNA synthesis; gene transcription; extracellular matrix (e.g., collagen and elastin) secretion; protein expression (including but not limited to NOS enzymes); cell signaling pathways (including cytokine expression (e.g., interleukins), growth factors (e.g., vascular endothelial growth factor, insulin growth factor, insulin-like growth factors, fibroblast growth factors, and tumor necrosis factors); Wnt signaling pathways; and NF-kB pathways); cellular viability; cellular apoptosis; cellular proliferation and migration; reactive oxygen species generation; cellular response to reactive oxygen species (e.g., expression of superoxide dismutase); and inhibition of the enzyme 5α-reductase (to decrease DHT production and thereby reduce or reverse hair loss).
Methods and devices disclosed herein for photomodulation of nitric oxide in living mammalian tissue are contemplated for use with a wide variety of tissues. In certain embodiments, the tissue comprises epithelial tissue. In certain embodiments, the tissue comprises mucosal tissue. In certain embodiments, the tissue is within a body cavity of a patient. In certain embodiments, the tissue comprises cervical tissue.
In certain embodiments, the impinging of light having a first peak wavelength and the impinging of light having a second peak wavelength is performed with a single therapeutic device.
In certain embodiments, a device for photomodulation of nitric oxide in living mammalian tissue as disclosed herein may include a flexible substrate supporting one or more light emitting elements and arranged to conform to at least a portion of a human body. In certain embodiments, a flexible substrate may include a flexible printed circuit board (PCB), such as may include at least one polyimide-containing layer and at least one layer of copper or another electrically conductive material. In other embodiments, a device for photomodulation of nitric oxide as disclosed herein may include a rigid substrate supporting one or more light emitting elements. In certain embodiments, one or more surfaces of a device for photomodulation of nitric oxide may include a light-transmissive encapsulant material arranged to cover any light emitter(s) and at least a portion of an associated substrate (e.g., flexible PCB). A preferred encapsulant material is silicone, which may be applied by any suitable means such as molding, dipping, spraying, dispensing, or the like. In certain embodiments, one or more functional materials may be added to or coated on an encapsulant material. In certain embodiments, at least one surface, or substantially all surfaces (e.g., front and back surfaces) of a flexible PCB may be covered with encapsulant material.
In certain embodiments, a substrate as described herein may be arranged to support one or more light emitting elements. In certain embodiments, one or more light emitting elements may include multi-emitting light emitting devices such as multi-LED packages. In certain embodiments, one or more light emitting elements may be arranged for direct illumination, wherein at least a portion of emissions generated by the one or more light emitting elements is arranged to be transmitted directly through a light-transmissive external surface of a device without need for an intervening waveguide or reflector. In certain embodiments, one or more light emitting elements may be arranged for indirect illumination (e.g., side illumination), wherein emissions generated by the one or more light emitting elements are arranged to be transmitted to a light-transmissive external surface via a waveguide and/or a reflector, without a light emitting element being in direct line-of-sight arrangement relative to a light-transmissive external surface. In certain embodiments, a hybrid configuration may be employed, including one or more light emitting elements arranged for direct illumination, and further including one or more light emitting elements arranged for indirect illumination. In certain embodiments, one or more reflective materials (e.g., reflective flexible PCB or other reflective films) may be provided along selected surfaces of a device to reduce internal absorption of light and to direct light emissions toward an intended light-transmissive surface. In certain embodiments, a flexible light emitting device may include a substantially uniform thickness. In other embodiments, a flexible light emitting device may include a thickness that varies with position, such as a thickness that tapers in one direction or multiple directions. In certain embodiments, presence of a tapered thickness may help a flexible light emitting device to more easily be wrapped against or to conform to areas of a mammalian (e.g., human) body.
In certain embodiments, one or multiple holes or perforations may be defined in a substrate and any associated encapsulant material. In certain embodiments, holes may be arranged to permit transit of air, such as may be useful for thermal management. In certain embodiments, holes may be arranged to permit transit of wound exudate. In certain embodiments, one or more holes may be arranged to permit sensing of at least one condition through the hole(s). Holes may be defined by any suitable means such as laser perforation, die pressing, slitting, punching, blade cutting, and roller perforation. In certain embodiments, holes may have uniform or non-uniform size, placement, and/or distribution relative to a substrate and encapsulant material.
In certain embodiments, a device for photomodulation of nitric oxide in living mammalian tissue as disclosed herein may include one or more light-affecting elements such as one or more light extraction features, wavelength conversion materials, light diffusion or scattering materials, and/or light diffusion or scattering features. In certain embodiments, one or more light affecting elements may be arranged in a layer between a light emitting element and a light transmissive surface of a device. In certain embodiments, an encapsulant material (e.g., encapsulant material layer) may be arranged between at least one light emitting element and one or more light affecting elements. In certain embodiments, one or more light affecting elements may be formed or dispersed within an encapsulant material.
In certain embodiments, impingement of light on living tissue and/or operation of a device as disclosed herein may be responsive to one or more signals generated by one or more sensors or other elements. Various types of sensors are contemplated, including temperature sensors, photosensors, image sensors, proximity sensors, pressure sensors, chemical sensors, biosensors, accelerometers, moisture sensors, oximeters, current sensors, voltage sensors, and the like. Other elements that may affect impingement of light and/or operation of a device as disclosed herein include a timer, a cycle counter, a manually operated control element, a wireless transmitter and/or receiver (as may be embodied in a transceiver), a laptop or tablet computer, a mobile phone, or another portable electronic or digital device external to a lighting device. Wired and/or wireless communication between a device as disclosed herein and one or more signal generating or signal receiving elements may be provided.
In certain embodiments, impingement of light on living tissue and/or operation of a device as disclosed herein may be responsive to one or more temperature signals. For example, a temperature condition may be sensed on or proximate to (a) a device arranged to emit ES increasing light and/or ES releasing light or (b) the tissue; at least one signal indicative of the temperature condition may be generated; and operation of a lighting device may be controlled responsive to the at least one signal. Such control may include initiation of operation, deviation (or alteration) of operation, or termination of operation of light emitting elements, such as elements arranged to emit ES increasing light and/or ES releasing light. In certain embodiments, thermal foldback protection may be provided at a threshold temperature (e.g., >42° Celsius) to prevent a user from experiencing burns or discomfort. In certain embodiments, thermal foldback protection may trigger a light emitting device to terminate operation, reduce current, or change an operating state in response to receipt of a signal indicating an excess temperature condition.
In certain embodiments, a device for modulating nitric oxide in living mammalian tissue as disclosed herein may be used for wound care, and may include one or more sensors. In certain embodiments, one or more light emitters and photodiodes may be provided to illuminate a wound site with one or more selected wavelengths (e.g., green light) to detect blood flow in or proximate to the wound site to provide photoplethsmyography data. One sensor or multiple sensors may be provided. A device may alternatively or additionally include sensors arranged to detect blood pressure, bandage or dressing covering pressure, heart rate, temperature, presence or concentration of chemical or biological species (e.g., in wound exudate), or other conditions.
In certain embodiments, a device for modulating nitric oxide in living mammalian tissue as disclosed herein may include a memory element to store information indicative of one or more sensor signals. Such information may be used for diagnosis, assessing patient compliance, assessing patient status, assessing patient improvement, and assessing function of the device. In certain embodiments, information indicative of one or more sensor signals may be transmitted via wired or wireless means (e.g., via Bluetooth, WiFi, Zigbee, or another suitable protocol) to a mobile phone, a computer, a datalogging device, or another suitable device that may optionally be connected to a local network, a wide-area network, a telephonic network, or other communication network. In certain embodiments, a data port (e.g., micro USB or other type) may be provided to permit extraction or interrogation of information contained in a memory.
Details of illustrative devices that may be used for modulating nitric oxide in living mammalian tissue are described hereinafter.
In certain embodiments, the light extraction features 197 may be dispensed, molded, layered, or painted on the flexible PCB 191. In certain embodiments, different light extraction features 197 may include different indices of refraction. In certain embodiments, different light extraction features 197 may include different sizes and/or shapes. In certain embodiments, light extraction features 197 may be uniformly or non-uniformly distributed over the flexible PCB 191. In certain embodiments, light extraction features 197 may include tapered surfaces. In certain embodiments, different light extraction features 197 may include one or more connected portions or surfaces. In certain embodiments, different light extraction features 197 may be discrete or spatially separated relative to one another. In certain embodiments, light extraction features 197 may be arranged in lines, rows, zig-zag shapes, or other patterns. In certain embodiments, one or more wavelength conversion materials may be arranged on or proximate to one or more light extraction features 197.
Holes or perforations defined through a device (e.g., through a PCB and encapsulant layers) as described herein may include holes of various shapes and configurations. Holes may be round, oval, rectangular, square, polygonal, or any other suitable axial shape. Cross-sectional shapes of holes or perforations may be constant or non-constant. Cross-sectional shapes that may be employed according to certain embodiments are shown in
In certain embodiments, perforations or holes may encompass at least 2%, at least 5%, at least 7%, at least 10%, at least 15%, at least 20%, or at least 25% of a facial area of a device for delivering light energy to living mammalian tissue as disclosed herein. In certain embodiments, one or more of the preceding ranges may be bounded by an upper limit of no greater than 10%, no greater than 15%, no greater than 20%, or no greater than 30%. In certain embodiments, perforations or holes may be provided with substantially uniform size and distribution, with substantially uniform distribution but non-uniform size, with non-uniform size and non-uniform distribution, or any other desired combination of size and distribution patterns.
To investigate whether NO may be photomodulated in at least certain types of cells for extended periods (e.g., hours) and to evaluate potential toxicity of photomodulation, Applicant performed various experiments on two types of cells—namely, keratinocytes and fibroblasts.
Referring to
Referring to
Referring to
Turning to
Referring to
Referring to
Taken in combination,
Efficacy of the liberation of nitric oxide from protein complexes (by breaking nitroso or nitrosyl bonds) depends on the wavelength of light used. Different types of bonds (e.g., RSNO, RNNO, and metal-NO) may require different light wavelength and light irradiation values to effectuate release of nitric oxide. To investigate whether certain light wavelengths and light irradiation values may be more effective than others at releasing different endogenous stores of NO (i.e., to serve as ES releasing light), Applicant performed various experiments with hemoglobin-NO, S-nitrosoglutathione (GSNO), albumin-NO, cytochrome c-NO, cytochrome c-oxidase-NO, and mitochondria-NO. Details of these experiments are described hereinafter in connection with
The preceding
Based on the findings that short wavelength blue light is effective for enhancing endogenous stores of nitric oxide and/or triggering nitric oxide release, one aspect of the disclosure relates to a method of modulating nitric oxide in living mammalian tissue, the method comprising: impinging light on the tissue, wherein the light impinged on the tissue comprises incoherent light emissions including a first peak wavelength in a range of from 410 nm to 440 nm and a first radiant flux, and wherein the first peak wavelength and the first radiant flux are selected to stimulate at least one of (i) enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide or (ii) release of nitric oxide from endogenous stores of nitric oxide; wherein the light impinged on the tissue is substantially devoid of light emissions having a peak wavelength in a range of from 600 nm to 900 nm (e.g., encompassing red visible light as well as a portion of the infrared range). An absence of red and/or infrared light contradicts various references describing the desirability of red and/or infrared light as primary wavelengths for skin penetration and to provide phototherapeutic benefit.
In certain embodiments, the light impinged on the tissue is devoid of emissions of any wavelength conversion material (e.g., a phosphor, a quantum dot, or another lumiphoric material) stimulated by incoherent light emissions having a peak wavelength in a range of from 410 nm to 440 nm. In certain embodiments, the tissue on which light is impinged is devoid of an applied or received photosensitive therapeutic compound or agent (e.g., a pharmaceutical composition or the like, which may be administered topically, orally, or via injection). In certain embodiments, at least 65%, at least 75%, at least 80%, at least 85%, or at least 95% of a fluence of light impinged on the tissue consists of the incoherent light emissions including a first peak wavelength in a range of from 410 to 440 nm. In certain embodiments, the light impinged on the tissue is substantially devoid of light emissions having a peak wavelength in a range of from 441 nm to 490 nm. In certain embodiments, the incoherent light emissions including a first peak wavelength in a range of from 410 nm to 440 nm are provided as a plurality of discrete pulses.
In certain embodiments, the light impinged on the tissue further comprises incoherent light emissions including a second peak wavelength in a range of from 500 nm to 540 nm. This is consistent with Applicant's finding that light having a peak wavelength of 530 nm appears to be more effective than certain other wavelengths (including longer wavelength red) at triggering NO release from GSNO. In certain embodiments, the incoherent light emissions including a first peak wavelength in a range of from 410 nm to 440 nm are impinged on the tissue during a first time window, the incoherent light emissions including a second peak wavelength in a range of from 500 nm to 540 nm are impinged on the tissue during a second time window, and at least a portion of the second time window is non-overlapping with the first time window.
In certain embodiments, the first peak wavelength and the first radiant flux are selected to stimulate enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide. In certain embodiments, the first peak wavelength and the first radiant flux are selected to release nitric oxide from the endogenous stores of nitric oxide.
In certain embodiments, the tissue comprises at least one of epithelial tissue, mucosal tissue, connective tissue, muscle tissue, or cervical tissue. In certain embodiments, the tissue comprises dermal tissue. In certain embodiments, a method further comprises sensing a temperature condition on or proximate to (a) a therapeutic device arranged to impinge light on the tissue, or (b) the tissue; generating at least one signal indicative of the temperature condition; and controlling impingement of light on the tissue responsive to the at least one signal. In certain embodiments, the light impinged on the tissue comprises a fluence in a range of from about 0.5 J/cm2 to about 100 J/cm2, or from about 2 J/cm2 to about 80 J/cm2, or from about 5 J/cm2 to about 50 J/cm2.
In another aspect, the disclosure relates to a device for modulating nitric oxide in living mammalian tissue, the device comprising: an ambient light blocking element; and at least one first light emitting element positioned between the ambient light blocking element and the tissue, wherein the at least one first light emitting element is configured to impinge incoherent light on the tissue, said incoherent light having a first peak wavelength and a first radiant flux, wherein the first peak wavelength and the first radiant flux are selected to stimulate at least one of (i) enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide or (ii) release of nitric oxide from endogenous stores of nitric oxide; wherein the device is substantially devoid of any light emitting element configured to impinge on the tissue light having a peak wavelength in a range of from 600 nm to 900 nm.
In certain embodiments, the device is substantially devoid of any light emitting element configured to impinge light having a peak wavelength in a range of from 441 nm to 490 nm on the tissue. In certain embodiments, the device is devoid of any wavelength conversion material configured to be stimulated by the at least one first light emitting element. In certain embodiments, the device further comprises a flexible substrate supporting the at least one first light emitting element. In certain embodiments, the device is configured to conform to the tissue with a light-transmissive material arranged in contact with the tissue. In certain embodiments, the light impinged on the tissue is substantially devoid of light emissions having a peak wavelength in a range of from 441 nm to 490 nm. In certain embodiments, the device further comprises driver circuitry configured to generate the incoherent light emissions including the first peak wavelength, wherein the first peak wavelength is in a range of from 410 nm to 440 nm, and said incoherent light emissions comprise a plurality of discrete pulses.
In certain embodiments, the device further comprises at least one second light emitting element configured to impinge incoherent light on the tissue, said incoherent light having a second peak wavelength and a second radiant flux, wherein the second peak wavelength is in a range of from 500 nm to 540 nm. In certain embodiments, the device is configured to impinge incoherent light emissions including the first peak wavelength during a first time window, wherein the first peak wavelength is in a range of from 410 nm to 440 nm, and being configured to impinge incoherent light emissions including the second peak wavelength in a range of from 500 nm to 530 nm during a second time window, wherein at least a portion of the second time window is non-overlapping with the first time window. In certain embodiments, the device further comprises a probe configured for insertion into a mammalian body cavity or opening (e.g., incision) defined in a mammalian body, wherein the at least one first light emitting element is supported by the probe.
Applicant performed various experiments to contradict this conclusion—instead confirming that coherent blue light is capable of penetrating human skin to a depth sufficient to reach hair follicles. Irradiance transmitted through full thickness skin was measured as a function of wavelength for laser and LED light sources. Light sources were matched to have equivalent irradiance as measured by a common photodiode. Wavelength was also matched between laser and LED light sources.
To determine whether red, green, and blue coherent and incoherent light can penetrate skin of racially diverse types, experiments were performed using the apparatuses of
In certain embodiments, methods and devices disclosed herein may be used to enhance nitric oxide production and/or release to provide a hair loss solution (e.g., for treating androgenic alopecia and/or similar conditions). Hair loss is caused by an increase in DHT produced by the enzyme 5α-reductase. In particular, 5α-reductase reacts with testosterone and NADPH to produce dihydrotestosterone (DHT), which leads to shrinkage of hair follicles and hair loss. Applicant performed experiments to determine whether nitric oxide inhibits 5α-reductase, to thereby provide a potential for decreasing DHT concentration in the scalp and inhibit (or reverse) hair loss. S-Nitrosoglutathione (GSNO) was used as a NO donor. Nitric oxide is released from GSNO by NADPH, which is a necessary cofactor for the 5α-reductase enzyme.
Phototherapy has been shown to be effective in treating various conditions, including alopecia, acne, seasonal affective disorder, psoriasis, excess bilirubin, atopic dermatitis, and a broad range of aesthetic indications. While there may not be a single universally accepted mechanism for the biological activity of light, there may be multiple biological mechanisms that are relevant depending on the intensity and wavelength of the therapeutic light. UV light may be configured to provide ultraviolet germicidal irradiation for disinfecting of surfaces, food, air, and water. In such applications, the peak wavelength of light used may be in one or more wavelength ranges of the ultraviolet spectrum, for example 260 to 270 nm, which is understood to break bonds in DNA of microorganisms, thereby damaging genetic material with fatal effect. While UV light is highly effective against microorganisms, it is non-selective and is known to also cause damage to human cells. In this regard, UV light provides some undesirable attributes that render it not universally suitable for all phototherapy applications. For visible light, such as in a range from 400 nm to 700 nm, phototherapy has been suggested to provide therapeutic benefits which include increasing circulation (e.g., by increasing formation of new capillaries); stimulating the production of collagen; stimulating the release of adenosine triphosphate (ATP); enhancing porphyrin production; reducing excitability of nervous system tissues; modulating fibroblast activity; increasing phagocytosis; inducing thermal effects; stimulating tissue granulation and connective tissue projections; reducing inflammation; and stimulating acetylcholine release.
As previously described, phototherapy has also been suggested to stimulate cells to generate nitric oxide. Various biological functions attributed to nitric oxide include roles as signaling messenger, cytotoxin, antiapoptotic agent, antioxidant, and regulator of microcirculation. Nitric oxide is recognized to relax vascular smooth muscles, dilate blood vessels, inhibit aggregation of platelets, and modulate T cell-mediated immune response. Nitric oxide is produced by multiple cell types in tissue and may be formed by the conversion of the amino acid L-arginine to L-citrulline and nitric oxide, mediated by the enzymatic action of nitric oxide synthases (NOSs).
Certain aspects of the present disclosure relate to phototherapeutic delivery of light to mammalian tissue, including use of light having a single peak wavelength and a single radiant flux or light having multiple peak wavelengths and/or multiple radiant fluxes to inhibit the progression of a viral disease and/or to eradicate a viral infection.
In mammals, three distinct genes encode NOS isozymes: neuronal (nNOS or NOS-1), cytokine-inducible (iNOS or NOS-II), and endothelial (eNOS or NOS-III). iNOS and nNOS are soluble and found predominantly in the cytosol, while eNOS is membrane associated. Many cells in mammals synthesize iNOS in response to inflammatory conditions. Systems and methods for phototherapeutic modulation of nitric oxide has been described in US Patent Application Publication No. 2017/0028216, which is hereby incorporated by reference herein in its entirety.
In illustrative embodiments, provided are methods and exemplary devices for inactivating viruses in contact with tissue and/or treating a viral-infected tissue. In certain aspects, methods and corresponding devices may include irradiating target tissue with a therapeutic dose (J/cm2) from a light source for a period of time, and repeating the irradiating step for a number (N) of iterations to constitute a duration, wherein N is an integer greater than 1. Irradiances of light (mW/cm2) have been proposed at specific wavelengths of visible light for a threshold time over a given duration to yield therapeutic dosages (J/cm2) which are effective for inactivating virus or treating viral infections while maintaining the viability of epithelial tissues. These treatments can be tailored to the particular tissue being treated, as well as to the various fluids in the media, such as blood, sputum, saliva, cervical fluid, and mucous. The total dosage (J/cm2) to treat an infection can be spread out over multiple administrations, with each dose applied over seconds or minutes, and with multiple doses over days or weeks, at individual doses that treat the infection while minimizing damage to the particular tissue. Exemplary and nonlimiting RNA and DNA viruses that may be treated according to the principles of the present disclosure are summarized below.
There are currently 5 recognized orders and 47 families of RNA viruses, and there are also many unassigned species and genera. Related to but distinct from the RNA viruses are the viroids and the RNA satellite viruses.
There are several main taxa: levivirus and related viruses, picornaviruses, alphaviruses, flaviviruses, dsRNA viruses, and the −ve strand viruses (Wolf et al., “Origins and Evolution of the Global RNA Virome,” mBio, 9(6) (November 2018)).
Positive strand RNA viruses are the single largest group of RNA viruses, with 30 families. Of these, there are three recognized groups. The picorna group (Picornavirata) includes bymoviruses, comoviruses, nepoviruses, nodaviruses, picornaviruses, potyviruses, obemoviruses and a subset of luteoviruses (beet western yellows virus and potato leafroll virus). The flavi-like group (Flavivirata) includes carmoviruses, dianthoviruses, flaviviruses, pestiviruses, statoviruses, tombusviruses, single-stranded RNA bacteriophages, hepatitis C virus and a subset of luteoviruses (barley yellow dwarf virus). The alpha-like group (Rubivirata) includes alphaviruses, carlaviruses, furoviruses, hordeiviruses, potexviruses, rubiviruses, tobraviruses, tricornaviruses, tymoviruses, apple chlorotic leaf spot virus, beet yellows virus and hepatitis E virus.
A division of the alpha-like (Sindbis-like) supergroup has been proposed, with two proposed groups. The ‘altovirus’ group includes alphaviruses, furoviruses, hepatitis E virus, hordeiviruses, tobamoviruses, tobraviruses, tricornaviruses and rubiviruses, and the ‘typovirus’ group includes apple chlorotic leaf spot virus, carlaviruses, potexviruses and tymoviruses.
There are five groups of positive-stranded RNA viruses containing four, three, three, three, and one order(s), respectively. These fourteen orders contain 31 virus families (including 17 families of plant viruses) and 48 genera (including 30 genera of plant viruses). Alphaviruses and flaviviruses can be separated into two families, the Togaviridae and Flaviridae.
This analysis also suggests that the dsRNA viruses are not closely related to each other but instead belong to four additional classes, Birnaviridae, Cystoviridae, Partitiviridae, and Reoviridae, and one additional order (Totiviridae) of one of the classes of positive ssRNA viruses in the same subphylum as the positive-strand RNA viruses.
There are two large clades: One includes the families Caliciviridae, Flaviviridae, and Picornaviridae and a second that includes the families Alphatetraviridae, Birnaviridae, Cystoviridae, Nodaviridae, and Permutotretraviridae.
Satellite viruses include Albetovirus, Aumaivirus, Papanivirus, Virtovirus, and Sarthroviridae, which includes the genus Macronovirus.
Double-stranded RNA viruses (dsRNA viruses) include twelve families and a number of unassigned genera and species recognized in this group. The families include Amalgaviridae, Birnaviridae, Chrysoviridae, Cystoviridae, Endornaviridae, Hypoviridae, Megabirnaviridae, Partitiviridae, Picobirnaviridae, Reoviridae, which includes Rotavirus, Totiviridae, Quadriviridae. Botybirnavirus is one genus, and unassigned species include Botrytis porri RNA virus 1, Circulifer tenellus virus 1, Colletotrichum camelliae filamentous virus 1, Cucurbit yellows associated virus, Sclerotinia sclerotiorum debilitation-associated virus, and Spissistilus festinus virus 1.
Positive-sense ssRNA viruses (Positive-sense single-stranded RNA viruses) include three orders and 34 families, as well as a number of unclassified species and genera. The order Nidovirales includes the families Arteriviridae, Coronaviridae, which includes Coronaviruses, such as SARS-CoV and SARS-CoV-2, Mesoniviridae and Roniviridae. The order Picornavirales includes families Dicistroviridae, Iflaviridae, Marnaviridae, Picornaviridae, which includes Poliovirus, Rhinovirus (a common cold virus), and Hepatitis A virus, Secoviridae, which includes the subfamily Comovirinae, as well as the genus Bacillariornavirus and the species Kelp fly virus. The order Tymovirales includes the families Alphaflexiviridae, Betaflexiviridae, Gammaflexiviridae, and Tymoviridae. A number of families are not assigned to any of these orders, and these include Alphatetraviridae, Alvernaviridae, Astroviridae, Barnaviridae, Benyviridae, Botourmiaviridae, Bromoviridae, Caliciviridae, which includes the Norwalk virus (i.e., norovirus), Carmotetraviridae, Closteroviridae, Flaviviridae, which includes Yellow fever virus, West Nile virus, Hepatitis C virus, Dengue fever virus, and Zika virus, Fusariviridae, Hepeviridae, Hypoviridae, Leviviridae, Luteoviridae, which includes Barley yellow dwarf virus, Polycipiviridae, Narnaviridae, Nodaviridae, Permutotetraviridae, Potyviridae, Sarthroviridae, Statovirus, Togaviridae, which includes Rubella virus, Ross River virus, Sindbis virus, and Chikungunya virus, Tombusviridae, and Virgaviridae. Unassigned genuses include Blunervirus, Cilevirus, Higrevirus, Idaeovirus, Negevirus, Ourmiavirus, Polemovirus, Sinaivirus, and Sobemovirus. Unassigned species include Acyrthosiphon pisum virus, Bastrovirus, Blackford virus, Blueberry necrotic ring blotch virus, Cadicistrovirus, Chara australis virus, Extra small virus, Goji berry chlorosis virus, Harmonia axyridis virus 1, Hepelivirus, Jingmen tick virus, Le Blanc virus, Nedicistrovirus, Nesidiocoris tenuis virus 1, Niflavirus, Nylanderia fulva virus 1, Orsay virus, Osedax japonicus RNA virus 1, Picalivirus, Planarian secretory cell nidovirus, Plasmopara halstedii virus, Rosellinia necatrix fusarivirus 1, Santeuil virus. Secalivirus, Solenopsis invicta virus 3, and Wuhan large pig roundworm virus.
Satellite viruses include the family Sarthroviridae and the genuses Albetovirus, Aumaivirus, Papanivirus, Virtovirus, and the Chronic bee paralysis virus. Six classes, seven orders and twenty four families are currently recognized in this group. A number of unassigned species and genera are yet to be classified.
Negative-sense ssRNA viruses (Negative-sense single-stranded RNA viruses) are, with the exception of the Hepatitis D virus, within a single phylum, Negarnaviricota, with two subphyla, Haploviricotina and Polyploviricotina, with four classes, Chunqiuviricetes, Milneviricetes, Monjiviricetes and Yunchangviricetes. The subphylum Polyploviricotina has two classes, Ellioviricetes and Insthoviricetes.
There are also a number of unassigned species and genera. The Phylum Negarnaviricota includes Subphylum Haploviricotina, Class Chunqiuviricetes, Order Muvirales, Family Qinviridae. The Class Milneviricetes includes Order Serpentovirales and Family Aspiviridae. The Class Monjiviricetes includes Order Jingchuvirales and Family Chuviridae. The order Mononegavirales includes families Bornaviridae, which includes the Borna disease virus, Filoviridae, which includes the Ebola virus and the Marburg virus, Mymonaviridae, Nyamiviridae, Paramyxoviridae, which includes Measles, Mumps, Nipah, Hendra, and NDV, Pneumoviridae, which RSV and Metapneumovirus, Rhabdoviridae, which Rabies, and Sunviridae, as well as genuses Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus. Class Yunchangviricetes includes order Goujianvirales and family Yueviridae. Subphylum Polyploviricotina includes class Ellioviricetes, order Bunyavirales, and the families Arenaviridae, which includes Lassa virus, Cruliviridae, Feraviridae, Fimoviridae, Hantaviridae, Jonviridae, Nairoviridae, Peribunyaviridae, Phasmaviridae, Phenuiviridae, Tospoviridae, as well as genus Tilapineviridae.
Class Insthoviricetes includes order Articulavirales and family Amnoonviridae, which includes the Taastrup virus, and family Orthomyxoviridae, which includes Influenza viruses.
The genus Deltavirus includes the Hepatitis D virus.
Specific viruses include those associated with infection of mucosal surfaces of the respiratory tract, including Betacoronavirus (SARS-CoV-2 and MERS-CoV), rhinoviruses, influenza virus (including influenza A and B, parainfluenza). Generally, orthomyxoviruses and paramyxoviruses can be treated.
A DNA virus is a virus that has DNA as its genetic material and replicates using a DNA-dependent DNA polymerase. The nucleic acid is usually double-stranded DNA (dsDNA) but may also be single-stranded DNA (ssDNA). DNA viruses belong to either Group I or Group II of the Baltimore classification system for viruses. Single-stranded DNA is usually expanded to double-stranded in infected cells. Although Group VII viruses such as hepatitis B contain a DNA genome, they are not considered DNA viruses according to the Baltimore classification, but rather reverse transcribing viruses because they replicate through an RNA intermediate. Notable diseases like smallpox, herpes, and the chickenpox are caused by such DNAviruses.
Some DNA viruses have circular genomes (Baculoviridae, Papovaviridae and Polydnaviridae) while others have linear genomes (Adenoviridae, Herpesviridae and some phages). Some families have circularly permuted linear genomes (phage T4 and some Iridoviridae). Others have linear genomes with covalently closed ends (Poxviridae and Phycodnaviridae).
Fifteen DNS virus families are enveloped, including all three families in the order Herpesvirales and the following families: Ascoviridae, Ampullaviridae, Asfarviridae, Baculoviridae, Fuselloviridae, Globuloviridae, Guttaviridae, Hytrosaviridae, Iridoviridae, Lipothrixviridae, Nimaviridae and Poxviridae.
Of these, species of the order Herpesvirales, which includes the families Alloherpesviridae, Herpesviridae, which includes human herpesviruses and the Varicella Zoster, and the families Adenoviridae, which includes viruses which cause human adenovirus infection, and Malacoherpesviridae, infect vertebrates.
Asfarviridae, which includes African swine fever virus, Iridoviridae, Papillomaviridae, Polyomaviridae, which includes Simian virus 40, JC virus, and BK virus, and Poxviridae, which includes Cowpox virus and smallpox, infect vertebrates. Anelloviridae and Circoviridae also infect animals (mammals and birds respectively).
The family Smacoviridae includes a number of single-stranded DNA viruses isolated from the feces of various mammals, and there are 43 species in this family, which includes six genera, namely, Bovismacovirus, Cosmacovirus, Dragsmacovirus, Drosmacovirus, Huchismacovirus and Porprismacovirus. Circo-like virus Brazil hs1 and hs2 have also been isolated from human feces. An unrelated group of ssDNA viruses includes the species bovine stool associated circular virus and chimpanzee stool associated circular virus.
Animal viruses include parvovirus-like viruses, which have linear single-stranded DNA genomes, but unlike the parvoviruses, the genome is bipartate. This group includes Hepatopancreatic parvo-like virus and Lymphoidal parvo-like virus. Parvoviruses have frequently invaded the germ lines of diverse animal species including mammals.
The human respiratory-associated PSCV-5-like virus has been isolated from the respiratory tract. The PSCV-50-like virus may also be subject to phototherapy principles of the present disclosure.
According to certain embodiments, provided herein are methods of treating and/or preventing a viral infection. A method of treating and/or preventing a viral infection may comprise administering light to the skin of a subject, thereby treating and/or preventing the viral infection in the subject. In some embodiments, aspects of the present invention may provide suppression and/or inhibition of viral replication and/or enhancement of local immune responses of a subject.
According to certain embodiments of the present disclosure, provided herein are methods and devices of treating and/or preventing virus-related cutaneous conditions. A method of treating and/or preventing a virus-related cutaneous condition may comprise administering light to the skin of a subject, thereby treating and/or preventing the virus-related cutaneous condition in the subject. Virus-related cutaneous conditions that may be treated and/or prevented include, but are not limited to, cutaneous conditions associated with bowenoid papulosis, buffalopox, butcher's wart, condylomata acuminate, cowpox, cytomegalovirus, disseminated herpes zoster, eczema herpeticum (Kaposi's varicelliform eruption), eczema vaccinatum, epidermodysplasia verruciformis, erythema infectiosum (fifth disease, slapped cheek disease), farmyard pox, generalized vaccinia, genital herpes (herpes genitalis, herpes progenitalis), Buschke-Löwenstein tumor, hand-foot-and-mouth disease (Coxsackie), Heck's disease (focal epithelial hyperplasia), herpangina, herpes gladiatorum (scrum pox), herpes simplex, herpetic keratoconjunctivitis, herpetic sycosis, herpetic whitlow, human monkeypox, human T-lymphotropic virus 1 infection, human tanapox, intrauterine herpes simplex, Kaposi sarcoma, Lipschtltz ulcer (ulcus vulvae acutum), Milker's nodule, molluscum contagiosum, neonatal herpes simplex, ophthalmic zoster, orf (contagious pustular dermatosis, ecthyma contagiosum, infectious labial dermatitis, sheep pox), oral florid papillomatosis, oral hairy leukoplakia (EBV), orolabial herpes (herpes labialis), progressive vaccinia (vaccinia gangrenosum, vaccinia necrosum), pseudocowpox, recurrent respiratory papillomatosis (laryngeal papillomatosis), sealpox, varicella (chickenpox), variola major (smallpox), verruca plana (flat warts), verruca plantaris (plantar wart), verruca vulgaris (wart), verrucae palmares et plantares, and/or zoster (herpes zoster, shingles). In some embodiments, the viral infection may be caused by a papillomavirus, such as a human papillomavirus. The human papillomavirus (HPV) may be HPV type 1, 2, 3, 4, 6, 10, 11, 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and/or 59.
In certain embodiments, methods and/or devices for treating and/or preventing a virus-related gastrointestinal (GI) condition may comprise administering light via colorectal administration via a probe inserted into the body cavity of a subject, thereby treating and/or preventing the virus-related colorectal or intestinal condition in the subject. Viruses in the GI tract include rotavirus, picornavirus, and coronavirus. In one embodiment the condition is caused by Enterovirus D68 known to cause severe illness in children and acute flaccid myelitis.
In other embodiments, methods and/or devices for treating and/or preventing a virus-related central nervous system (CNS) infection may comprise administering light transcranially, through the nose of a patient, or upon implantation of a light source into the tissue of a subject, thereby treating and/or preventing the virus-related CNS condition in the subject. CNS infections are frequently caused by viruses, such as the enteroviruses, which cause the majority of cases of aseptic meningitis and meningoencephalitis as well as other neurotropic viruses including but not limited to human cytomegalovirus, herpes simplex viruses, varicella-zoster virus, and the emerging viruses West Nile virus, Murray Valley encephalitis virus, henipaviruses, Japanese encephalitis virus, chikungunya virus, Ebola virus, and rabies virus.
In specific embodiments, intranasal administration to the nasal mucosa can be used as a method of treating and/or preventing a virus-related infection. Data from animal studies and human cases have demonstrated that the olfactory and/or trigeminal nerve pathway represents a major route of CNS entry for several groups of viruses. It is known that herpes simplex virus type 1, bovine herpesvirus 5, and equine herpesvirus 9 spread from the nasal mucosa to the CNS via the olfactory nerves in animal models of infection. Orthomyxoviridae, including influenza virus, is also spread from the nasal cavity to the olfactory bulb and the rest of the CNS. Paramyxoviruses, including Nipah virus, Hendra virus, and parainfluenza virus, may enter the CNS directly from the nasal mucosa.
According to other embodiments of the present disclosure, methods and/or devices for treating and/or preventing a virus-related bloodstream infection may comprise transdermal administration of light to superficial vasculature, administering light to blood passed through an extra-corporeal loop, shining light on a blood product derived from the patient for use on other patients, and other methods for illumination of biological fluids of a subject, thereby treating and/or preventing the virus-related blood stream infection in the subject. In some embodiments, the biological fluid is treated to help treat or prevent viremia, which is when viruses are present in the blood at abnormal levels. Viremia can be classified into primary viremia, the spread of the virus into the blood from the initial site of infection or secondary viremia, the spread of the virus to other organs that come into contact with the blood where the virus replicates and then enters the bloodstream once more. In some methods, the viremia may be active. In other embodiments, the viremia may be passive. In some embodiments, the viremia is caused by West Nile virus, dengue, rubella, measles, cytomegalovirus, Epstein-Barr virus, HIV, hepatitis B virus, poliovirus, yellow fever virus, or varicella-zoster virus.
In other embodiments, the light is applied external to the body to the joints including those in the feet and hands, as well as the ankles, elbows, knees, and shoulders as a method of treating and/or preventing a joint arthritis related to side effects caused by autoimmune reactions to viruses including but not limited to chikungunya and ross river virus.
The terms phototherapy and phototherapeutic relate to the therapeutic use of light. As used herein, phototherapy is used to treat or prevent microbial infections, including viral infections of the body including mucosal epithelial tissues in the vaginal cavity, anal canal, oral cavity, the auditory canal, the upper respiratory tract and esophagus.
The mechanisms by which the wavelengths of light are effective can vary, depending on the wavelength that is administered. Biological effects, including antimicrobial effects, can be provided over a wide range of wavelengths, including UV ranges, visible light ranges, and infrared ranges. The effects vary depending on the mechanism by which the light is antimicrobial, and the wavelengths that bring about these mechanisms. Phot
A handful of photoacceptors for blue light have been identified in non-pigmented cells, including cytochrome c oxidase, flavins, porphyrins, opsins, and nitrosated proteins. Light absorption by photoreceptors can lead to release of reactive oxygen species (ROS) and/or nitric oxide (NO) that may function to inactivate viruses in a cell-free or cell-associated environment. Reactive oxygen species and/or bioactive NO may elicit activation of transcription factors involved in immune signaling, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen activated protein kinase (MAPK) signaling. NFκB and MAPK pathways can lead to transcriptional activation of innate and inflammatory immune response molecules that may interfere with viral replication. Nitric oxide may also mediate inactivation of cell-associated virus through S-nitrosylation of cysteine residues in the active site of viral encoded enzymatic proteins. Reactive oxygen species and/or NO may also function to inactivate cell-free virions. Photosensitizers present in cell media may facilitate generation of ROS and/or NO that directly impact virion proteins and/or viral RNA to prevent infection and replication. Evidence demonstrating that SARS-CoV can be inactivated by exogenous addition of NO donor molecules substantiate the potential for SARS-CoV-2 inactivation by nitric oxide.
In some embodiments, the wavelengths of light activate immune cells of the innate and/or adaptive immune responses, including macrophages.
When administering light to arrive at a suitable total dose (J/cm2), it can be important to provide the therapeutic dosage of light at a suitable combination of a wavelength, and irradiance (W/cm2) to the target tissue, and exposure time, and multiple exposures, at these conditions to yield total dose in J/cm2.
The wavelength should be safe to the tissue being irradiated, and the irradiance should be safe to the tissue as well, ideally not heating the tissue to a temperature that is unsafe, and the cumulative exposure time should be matched with the desired clinical application. In some embodiments, the device used to administer the light can include a means for controlling the amount of light that is administered, such as a timer, actuator, dosimeter, and the like, such that the light does not exceed safe limits.
For example, light is ideally administered at a dosage that is safe and at a dosage that is effective at killing viruses or other microbes. In this regard, aspects of the present disclosure provide a ratio of the IC25 (the concentration or dose required to reduce living tissue viability by 25% when compared to control-treated tissues) to the EC50 (dose required to kill 50% of the virus or other microbe for the specific tissue being treated as quantified at a cellular level) is greater than or equal to 2. As disclosed herein, the IC25/EC50 ratio or fraction may be referred to as a light therapeutic index (LTI) that quantifies safe and effective light dosages. In another context, one can consider, in an in vitro setting, the ratio of the CC50 (concentration of a therapeutic to reduce cell viability by 50%) to the EC50 for treated cells (i.e., the Selectivity Index, or “SI”). This ratio will vary depending on the type of cells or tissue that are exposed, for example, with some cells having differential tolerance to oxidative damage than other cells.
Phototherapeutic light can induce oxidative and nitrosative stresses within cells or the tissues comprised therefrom. Referring now to
Referring back to
As disclosed herein, high doses of blue light are shown to increase the expression of nitric oxide synthase enzymes. Furthermore, the photodissociation of NO from endogenous stores is well known. The release of NO from nitrosated/nitrosylated proteins is possible through a wavelength dependent process as described in U.S. Patent Application Publication No. 2017/0028215, which is incorporated by reference herein in its entirety for disclosure associated with phototherapy.
The photoinitiated release of endogenous stores of nitric oxide effectively regenerates “gaseous” (or unbound) nitric oxide that may be autooxidized into nitrosative intermediates and bound covalently in the body in a “bound” state. By stimulating release of nitric oxide from endogenous stores, nitric oxide may be maintained in a gaseous state for an extended duration and/or a spatial zone of nitric oxide release may be expanded.
Another aspect of the present disclosure is that one or more viruses can be inactivated pre-infection and one or more viral infections can be inhibited and/or eradicated by light-induced nitrosative or oxidative stress.
An illumination device for the treatment of pathogen infected tissues and/or for the inducing one or more biological effects, may take any form suitable for delivering light to the infected tissue. The device will contain a light source capable of emitting a suitable light profile that can provide one or more direct or indirect biological effects. A light profile can be represented with a graph of emission intensity versus wavelength of light for any particular light source. Disclosed herein are light sources with light profiles in the visible spectrum, for example with light emissions with peak wavelengths primarily in a range from 400 nm to 700 nm. Depending on the target application, light profiles may also include infrared or near-infrared peak wavelengths at or above 700 nm including up to 900 nm, or ultraviolet peak wavelengths at or below 400 nm including as low as 200 nm. In certain embodiments, light emissions may have a single peak wavelength in a range from 200 nm to 900 nm, or in a range from 400 nm to 490 nm, or in a range from 400 nm to 450 nm, or in a range from 400 nm to 435 nm, or in a range from 400 nm to 420 nm, or in a range from 410 nm to 440 nm, or in a range from 420 nm to 440 nm, or in a range from 450 nm to 490 nm, or in a range from 500 nm to 900 nm, or in a range from 490 nm to 570 nm, or in a range from 510 nm to 550 nm, or in a range from 520 nm to 540 nm, or in a range from 525 nm to 535 nm, or in a range from 528 nm to 532 nm, or in a range from 320 nm to 400 nm, or in a range from 350 nm to 395 nm, or in a range from 280 nm to 320 nm, or in a range from 320 nm to 350 nm, or in a range from 200 nm to 280 nm, or in a range from 260 nm to 270 nm, or in a range from 240 nm to 250 nm, or in a range from 200 nm to 225 nm. In further embodiments, light emissions may include multiple peak wavelengths selected from any of the above listed ranges, depending on the target application and desired biological effects. Depending on the target application, full width half maximum (FWHM) values for any of the above-described peak wavelength ranges may be less than or equal to 100 nm, or less than or equal to 90 nm, or less than or equal to 40 nm, or less than or equal to 20 nm. In certain aspects, lower FWHM values are typically associated with single emission color LEDs in any of the above-described wavelength bands. Larger FWHM values (e.g., from 40 nm to 100 nm) may be associated with phosphor-converted LEDs where spectral bandwidths are a combination of LED emissions and phosphor-converted emissions. Exemplary phosphor-converted LEDs that may be applicable to the present disclosure are phosphor-converted amber LEDs having peak wavelengths in a range from 585 nm to 600 nm and FWHM values in a range from 70 nm to 100 nm, and phosphor-converted mint and/or lime LEDs having peak wavelengths in a range from 520 nm to 560 nm. Additional embodiments of the present disclosure may also be applicable to broad spectrum white LEDs that may include an LED with a peak wavelength in a range from 400 nm to 470 nm, and one or more phosphors to provide the broad emission spectrum. In such embodiments, a broad spectrum LED may provide certain wavelengths that induce one or more biological effects while also providing broad spectrum emissions to the target area for illumination. In this regard, light impingement on tissue for single and/or multiple microorganism and/or multiple pathogenic biological effects may be provided with light of a single peak wavelength or a combination of light with more than one peak wavelength.
Doses of light to induce one or more biological effects may be administered with one or more light characteristics, including peak wavelengths as described above, radiant flux, and irradiance to target tissues. Irradiances to target tissues may be provided in a range from 0.1 mW/cm2 to 200 mW/cm2, or in a range from 5 mW/cm2 to 200 mW/cm2, or in a range from 5 mW/cm2 to 100 mW/cm2, or in a range from 5 mW/cm2 to 60 mW/cm2, or in a range from 60 mW/cm2 to 100 mW/cm2, or in a range from 100 mW/cm2 to 200 mW/cm2. Such irradiance ranges may be administered in one or more of continuous wave and pulsed configurations, including LED-based photonic devices that are configured with suitable power (radiant flux) to irradiate a target tissue with any of the above-described ranges. A light source for providing such irradiance ranges may be configured to provide radiant flux values from the light source of at least 5 mW, or at least 10 mW, or at least 15 mW, or at least 20 mW, or at least 30 mW, or at least 40 mW, or at least 50 mW, or at least 100 mW, or at least 200 mW, or in a range of from 5 mW to 200 mW, or at least 500 mW, or at least 2500 mW, or at least 5000 mw, or in a range of from 5 mW to 100 mW, or in a range of from 5 mW to 60 mW, or in a range of from 5 mW to 30 mW, or in a range of from 5 mW to 20 mW, or in a range of from 5 mW to 10 mW, or in a range of from 10 mW to 60 mW, or in a range of from 20 mW to 60 mW, or in a range of from 30 mW to 60 mW, or in a range of from 40 mW to 60 mW, or in a range of from 60 mW to 100 mW, or in a range of from 100 mW to 200 mW, or in a range of from 200 mW to 500 mW, or in a range of from 5 mW to 5000 mW, or in a range of from 5 mW to 2500 mW, or in another range specified herein. Depending on the configuration of one or more of the light source, the corresponding illumination device, and the distance away from a target tissue, the radiant flux value for the light source may be higher than the irradiance value at the tissue. In certain embodiments, the radiant flux value may be configured with a value that is greater than the irradiance value to the tissue. For example, the radiant flux may be in a range from 5 to 20 times greater than the irradiance, or in a range from 5 to 15 times greater than the irradiance, among other ranges and depending on the embodiments.
While certain peak wavelengths for certain target tissue types may be administered with irradiances up to 1 W/cm2 without causing significant tissue damage, safety considerations for other peak wavelengths and corresponding tissue types may require lower irradiances, particularly in continuous wave applications. In certain embodiments, pulsed irradiances of light may be administered, thereby allowing safe application of significantly higher irradiances. Pulsed irradiances may be characterized as average irradiances that fall within safe ranges, thereby providing no or minimal damage to the applied tissue. In certain embodiments, irradiances in a range from 0.1 W/cm2 to 10 W/cm2 may be safely pulsed to target tissue.
Administered doses of light, or light doses, may be referred to as therapeutic doses of light in certain aspects. Doses of light may include various suitable combinations of the peak wavelength, the irradiance to the target tissue, and the exposure time period. Particular doses of light are disclosed that are tailored to provide safe and effective light for inducing one or more biological effects for various types of pathogens and corresponding tissue types. In certain aspects, the dose of light may be administered within a single time period in a continuous or a pulsed manner. In further aspects, a dose of light may be repeatably administered over a number of times to provide a cumulative or total dose over a cumulative time period. By way of example, a single dose of light as disclosed herein may be provided over a single time period, such as in a range from 10 microseconds to no more than an hour, or in a range from 10 seconds to no more than an hour, while the single dose may be repeated at least twice to provide a cumulative dose over a cumulative time period, such as a 24-hour time period. In certain embodiments, doses of light are described that may be provided in a range from 0.5 joules per square centimeter (J/cm2) to 100 J/cm2, or in a range from 0.5 J/cm2 to 50 J/cm2, or in a range from 2 J/cm2 to 80 J/cm2, or in a range from 5 J/cm2 to 50 J/cm2, while corresponding cumulative doses may be provided in a range from 1 J/cm2 to 1000 J/cm2, or in a range from 1 J/cm2 to 500 J/cm2, or in a range from 1 J/cm2 to 200 J/cm2, or in a range from 1 J/cm2 to 100 J/cm2, or in a range from 4 J/cm2 to 160 J/cm2, or in a range from 10 J/cm2 to 100 J/cm2, among other discloses ranges. In a specific example, a single dose may be administered in a range from 10 J/cm2 to 20 J/cm2, and the single dose may be repeated twice a day for four consecutive days to provide a cumulative dose in a range from 80 J/cm2 to 160 J/cm2. In another specific example, a single dose may be administered at about 30 J/cm2, and the single dose may be repeated twice a day for seven consecutive days to provide a cumulative dose of 420 J/cm2.
In still further aspects, light for inducing one or more biological effects may include administering different doses of light to a target tissue to induce one or more biological effects for different target pathogens. As disclosed herein, a biological effect may include altering a concentration of one or more pathogens within the body and altering growth of the one or more pathogens within the body. The biological effect may include at least one of inactivating the first pathogen in a cell-free environment, inhibiting replication of the first pathogen in a cell-associated environment, upregulating a local immune response in the mammalian tissue, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide in the mammalian tissue, releasing nitric oxide from endogenous stores of nitric oxide in the mammalian tissue, and inducing an anti-inflammatory effect in the mammalian tissue. As further disclosed herein, a pathogen may include a virus, a bacteria, and a fungus, or any other types of microorganisms that can cause infections. Notably, light doses as disclosed herein may provide non-systemic and durable effects to targeted tissues. Light can be applied locally and without off-target tissue effects or overall systemic effects associated with conventional drug therapies which can spread throughout the body. In this regard, phototherapy may induce a biological effect and/or response in a target tissue without triggering the same or other biological responses in other parts of the body. Phototherapy as described herein may be administered with safe and effective doses that are durable. For example, a dose may be applied for minutes at time, one to a few times a day, and the beneficial effect of the phototherapy may continue in between treatments.
Light sources may include one or more of LEDs, OLEDs, lasers and other lamps according to aspects of the present disclosure. Lasers may be used for irradiation in combination with optical fibers or other delivery mechanisms. A disadvantage of using a laser is that it may require sophisticated equipment operated by highly skilled professionals to ensure proper laser radiation protection, thereby increasing costs and reducing accessibility. LEDs are solid state electronic devices capable of emitting light when electrically activated. LEDs may be configured across many different targeted emission spectrum bands with high efficiency and relatively low costs. In this regard, LEDs are comparatively simpler devices that operate over much wider ranges of current and temperature, thereby providing an effective alternative to expensive laser systems. Accordingly, LEDs may be used as light sources in photonic devices for phototherapy applications. Light from an LED is administered using a device capable of delivering the requisite power to a targeted treatment area or tissue. High power LED-based devices can be employed to fulfill various spectral and power needs for a variety of different medical applications. LED-based photonic devices described herein may be configured with suitable power to reach power densities as high as 100 mW/cm2 or 200 mW/cm2 in the desired wavelength range. An LED array in this device can be incorporated into an irradiation head, hand piece and or as an external unit. When incorporated into hand piece or irradiation head, risk of eye or other organs being exposed to harmful radiation may be avoided.
According to aspects of the present disclosure, exemplary target tissues and cells light treatments may include one or more of epithelial tissue, mucosal tissue, connective tissue, muscle tissue, cervical tissue, dermal tissue, mucosal epithelial tissues in the vaginal cavity, anal canal, oral cavity, the auditory canal, the upper respiratory tract and esophagus, keratinocytes, fibroblasts, blood, sputum, saliva, cervical fluid, and mucous. Light treatments may also be applied to and/or within organs, to external body surfaces, and within any mammalian body and/or body cavity, for example the oral cavity, esophageal cavity, throat, and vaginal cavity, among others.
In certain aspects, effective phototherapy-based treatment modalities are provided for precancerous and cancerous conditions of portio and cervical regions of a female anatomy, as well as tissues in the anus, throat and mouth of both sexes. By way of illustration, an illustration of the female reproductive system is shown in
Exemplary devices for delivering phototherapy within body cavities are described below with regard to
A number of experiments are provided below that demonstrate various aspects of phototherapy according to principles of the present disclosure. The aspects include treatment of human papilloma virus (HPV)-infected tissues for
As provided by
The following assays were or may be performed on the above-prepared cultures: Histology by Hematoxylin and Eosin, indirect immunofluorescence detection of BrdU incorporation, Fluorescence In Situ Hybridization (FISH) to visualize HPV-18 DNA amplification, Immunofluorescence for γ-H2AX, a marker for double-stranded DNA breaks, TUNEL assay to evaluate apoptosis, Quantitative real-time PCR for HPV-18 DNA copy number, Immunofluorescence for PCNA, Immunoblot assays: E6, E7, E6AP, Tp53, pRB, p130, g-H2AX. HPV-18 E7-induced host DNA replication was abrogated following exposure to 50 J/cm2 as indicated by a loss in BrdU positive nuclei. Similar trends were observed following either the 10-minute or 7-hour exposures. Similarly, host DNA replication in the basal strata was abolished following exposure to fluences of 50 J/cm2 concluded to be due to the local heating of tissue samples >40° C. from drive currents exceeding 2.0 Amps required to deliver the 50 and 75 J/cm2 doses in a 10-minute window.
One aspect of the present disclosure is that healthy cells and virus infected cells respond differently to various phototherapy treatments. Particularly, phototherapy differentially impacts the viability of healthy and infected cells; the viability of infected cells is retarded more strongly than the viability of healthy cells. In this regard,
As demonstrated in the photomicrographs of
While not wishing to be bound to a particular theory regarding action mechanisms, it is believed that blue light may induce oxidative and nitrosative stresses. Referring back to
While not wishing to be bound to a particular theory, it is believed that the phototherapy according to the present disclosure may proceed by one or two different pathways: 1) a nitric oxide pathway, where increased NOS expression and photodissociation of NO leads to increased NO levels, and thus nitrosative stress, and 2) an ROS pathway, where Type I and Type II photoreactions lead to increased ROS levels, which leads to oxidative stress. In either pathway, inhibited cell proliferation, altered terminal differentiation, DNA damage to host cells, DNA damage to virus, and apoptosis can be observed. It is proposed that a mechanism of action is that, at increasing phototherapy light doses, infected cultures have DNA damage to host cells, reduced cell proliferation, and altered terminal differentiation. At higher dosages, infected cultures see an inhibition of virus, an eradication of virus, and apoptosis of host cells. In non-infected cultures, reduced cell proliferation is observed. At still higher dosages, non-infected cultures undergo apoptosis. Accordingly, by using phototherapy to increase NO levels to apoptotic concentrations by increasing free NO and iNOS, one can treat HPV infection. Cells infected with HPV are more sensitive to reactive oxygen species. HPV infected cells are in a state of chronic oxidative stress. This makes them more susceptible to ROS generated by blue light. HPV upregulates E6 protein. The E6 onco-protein increases ROS levels in cells and decreases the expression of superoxide dismutase (an enzyme used to mitigate superoxide and convert it to O2 or H2O2).
In another example, aspects are provided in relation to phototherapy with blue light for the inhibition of infection and replication of SARS-CoV-2. The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, antiviral therapeutic countermeasure that would expand the current portfolio of intervention strategies for SARS-CoV-2 and other respiratory viral infections beyond the conventional approaches of vaccine, antibody, and drug therapeutics. Employing LED arrays, specific wavelengths of visible light may be harnessed for uniform delivery across various targeted biological surfaces. In certain aspects of the present disclosure, it is demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues exhibited differential tolerance to light in a wavelength and dose-dependent manner. Primary 3D human tracheal/bronchial tissues tolerated high doses of 425 nm peak wavelength blue light. These studies were extended to Vero E6 cells to provide understanding of how light may influence viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. Exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited SARS-CoV-2 replication by greater than 99% at 24 hours post-infection after a single five-minute light exposure. Red light at 625 nm had no effect on SARS-CoV-2 replication, or cell viability, indicating that inhibition of SARS-CoV-2 replication is specific to the antiviral environment elicited by blue light. Moreover, 425 nm visible light inactivated up to 99.99% of cell-free SARS-CoV-2 in a dose-dependent manner. Importantly, doses of 425 nm light that dramatically interfere with SARS-CoV-2 infection and replication are also well-tolerated by primary human 3D tracheal/bronchial tissue. In this regard, safe, deliverable doses of visible light may be considered part of a strategic portfolio for development of SARS-CoV-2 therapeutic countermeasures to prevent coronavirus disease 2019 (COVID-19).
Among other approaches for treating SARS-CoV-2 infection, there are nucleoside analogs such as Remdesivir, and convalescent plasma, both separately demonstrated to shorten time to recovery for Covid-19 patients. The glucocorticoid dexamethasone was demonstrated to lower the mortality rate in individuals receiving oxygen alone or mechanical ventilation support. To curb the long timelines associated with clinical safety and efficacy trials for traditional drug therapeutics, researchers are briskly working to evaluate FDA-approved drug therapeutics against SARS-CoV-2. Although encouraging, many of the current strategies are SARS-CoV-2 specific and target the virus either outside (cell-free virus), or inside the cell (cell-associated, replicating virus). Expanding the therapeutic armory beyond conventional strategies may expedite the availability of therapeutic countermeasures with non-specific antiviral properties that can inactivate cell-free and cell-associated virus.
Light therapy has the potential to inactivate both cell-free and cell-associated virus. Mitigating SARS-CoV-2 infection with light therapy requires knowledge of which wavelengths of light most effectively interfere with viral infection and replication, while minimizing damage to host tissues and cells. A large body of literature demonstrates that ultraviolet light, predominantly UVC at the 254 nm wavelength, is highly effective at inactivating cell-free coronaviruses on surfaces, aerosolized, or in liquid. UVC inactivates coronaviruses, as well as many other RNA and DNA viruses, through absorption of UVC photons by pyrimidines in the RNA backbone, leading to the formation of pyrimidine dimers that preclude replication of the coronavirus genome. UVC is also highly damaging to replicating mammalian cells, causing perturbations in genomic DNA that can increase the risk of mutagenic events. As such, viral inactivation with UV light is primarily limited to cell-free environmental applications. In the present disclosure, inactivating coronaviridae, including coronaviruses, with safe, visible light (e.g., above 400 nm) is presented as a new approach to interfering with SARS-CoV-2 infection and replication.
Photobiomodulation (PBM), or light therapy, is an approach to mitigate outcomes of viral infection in mammals, such as humans. PBM may also refer to phototherapy as disclosed herein. PBM is the safe, low-power, illumination of cells and tissues using light-emitting diodes (LEDs) or low-level laser therapy (LLLT) within the visible/near-infrared spectrum (400 nm-1050 nm). Importantly, the therapeutic effect is driven by light's interaction with photoacceptors within the biological system, and is not to be confused with photodynamic therapy (PDT), which employs the exogenous addition of photosensitizers or chemicals to induce reactive oxygen species (though the addition of photosensitizers or other chemicals to induce reactive oxygen species is another embodiment within the scope of the methods described herein).
The safe and effective use of blue light PBM in the 450-490 nm range was adopted for mainstream clinical use in the late 1960's to treat jaundice in neonates caused by hyperbilirubinemia, and continues to be employed in hospitals today as a primary treatment for hyperbilirubinemia. According to aspects of the present disclosure, changing the wavelengths of visible light based on targeted applications can broaden the scope of therapeutic applications. Studies also indicate that PBM with visible light may function to inactivate replication of RNA and DNA viruses in vitro. Importantly, several studies demonstrate that PBM therapy can be safely applied to the oral and nasal cavities to treat a spectrum of illnesses. As disclosed herein, PBM therapy in the oral and nasal cavities, as well as in the lungs or endothelial tissues, may be an effective means of mitigating replication of SARS-CoV-2 in the upper respiratory tract, so long as it can be done at doses which do not significantly affect the viability of the tissues being treated. A deeper exploration of the precise selection of optical irradiance (e.g., in mW/cm2) combined with one or more monochromatic wavelengths of visible light can broaden the scope of therapeutic applications in respiratory medicine.
In order to evaluate the safety of visible light on cells and tissues in vitro and the efficacy of visible light in SARS-CoV-2 infectious assays, careful designs of LED arrays having narrow band emission spectra with peak wavelengths at 385 nm, 405 nm, 425 nm, and 625 nm wavelengths are provided and summarized in
Understanding how target tissues in the upper airway tolerate blue light is central to the development of a light-derived antiviral approach for SARS-CoV-2. Initial evaluation of LED arrays was conducted on 3D tissue models developed from cells isolated from bronchial/tracheal region of a single donor. The 3D EpiAirway tissue models are 3-4 cell layers thick comprising a mucociliary epithelium layer with a ciliated apical surface. To assess the wavelength and doses of light most tolerated by these tissues, replicate tissue samples were exposed to 385 nm, 405 nm, or 425 nm light at various doses. Viability was assayed at 3 hours post-exposure using the indicated doses and wavelengths of light, and data is represented as +/−standard deviation. The percent viability of tissue was assessed using a well-established MTT cytotoxicity assay optimized for the 3D EpiAirway tissue models.
In this regard, 425 nm blue light is shown to have little or no impact on human upper airway-derived 3D tissue models. As such, longer wavelengths of visible light such as 425 nm and greater that do not bleed into the UVA spectrum may have reduced impact on tissue viability of primary human tissue derived from the upper respiratory tract. In particular, less than 20% tissue loss may be realized at higher doses with such longer wavelengths. Based on these studies, visible blue light at 425 nm was chosen for subsequent evaluation in the widely available Vero E6 cell line, conventionally used to evaluate SARS-CoV-2 infection and replication.
Vero E6 cells are commonly used for preparing stocks, performing growth curves, and evaluating therapeutic countermeasures for SARS-CoV-2. Depending on the type of assay being performed it could be necessary to vary the seeding cell density and multi-well tissue culture plate format. Often, cell viability is evaluated to determine if the antiviral properties of a therapeutic can be parsed from potential therapeutic-induced cytotoxic effects. Experiments were performed to determine if cell density and multi-well plate format can influence cell viability upon exposure to 425 nm blue light. To effectively evaluate the cell viability, the cytotoxicity assay was optimized for use with Vero E6 cell densities up to 1×106 cells.
The use of visible light to inactivate cell-free and cell-associated coronaviridae, including coronaviruses, is unprecedented. To assess the capability of 425 nm blue light to inactivate SARS-CoV-2, Vero E6 cells were infected with a multiplicity of infection (MOI) of 0.001 SARS-CoV-2 isolate USA-WA1/2020 for 1 hour. At 1 hour post-infection (h.p.i.) the cell-associated virus was treated with a single illumination of 425 nm blue light at doses ranging from 7.5 to 60 J/cm2.
To understand if the antiviral activity of light against SARS-CoV-2 is specific to 425 nm blue light, Vero E6 cells infected with a MOI of 0.01 were exposed to high doses red light. In this regard,
Efficacy of 425 nm blue light against cell-associated SARS-CoV-2 can be a combination of blue light eliciting an antiviral environment in the cells and inactivating cell-free virions. To distinguish between these,
For completeness of collected data,
The expedited need for therapeutic countermeasures against SARS-CoV-2 and other respiratory viral pathogens beckons the rapid development of novel approaches that may complement existing public health measures. As disclosed herein, LED arrays were carefully designed to demonstrate for the first time that safe, visible blue 425 nm light can inhibit both cell-free and cell-associated SARS-CoV-2 infection and replication in a dose-dependent manner. Results from two independent laboratories demonstrate that low doses of 425 nm blue light (e.g., ≤15 J/cm2) effectively inhibit infection and replication of SARS-CoV-2 (e.g., >99%), with minimal impact on Vero E6 cell viability. Importantly, doses of 425 nm light≤60 J/cm2 were well tolerated in the 3D EpiAirway tissue models established from human tracheal/bronchial tissues.
The EpiAirway model is a commercially available in vitro organotypic model of human mucociliary airway epithelium cultured at the air/liquid interface to provide a differentiated in vivo-like epithelial structure with barrier properties and metabolic functions. There is strong global momentum to replace animal model testing with relevant in vitro human-derived test systems to reduce the number of animals used in preclinical testing. Current testing guidelines (TG403, TG433, and TG436), established by the Organization for Economic Co-operation and Development (OECD), for inhalation toxicity outline the use of animals to determine LC50 (e.g., a concentration required to cause death of 50% of the test animals). The EpiAirway in vitro tissue model can be used to determine the IC25 value (concentration required to reduce tissue viability by 25% of vehicle control-treated tissues) of a test article. Following 3 hours of exposure, the model have been shown to predict respiratory tissue viability using chemicals with the Globally Harmonized System (GHS) Acute Inhalation Toxicity Category 1 and 2, and Environmental Protection Agency (EPA) Acute Inhalation Toxicity Category 1-11 classifications. Extended exposure times (e.g., 24 and 72 hours) with toxic chemicals also reflect in vivo responses and have demonstrated the predictive value of the EpiAirway models for respiratory toxins in humans. Furthermore, such a uniform in vitro model is ideally suited to evaluate the safety doses of light applied to a fixed surface area (e.g., in J/cm2), rather than attempting to scale the optical delivery of light to the appropriate small rodent anatomy.
As previously shown in
The mechanisms underlying 425 nm blue light to inactivate SARS-CoV-2 are still being developed; however, a brief introduction to putative molecular contributors is relevant. The molecular mechanisms governing the impact of blue light on non-pigmented cells are only beginning to be revealed. The effects of blue light should follow the first law of photochemistry, which states that light must be absorbed to have an effect. A handful of photoacceptors for blue light have been identified in non-pigmented cells, including cytochrome c oxidase, flavins, porphyrins, opsins, and nitrosated proteins. Light absorption by photoreceptors can lead to release of reactive oxygen species (ROS) and/or nitric oxide (NO) that may function to inactivate SARS-CoV-2 in a cell-free or cell-associated environment. Reactive oxygen species and/or bioactive NO may elicit activation of transcription factors involved in immune signaling, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen activated protein kinase (MAPK) signaling. NFκB and MAPK pathways can lead to transcriptional activation of innate and inflammatory immune response molecules that may interfere with SARS-CoV-2 replication. Nitric oxide may also mediate inactivation of cell-associated SARS-CoV-2 through S-nitrosylation of cysteine residues in the active site of viral encoded enzymatic proteins. Reactive oxygen species and/or NO may also function to inactivate cell-free virions. Photosensitizers present in cell media may facilitate generation of ROS and/or NO that directly impact virion proteins and/or viral RNA to prevent infection and replication. It has also been demonstrated that inactivation of cell-free feline calicivirus (FCV) by 405 nm light was dependent on naturally occurring photosensitizers in media. Importantly, FCV was inactivated by 4 logs in artificial saliva and blood plasma, indicating that light-induced inactivation of cell-free virus is obtainable under biologically-relevant conditions. Evidence demonstrating that SARS-CoV-2 can be inactivated by exogenous addition of NO donor molecules, or possibly by single oxygen, substantiates the potential for SARS-CoV-2 inactivation by nitric oxide.
In the above described experiments, materials and methods are provided in more detail below for reference. With regard to cells, tissues, and viruses, Vero E6 cells were purchased from ATCC and maintained in DMEM (Sigma-Aldrich) supplemented with 10% FetalClonell (HyClone) and 1% Antibiotic-Antimycotic (Gibco). Vero 76 cells (ATCC CRL-1587) were maintained in MEM supplemented with 2 mM L-glutamine and 5% FBS. Primary human airway epithelium (EpiAirway AIR-100, MatTek Corporation) were cultured for 28 days in transwell inserts by MatTek Corporation. The cultured tissues were shipped in 24 well plates with agarose embedded in the basal compartment. Upon arrival, the transwell inserts were removed and placed in 6-well plates with cold Maintenance Media in the basal compartment; no media added to the apical surface. Cells were incubated at 37° C. and 5% CO2 overnight prior to experimental use. All work with live virus was conducted in two independent Biosafety Level-3 (BSL-3) laboratories, MRI Global's Kansas City facility and the Institute for Antiviral Research at Utah State University, with adherence to established safety guidelines. At both laboratories, SARS-CoV-2 (USA-WA1/2020) was obtained from the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA) and propagated with slight modifications. At MRI Global, Vero E6 cells were cultured overnight with DMEM (Gibco; 12320-032) supplemented with 10% FBS (Avantor, 97068-085), 1% nonessential amino acids (Corning 25-025-CI), and 1% penicillin/streptomycin (VWR 97063-708). To generate master stocks, cells were infected prior to infection with an approximate MOI of 0.08 in infection media (as above with 5% FBS). Cells were monitored for cytopathic effects daily and harvested at 4 days post-infection as CPE approached 100%. Working stocks were cultured in Vero E6 cells with DMEM/F12 media (Gibco; 11330-032) supplemented with 10% FBS and 1% penicillin/streptomycin at an MOI of 0.005. Cells were monitored for CPE and harvested two days post-infection as CPE approached 70%. Cell culture debris was pelleted by centrifugation at 500×g for 5 min and viral stocks were stored at −80° C. Infectivity of viral stocks was determined by TCID50 assay. At Utah State University, SARS-CoV-2 (USA-WA1/2020) was propagated in Vero 76 cells. Infection media was Minimal Essential Media supplemented with 2 mM I-glutamine, 2% FBS, and 50 μg/mL gentamicin.
For cytotoxicity assays for human tissues, prior to illumination, the maintenance media was changed on the human tissue transwell inserts. Tissues were illuminated with 385 nm, 405 nm, or 425 nm light and incubated at 37° C. and 5% CO2 for 3 hours. Cytotoxicity was determined using the EpiAirway MTT assay following manufacturer's instructions. Briefly, tissues were rinsed with TEER buffer and placed into pre-warmed MTT reagent and incubated at 37° C. and 5% CO2 for 90 minutes. The MTT solution was extracted with MTT extractant solution by shaking for 2 hours. The tissue inserts were discarded and the extractant solution was added to a 96 well plate to be read at 570 nm. Extractant solution served as the experimental blank and cell viabilities were calculated against plates that were not illuminated.
For cytotoxicity assays for cell lines, Vero E6 cells were incubated in clear 24-well, 48-well, and 96-well plates (Corning) at varying seeding densities and incubated at 37° C. and 5% CO2 overnight. Cells were illuminated with 385 nm, 405 nm, or 425 nm light and incubated at 37° C. and 5% CO2 for 24 hours post-illumination. After 24 hours, cytotoxicity was determined using the CellTiterGlo One Solution (Promega) with modifications. The amount of CellTiterGlo One Solution (“CTG”) was optimized in a preliminary experiment. For 24-well plates, 100 μl solution was used and 60 μl solution was used for 48- and 96-well plates. The cells were placed on an orbital shaker for 2 minutes and the chemiluminescent signal was stabilized for 10 minutes before 50 μl of the solution was added to a black well, black bottom 96-well plates and read using the CellTiterGlo program on the GloMax (Promega). CellTiterGlo One solution served as a blank and cell viabilities were calculated against plates that were not illuminated.
Cytotoxicity analysis was conducted at 48 hours post-illumination. Cells were treated for 2 hours with 0.01% neutral red for cytotoxicity. Excess dye was rinsed from cells with PBS. Absorbed dye was eluted from the cells with 50% Sorensen's citrate buffer/50% ethanol for 30 minutes. Buffer was added to 10 wells per replicate. Optical density was measured at 560 nm and cell viabilities were calculated against cells that were not illuminated.
Antiviral assays were conducted in separate laboratories with modifications. At MRI Global, cells were infected with SARS-CoV-2 at MOIs of 0.01 and 0.001 in triplicate. At one hour post-infection, infected cells were illuminated with 425 nm light at the specified doses. Cell culture supernatants were harvested at 24 hours and 48 hours post-infection for TCID50 determination and qPCR analysis. No illumination controls and no virus controls were included as a positive control for viral growth and for cytotoxicity, respectively. Cytotoxicity analysis was conducted at 24 hours post-illumination as above.
Vero 76 cells were infected with SARS-CoV-2 at MOIs of 0.01 and 0.001. At one hour post-infection, infected cells were illuminated with 425 nm light at the specified doses. Cell culture supernatants were harvested at 48 hours post-infection for TCID50 determination. No illumination controls and no virus controls served as a positive control for viral growth and for cytotoxicity, respectively. Cytotoxicity analysis was conducted at 48 hours post-illumination.
Virucidal assays were conducted in parallel in separate laboratories. At one laboratory, 1 mL solutions containing 105 and 106 TCID50/ml were illuminated with varying doses of light. The viruses were then tittered on Vero E6 cells in triplicate via TCID50 assay. No illumination controls served as a positive control for viral growth.
At a second laboratory, 1 mL solutions containing 105 and 106 TCID50/ml were illuminated with varying doses of light. The viruses were then tittered on Vero 76 cells in triplicate via TCID50 assay. No illumination controls served as a positive control for viral growth.
Viral RNA levels for SARS-CoV-2 samples were determined by quantitative RT-PCR using the CDC N1 assay. Samples for the RT-PCR reactions were live virus in culture supernatants without nucleic acid extraction. Primers and probes for the N1 nucleocapsid gene target region were sourced from Integrated DNA Technologies (2019-nCoV CDC RUO Kit, No. 10006713). TaqPath 1-step RT-qPCR Master Mix, CG was sourced from ThermoFisher (No. A15299). Reaction volumes and thermal cycling parameters followed those published in the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel: Instructions for Use. For the RT-PCR reaction, 15 mL of prepared master mix was added to each well followed by 5 mL of each sample, for a final total volume of 20 mL per reaction well. Reactions were run on a Bio-rad CFX real-time PCR instrument.
TCID50 assays were conducted as follows at both laboratories with slight modifications. At one laboratory, Vero E6 cells were plated in 96-well plates at 10,000 cells/well in 0.1 ml/well of complete medium (DMEM/F12 with 10% fetal bovine serum and 1× Penicillin/Streptomycin) and incubated overnight in a 37° C., 5% CO2 humidified incubator. The next day virus samples were serially diluted into un-supplemented DMEM/F12 media at 1:10 dilutions by adding 0.1 ml virus to 0.9 ml diluent, vortexing briefly and repeating until the desired number of dilutions was achieved. Media was decanted from 96-well plates and 0.1 ml of each virus dilution aliquoted into 5 or 8 wells. After 4 days of incubation at 37° C., 5% CO2, plates were scored for presence of cytopathic effect. TCID50/ml were made using the Reed & Muench method. At the second laboratory, cell culture samples were serially diluted and plated on fresh Vero 76 cells in quadruplicate. Plates were visually examined for CPE at 6 days post-infection. Wells were indicated as positive or negative and virus titers were calculated using the Reed-Muench endpoint dilution method.
While
Using techniques analogous to those used above to measure the antiviral activity of 425 nm to 450 nm light against SARS-CoV-2, the antiviral activity of light at 405 nm to 425 nm against wild-type (WT) and Tamiflu-resistant influenza A was investigated.
As a summary of the findings, therapeutic light treatments can be selected from optimal doses including various combinations of wavelengths, irradiance, and treatment times as discussed above for various viruses, including coronaviridae (e.g., coronavirus, SARS-CoV-2, etc.) and Orthomyxoviridae (e.g., influenza), among others. Ideally, the phototherapy may induce a dual mechanism of action on the virus, including damaging the lipid membrane using single oxygen and/or nitric oxide. The treatments demonstrate efficacy both extracellular in the absence of cells pre-infection, as well as intracellular in the presence of cells post infection. The antiviral effect can be remarkably fast. For example, inactivation of the SARS-CoV-2 virus was demonstrated within 24 to 48 hours, compared to the course of viral load reduction observed clinically as the SARS-CoV-2 virus clears the body in untreated patients, or even in patients treated with Remdesivir.
It is important to consider the “Light Therapeutic Index,” or “LTI,” a ratio of the IC25 and the EC50 values for light that is used on cells and tissues. Ideally, the light treatment will be effective at killing one or more target viruses at power levels that are not overly cytotoxic. Preferably, the ratio of IC25/EC50 is as high as possible, including greater than 2. Cell systems for each virus have a number of variables (e.g., cell density, different cell types for productive infection, media, etc.), which makes it hard to have a single LTI for all viruses. Important aspects for evaluating LTI across all viruses, particularly for respiratory viruses, include evaluating the types of human tissue these viruses are likely to infect, such as EpiAirway from both large airway (AIR-100) and nasal (NAS-100) tissues. EpiAirway is a ready-to-use, 3D mucociliary tissue model consisting of normal, human-derived tracheal/bronchial epithelial cells, also available as a co-culture system with normal human stromal fibroblasts (EpiAirwayFT). A reduction as large as 75-fold is observed after a 2.5-minute treatment dose at 50 mW/cm2. The light therapy shows significant antiviral activity post infection, inhibiting about 50% of viral replication. Additionally, this treatment shows a full log inactivation of virus on WT influenza A at doses of greater than 8.5 J/cm2. A dose of 8.5 J/cm2 was a dose that provided an EC50 against influenza post infection. In this regard, doses of less than 10 J/cm2 can provide a multi-pathogenic treatment that can eliminate different viruses via one or more separate mechanisms. In a particular example, a multi-pathogenic treatment of 425 nm light for 5 minutes and an irradiance of 50 mW/cm2 may be effective for treating both SARS-CoV-2 and influenza A. Additionally, at doses of around 60 J/cm2, a greater than 2-log reduction in virucidal activity was observed using 425 nm light with a 20-minute exposure at 50 mW/cm2.
Considering LTI calculations (e.g., the ratio of IC25/EC50) in antiviral assays for specific tissues for SARS-CoV-2 and influenza at just 425 nm, it is observed that there are safe and effective doses of light that can be administered. Because the viral lipid membranes are similar for other respiratory viruses, it is believed (based on successful results with SARS-CoV-2 and influenza A) that such treatments can be effective against other respiratory viruses. When comparing the results with light at 425 nm with the results at 405 nm or 385 nm, the LTI may be smaller, though it will be expected to vary depending on tissue types. Extrapolating the data obtained herein, the relatively high-powered light (e.g., dosed at hundreds of J/cm2) used in the past to disinfect surfaces cannot safely be used in vivo. Importantly, the dosage of light (J/cm2) had to be sufficiently non-cytotoxic (i.e., would not reduce viability by more than 25% at a dose that resulted in an EC50). The resulting LTI is expected to vary depending on the type of cell exposed to the phototherapy, but for a given cell type, ideally there is an effective therapeutic window, such as an LTI of at least 2, or in a range from 2 to 100,000, or in a range from 2 to 1000, or in a range from 2 to 250, depending on the application. Because SARS-CoV-2, influenza and other viruses have lipid membranes, and part of the method by which the light kills the viruses is believed to be oxidative damage to these membranes, it is believed that this treatment will also work equally well on other respiratory viruses. Further, the treatments described herein may also work on viruses that do not have lipid membranes (e.g., rhinoviruses that cause most common colds).
While the above-described examples are provided in the context of viral applications, the principles of the present disclosure may also be applicable for treatment of bacterial infections. There is a current problem when treating bacterial respiratory infections, namely, AMR and recalcitrant lung infections. Antimicrobial resistance has led to many patients having their lungs infected with bacteria that are resistant to many common antibiotics. As new antibiotics become developed, bacterial resistance soon follows. One potential solution to this problem would be to use visible light as described herein, at an effective antimicrobial wavelength and dosage, alone or in combination with conventional antibiotic therapy. While bacteria can develop resistance against antibiotics, it is more difficult for them to develop resistance to antimicrobial therapy using visible light. The potential uses are far-reaching; so long as the light is delivered in a safe, therapeutic dosage, patients can be effectively treated for a number of respiratory microbial infections, such as tuberculosis, Mycobacterium avium complex, and the like, and specifically including those caused by spore-forming bacteria. Bacterial infections caused by spore-forming bacteria can be particularly difficult to treat with conventional antibiotics, because the antibiotics only kill bacteria when they are not in spore form. As disclosed herein, certain wavelengths of light are effective at killing spore-forming microbes not only in their active form, but also in their spore form.
As discussed below, not all light at blue wavelengths are equivalent. Some have higher cytotoxicity to the infected tissues, and some have higher antimicrobial efficacy. It is useful to consider light therapeutic index (LTI), which is a combination of antimicrobial activity and safety to the exposed tissues. Accordingly, a series of experiments were performed to identify suitable wavelengths and dosage levels to provide safe and effective antibacterial treatments.
For the experiments, bacterial cultures were prepared in 1× phosphate buffered saline (PBS) or CAMHB at 106 CFU/ml, and 200 μl were aliquoted into wells of a 96-well microtiter plate. Plates with lids were placed under a white illumination box, with an LED array placed on top such that the light shines down onto bacteria. A fan blew across the device though vents in the illumination box to minimize the heat generated by the LED lights. All setups were done inside a Class II biosafety cabinet. Lights were turned on for a given time, then bacteria were sampled, serially diluted, and plated on MHA for enumeration.
The bacterial strains used in this study were obtained from the American Type Culture Collection (ATCC), the CDC-FDA's Antimicrobial Resistance Bank (AR-BANK), from Dr. John LiPuma at the Burkholderia cepacia Research Laboratory and Repository (BcRLR) at the University of Michigan, or from the laboratory of Dr. Mark Schoenfisch at the University of North Carolina Chapel Hill. Strains from the BcRLR were confirmed to be Pseudomonas aeruginosa by 16S sequencing, and the other strains were confirmed to be P. aeruginosa by growth on Pseudomonas isolation agar. Strains were stored in 20% glycerol stocks at −80° C. Strains were cultured on tryptic soy agar (TSA) at 30° C. or 37° C. for 1-2 days, or in cation-adjusted Mueller-Hinton Broth. Streptococcus pyogenes and Haemophilus influenzae were grown using Brain Heart Infusion in a chamber with 5% CO2 packets. All bacteria were incubated at 37° C. Cytoxicity was measured as described above with respect to the antiviral data.
In a similar manner, additional data as described above for
Most in-vitro assays against bacteria are conducted in a cell-free system. There are two classic or industry standard measurements for anti-bacterial activity. The first is related to inhibition of growth and may be quantified in terms of a minimum inhibitory concentration (MIC). The MIC refers to the dose required to completely inhibit growth of bacteria over a 24-hour period in a broth/growth medium. Given the rapidly dividing nature of bacteria, any growth leads to high concentration of microorganism. Stated differently a 50% reduction is not sufficient for bacterial infections. A second standard is related to bactericidal results and may be quantified in terms of a minimum bactericidal concentration (MBC). The MBC refers to the dose required to result in a 3-log reduction (e.g., 99.9%) of bacteria. Assays can be run in PBS or broth/growth media and lead to different results and time is also a variable. In general, for the bacterial experiments described above, the MIC dose for a given organism has typically been greater than the MBC determined in phosphate buffered saline.
For the purposes of the present bacterial experiments, LTI calculations may be realized from the above-referenced data for providing safe and effective phototherapeutic treatments. As previously described, LTI may be determined from the relationship of IC25 divided by the EC50 in the context of viruses. For the bacterial data presented in
Light therapies as disclosed herein may be combined with conventional pharmaceutical agents, such as antivirals, anticoagulants, anti-inflammatories, and the like, and the antiviral wavelengths can be combined with anti-inflammatory wavelengths to reduce the inflammatory damage caused by the virus, by the cytokine storm induced by the virus, and/or by the phototherapy at the antiviral NO-producing/NO-releasing/singlet oxygen producing wavelengths.
It is contemplated that any of the foregoing aspects, and/or various separate aspects and features as described herein, may be combined for additional advantage. Any of the various embodiments as disclosed herein may be combined with one or more other disclosed embodiments unless indicated to the contrary herein.
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application is a division of U.S. patent application Ser. No. 17/117,858, filed Dec. 10, 2020, which is a continuation-in-part of U.S. patent application Ser. No. 16/898,385, filed Jun. 10, 2020, now U.S. Pat. No. 11,617,895; which is a continuation of U.S. patent application Ser. No. 16/709,550, filed on Dec. 10, 2019, now U.S. Pat. No. 11,524,173; which is a continuation of U.S. patent application Ser. No. 15/222,199, filed on Jul. 28, 2016, now U.S. Pat. No. 10,525,275; which claims the benefit of provisional patent application Ser. No. 62/197,746, filed Jul. 28, 2015, the disclosures of which are hereby incorporated herein by reference in their entireties. U.S. patent application Ser. No. 17/117,858 claims the benefit of provisional patent application Ser. No. 63/123,631, filed Dec. 10, 2020; provisional patent application Ser. No. 63/084,802, filed Sep. 29, 2020; provisional patent application Ser. No. 63/074,800, filed Sep. 4, 2020; and provisional patent application Ser. No. 62/987,318, filed Mar. 9, 2020, the disclosures of which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1244819 | Young | Oct 1917 | A |
2884926 | Grasso | May 1959 | A |
4466434 | Brownstein | Aug 1984 | A |
4493796 | Rinehart, Jr. | Jan 1985 | A |
4736745 | Gluckman | Apr 1988 | A |
5074295 | Willis | Dec 1991 | A |
5228431 | Giarretto | Jul 1993 | A |
5282462 | Kudo | Feb 1994 | A |
5292346 | Ceravolo | Mar 1994 | A |
5541822 | Bamber | Jul 1996 | A |
5549639 | Ross | Aug 1996 | A |
5611793 | Wilson et al. | Mar 1997 | A |
5616140 | Prescott | Apr 1997 | A |
5634711 | Kennedy et al. | Jun 1997 | A |
5658148 | Neuberger et al. | Aug 1997 | A |
5683436 | Mendes et al. | Nov 1997 | A |
6026828 | Altshuler | Feb 2000 | A |
6045499 | Pitesky | Apr 2000 | A |
6096066 | Chen et al. | Aug 2000 | A |
6171332 | Whitehurst | Jan 2001 | B1 |
6201764 | Rice et al. | Mar 2001 | B1 |
6211626 | Lys et al. | Apr 2001 | B1 |
6244865 | Nelson et al. | Jun 2001 | B1 |
6251127 | Biel | Jun 2001 | B1 |
6283956 | McDaniel | Sep 2001 | B1 |
6290496 | Azar et al. | Sep 2001 | B1 |
6290713 | Russell | Sep 2001 | B1 |
6379376 | Lubart | Apr 2002 | B1 |
6443978 | Zharov | Sep 2002 | B1 |
6462070 | Hasan et al. | Oct 2002 | B1 |
6471716 | Pecukonis | Oct 2002 | B1 |
6491618 | Ganz | Dec 2002 | B1 |
6497719 | Pearl et al. | Dec 2002 | B2 |
6551346 | Crossley | Apr 2003 | B2 |
6561808 | Neuberger | May 2003 | B2 |
6623513 | Biel | Sep 2003 | B2 |
6645230 | Whitehurst | Nov 2003 | B2 |
6663659 | McDaniel | Dec 2003 | B2 |
6676655 | McDaniel | Jan 2004 | B2 |
6887260 | McDaniel | May 2005 | B1 |
6890346 | Ganz et al. | May 2005 | B2 |
6902397 | Farrell et al. | Jun 2005 | B2 |
6918922 | Oron | Jul 2005 | B2 |
6936044 | McDaniel | Aug 2005 | B2 |
6955684 | Savage, Jr. et al. | Oct 2005 | B2 |
6977075 | Hasan et al. | Dec 2005 | B2 |
6989023 | Black | Jan 2006 | B2 |
7090497 | Harris | Aug 2006 | B1 |
7107996 | Ganz et al. | Sep 2006 | B2 |
7144248 | Irwin | Dec 2006 | B2 |
7159590 | Rife | Jan 2007 | B2 |
7201764 | Pearl et al. | Apr 2007 | B2 |
7201765 | McDaniel | Apr 2007 | B2 |
7223270 | Altshuler et al. | May 2007 | B2 |
7223281 | Altshuler et al. | May 2007 | B2 |
7226470 | Kemeny et al. | Jun 2007 | B2 |
7267673 | Pilcher et al. | Sep 2007 | B2 |
7303578 | De Taboada et al. | Dec 2007 | B2 |
7304201 | Holloway et al. | Dec 2007 | B2 |
7309348 | Streeter et al. | Dec 2007 | B2 |
7329273 | Altshuler et al. | Feb 2008 | B2 |
7329274 | Altshuler et al. | Feb 2008 | B2 |
7422598 | Altshuler et al. | Sep 2008 | B2 |
7435252 | Krespi et al. | Oct 2008 | B2 |
7467946 | Rizoiu et al. | Dec 2008 | B2 |
7494503 | McDaniel | Feb 2009 | B2 |
7544204 | Krespi et al. | Jun 2009 | B2 |
D599954 | Michaels et al. | Sep 2009 | S |
7763058 | Sterenborg et al. | Jul 2010 | B2 |
D631604 | Michaels et al. | Jan 2011 | S |
D635686 | Tucker et al. | Apr 2011 | S |
7918229 | Cumbie et al. | Apr 2011 | B2 |
7950396 | Rose et al. | May 2011 | B2 |
D639751 | Tucker et al. | Jun 2011 | S |
D640793 | Britt | Jun 2011 | S |
8021148 | Goodson et al. | Sep 2011 | B2 |
8021405 | White | Sep 2011 | B2 |
8025686 | Morgan | Sep 2011 | B2 |
8029278 | Levine | Oct 2011 | B1 |
8053977 | Lifka et al. | Nov 2011 | B2 |
8088122 | Li et al. | Jan 2012 | B2 |
8109981 | Gertner et al. | Feb 2012 | B2 |
8146607 | Rabin et al. | Apr 2012 | B2 |
8186997 | Binner et al. | May 2012 | B2 |
8192473 | Tucker et al. | Jun 2012 | B2 |
8214958 | Pinyayev et al. | Jul 2012 | B2 |
8240312 | Feuerstein et al. | Aug 2012 | B2 |
8252033 | Tucker et al. | Aug 2012 | B2 |
8398264 | Anderson et al. | Mar 2013 | B2 |
8435273 | Lum et al. | May 2013 | B2 |
8486123 | Vizethum et al. | Jul 2013 | B2 |
8518029 | Birmingham et al. | Aug 2013 | B2 |
8535361 | Lim et al. | Sep 2013 | B2 |
8556951 | Witt et al. | Oct 2013 | B2 |
8641702 | Pilcher et al. | Feb 2014 | B2 |
8651111 | McDaniel | Feb 2014 | B2 |
8668727 | Natale et al. | Mar 2014 | B2 |
8684577 | Vayser | Apr 2014 | B2 |
8685466 | Piergallini et al. | Apr 2014 | B2 |
8690933 | Mitchell | Apr 2014 | B2 |
8710460 | Dayton | Apr 2014 | B2 |
8721696 | Krespi et al. | May 2014 | B2 |
8747446 | Chen et al. | Jun 2014 | B2 |
8758215 | Legendre et al. | Jun 2014 | B2 |
8771327 | Pearl et al. | Jul 2014 | B2 |
8790381 | Pierce | Jul 2014 | B2 |
8815931 | Grafe et al. | Aug 2014 | B2 |
D712561 | Hagenauer | Sep 2014 | S |
8838228 | Beisang, III et al. | Sep 2014 | B2 |
8845704 | Dunning et al. | Sep 2014 | B2 |
D716493 | Michaels et al. | Oct 2014 | S |
8858607 | Jones | Oct 2014 | B1 |
8900282 | Brawn | Dec 2014 | B2 |
8900283 | Johnson et al. | Dec 2014 | B2 |
8940775 | Fedele et al. | Jan 2015 | B2 |
9017391 | McDaniel | Apr 2015 | B2 |
9039966 | Anderson et al. | May 2015 | B2 |
9040103 | Marrot et al. | May 2015 | B2 |
9095704 | McGuire | Aug 2015 | B2 |
9132279 | Roersma et al. | Sep 2015 | B2 |
9144690 | McDaniel | Sep 2015 | B2 |
9149348 | Wu et al. | Oct 2015 | B2 |
9162001 | Sunkara et al. | Oct 2015 | B2 |
9180308 | Frost | Nov 2015 | B1 |
9192780 | McDaniel | Nov 2015 | B2 |
9198502 | Barnes et al. | Dec 2015 | B2 |
9211420 | Patel et al. | Dec 2015 | B2 |
9215921 | Thiebaut et al. | Dec 2015 | B2 |
9227082 | McDaniel | Jan 2016 | B2 |
D754897 | Michaels et al. | Apr 2016 | S |
9308389 | Brawn | Apr 2016 | B2 |
9333274 | Peterson et al. | May 2016 | B2 |
9415237 | Wagenaar Cacciola et al. | Aug 2016 | B2 |
9439989 | Lalicki et al. | Sep 2016 | B2 |
9474811 | Sharma | Oct 2016 | B2 |
9504752 | Kanno et al. | Nov 2016 | B2 |
9504847 | Pryor et al. | Nov 2016 | B2 |
D777339 | Chen | Jan 2017 | S |
9545524 | Maass et al. | Jan 2017 | B2 |
9554963 | Pilcher et al. | Jan 2017 | B2 |
9561077 | Alfano | Feb 2017 | B2 |
9561386 | Pearl et al. | Feb 2017 | B2 |
9616013 | Casasanta, III et al. | Apr 2017 | B2 |
9636522 | Oversluizen et al. | May 2017 | B2 |
9700641 | Hawkins et al. | Jul 2017 | B2 |
9724536 | Rabin et al. | Aug 2017 | B1 |
9730780 | Brawn et al. | Aug 2017 | B2 |
9744375 | Oberreiter et al. | Aug 2017 | B2 |
D804047 | Michaels et al. | Nov 2017 | S |
9808646 | Piergallini et al. | Nov 2017 | B2 |
9808647 | Rhodes et al. | Nov 2017 | B2 |
9901747 | Gamelin et al. | Feb 2018 | B2 |
9907976 | Bourke, Jr. et al. | Mar 2018 | B2 |
9913994 | Marchese et al. | Mar 2018 | B2 |
10010718 | Basiony | Jul 2018 | B2 |
10220221 | Wu | Mar 2019 | B2 |
10258442 | Snyder et al. | Apr 2019 | B2 |
10272262 | Bourke, Jr. et al. | Apr 2019 | B2 |
10328276 | Williams et al. | Jun 2019 | B2 |
10357661 | Hellstrom | Jul 2019 | B2 |
10406379 | Sentis et al. | Sep 2019 | B2 |
10416366 | Rose et al. | Sep 2019 | B2 |
10463873 | Yang et al. | Nov 2019 | B1 |
10525275 | Stasko et al. | Jan 2020 | B2 |
10561854 | Kim et al. | Feb 2020 | B2 |
10569097 | Medendorp, Jr. et al. | Feb 2020 | B2 |
10639498 | Enwemeka et al. | May 2020 | B2 |
10682203 | Vazales | Jun 2020 | B2 |
10729524 | Brawn et al. | Aug 2020 | B2 |
10780189 | Randers-Pehrson et al. | Sep 2020 | B2 |
10981017 | Enwemeka et al. | Apr 2021 | B2 |
11058888 | Steier et al. | Jul 2021 | B1 |
11147984 | Emerson et al. | Oct 2021 | B2 |
11266855 | Enwemeka et al. | Mar 2022 | B2 |
11318325 | Rezaie et al. | May 2022 | B2 |
20020029071 | Whitehurst | Mar 2002 | A1 |
20020128648 | Weber et al. | Sep 2002 | A1 |
20020135763 | MacKinnon et al. | Sep 2002 | A1 |
20020151941 | Okawa et al. | Oct 2002 | A1 |
20020173833 | Korman et al. | Nov 2002 | A1 |
20030009205 | Biel | Jan 2003 | A1 |
20030023284 | Gartstein | Jan 2003 | A1 |
20030045778 | Ohline et al. | Mar 2003 | A1 |
20030076281 | Morgan et al. | Apr 2003 | A1 |
20030130709 | D.C. et al. | Jul 2003 | A1 |
20030153825 | Mooradian et al. | Aug 2003 | A1 |
20030167080 | Hart et al. | Sep 2003 | A1 |
20030233138 | Spooner | Dec 2003 | A1 |
20030236487 | Knowlton | Dec 2003 | A1 |
20040032750 | Watts et al. | Feb 2004 | A1 |
20040039242 | Tolkoff et al. | Feb 2004 | A1 |
20040044384 | Eber et al. | Mar 2004 | A1 |
20040052798 | Neuberger | Mar 2004 | A1 |
20040073079 | Altshuler et al. | Apr 2004 | A1 |
20040073278 | Pachys | Apr 2004 | A1 |
20040162596 | Altshuler et al. | Aug 2004 | A1 |
20040193235 | Altshuler et al. | Sep 2004 | A1 |
20040193236 | Altshuler et al. | Sep 2004 | A1 |
20040199227 | Altshuler et al. | Oct 2004 | A1 |
20050024853 | Thomas-Benedict | Feb 2005 | A1 |
20050045189 | Jay | Mar 2005 | A1 |
20050055070 | Jones et al. | Mar 2005 | A1 |
20050059731 | Albrecht et al. | Mar 2005 | A1 |
20050064371 | Soukos | Mar 2005 | A1 |
20050107853 | Krespi et al. | May 2005 | A1 |
20050231983 | Dahm | Oct 2005 | A1 |
20050256553 | Strisower | Nov 2005 | A1 |
20060019220 | Loebel et al. | Jan 2006 | A1 |
20060085052 | Feuerstein | Apr 2006 | A1 |
20060093561 | Kennedy | May 2006 | A1 |
20060167531 | Gertner et al. | Jul 2006 | A1 |
20060183071 | Hsuch | Aug 2006 | A1 |
20060194164 | Altshuler et al. | Aug 2006 | A1 |
20060258896 | Haber et al. | Nov 2006 | A1 |
20060287696 | Wright et al. | Dec 2006 | A1 |
20070038272 | Liu | Feb 2007 | A1 |
20070060819 | Altshuler et al. | Mar 2007 | A1 |
20070099154 | Johnson | May 2007 | A1 |
20070100254 | Murakami et al. | May 2007 | A1 |
20070105063 | Pinyayev et al. | May 2007 | A1 |
20070106856 | Nomura et al. | May 2007 | A1 |
20070135874 | Bala | Jun 2007 | A1 |
20070149868 | Blank et al. | Jun 2007 | A1 |
20070185553 | Kennedy | Aug 2007 | A1 |
20070208396 | Whatcott et al. | Sep 2007 | A1 |
20070213792 | Yaroslavsky et al. | Sep 2007 | A1 |
20070219600 | Gertner et al. | Sep 2007 | A1 |
20070233208 | Kurtz et al. | Oct 2007 | A1 |
20070259310 | Goodson et al. | Nov 2007 | A1 |
20070260231 | Rose et al. | Nov 2007 | A1 |
20070270650 | Eno et al. | Nov 2007 | A1 |
20080021370 | Bornstein | Jan 2008 | A1 |
20080032252 | Hayman et al. | Feb 2008 | A1 |
20080033516 | Altshuler et al. | Feb 2008 | A1 |
20080038685 | Sakaguchi et al. | Feb 2008 | A1 |
20080065175 | Redmond et al. | Mar 2008 | A1 |
20080096156 | Rose et al. | Apr 2008 | A1 |
20080097414 | Li et al. | Apr 2008 | A1 |
20080145813 | Crohn | Jun 2008 | A1 |
20080161748 | Tolkoff et al. | Jul 2008 | A1 |
20080210233 | McCarthy | Sep 2008 | A1 |
20080214530 | Colles | Sep 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080254405 | Montgomery et al. | Oct 2008 | A1 |
20080269849 | Lewis | Oct 2008 | A1 |
20080280260 | Belikov et al. | Nov 2008 | A1 |
20080319430 | Zenzie et al. | Dec 2008 | A1 |
20090035725 | Loebel et al. | Feb 2009 | A1 |
20090093865 | Krespi et al. | Apr 2009 | A1 |
20090132011 | Altshuler et al. | May 2009 | A1 |
20090143842 | Cumbie et al. | Jun 2009 | A1 |
20090148808 | Alexander et al. | Jun 2009 | A1 |
20090254156 | Powell et al. | Oct 2009 | A1 |
20090318802 | Boyden et al. | Dec 2009 | A1 |
20090323370 | Koo | Dec 2009 | A1 |
20100004645 | Jeong et al. | Jan 2010 | A1 |
20100042040 | Arentz | Feb 2010 | A1 |
20100049180 | Wells et al. | Feb 2010 | A1 |
20100063565 | Beerwerth et al. | Mar 2010 | A1 |
20100076526 | Krespi et al. | Mar 2010 | A1 |
20100076529 | Tucker et al. | Mar 2010 | A1 |
20100106077 | Rabin et al. | Apr 2010 | A1 |
20100121131 | Mathes | May 2010 | A1 |
20100136646 | Tsen et al. | Jun 2010 | A1 |
20100160838 | Krespi | Jun 2010 | A1 |
20100204762 | De Taboada et al. | Aug 2010 | A1 |
20100222852 | Vasily et al. | Sep 2010 | A1 |
20100239998 | Snyder et al. | Sep 2010 | A1 |
20100242155 | Carullo, Jr. | Sep 2010 | A1 |
20100286673 | Altshuler et al. | Nov 2010 | A1 |
20100331928 | Dunning et al. | Dec 2010 | A1 |
20110015707 | Tucker et al. | Jan 2011 | A1 |
20110020173 | Pryor et al. | Jan 2011 | A1 |
20110054573 | Mitchell | Mar 2011 | A1 |
20110054574 | Felix | Mar 2011 | A1 |
20110125229 | Lytle et al. | May 2011 | A1 |
20110144410 | Kennedy | Jun 2011 | A1 |
20110144727 | Benedict | Jun 2011 | A1 |
20110160814 | Tucker et al. | Jun 2011 | A2 |
20110162155 | Wai | Jul 2011 | A1 |
20110215261 | Lyslo et al. | Sep 2011 | A1 |
20110264174 | McNeill et al. | Oct 2011 | A1 |
20110301673 | Hoffer et al. | Dec 2011 | A1 |
20120045738 | Ho et al. | Feb 2012 | A1 |
20120059440 | Hamid | Mar 2012 | A1 |
20120065709 | Dunning et al. | Mar 2012 | A1 |
20120088204 | Ho et al. | Apr 2012 | A1 |
20120096657 | So et al. | Apr 2012 | A1 |
20120126134 | Deal et al. | May 2012 | A1 |
20120191162 | Villa | Jul 2012 | A1 |
20120209359 | Chen et al. | Aug 2012 | A1 |
20120215292 | Gustavsson | Aug 2012 | A1 |
20120223216 | Flaherty et al. | Sep 2012 | A1 |
20120263625 | Aicher et al. | Oct 2012 | A1 |
20120270183 | Patel et al. | Oct 2012 | A1 |
20120310307 | Zhou | Dec 2012 | A1 |
20120322018 | Lowe et al. | Dec 2012 | A1 |
20130006119 | Pan et al. | Jan 2013 | A1 |
20130041432 | Tucker et al. | Feb 2013 | A1 |
20130103120 | Salteri | Apr 2013 | A1 |
20130131762 | Oversluizen et al. | May 2013 | A1 |
20130144364 | Wagenaar Cacciola et al. | Jun 2013 | A1 |
20130158358 | Holland | Jun 2013 | A1 |
20130172959 | Azoulay | Jul 2013 | A1 |
20130196284 | Brawn | Aug 2013 | A1 |
20130197495 | Koifman et al. | Aug 2013 | A1 |
20130245417 | Spector | Sep 2013 | A1 |
20130280671 | Brawn et al. | Oct 2013 | A1 |
20140023983 | Lowe et al. | Jan 2014 | A1 |
20140067024 | Jones et al. | Mar 2014 | A1 |
20140128941 | Williams | May 2014 | A1 |
20140128942 | Bembridge et al. | May 2014 | A1 |
20140148879 | Mersch | May 2014 | A1 |
20140163218 | Dei et al. | Jun 2014 | A1 |
20140171926 | Depfenhart | Jun 2014 | A1 |
20140194955 | Povolosky et al. | Jul 2014 | A1 |
20140243933 | Ginggen | Aug 2014 | A1 |
20140267662 | Lampo | Sep 2014 | A1 |
20140276247 | Hall et al. | Sep 2014 | A1 |
20140276248 | Hall et al. | Sep 2014 | A1 |
20140288351 | Jones | Sep 2014 | A1 |
20140296524 | Jones et al. | Oct 2014 | A1 |
20140303693 | Haarlander et al. | Oct 2014 | A1 |
20140323946 | Bourke, Jr. et al. | Oct 2014 | A1 |
20140350643 | Pepitone et al. | Nov 2014 | A1 |
20150005854 | Said | Jan 2015 | A1 |
20150030989 | Soukos et al. | Jan 2015 | A1 |
20150045720 | Kanno et al. | Feb 2015 | A1 |
20150112411 | Beckman et al. | Apr 2015 | A1 |
20150164618 | Heacock et al. | Jun 2015 | A1 |
20150217130 | Gross et al. | Aug 2015 | A1 |
20150265353 | Andrews et al. | Sep 2015 | A1 |
20150297914 | Hamid et al. | Oct 2015 | A1 |
20160000214 | Kim | Jan 2016 | A1 |
20160015840 | Gordon | Jan 2016 | A1 |
20160016001 | Loupis et al. | Jan 2016 | A1 |
20160039854 | McFarland | Feb 2016 | A1 |
20160051835 | Tapper et al. | Feb 2016 | A1 |
20160059031 | Wescott et al. | Mar 2016 | A1 |
20160106999 | Michaels et al. | Apr 2016 | A1 |
20160114185 | Mankin | Apr 2016 | A1 |
20160129278 | Mayer | May 2016 | A1 |
20160151639 | Scharf | Jun 2016 | A1 |
20160271415 | Min | Sep 2016 | A1 |
20160271420 | Pina | Sep 2016 | A1 |
20160317832 | Barneck et al. | Nov 2016 | A1 |
20170027432 | Wachs | Feb 2017 | A1 |
20170028215 | Medendorp, Jr. et al. | Feb 2017 | A1 |
20170028216 | Medendorp, Jr. et al. | Feb 2017 | A1 |
20170165499 | Blanche et al. | Jun 2017 | A1 |
20170173358 | Demarest et al. | Jun 2017 | A1 |
20170203132 | Luttrull et al. | Jul 2017 | A1 |
20170224206 | Vayser | Aug 2017 | A1 |
20170225011 | Frost | Aug 2017 | A1 |
20170290648 | Kuo | Oct 2017 | A1 |
20170333728 | Sentis et al. | Nov 2017 | A1 |
20170340898 | Moor et al. | Nov 2017 | A1 |
20180008847 | Key | Jan 2018 | A1 |
20180014777 | Amir et al. | Jan 2018 | A1 |
20180036554 | Krespi | Feb 2018 | A1 |
20180111003 | Hewitson | Apr 2018 | A1 |
20180117355 | Loupis et al. | May 2018 | A1 |
20180146520 | Williams | May 2018 | A1 |
20180178027 | Shang | Jun 2018 | A1 |
20180256916 | Kothari et al. | Sep 2018 | A1 |
20180264282 | Bornstein | Sep 2018 | A1 |
20180289940 | Spotnitz et al. | Oct 2018 | A1 |
20190014901 | Xi et al. | Jan 2019 | A1 |
20190030359 | Dijkstra et al. | Jan 2019 | A1 |
20190124888 | Coyle | May 2019 | A1 |
20190134419 | Bourke, Jr. et al. | May 2019 | A1 |
20190142516 | Boutoussov et al. | May 2019 | A1 |
20190175938 | Rezaie et al. | Jun 2019 | A1 |
20190201711 | Brawn et al. | Jul 2019 | A1 |
20190209857 | Brawn et al. | Jul 2019 | A1 |
20200101315 | Reinhardt | Apr 2020 | A1 |
20200114171 | Tortora | Apr 2020 | A1 |
20200155350 | Neev | May 2020 | A1 |
20200222714 | Stasko et al. | Jul 2020 | A1 |
20200261608 | Crosby et al. | Aug 2020 | A1 |
20200298014 | Stasko et al. | Sep 2020 | A1 |
20200298016 | Yoon et al. | Sep 2020 | A1 |
20200330186 | Barros et al. | Oct 2020 | A1 |
20200353112 | Randers-Pehrson et al. | Nov 2020 | A1 |
20200360124 | Woo et al. | Nov 2020 | A1 |
20210008384 | Lee | Jan 2021 | A1 |
20210128935 | Stasko et al. | May 2021 | A1 |
20210128936 | Stasko et al. | May 2021 | A1 |
20210128937 | Stasko et al. | May 2021 | A1 |
20210138259 | Stasko et al. | May 2021 | A1 |
20210138260 | Park et al. | May 2021 | A1 |
20210196977 | Zhang | Jul 2021 | A1 |
20210205487 | Balme et al. | Jul 2021 | A1 |
20210228900 | Kothari et al. | Jul 2021 | A1 |
20210260398 | Bilston et al. | Aug 2021 | A1 |
20210267738 | Mackie | Sep 2021 | A1 |
20210283490 | Lin | Sep 2021 | A1 |
20210290970 | Hunter et al. | Sep 2021 | A1 |
20210290971 | Cockrell et al. | Sep 2021 | A1 |
20210290975 | Hunter et al. | Sep 2021 | A1 |
20210346500 | Schikora | Nov 2021 | A1 |
20210379400 | Emerson et al. | Dec 2021 | A1 |
20210402212 | Schupp et al. | Dec 2021 | A1 |
20220023660 | Emerson et al. | Jan 2022 | A1 |
20220040495 | Hwang et al. | Feb 2022 | A1 |
20220088409 | Dombrowski et al. | Mar 2022 | A1 |
20230149735 | Miskin | May 2023 | A1 |
Number | Date | Country |
---|---|---|
2016100390 | Jul 2016 | AU |
101687101 | Mar 2010 | CN |
102247656 | Nov 2011 | CN |
102348425 | Feb 2012 | CN |
102380169 | Mar 2012 | CN |
102731405 | Oct 2012 | CN |
102802694 | Nov 2012 | CN |
103143015 | Jun 2013 | CN |
203169848 | Sep 2013 | CN |
103601727 | Feb 2014 | CN |
103610464 | Mar 2014 | CN |
103724356 | Apr 2014 | CN |
103930162 | Jul 2014 | CN |
104667432 | Jun 2015 | CN |
105664367 | Jun 2016 | CN |
108371756 | Aug 2018 | CN |
102010010763 | Sep 2011 | DE |
102013202122 | Jun 2014 | DE |
102012224183 | Jul 2014 | DE |
2368598 | Sep 2011 | EP |
2508229 | Oct 2012 | EP |
3069762 | Sep 2016 | EP |
3108931 | Dec 2016 | EP |
2499921 | Sep 2013 | GB |
20100124083 | Nov 2010 | KR |
20120090317 | Aug 2012 | KR |
101349157 | Jan 2014 | KR |
20140014689 | Feb 2014 | KR |
20190063041 | Jun 2019 | KR |
1995010243 | Apr 1995 | WO |
2004033040 | Apr 2004 | WO |
2004084752 | Oct 2004 | WO |
2006047868 | May 2006 | WO |
2006063318 | Jun 2006 | WO |
2006130340 | Dec 2006 | WO |
2008024414 | Feb 2008 | WO |
2008041296 | Apr 2008 | WO |
2008051918 | May 2008 | WO |
2008066943 | Jun 2008 | WO |
2008131343 | Oct 2008 | WO |
2008144157 | Nov 2008 | WO |
2009047669 | Apr 2009 | WO |
2010098761 | Sep 2010 | WO |
2011083378 | Jul 2011 | WO |
2011083381 | Jul 2011 | WO |
2012001194 | Jan 2012 | WO |
2013036558 | Mar 2013 | WO |
2014021557 | Feb 2014 | WO |
2014089552 | Jun 2014 | WO |
2014116659 | Jul 2014 | WO |
2014136255 | Sep 2014 | WO |
2014146029 | Sep 2014 | WO |
2015006309 | Jan 2015 | WO |
2015134204 | Sep 2015 | WO |
2016039812 | Mar 2016 | WO |
2016078603 | May 2016 | WO |
2016081594 | May 2016 | WO |
2016116859 | Jul 2016 | WO |
2016178472 | Nov 2016 | WO |
2017019836 | Feb 2017 | WO |
2017044931 | Mar 2017 | WO |
2017070155 | Apr 2017 | WO |
2018026892 | Feb 2018 | WO |
2019022275 | Jan 2019 | WO |
2019127427 | Jul 2019 | WO |
2019145519 | Aug 2019 | WO |
2019156921 | Aug 2019 | WO |
2019191820 | Oct 2019 | WO |
2019234308 | Dec 2019 | WO |
2020006048 | Jan 2020 | WO |
2020047659 | Mar 2020 | WO |
2020081910 | Apr 2020 | WO |
2021178655 | Sep 2021 | WO |
Entry |
---|
Ankhzaya, “Airway management,” slideshow, www.slideshare.net/gasilu/airway-management-111268937, Aug. 24, 2018, 87 pages. |
Liu, et al., “Creation of a standardized geometry of the human nasal cavity,” Journal of Applied Physiology, vol. 106, Jan. 2009, pp. 784-795. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/019785, dated Jun. 15, 2021, 18 pages. |
Advisory Action for U.S. Appl. No. 17/117,889, dated Jun. 4, 2021, 3 pages. |
Final Office Action for U.S. Appl. No. 16/709,550, dated Feb. 17, 2021, 12 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2022/019428, dated Jun. 14, 2022, 16 pages. |
Examination Report for European Patent Application No. 16831333.6, dated May 20, 2022, 6 pages. |
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 17/410,154, dated Jul. 5, 2022, 4 pages. |
Final Office Action for U.S. Appl. No. 17/410,166, dated Jul. 1, 2022, 16 pages. |
Non-Final Office Action for U.S. Appl. No. 17/162,259, dated Jul. 6, 2022, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 17/410,154, dated Jul. 28, 2022, 21 pages. |
Hamblin, Michael, “Mechanisms of Low Level Light Therapy,” Aug. 14, 2008, 22 pages, photobiology.info/Hamblin.html. |
Hamblin, Michael R., “The Role of Nitric Oxide in Low Level Light Therapy,” Proceedings of SPIE, vol. 6846, 2008, pp. 684602-1 to 684602-14. |
Hessling, Martin, et al., “Selection of parameters for thermal coronavirus inactivation—a data-based recommendation,” GMS Hygiene and Infection Control, vol. 15, 2020, 7 pages. |
Horby, Peter, et al., “Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report,” New England Journal of Medicine, Jul. 17, 2020, 11 pages. |
Jackson, George, et al., “Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model,” Applied In Vitro Toxicology, vol. 4, Issue 2, 2018, Mary Ann Liebert, Inc., pp. 149-158. |
Jensen, Caleb, et al., “Is it Time to Start Transitioning From 2D to 3D Cell Culture,” Frontiers in Molecular Biosciences, Review, vol. 7, Mar. 2020, 15 pages. |
Jin, Jin, et al., “Noncanonical NF-KB Pathway Controls the Production of Type I Interferons in Antiviral Innate Immunity,” Immunity, vol. 40, Mar. 2014, Elsevier Inc., pp. 342-354. |
Karu, Tiina I., “Low-Power Laser Therapy,” Biomedical Photonics Handbook, Chapter 48, CRC Press, 2003, pp. 48-1 to 48-25. |
Kelm, Malte, “Nitric oxide metabolism and breakdown,” Review, Biochimica et Biophysica Acta, vol. 1411, 1999, Elsevier Science B.V., pp. 273-289. |
Kingsley, David, et al., “Oxygen-dependent laser inactivation of murine norovirus using visible light lasers,” Virology Journal, Jul. 31, 2018, 8 pages. |
Kirima, Kazuyoshi et al., “Evaluation of systemic blood NO dynamics by EPR spectroscopy: HbNO as an endogenous index of NO,” American Journal of Physiology Heart and Circulatory Physiology, vol. 285, No. 2, Aug. 2003, pp. H589-H596. |
Kitchel, Elaine, “The Effects of Blue Light on Ocular Health,” Journal of Visual Impairment and Blindness, Jun. 2000, AFB, pp. 399-403. |
Klein, Eili, et al., “The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis,” Influenza and Other Respiratory Viruses, vol. 10, Issue 5, May 2016, John Wiley & Sons Ltd., pp. 394-403. |
Kovacs, Izabella et al., “Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation,” Frontiers in Plant Science, vol. 4, Article 137, May 14, 2013, 10 pages. |
Leong, Mimi, “Effects of Light-Emitting Diode Photostimulation On Burn Wound Healing,” Thesis, The University of Texas Graduate School of Biomedical Sciences at Galveston, May 2006, 92 pages. |
Li, Jie, et al., “Involvement of the Toll-Like Receptor/Nitric Oxide Signaling Pathway in the Pathogenesis of Cervical Cancer Caused by High-Risk Human Papillomavirus Infection,” Biomed Research International, 2017, Hindawi, 9 pages. |
Lubart, et al., “A Possible Mechanism for the Bactericidal Effect of Visible Light,” Review Article, Laser Therapy, vol. 20, 2011, pp. 17-22. |
Mandel, Arkady, et al., “A renaissance in low-level laser (light) therapy—LLLT,” Photonics and Lasers in Medicine, vol. 1, No. 4, Nov. 2012, pp. 231-234. |
Martin, Richard, “Laser-Accelerated Inflammation/Pain Reduction and Healing,” Practical Pain Management, vol. 3, No. 6, Nov./Dec. 2003, pp. 20-25. |
Marullo, Rosella, et al., “HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells,” Carcinogenesis, vol. 36, Issue 11, 2015, Oxford University Press, pp. 1397-1406. |
Moseley, Harry, et al., “Population reference intervals for minimal erythemal doses in monochromator phototesting,” Photodermatology, Photoimmunology & Photomedicine, vol. 25, 2009, pp. 8-11. |
Narita, Kouji, et al., “Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses,” Research Article, PLOS One, doi.org/10.1371/journal.pone.0201259, Jul. 25, 2018, 9 pages. |
Narita, Kouji, et al., “Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds,” Dissertation, Hirosaki University Graduate School of Medicine, 2017, Elsevier, 36 pages. |
Narita, Kouji, et al., “Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens,” Journal of Hospital Infection, vol. 105, Mar. 31, 2020, Elsevier Ltd., pp. 459-467. |
Perdiz, Daniel, et al., “Distribution and Repair of Bipyrimidine Photoproducts in Solar UV-irradiated Mammalian Cells,” Journal of Biological Chemistry, vol. 275, Issue 35, Sep. 2000, pp. 26732-26742. |
Pfeifer, Gerd, et al., “UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer,” Author Manuscript, Journal of Photochemistry and Photobiology, vol. 11, Issue 1, Jan. 2012, 14 pages. |
Phurrough, Steve et al., “Decision Memo for Infrared Therapy Devices (CAG-00291N),” Centers for Medicare & Medicaid Services, Oct. 24, 2006, 37 pages. |
Poyton, Robert O. et al., “Therapeutic Photobiomodulation: Nitric Oxide and a Novel Function of Mitochondrial Cytochrome C Oxidase,” Discovery Medicine, Feb. 20, 2011, 11 pages. |
Ramakrishnan, Praveen, et al., “Cytotoxic responses to 405 nm light exposure in mammalian and bacterial cells: Involvement of reactive oxygen species,” Toxicology in Vitro, vol. 33, Feb. 2016, Elsevier B.V., pp. 54-62. |
Ravanant, Jean-Luc, et al., “Direct and indirect effects of UV radiation on DNA and its components,” Journal of Photochemistry and Photobiology, vol. 63, 2001, pp. 88-102. |
Richardson, Tobias, et al., “Inactivation of murine leukaemia virus by exposure to visible light,” Virology, vol. 341, 2005, Elsevier Inc., pp. 321-329. |
Sabino, Caetano, et al., “Light-based technologies for management of COVID-19 pandemic crisis,” Journal of Photochemistry and Photobiology, Aug. 2020, Elsevier B.V., 8 pages. |
Sarti, Paolo et al., “The Chemical Interplay between Nitric Oxide and Mitochondrial Cytochrome c Oxidase: Reactions, Effectors and Pathophysiology,” International Journal of Cell Biology, vol. 2012, Article 571067, 2012, 11 pages. |
Saura, Marta, et al., “An Antiviral Mechanism of Nitric Oxide: Inhibition of a Viral Protease,” Immunity, vol. 10, Jan. 1999, Cell Press, 8 pages. |
Serrage, Hannah, et al., “Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light,” Photochemical and Photobiological Sciences, Jun. 2019, 43 pages. |
St. Denis, Tyler, et al., “Killing Bacterial Spores with Blue Light: When Innate Resistance Meets the Power of Light,” Photochemistry and Photobiology, vol. 89, Issue 1, Sep. 2012, Wiley Preiodicals, Inc., 7 pages. |
Tomb, Rachael, et al., “Inactivation of Streptomyces phage ϕC31 by 405 nm light,” Bacteriophage, vol. 4, Jul. 2014, Landes Bioscience, 7 pages. |
Tomb, Rachael, et al., “New Proof-of-Concept in Viral Inactivation: Virucidal Efficacy of 405 nm Light Against Feline Calicivirus as a Model for Norovirus Decontamination,” Food Environ Virol, Dec. 2016, pp. 159-167. |
Tomoroni, et al., “A Novel Laser Fiberscope for Simultaneous Imaging and Phototherapy of Peripheral Lung Cancer,” Chest, vol. 156, Issue 3, Sep. 2019, 8 pages. |
Tsen, KT, et al., “Inactivation of viruses by coherent excitations with a low power visible femtosecond laser,” Virology Journal, Jun. 2007, BioMed Central Ltd., 5 pages. |
Tsen, Shaw-Wei, et al., “Chemical-free inactivated whole influenza virus vaccine prepared by ultrashort pulsed laser treatment,” Journal of Biomedical Optics, vol. 20, Issue 5, May 2015, 8 pages. |
Tsen, Shaw-Wei, et al., “Inactivation of enveloped virus by laser-driven protein aggregation,” Journal of Biomedical Optics, vol. 17, Issue 12, Dec. 2012, 8 pages. |
Tsen, Shaw-Wei, “Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser,” PLOS One, vol. 9, Issue 11, Nov. 2014, 8 pages. |
Tsen, Shaw-Wei, et al., “Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation,” Journal of Biomedical Science, Jul. 2012, 11 pages. |
Tsen, Shaw-Wei, et al., “Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser,” Virology Journal, vol. 11, Issue 20, Feb. 2014, BioMed Central Ltd., 9 pages. |
Vatansever, Fatma, et al., “Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy, and beyond,” FEMS Microbiology Reviews, vol. 37, Issue 6, 2013, pp. 955-989. |
Wei, Xue-Min, et al., “Relationship between nitric oxide in cervical microenvironment and different HPV types and effect on cervical cancer cells,” Zhonghua Fu Chan Ke Za Zhi, vol. 46, Issue 4, Apr. 2011, pp. 260-265 (Abstract Only). |
Williams, Vonetta, et al., “Human Papillomavirus Type 16 E6* Induces Oxidative Stress and DNA Damage,” Journal of Virology, vol. 88, Issue 12, Jun. 2014, pp. 6751-6761. |
Willoughby, Jamin, “Predicting Respiratory Toxicity Using a Human 3D Airway (EpiAirway) Model Combined with Multiple Parametric Analysis,” Applied In Vitro Toxicology, vol. 1, Issue 1, 2015, pp. 55-65. |
Wolf, Yuri, et al., “Origins and Evolution of the Global RNA Virome,” mBio, vol. 9, Issue 6, Nov. 2018, 31 pages. |
Abeyakirthi, Sharnika, “Nitric oxide,” DermNet NZ, 2009, 4 pages, www.dermnetnz.org/topics/nitric-oxide/. |
Adamskaya, Natalia et al., “Light therapy by blue LED improves wound healing in an excision model in rats,” Injury, 2010, 5 pages. |
Adusumilli, Nagasai, et al., “Harnessing nitric oxide for preventing, limiting and treating the severe pulmonary consequences of COVID-19,” Nitric Oxide, vol. 103, Jul. 2020, Elsevier Inc., 5 pages. |
Akerstrom, Sara, et al., “Nitric Oxide Inhibits the Replication Cycle of Severe Acute Respiratory Syndrome Coronavirus,” Journal of Virology, vol. 79, Issue 3, Feb. 2005, pp. 1966-1969. |
Akerstrom, Sara, et al., “Dual effect of nitric oxide on SARS-CoV replication: Viral RNA production and palmitoylation of the S protein are affected,” Virology, vol. 395, Oct. 2009, Elsevier Inc., 9 pages. |
Andrew, Penelope J. et al., “Enzymatic function of nitric oxide synthases,” Cardiovascular Research, vol. 43, No. 3, Aug. 15, 1999, pp. 521-531. |
Author Unknown, “Brilliant Light Therapy,” In Light Wellness Systems, eBrochure, Date Unknown, 5 pages. |
Author Unkown, “dpl Oral Care—For Healthy Teeth & Gums,” Product Brief, Revive Light Therapy, revivelighttherapy.com/product/dpl-oral-care-light-therapy-system-teeth-whitening/, accessed Jan. 31, 2021, 5 pages. |
Author Unknown, “Healed by Light,” Digi-Key Electronics, Jul. 1, 2014, 4 pages, www.digikey.com/es/articles/techzone/2014/jul/healed-by-light. |
Author Unknown, “illuMask,” La Lumière, Date Unknown, 2 pages, http://www.illumask.com/dimming/. |
Author Unknown, “IPL Hair Removal,” Spectrum Science & Beauty, Spectrum Blog, Sep. 16, 2014, 3 pages, www.spectrumsciencebeauty.com.au/ipl-hair-removal/#prettyPhoto. |
Author Unknown, “Near-IR Photoluminescent Dyes for Molecular Labeling,” NanoQuantum, Technology, 2013, 7 pages, www.nanoquantum.com/Technology.html. |
Author Unknown, “Philips Blue Touch,” Koninklijke Philips N.V., Version 1.0.1, Sep. 1, 2013, 2 pages. |
Author Unknown, “Safety and Efficacy of UVC to Fight Covid-19,” Gilbert W. Beebe Webinar Series, Program Agenda, Sep. 16, 2020, 6 pages. |
Author Unknown, “Theradome Laser Helmet Review—A 120 Day Continuous Journal,” Prevent Hair Loss Products, Jan. 14, 2014, retrieved Jun. 27, 2017, web.archive.org/web/20140610024017/http://preventhairlossproducts.com:80/theradome-laser-helmet-review-120-day-continuous-journal/, pp. 1-4. |
Author Unknown, “Ultraviolet Light Therapy,” Wound Care Centers, Date Unknown, 3 pages, www.woundcarecenters.org/article/wound-therapies/ultraviolet-light-therapy. |
Author Unknown, “Vio Orb—Antimicrobial Light Ball,” Product Brief, Revive Light Therapy, revivelighttherapy.com/product/envirohygiene-orb-antimicrobial-light-ball/, accessed Jan. 31, 2021, 6 pages. |
Author Unknown, “What is Light Therapy used for?” Rio, The Dezac Group, Ltd, Date Unknown, 4 pages, www.lightmask.com/uses_for_It.htm#top. |
Avci, Pinar et al., “Low-Level Laser (Light) Therapy (LLLT) for Treatment of Hair Loss,” Lasers in Surgery and Medicine, vol. 46, 2014, pp. 144-151. |
Avci, Pinar et al., “Low-Level Laser (Light) Therapy (LLLT) in Skin: Stimulating, Healing, Restoring,” Seminars in Cutaneous Medicine and Surgery, vol. 32, No. 1, 2013, pp. 41-52. |
Ball, Kerri A. et al., “Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy,” Journal of Photochemistry and Photobiology B, vol. 102, No. 3, 2011, pp. 182-191. |
Barolet, Daniel, “Light-Emitting Diodes (LEDs) in Dermatology,” Seminars in Cutaneous Medicine and Surgery, vol. 27, No. 4, Dec. 1, 2008, pp. 227-238. |
Bashkatov et al., “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400-2000 nm,” Journal of Physics D: Applied Physics, vol. 38, Jul. 2005, IOP Publishing Ltd, pp. 2543-2555. |
Beck, Sara, et al., “Comparison of UV-Induced Inactivation and RNA Damage in MS2 Phage across the Germicidal UV Spectrum,” Applied and Environmental Microbiology, vol. 82, Issue 5, Mar. 2016, pp. 1468-1474. |
Beigel, JH, et al., “Remdesivir for the Treatment of Covid-19—Final Report,” New England Journal of Medicine, vol. 383, Issue 19, Nov. 5, 2020, pp. 1813-1826. |
Besaratinia, Ahmad, et al., “DNA lesions induced by UV A1 and B radiation in human cells: Comparative analyses in the overall genome and in the p53 tumor suppressor gene,” PNAS, vol. 102, Issue 29, Jul. 2005, pp. 10058-10063. |
Buonnano, Manuela, et al., “Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses,” Scientific Reports, Jun. 24, 2020, 8 pages. |
Buonnano, Manuela, et al., “Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light,” Radiation Research, vol. 187, 2017, Radiation Research Society, 2017, pp. 493-501. |
Cals-Grierson, M.-M. et al., “Nitric oxide function in the skin,” Nitric Oxide, vol. 10, No. 4, Jun. 2004, pp. 179-193. |
Chaves, Maria Emília De Abreu et al., “Effects of low-power light therapy on wound healing: LASER x LED,” Anais Brasileiros de Dermatologia, vol. 89, No. 4, Jul./Aug. 2014, pp. 616-623. |
Chen, Luni, et al., “Inhalation of Nitric Oxide in the Treatment of Severe Acute Respiratory Syndrome: A Rescue Trial In Beijing,” Brief Report, Clinical Infectious Diseases, vol. 39, Oct. 2004, pp. 1531-1535. |
Creagh-Brown, Benedict, et al., “Bench-to-bedside review: Inhaled nitric oxide therapy in adults,” Critical Care, vol. 13, Issue 3, May 2009, BioMed Central Ltd, 8 pages. |
Dai, Tianhong, et al., “Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond?,” NIH-PA, Author Manuscript, 2012, Elsevier Ltd., 31 pages. |
Darnelll, Miriam, et al., “Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products,” Transfusion, vol. 46, Oct. 2006, 8 pages. |
De Marco, Federico, “Oxidative Stress and HPV Carcinogenesis,” Viruses, vol. 5, Feb. 2013, pp. 708-731. |
Donnarumma, G., et al., “Inhibition of HSV-1 Replication by Laser Diode-Irradiation: Possible Mechanism of Action,” Journal of Immunopathology and Pharmacology, vol. 23, Issue 4, 2010, Biolife, pp. 1167-1176. |
Dorrington, Michael, et al., “NF-KB Signaling in Macrophages: Dynamics, Crosstalk, and Signal Integration,” Frontiers in Immunology, vol. 10, Apr. 9, 2019, 12 pages. |
Eadie, Ewan, et al., “Extreme Exposure to Filtered Far-UVC: A Case Study,” Ninewells Hospital and Medical School, Sep. 25, 2020, 14 pages. |
Enwemeka, Chukuka, et al., “Blue 470-nm Light Kills Methicillin-Resistant Staphylococcus aureus (MRSA) in Vitro,” Photomedicine and Laser Surgery, vol. 27, Issue 2, 2009, 6 pages. |
Enwemeka, Chukuka, et al., “Light as a potential treatment for pandemic coronavirus infections: A perspective,” Journal of Photochemistry & Photobiology, B: Biology, vol. 207, May 2020, 7 pages. |
Enwemeka, Chukuka, et al., “Visible 405 nm SLD Light Photo-Destroys Methicillin-Resistant Staphylococcus aureus (MRSA) In Vitro,” Lasers in Surgery and Medicine, vol. 40, 2008, pp. 734-737. |
Farivar, Shirin et al., “Biological Effects of Low Level Laser Therapy,” Journal of Lasers in Medical Sciences, vol. 6, No. 2, Spring 2014, pp. 58-62. |
Feelisch, Martin et al., “Concomitant S-, N-, and heme-nitrosis(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo,” FASEB, vol. 16, No. 13, Nov. 2002, pp. 1775-1785. |
Ferrari-Light, Dana, et al., “The Utility of Near-Infrared Fluorescence and Indocyanine Green During Robotic Pulmonary Resection,” Frontiers in Surgery, Review, vol. 6, Aug. 2019, 7 pages. |
Finsen, Niels, “The Red Light Treatment of Small-Pox,” The British Medical Journal, Dec. 7, 1895, pp. 1412-1414. |
Garza, Felix, et al., “Visible Blue Light Therapy: Molecular Mechanisms and Therapeutic Opportunities,” Current Medical Chemistry, 2018, vol. 25, Bentham Science Publishers, pp. 5564-5577. |
Glazer-Hockstein, “Could Blue Light-Blocking Lenses Decrease the Risk of Age-Related Macular Degeneration,” Retina, vol. 26, 2006, 4 pages. |
Gupta, Asheesh et al., “History and Fundamentals of Low-Level Laser (Light) Therapy,” Handbook of Photomedicine, Chapter 5, CRC Press, 2014, pp. 43-52. |
Hamblin, Michael, et al., “Can light-based approaches overcome antimicrobial resistance?,” Drug Development Research, Jul. 2018, Wiley Periodicals, Inc., 20 pages. |
Hamblin, Michael, et al., “Mechanisms of Low Level Light Therapy,” Proceedings of the SPIE, vol. 6140, Feb. 10, 2006, pp. 614001-1 to 641001-12. |
Author Unknown, “Scientific Breakthrough: Phototherapy Device,” Facebook Timeline Photo, medicsBLU, Oct. 1, 2020, facebook.com/medicsblu/, 4 pages. |
Soukos, Nikolaos, et al., “Phototargeting Oral Black-Pigmented Bacteria,” Antimicrobial Agents and Chemotherapy, Apr. 2005, vol. 49, Issue 4, pp. 1391-1396. |
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 17/117,889, dated May 19, 2021, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 17/117,889, dated Mar. 19, 2021, 17 pages. |
Applicant-Initiated Interview Summary for U.S. Appl. No. 17/117,889, dated Apr. 19, 2021, 2 pages. |
Final Office Action for U.S. Appl. No. 17/117,889, dated Apr. 30, 2021, 19 pages. |
Second Office Action for Chinese Patent Application No. 202010561507.X, dated Jul. 15, 2022, 33 pages. |
Advisory Action for U.S. Appl. No. 17/410,166, dated Sep. 7, 2022, 3 pages. |
Final Office Action for U.S. Appl. No. 17/201,120, dated Sep. 23, 2022, 34 pages. |
Notice of Allowance for U.S. Appl. No. 16/709,550, dated Feb. 24, 2022, 8 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 16/709,550, dated Mar. 25, 2022, 5 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 16/709,550, dated Apr. 15, 2022, 5 pages. |
Final Office Action for U.S. Appl. No. 16/898,385, dated Feb. 15, 2022, 13 pages. |
Advisory Action for U.S. Appl. No. 16/898,385, dated Apr. 20, 2022, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 17/410,154, dated Feb. 24, 2022, 21 pages. |
Final Office Action for U.S. Appl. No. 17/410,154, dated May 13, 2022, 18 pages. |
Final Office Action for U.S. Appl. No. 17/410,166, dated Mar. 14, 2022, 13 pages. |
Advisory Action for U.S. Appl. No. 17/410,166, dated May 11, 2022,3 pages. |
Non-Final Office Action for U.S. Appl. No. 17/201,120, dated Apr. 15, 2022, 23 pages. |
Notification of Reasons for Rejection for Japanese Patent Application No. 2021-518715, dated Apr. 26, 2022, 9 pages. |
Ahmed, Imran, et al., “Recent Patents on Light-Based Anti-Infective Approaches, ” Author Manuscript, Recent Patents on Anti-Infective Drug Discovery, vol. 13, Issue 1, 2018, 28 pages. |
Akaberi, Dario, et al., “Mitigation of the replication of SARS-COV-2 by nitric oxide in vitro,” Redox Biology, vol. 37, Sep. 21, 2020, Elsevier B.V., 5 pages. |
Author Unknown, “Assessing COVID-19-Related Symptoms in Outpatient Adult and Adolescent Subjects in Clinical Trials of Drugs and Biological Products for Covid-19 Prevention or Treatment,” Guidance for Industry, US Department of Health and Human Services, Sep. 2020, 14 pages. |
Baric, Ralph, “Emergence of a Highly Fit SARS-CoV-2 Variant,” New England Journal of Medicine, vol. 383, Issue 27, Dec. 31, 2020, pp. 2684-2686. |
Fajnzylber, Jesse, et al., “SARS-CoV-2 viral load is associated with increased disease severity and mortality,” Nature Communications, vol. 11, Issue 1, Oct. 30, 2020, 9 pages. |
Hamblin, Michael, “Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation,” Author Manuscript, Photochemistry and Photobiology, vol. 94, Issue 2, Mar. 2018, 31 pages. |
Huang, Ni, et al., “Integrated Single-Cell Atlases Reveal an Oral SARS-CoV-2 Infection and Transmission Axis,” medrXiv, Oct. 29, 2020, 22 pages. |
Kim, Peter, et al., “Therapy for Early COVID-19: A Critical Need,” JAMA, vol. 324, Issue 21, Nov. 11, 2020, American Medical Association, pp. 2149-2150. |
Quirk, Brendan, et al., “What Lies at the Heart of Photobiomodulation: Light, Cytochrome C Oxidase, and Nitric Oxide—Review of the Evidence,” Photobiomodulation, Photomedicine, and Laser Surgery, vol. 38, Issue 9, Jul. 2020, pp. 527-530. |
To, KK, et al., “Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study,” Lancet Infectious Diseases, vol. 20, Issue 5, Mar. 23, 2020, 11 pages. |
Wyllie, Anne, et al., “Saliva or nasopharyngeal swab specimens for detection of SARS-Cov-2,” New England Journal of Medicine, vol. 383, Issue 13, Sep. 24, 2020, 4 pages. |
Xu, Hao, et al., “High expression of ACE2 receptor of 2019-nCOV on the epithelial cells of oral mucosa, ” International Journal of Oral Science, vol. 12, Issue 8, Feb. 24, 2020, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 16/898,385, dated Jun. 7, 2022, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 17/410,166, dated May 27, 2022, 11 pages. |
Notice of Acceptance for Australian Patent Application No. 2021239894, dated Jun. 15, 2022, 3 pages. |
Notice of Allowance for Brazilian Patent Application No. BR112018001874-0, dated Aug. 28, 2022, 6 pages. |
Corrected Notice of Allowability for U.S. Appl. No. 16/709,550, dated Sep. 21, 2022, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 17/148,124, dated Oct. 13, 2022, 21 pages. |
Final Office Action for U.S. Appl. No. 17/410,154, dated Oct. 11, 2022, 20 pages. |
Non-Final Office Action for U.S. Appl. No. 17/410,166, dated Oct. 18, 2022, 11 pages. |
Final Office Action for U.S. Appl. No. 17/162,259, dated Oct. 19, 2022, 19 pages. |
Non-Final Office Action for U.S. Appl. No. 17/162,283, dated Nov. 8, 2022, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 17/173,457, dated Oct. 17, 2022, 15 pages. |
Zein, Randa, et al., “Review of light parameters and photobiomodulation efficacy: dive into complexity,” Journal of Biomedical Optics, vol. 23, Issue 12, Dec. 2018, 17 pages. |
Zupin, Luisa, et al., “Antiviral properties of blue laser in an in vitro model of HSV-1 infection,” Microbial Immunal, Letter to the Editor, vol. 62, 2018, pp. 477-479. |
Zupin, Luisa, et al., “Photobiomodulation therapy reduces viral load and cell death in ZIKV-infected glioblastoma cell line,” Lasers in Medical Science, vol. 33, Jul. 2018, Springer Nature, pp. 2011-2013. |
International Search Report and Written Opinion for PCT/US2016/044400, dated Oct. 4, 2016, 8 pages. |
International Preliminary Report on Patentability for PCT/US2016/044400, dated Feb. 8, 2018, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 15/222,199, dated Jan. 11, 2019, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 15/222,243, dated Jan. 11, 2019, 10 pages. |
International Preliminary Report on Patentability for PCT/US2016/044403, dated Feb. 8, 2018, 7 pages. |
Final Office Action for U.S. Appl. No. 15/222,199, dated Jul. 29, 2019, 9 pages. |
Notice of Allowance and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/222,199, dated Sep. 18, 2019, 11 pages. |
Final Office Action for U.S. Appl. No. 15/222,243, dated Jul. 29, 2019, 12 pages. |
Notice of Allowance and Applicant-Initiated Interview Summary for U.S. Appl. No. 15/222,243, dated Dec. 19, 2019, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 16/709,550, dated Apr. 30, 2020, 13 pages. |
Examination Report for Australian Patent Application No. 2021239894, dated Nov. 9, 2021, 3 pages. |
First Office Action for Chinese Patent Application No. 202010561507.X, dated Oct. 19, 2021, 54 pages. |
Non-Final Office Action for U.S. Appl. No. 17/410,154, dated Nov. 8, 2021, 16 pages. |
Final Office Action for U.S. Appl. No. 17/410,154, dated Dec. 22, 2021, 15 pages. |
Technical Examination Report for Brazilian Patent Application No. 122020024964-1, dated Nov. 29, 2022, 6 pages. |
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 17/410,154, dated Jan. 10, 2023, 4 pages. |
Notice of Allowance for U.S. Appl. No. 17/410,166, dated Feb. 15, 2023, 8 pages. |
Advisory Action for U.S. Appl. No. 17/162,259, dated Jan. 9, 2023, 3 pages. |
Final Office Action for U.S. Appl. No. 17/173,457, dated Feb. 23, 2023, 9 pages. |
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 17/201,120, dated Jan. 19, 2023, 21 pages. |
Non-Final Office Action for U.S. Appl. No. 16/709,550, dated Jul. 12, 2021, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 16/898,385, dated Aug. 16, 2021, 12 pages. |
Notice of Allowance for U.S. Appl. No. 17/117,889, dated Aug. 30, 2021, 9 pages. |
Final Office Action for U.S. Appl. No. 17/148,124, dated Mar. 13, 2023, 29 pages. |
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 17/410,154, dated Mar. 9, 2023, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 17/162,259, dated Apr. 7, 2023, 18 pages. |
Final Office Action for U.S. Appl. No. 17/162,283, dated Apr. 10, 2023, 10 pages. |
Advisory Action for U.S. Appl. No. 17/173,457, dated May 1, 2023, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 17/201,061, dated Apr. 20, 2023, 19 pages. |
Arora, Prerna, et al., “B.1.617.2 enters and fuses lung cells with increased efficiency and evades antibodies induced by infection and vaccination,” Cell Reports, vol. 37, Oct. 12, 2021, 12 pages. |
Caly, Leon, et al., “The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro,” Antiviral Research, vol. 178, Apr. 3, 2020, Elsevier B.V., 4 pages. |
Cele, Sandile, et al., “Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma,” Nature, vol. 593, May 6, 2021, 18 pages. |
Cheng, Ya-Wen, et al., “D614G Substitution of SARS-CoV-2 Spike Protein Increases Syncytium Formation and Virus Titer via Enhanced Furin-Mediated Spike Cleavage,” mBio, vol. 12, Issue 4, Jul. 27, 2021, 11 pages. |
Do, et al., “A robust SARS-CoV-2 replication model in primary human epithelial cells at the air liquid interface to assess antiviral agents,” Antiviral Research, vol. 192, Jun. 26, 2021, Elsevier, B.V., 8 pages. |
Fulcher, et al., “Human Nasal and Tracheo-Bronchial Respiratory Epithelial Cell Culture,” Methods in Molecular Biology, vol. 945, Chapter 8, 2012, pp. 109-121. |
Gong, et al., “Contribution of single mutations to selected SARS-CoV-2 emerging variants spike antigenicity,” Virology, vol. 563, Sep. 11, 2021, Elsevier Inc., 12 pages. |
Good, Steven, et al., “AT-527 a Double Prodrug of a Guanosine Nucleotide Analog, Is a Potent Inhibitor of SARS-CoV-2 In Vitro and a Promising Oral Antiviral for Treatment of Covid-19,” Antimicrobial Agents and Chemotherapy, vol. 65, Issue 4, Apr. 2021, 12 pages. |
Harvey, William, et al., “SARS-CoV-2 variants, spike mutations and immune escape,” Nature Reviews: Microbiology, vol. 19, Jul. 2021, pp. 409-424. |
Heinen, Natalie, et al., “In Vitro Lung Models and Their Application to Study SARS-CoV-2 Pathogenesis and Disease,” Viruses, vol. 13, Apr. 28, 2021, 17 pages. |
Hou, Yixuan, et al., “SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract,” Cell, vol. 182, Jul. 23, 2020, Elsevier Inc., 32 pages. |
Huang, Ni, et al., “SARS-CoV-2 infection of the oral cavity and saliva,” Nature Medicine, vol. 27, May 2021, 27 pages. |
Krause, Philip, et al., “SARS-CoV-2 Variants and Vaccines,” New England Journal of Medicine, vol. 385, Issue 2, Jul. 8, 2021, Massachusetts Medical Society, pp. 179-186. |
Kumar, Sanjeev, et al., “Current status of therapeutic monoclonal antibodies against SARS-CoV-2,” PLOS Pathogens, Sep. 3, 2021, 8 pages. |
Levin, “Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months,” New England Journal of Medicine, Oct. 6, 2021, Massachusetts Medical Society, 11 pages. |
Liu, Haolin, et al., “The Lambda variant of SARS-CoV-2 has a better chance than the Delta variant to escape vaccines,” Aug. 26, 2021, bioRxiv, 26 pages. |
Liu, Jia, et al., “Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro,” Cell Discovery, vol. 6, Issue 16, Mar. 18, 2020, 4 pages. |
Liu, Yang, “Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant,” Sep. 5, 2021, bioRxiv, 29 pages. |
Marchesan, et al., “The ‘oral’ history of COVID-19: Primary infection, salivary transmission, and post-acute implications,” Journal of Periodontology, vol. 92, American Academy of Periodontology, Jul. 2021, pp. 1357-1367. |
McCullough, Peter, et al., “Pathophysiological Basis and Rationale for Early Outpatient Treatment of SARS-CoV-2 (COVID-19) Infection,” The American Journal of Medicine, Review, vol. 134, Issue 1, Jan. 2021, Elsevier Inc., pp. 16-22. |
Motozono, Chihiro, et al., “SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity,” Cell Host and Microbe, vol. 29, Jul. 14, 2021, Elsevier Inc., 24 pages. |
Naaber, Paul, et al., “Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study,” The Lancet Regional Health—Europe, Sep. 6, 2021, 9 pages. |
Planas, Delphine, et al., “Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization,” Nature, vol. 596, Jul. 8, 2021, 20 pages. |
Plante, Jessica, et al., “Spike mutation D614G alters SARS-CoV-2 fitness,” Nature, vol. 592, Oct. 26, 2020, 22 pages. |
Pouwels, Koen, et al., “Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK,” Nature Medicine, Oct. 14, 2021, 25 pages. |
Pruijssers, Andrea, et al., “Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice,” Cell Reports, vol. 32, Jul. 21, 2020, 15 pages. |
Sellgren, et al., “A biomimetic multicellular model of the airways using primary human cells,” Lab on a Chip, Jun. 2014, The Royal Society of Chemistry, 10 pages. |
Sheahan, Timothy, et al., “An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice,” Science Translational Medicine, Research Article, vol. 12, Apr. 29, 2020, 16 pages. |
Stasko, Nathan, et al., “A randomized, controlled, feasibility study of RD-X19 in patients with mild-to-moderate COVID-19 in the outpatient setting,” Oct. 25, 2021, medRxiv, 30 pages. |
Stasko, Nathan, et al., “Visible blue light inhibits infection and replication of SARS-CoV-2 at doses that are well-tolerated by human respiratory tissue,” Scientific Reports, vol. 11, Oct. 18, 2021, 14 pages. |
Touret, Franck, et al., “Preclinical evaluation of Imatinib does not support its use as an antiviral drug against SARS-CoV-2,” Antiviral Research, vol. 193, Jul. 12, 2021, 8 pages. |
Touret, Franck, et al., “Replicative Fitness of a SARS-CoV-2 201/501Y.V1 Variant from Lineage B.1.1.7 in Human Reconstituted Bronchial Epithelium,” mBio, vol. 12, Issue 4, Jul. 2021, 4 pages. |
Wang, Pengfei, et al., “Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7,” Nature, vol. 593, May 6, 2021, 18 pages. |
Wildera, Marek, et al., “Limited Neutralization of Authentic Severe Acute Respiratory Syndrome Coronavirus 2 Variants Carrying E484K In Vitro,” The Journal of Infectious Diseases, Jul. 5, 2021, pp. 1109-1114. |
Final Office Action for U.S. Appl. No. 16/709,550, dated Dec. 27, 2021, 9 pages. |
Advisory Action for U.S. Appl. No. 17/410,154, dated Jan. 25, 2022, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 17/410,166, dated Jan. 12, 2022, 12 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2023/015757, dated Jun. 30, 2023, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 17/148,108, dated Jul. 19, 2023, 14 pages. |
Advisory Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 17/148,124, dated May 26, 2023, 5 pages. |
Final Office Action for U.S. Appl. No. 17/201,061, dated Jul. 26, 2023, 17 pages. |
Final Office Action for U.S. Appl. No. 17/162,259, dated Jul. 14, 2023, 18 pages. |
Advisory Action for U.S. Appl. No. 17/162,283, dated Jun. 23, 2023, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 17/173,457, dated Jun. 9, 2023, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 17/117,858, dated Oct. 13, 2023, 16 pages. |
Final Office Action for U.S. Appl. No. 17/148,108, dated Oct. 27, 2023, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 17/201,061, dated Nov. 8, 2023, 19 pages. |
Advisory Action for U.S. Appl. No. 17/162,259, dated Sep. 21, 2023, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 17/162,259, dated Oct. 26, 2023, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 17/162,283, dated Sep. 1, 2023, 11 pages. |
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 17/173,457, dated Oct. 17, 2023, 10 pages. |
Office Action for Canadian Patent Application No. 3174573, dated Oct. 20, 2023, 4 pages. |
Notice of Allowance for Brazilian Patent Application No. BR1122020024964-1, dated Nov. 27, 2023, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 17/148,090, dated Dec. 13, 2023, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 17/148,124, dated Dec. 18, 2023, 24 pages. |
Final Office Action for U.S. Appl. No. 17/117,858, mailed Feb. 14, 2024, 11 pages. |
Advisory Action for U.S. Appl. No. 17/148,108, mailed Jan. 3, 2024, 3 pages. |
Applicant-Initiated Interview Summary for U.S. Appl. No. 17/148,108, mailed Jan. 23, 2024, 2 pages. |
Non-Final Office Action for U.S. Appl. No. 17/148,108, mailed Feb. 20, 2024, 10 pages. |
Notice of Allowance for U.S. Appl. No. 17/162,283, mailed Feb. 12, 2024, 8 pages. |
Notice of Allowance for U.S. Appl. No. 17/173,457, mailed Jan. 29, 2024, 10 pages. |
Written Decision on Registration for Korean Patent Application No. 10-2022-7036254, mailed Mar. 20, 2024, 8 pages. |
Final Office Action for U.S. Appl. No. 17/201,061, mailed Mar. 11, 2024, 20 pages. |
Examination Report for European Patent Application No. 16831333.6, mailed May 7, 2024, 7 pages. |
Final Office Action for U.S. Appl. No. 17/148,124, mailed May 28, 2024, 23 pages. |
Number | Date | Country | |
---|---|---|---|
20210128938 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
63123631 | Dec 2020 | US | |
63084802 | Sep 2020 | US | |
63074800 | Sep 2020 | US | |
62987318 | Mar 2020 | US | |
62197746 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17117858 | Dec 2020 | US |
Child | 17148133 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16709550 | Dec 2019 | US |
Child | 16898385 | US | |
Parent | 15222199 | Jul 2016 | US |
Child | 16709550 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16898385 | Jun 2020 | US |
Child | 17117858 | US |