Photothermographic material

Information

  • Patent Grant
  • 7381520
  • Patent Number
    7,381,520
  • Date Filed
    Tuesday, March 14, 2006
    18 years ago
  • Date Issued
    Tuesday, June 3, 2008
    16 years ago
Abstract
Provided is a photothermographic material comprising, on a support, at least a non-photosensitive layer, and an image forming layer comprising at least a photosensitive silver halide, a non-photosensitive organic silver salt, a reducing agent, and a binder, wherein a content of the binder in the image forming layer is from approximately 55.6% to approximately 47.6% by mass ratio. A photothermographic material capable of rapid thermal development and having excellent film quality is provided.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a photothermographic material.


2. Description of the Related Art


In recent years, decreasing the amount of processing liquid waste in the field of films for medical imaging has been desired from the viewpoints of protecting the environment and economy of space. Technology is therefore required for photosensitive thermal developing image recording materials which can be imagewise exposed effectively by laser image setters or laser imagers and thermally developed to obtain clear black-toned images of high resolution and sharpness, for use in medical diagnostic applications. An image forming system using photosensitive thermal developing image recording materials does not require liquid processing chemicals and can therefore be supplied to customers as a simpler and environmentally friendly system.


While similar requirements also exist in the field of general image forming materials, images for medical imaging in particular require high image quality excellent in sharpness and granularity because fine depiction is required, and further require blue-black image tone from the viewpoint of easy diagnosis. Various kinds of hard copy systems utilizing dyes or pigments, such as ink jet printers and electrophotographic systems, have been marketed as general image forming systems, but they are not satisfactory as output systems for medical images.


Photothermographic materials utilizing organic silver salts are described in many documents. Photothermographic materials generally have an image forming layer including a catalytically active amount of a photocatalyst (for example, silver halide), a reducing agent, a reducible silver salt (for example, an organic silver salt), and if necessary, a toner for controlling the color tone of developed silver images, dispersed in a binder. Photothermographic materials form black silver images by being heated to a high temperature (for example, 80° C. or higher) after imagewise exposure to cause an oxidation-reduction reaction between a silver halide or a reducible silver salt (functioning as an oxidizing agent) and a reducing agent. The oxidation-reduction reaction is accelerated by the catalytic action of a latent image on the silver halide generated by exposure. As a result, a black silver image is formed on the exposed region. The Fuji Medical Dry Imager FM-DPL is an example of a medical image forming system that has been made commercially available.


A photothermographic material containing a photosensitive silver halide and a non-photosensitive organic silver salt is a material having high sensitivity, and is extremely favorable as an image recording material for laser output as described above, and it is expected that application thereof to this field will increase more and more in the future. In view of the expanding use in such fields of application and higher processing volumes, further increases in image recording speeds and developing speeds are desired. Improvement in performance of thermal developing processing, by shortening the time for processing, is a topic routinely demanded but it is particularly required in the medical field, in order to rapidly obtain photographed images and provide them to diagnosticians for rapid diagnosis.


As means for increasing the image forming speed, a method of increasing the sensitivity of a photosensitive material, to shorten the time for imagewise exposure, and a method of increasing the developing activity, to promote the thermal developing speed (increase of apparent sensitivity), can be mentioned. For improving the sensitivity of the photosensitive material, improvement of the photosensitive site of the silver halide is a direct method, and a sensitizing method is described in Japanese Patent Application Laid-Open (JP-A) No. 9-43765, the shape of silver halide grains is described in JP-A No. 2001-272743, and improvement for the silver halide composition is described in JP-A No. 9-146216. On the other hand, as a method of increasing the thermal developing speed, reducing agents are disclosed in JP-A No. 2001-188314, organic silver salts reduced by reducing agents are disclosed in JP-A No. 2000-72711, and use of development accelerators is described in JP-A Nos. 2002-156727 and 2001-264929. All patents, published patent applications, foreign applications, and non-patent literature listed in this specification are hereby incorporated by reference in their entirety.


An image forming layer is a direct element for forming images, and it is extremely important to consider compositions for use in the image forming layer as a method of improving the image forming speed. However, since such compositions are present in admixtures in the image forming layer, a conflicting phenomenon tends to occur whereby the storage stability deteriorates when the sensitivity or development activity is improved, whereas the sensitivity and the development activity are lowered when the storage stability is improved. It is extremely difficult to attain the performances described above simultaneously.


As described above, photothermographic materials are prepared in a well balanced manner so as to leverage the advantages of the respective compositions as much as possible and it is difficult to improve the image forming speed by merely changing or adding a single composition. Further, when a composition is changed or added, other compositions contained in the photothermographic material have also to be re-considered. A method of processing the photothermographic material rapidly without offsetting the features of respective compositions has been strongly demanded daily.


SUMMARY OF THE INVENTION

An aspect of the invention is to provide a photothermographic material comprising, on a support, at least a non-photosensitive layer, and an image forming layer comprising at least a photosensitive silver halide, a non-photosensitive organic silver salt, a reducing agent, and a binder, wherein a content of the binder in the image forming layer is from approximately 55.6% to approximately 47.6% by mass ratio.







DETAILED DESCRIPTION OF THE INVENTION

An object of the present invention relates to a photothermographic material capable of rapid thermal development.


For attaining the foregoing material, the present inventors have made earnest studies and have found that the ratio of solid content other than binder relative to the binder in the image forming layer gives a significant effect on the sensitivity. As a result of a further study, it has been found that the effect of improving sensitivity is remarkable when the ratio of the solid content other than the binder to the binder is approximately 0.80 or more by mass ratio. Further, it has also been found that as the ratio of the solid content other than the binder to the binder increases, the sensitivity is increased, whereas the manufacturing-related brittleness (sharpness of cut of the photosensitive material upon cutting) deteriorates as the solid content ratio increases. For the production suitability of the photothermographic material, the manufacturing-related brittleness is a direct problem concerning productivity. Then, it has been determined that the upper limit of the ratio of the solid content other than the binder relative to the binder in the image forming layer is approximately 1.10 by mass ratio.


Further, it has been found that the manufacturing-related brittleness is improved outstandingly by providing a non-photosensitive layer, containing binder that contains hydrophobic polymer(s) in an amount of 50% by weight or more, in addition to the image forming layer. The manufacturing-related brittleness was particularly satisfactory in a case where the non-photosensitive layer is disposed adjacent to the image forming layer. In addition, provision of such a non-photosensitive layer also gives an effect of increasing the water proofness and improving the image storability.


Accordingly, a photothermographic material capable both improving the sensitivity and the manufacturing-related brittleness is a photothermographic material with the mass ratio of solid content other than the binder relative to the binder in the image forming layer of from 0.80 to 1.10, and one in which the binder of the non-photosensitive layer contains a hydrophobic polymer in an amount of 50% by weight or more for improving the manufacturing-related brittleness.


From the above-described knowledge obtained, the object of the present invention was attained by the following photothermographic material.

  • <1> A photothermographic material comprising, on a support, at least a non-photosensitive layer, and an image forming layer comprising at least a photosensitive silver halide, a non-photosensitive organic silver salt, a reducing agent, and a binder, wherein a ratio of solid content other than the binder relative to the binder in the image forming layer is from 0.80 to 1.10 by mass ratio.
  • <2> The photothermographic material according to <1>, wherein the ratio of the solid content other than the binder relative to the binder in the image forming layer is from 0.85 to 1.08 by mass ratio.
  • <3> The photothermographic material according to <1>, wherein the ratio of the solid content other than the binder relative to the binder in the image forming layer is from 0.95 to 1.05 by mass ratio.
  • <4> The photothermographic material according to <1>, wherein the non-photosensitive layer contains binder containing hydrophobic polymer in an amount of 50% by weight or more.
  • <5> The photothermographic material according to <1>, wherein the non-photosensitive layer contains binder containing hydrophobic polymer in an amount of 90% by weight or more.
  • <6> The photothermographic material according to <1>, wherein the non-photosensitive layer is provided on the side farther from the support than the image forming layer and adjacent to the image forming layer.
  • <7> The photothermographic material according to <6>, further comprising a non-photosensitive outermost layer provided on the side of the support having the image forming layer and the non-photosensitive layer.
  • <8> The photothermographic material according to <7>, further comprising a non-photosensitive intermediate layer provided between the image forming layer and the non-photosensitive layer.


    1. Image Forming Layer


In the invention, the ratio of solid content other than the binder relative to the binder in the image forming layer is from approximately 0.80 to approximately 1.10 by mass ratio.


The solid content other than the binder includes all additives contained in the image forming layer other than solvent and binder, such as the photosensitive silver halide, non-photosensitive organic silver salt, reducing agent, and polyhalogen compound to be described below. The mass ratio of the solid content is calculated based on the addition amount of each of additives in the preparation of a coating solution for forming the image forming layer.


In the invention, the ratio of the solid content other than the binder relative to the binder in the image forming layer is from approximately 0.80 to approximately 1.10, preferably, from approximately 0.85 to approximately 1.08 and, more preferably, from approximately 0.95 to approximately 1.05 by mass ratio. In the case where it is less than approximately 0.8, the aimed for improvement in sensitivity of the invention can not be obtained and in the case where it exceeds approximately 1.10, cut edges are embrittled upon cutting the photothermographic material into a sheet form to deteriorate manufacturing-related brittleness.


Further, for the binder in the image forming layer, any of the binder types shown below can be utilized and the effect of the invention can be obtained irrespective of the type of the binders so long as the solid content ratio is from 0.80 to 1.10.


The solid content other than the binder (NBw), the content of the binder (Bw), and a total solid content (Tw) in the image forming layer are in the following relation:

NBw/Bw=0.80 to 1.10
Tw=NBw+Bw
(Tw−Bw)/Bw=0.80 to 1.10
So, Bw/Tw=55.6% to 47.6%


Therefore, the description that a ratio of solid content other than the binder relative to the binder in the image forming layer is from 0.8 to 1.10 by mass ratio can also be stated as a content of the binder in the image forming layer from approximately 55.6% to approximately 47.6% by mass ratio.


Similarly, NBw/Bw=0.85 to 1.08 becomes approximately 54.1% to approximately 48.1% and NBw/Bw=0.95 to 1.05 becomes a content of the binder of approximately 51.3% to approximately 48.8% by mass ratio.


1-1. Binder


In the present invention, it is important to adjust the mass ratio of binder and solid matters described below in the image forming layer.


Any kind of polymer may be used as the binder for the image forming layer of the invention. Suitable as the binder are those that are transparent or translucent, and that are generally colorless, such as natural resin or polymer and their copolymers; synthetic resin or polymer and their copolymer; or media forming a film; for example, included are gelatins, rubbers, poly(vinyl alcohols), hydroxyethyl celluloses, cellulose acetates, cellulose acetate butyrates, poly(vinyl pyrrolidones), casein, starch, poly(acrylic acids), poly(methylmethacrylic acids), poly(vinyl chlorides), poly(methacrylic acids), styrene-maleic anhydride copolymers, styrene-acrylonitrile copolymers, styrene-butadiene copolymers, poly(vinyl acetals) (for example, poly(vinyl formal) or poly(vinyl butyral)), polyesters, polyurethanes, phenoxy resin, poly(vinylidene chlorides), polyepoxides, polycarbonates, poly(vinyl acetates), polyolefins, cellulose esters, and polyamides. A binder may be used with water, an organic solvent or emulsion to form a coating solution.


In the present invention, the glass transition temperature (Tg) of the binder of the image forming layer is preferably in a range of from 0° C. to 80° C., more preferably from 10° C. to 70° C. and, even more preferably from 15° C. to 60° C.


In the specification, Tg is calculated according to the following equation.

1/Tg=Σ(Xi/Tgi)


where the polymer is obtained by copolymerization of n monomer compounds (from i=1 to i=n); Xi represents the mass fraction of the ith monomer (ΣXi=1), and Tgi is the glass transition temperature (absolute temperature) of the homopolymer obtained with the ith monomer. The symbol Σ stands for the summation from i=1 to i=n. Values for the glass transition temperature (Tgi) of the homopolymers derived from each of the monomers were obtained from J. Brandrup and E. H. Immergut, Polymer Handbook (3rd Edition) (Wiley-Interscience, 1989).


The binder may be of two or more kinds of polymers, when necessary. And, the polymer having Tg of 20° C. or more and the polymer having Tg of less than 20° C. can be used in combination. In the case where two or more kinds of polymers differing in Tg may be blended for use, it is preferred that the weight-average Tg is in the range mentioned above.


In the invention, the image forming layer is preferably formed by applying a coating solution containing 30% by weight or more of water in the solvent and by then drying.


In the invention, where the image forming layer is formed by applying a coating solution containing 30% by weight or more of water in the solvent and by then drying, furthermore, in the case where the binder of the image forming layer is soluble or dispersible in an aqueous solvent (water solvent), and particularly in the case where a polymer latex having an equilibrium water content of 2% by weight or lower under 25° C. and 60% RH is used, the performance can be enhanced. Most preferred embodiment is such prepared to yield an ion conductivity of 2.5 mS/cm or lower, and as such a preparing method, there can be mentioned a refining treatment using a separation function membrane after synthesizing the polymer.


The aqueous solvent in which the polymer is soluble or dispersible, as referred herein, signifies water or water containing mixed therein 70% by weight or less of a water-miscible organic solvent. As water-miscible organic solvents, there can be used, for example, alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, or the like; cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, or the like; ethyl acetate, dimethylformamide, or the like.


The term “aqueous solvent” is also used in the case the polymer is not thermodynamically dissolved, but is present in a so-called dispersed state.


The term “equilibrium water content under 25° C. and 60% RH” referred herein can be expressed as follows:

Equilibrium water content under 25° C. and 60% RH=[(W1−W0)/W0]×100 (% by weight)


wherein, W1 is the weight of the polymer in moisture-controlled equilibrium under the atmosphere of 25° C. and 60% RH, and W0 is the absolutely dried weight at 25° C. of the polymer.


For the definition and the method of measurement for water content, reference can be made to Polymer Engineering Series 14, “Testing methods for polymeric materials” (The Society of Polymer Science, Japan, published by Chijin Shokan).


The equilibrium water content under 25° C. and 60% RH is preferably 2% by weight or lower, more preferably, from 0.01% by weight to 1.5% by weight, and even more preferably, from 0.02% by weight to 1% by weight.


The binders used in the invention are particularly preferably polymers capable of being dispersed in an aqueous solvent. Examples of dispersed states may include a latex, in which water-insoluble fine particles of hydrophobic polymer are dispersed, or such in which polymer molecules are dispersed in molecular states or by forming micelles, but preferred are latex-dispersed particles. The average particle size of the dispersed particles is in a range of from 1 nm to 50,000 nm, preferably from 5 nm to 1,000 nm, more preferably from 10 nm to 500 nm, and even more preferably from 50 nm to 200 nm. There is no particular limitation concerning particle size distribution of the dispersed particles, and they may be widely distributed or may exhibit a monodisperse particle size distribution.


In the invention, preferred embodiment of the polymers capable of being dispersed in aqueous solvent includes hydrophobic polymers such as acrylic polymers, polyesters, rubbers (e.g., SBR resin), polyurethanes, poly(vinyl chlorides), poly(vinyl acetates), poly(vinylidene chlorides), polyolefins, and the like. As the polymers above, usable are straight chain polymers, branched polymers, or crosslinked polymers; also usable are the so-called homopolymers in which one kind of monomer is polymerized, or copolymers in which two or more kinds of monomers are polymerized. In the case of a copolymer, it may be a random copolymer or a block copolymer. The molecular weight of these polymers is, in number average molecular weight, in a range of from 5,000 to 1,000,000, and preferably from 10,000 to 200,000. Those having too small a molecular weight exhibit insufficient mechanical strength on forming the image forming layer, and those having too large a molecular weight are also not preferred because the resulting film-forming properties are poor. Further, crosslinking polymer latexes are particularly preferred for use.


(Examples of Latex)


Specific examples of preferred polymer latexes are given below, which are expressed by the starting monomers with % by weight given in parenthesis. The molecular weight is given in number average molecular weight. In the case polyfunctional monomer is used, the concept of molecular weight is not applicable because they build a crosslinked structure. Hence, they are denoted as “crosslinking”, and the molecular weight is omitted. Tg represents glass transition temperature.

  • P-1; Latex of -MMA(70)-EA(27)-MAA(3)—(molecular weight 37000, Tg 61° C.)
  • P-2; Latex of -MMA(70)-2EHA(20)-St(5)-AA(5)—(molecular weight 40000, Tg 59° C.)
  • P-3; Latex of -St(50)-Bu(47)-MAA(3)—(crosslinking, Tg −17° C.)
  • P-4; Latex of -St(68)-Bu(29)-AA(3)—(crosslinking, Tg 17° C.)
  • P-5; Latex of -St(71)-Bu(26)-AA(3)—(crosslinking, Tg 24° C.)
  • P-6; Latex of -St(70)-Bu(27)-IA(3)—(crosslinking)
  • P-7; Latex of -St(75)-Bu(24)-AA(1)—(crosslinking, Tg 29° C.)
  • P-8; Latex of -St(60)-Bu(35)-DVB(3)-MAA(2)—(crosslinking)
  • P-9; Latex of -St(70)-Bu(25)-DVB(2)-AA(3)—(crosslinking)
  • P-10; Latex of -VC(50)-MMA(20)-EA(20)-AN(5)-AA(5)—(molecular weight 80000)
  • P-11; Latex of -VDC(85)-MMA(5)-EA(5)-MAA(5)—(molecular weight 67000)
  • P-12; Latex of -Et(90)-MAA(10)—(molecular weight 12000)
  • P-13; Latex of -St(70)-2EHA(27)-AA(3)—(molecular weight 130000, Tg 43° C.)
  • P-14; Latex of -MMA(63)-EA(35)-AA(2)—(molecular weight 33000, Tg 47° C.)
  • P-15; Latex of -St(70.5)-Bu(26.5)-AA(3)—(crosslinking, Tg 23° C.)
  • P-16; Latex of -St(69.5)-Bu(27.5)-AA(3)—(crosslinking, Tg 20.5° C.)


In the structures above, abbreviations represent monomers as follows. MMA: methyl metacrylate, EA: ethyl acrylate, MAA: methacrylic acid, 2EHA: 2-ethylhexyl acrylate, St: styrene, Bu: butadiene, AA: acrylic acid, DVB: divinylbenzene, VC: vinyl chloride, AN: acrylonitrile, VDC: vinylidene chloride, Et: ethylene, IA: itaconic acid.


The polymer latexes above are commercially available, and polymers below are usable. As examples of acrylic polymers, there can be mentioned Cevian A-4635, 4718, and 4601 (all manufactured by Daicel Chemical Industries, Ltd.), Nipol Lx811, 814, 821, 820, and 857 (all manufactured by Nippon Zeon Co., Ltd.), and the like; as examples of polyester, there can be mentioned FINETEX ES650, 611, 675, and 850 (all manufactured by Dainippon Ink and Chemicals, Inc.), WD-size and WMS (all manufactured by Eastman Chemical Co.), and the like; as examples of polyurethane, there can be mentioned HYDRAN AP10, 20, 30, and 40 (all manufactured by Dainippon Ink and Chemicals, Inc.), and the like; as examples of rubber, there can be mentioned LACSTAR 7310K, 3307B, 4700H, and 7132C (all manufactured by Dainippon Ink and Chemicals, Inc.), Nipol Lx416, 410, 438C, and 2507 (all manufactured by Nippon Zeon Co., Ltd.), and the like; as examples of poly(vinyl chloride), there can be mentioned G351 and G576 (all manufactured by Nippon Zeon Co., Ltd.), and the like; as examples of poly(vinylidene chloride), there can be mentioned L502 and L513 (all manufactured by Asahi Chemical Industry Co., Ltd.), and the like; as examples of polyolefin, there can be mentioned Chemipearl S120 and SA100 (all manufactured by Mitsui Petrochemical Industries, Ltd.), and the like.


The polymer latex above may be used alone, or may be used by blending two or more kinds depending on needs.


(Preferable Latexes)


Particularly preferable as the polymer latex for use in the invention are that of styrene-butadiene copolymer. The mass ratio of monomer unit for styrene to that of butadiene constituting the styrene-butadiene copolymer is preferably in a range of from 40:60 to 95:5. Further, it is preferred that 60% by weight to 99% by weight of copolymer is occupied by the monomer unit of styrene and that of butadiene. Further, the polymer latex of the invention preferably contains acrylic acid or methacrylic acid in a range of from 1% by weight to 6% by weight with respect to the sum of styrene and butadiene, and more preferably from 2% by weight to 5% by weight. The polymer latex of the invention preferably contains acrylic acid. Preferable range of molecular weight is similar to that described above.


As the latex of styrene-butadiene copolymer preferably used in the invention, there can be mentioned P-3 to P-8, and P-15, or commercially available LACSTAR 3307B, LACSTAR 7132C, Nipol Lx416, and the like.


In the image forming layer of the photothermographic material according to the invention, if necessary, there can be added hydrophilic polymers such as gelatin, poly(vinyl alcohol), methyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, or the like. These hydrophilic polymers are added at an amount of 30% by weight or less, and preferably 20% by weight or less, with respect to the total weight of the binder incorporated in the image forming layer.


According to the invention, the layer containing organic silver salt (image forming layer) is preferably formed by using polymer latex for the binder. According to the amount of the binder for the image forming layer, the mass ratio of total binder to organic silver salt (total binder/organic silver salt) is preferably in a range of from 1/10 to 10/1, more preferably from 1/3 to 5/1, and even more preferably from 1/1 to 3/1.


The layer containing organic silver salt is, in general, a photosensitive layer (image forming layer) containing a photosensitive silver halide, i.e., the photosensitive silver salt; in such a case, the mass ratio of total binder to silver halide (total binder/silver halide) is in a range of from 400 to 5, and more preferably, from 200 to 10.


The total amount of binder in the image forming layer of the invention is preferably in a range of from 0.2 g/m2 to 30 g/m2, more preferably from 1 g/m2 to 15 g/m2, and even more preferably from 2 g/m2 to 10 g/m2. As for the image forming layer of the invention, there may be added a crosslinking agent for crosslinking, or a surfactant and the like to improve coating properties.


As the solid content other than the binder, the image forming layer include various additives other than solvent and binder, such as organic silver salts, reducing agents, development accelerators, hydrogen bonding compounds, silver halides, antifoggagents, mercapto compounds, disulfides, thiones, toners, plasticizers, lubricants, dyes, pigments, nucleators, hardeners, surfactants, antioxidants, stabilizing agents, ultraviolet absorbents, film-forming promoting agents, and the like.


Hereinafter, the components to be the solid content in the image forming layer are described in detail.


1-2. Organic Silver Salt


1) Composition


The organic silver salt used in the invention is relatively stable to light but serves as to supply silver ions and forms silver images when heated to 80° C. or higher in the presence of an exposed photosensitive silver halide and a reducing agent. The organic silver salt may be any organic material containing a source capable of reducing silver ions. Such a non-photosensitive organic silver salt is disclosed, for example, in JP-A No. 10-62899 (paragraph numbers 0048 to 0049), EP No. 0803764A1 (page 18, line 24 to page 19, line 37), EP No. 0962812A1, JP-A Nos. 11-349591, 2000-7683, and 2000-72711, and the like. A silver salt of an organic acid, particularly, a silver salt of long chained fatty acid carboxylic acid (having 10 to 30 carbon atoms, preferably, having 15 to 28 carbon atoms) is preferable. Preferred examples of the organic silver salt can include, for example, silver lignocerate, silver behenate, silver arachidinate, silver stearate, silver oleate, silver laurate, silver capronate, silver myristate, silver palmitate, silver erucate and mixtures thereof. Among the silver salts of fatty acid, it is preferred to use a silver salt of fatty acid with a silver behenate content of 50 mol % or more, more preferably, 85 mol % or more, and further preferably, 95 mol % or more. And, it is preferred to use a silver salt of fatty acid with a silver erucate content of 2 mol % or less, more preferably, 1 mol % or less, and even more preferably, 0.1 mol % or less.


It is preferred that the content of the silver stearate is 1 mol % or less. When the content of the silver stearate is 1 mol % or less, a silver salt of organic acid having low Dmin, high sensitivity and excellent image storability can be obtained. The content of the silver stearate above-mentioned, is preferably 0.5 mol % or less, more preferably, the silver stearate is not substantially contained.


Further, in the case the silver salt of organic acid includes silver arachidinic acid, it is preferred that the content of the silver arachidinic acid is 6 mol % or less in order to obtain a silver salt of organic acid having low Dmin and excellent image storability. The content of the silver arachidinate is more preferably 3 mol % or less.


2) Shape


There is no particular restriction on the shape of the organic silver salt usable in the invention and it may be needle-like, bar-like, tabular, or flake shaped.


In the invention, a flake shaped organic silver salt is preferred. Short needle-like, rectangular, cuboidal or potato-like indefinite shaped particle with the major axis to minor axis ratio being less than 5 is also used preferably. Such organic silver particle has a feature less suffering from fogging during thermal development compared with long needle-like particles with the major axis to minor axis length ratio of 5 or more. Particularly, a particle with the major axis to minor axis ratio of 3 or less is preferred since it can improve the mechanical stability of the coated film. In the present specification, the flake shaped organic silver salt is defined as described below. When an organic silver salt is observed under an electron microscope, calculation is made while approximating the shape of an organic silver salt particle to a rectangular body and assuming each side of the rectangular body as a, b, c from the shorter side (c may be identical with b) and determining x based on numerical values a, b for the shorter side as below.

x=b/a


As described above, x is determined for the particles by the number of about 200 and those capable of satisfying the relation: x (average)≧1.5 as an average value x is defined as a flake shape. The relation is preferably: 30≧x (average)≧1.5 and, more preferably, 15≧x (average)≧1.5. By the way, needle-like is expressed as 1≦x (average)<1.5.


In the flake shaped particle, a can be regarded as a thickness of a tabular particle having a major plane with b and c being as the sides a in average is preferably from 0.01 μm to 0.3 μm and, more preferably, from 0.1 μm to 0.23 μm. c/b in average is preferably from 1 to 9, more preferably from 1 to 6, further preferably from 1 to 4 and, most preferably from 1 to 3.


By controlling the equivalent spherical diameter to be from 0.05 μm to 1 μm, it causes less agglomeration in the photothermographic material and image storability is improved. The equivalent spherical diameter is preferably from 0.1 μm to 1 μm. In the invention, the equivalent spherical diameter can be measured by a method of photographing a sample directly by using an electron microscope and then image-processing negative images.


In the flake shaped particle, the equivalent spherical diameter of the particle/a is defined as an aspect ratio. The aspect ratio of the flake particle is preferably from 1.1 to 30 and, more preferably, from 1.1 to 15 from a viewpoint of causing less agglomeration in the photothermographic material and improving the image storability.


Concerning the particle size distribution of the organic silver salt, monodispersion is preferred. In the monodispersion, the percentage for the value obtained by dividing the standard deviation for the length of minor axis and major axis by the minor axis and the major axis respectively is, preferably, 100% or less, more preferably, 80% or less and, further preferably, 50% or less. The shape of the organic silver salt can be measured by analyzing a dispersion of an organic silver salt using transmission type electron microscopic images. Another method of measuring the monodispersion is a method of determining of the standard deviation of the volume weighted mean diameter of the organic silver salt in which the percentage for the value defined by the volume weight mean diameter (variation coefficient), is preferably, 100% or less, more preferably, 80% or less and, further preferably, 50% or less. The monodispersion can be determined from particle size (volume weighted mean diameter) obtained, for example, by a measuring method of irradiating a laser beam to an organic silver salt dispersed in a liquid, and determining a self correlation function of the fluctuation of scattered light to the change of time.


3) Preparation


Methods known in the art can be applied to the method for producing the organic silver salt used in the invention and to the dispersing method thereof. For example, reference can be made to JP-A No. 10-62899, EP Nos. 0803763A1 and 0962812A1, JP-A Nos. 11-349591, 2000-7683, 2000-72711, 2001-163889, 2001-163890, 2001-163827, 2001-33907, 2001-188313, 2001-83652, 2002-6442, 2002-49117, 2002-31870, 2002-107868, and the like.


When a photosensitive silver salt is present together during dispersion of the organic silver salt, fog increases and sensitivity becomes remarkably lower, so that it is more preferred that the photosensitive silver salt is not substantially contained during dispersion. In the invention, the amount of the photosensitive silver salt to be dispersed in the aqueous dispersion is preferably 1 mol % or less, more preferably 0.1 mol % or less, per 1 mol of the organic silver salt in the solution and, even more preferably, positive addition of the photosensitive silver salt is not conducted.


In the invention, the photothermographic material can be prepared by mixing an aqueous dispersion of an organic silver salt and an aqueous dispersion of a photosensitive silver salt. The mixing ratio between the organic silver salt and the photosensitive silver salt can be selected depending on the purpose. The ratio of the amount of photosensitive silver salt to the amount of organic silver salt is preferably in a range of from 1 mol % to 30 mol %, more preferably, in a range of from 2 mol % to 20 mol % and, particularly preferably, from 3 mol % to 15 mol %. A method of mixing two or more kinds of aqueous dispersions of organic silver salts and two or more kinds of aqueous dispersions of photosensitive silver salts upon mixing are used preferably for controlling the photographic properties.


4) Addition Amount


While an organic silver salt in the invention can be used in a desired amount, an amount of an organic silver salt is preferably in a range of from 0.1 g/m2 to 5.0 g/m2, more preferably from 0.3 g/m2 to 3.0 g/m2, and even more preferably from 0.5 g/m2 to 2.0 g/m2, with respect to total amount of coated silver including silver halide. Particularly, it is preferred that a total amount of coated silver is preferably 1.8 g/m2 or less, and more preferably from 1.6 g/m2 or less, to improve the image storability. Using the preferable reducing agent of the invention, it is possible to obtain a sufficient image density even with such a low amount of silver.


1-3. Reducing Agent


The photothermographic material of the present invention contains a reducing agent for organic silver salts as a thermal developing agent. The reducing agent for organic silver salts can be any substance (preferably, organic substance) capable of reducing silver ions into metallic silver. Examples of the reducing agent are described in JP-A No. 11-65021 (column Nos. 0043 to 0045) and EP No. 0803764 (p. 7, line 34 to p. 18, line 12).


The reducing agent according to the invention is preferably a so-called hindered phenolic reducing agent or a bisphenol agent having a substituent at the ortho-position to the phenolic hydroxy group. It is more preferably a reducing agent represented by the following formula (R).




embedded image


In formula (R), R11 and R11′ each independently represent an alkyl group having 1 to 20 carbon atoms. R12 and R12′ each independently represent a hydrogen atom or a group capable of substituting for a hydrogen atom on a benzene ring. L represents an —S— group or a —CHR13— group. R13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms. X1 and X1′ each independently represent a hydrogen atom or a group capable of substituting for a hydrogen atom on a benzene ring.


Formula (R) is to be described in detail.


In the following description, when referred to as an alkyl group, it means that the alkyl group contains a cycloalkyl group, as far as it is not mentioned specifically.


1) R11 and R11′


R11 and R11′ each independently represent a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. The substituent for the alkyl group has no particular restriction and can include, preferably, an aryl group, a hydroxy group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an acylamino group, a sulfonamide group, a sulfonyl group, a phosphoryl group, an acyl group, a carbamoyl group, an ester group, a ureido group, a urethane group, a halogen atom, and the like.


2) R12 and R12′, X1 and X1′


R12 and R12′ each independently represent a hydrogen atom or a group capable of substituting for a hydrogen atom on a benzene ring. X1 and X1′ each independently represent a hydrogen atom or a group capable of substituting for a hydrogen atom on a benzene ring. As each of the groups capable of substituting for a hydrogen atom on the benzene ring, an alkyl group, an aryl group, a halogen atom, an alkoxy group, and an acylamino group are described preferably.


3) L


L represents an —S— group or a —CHR13— group. R13 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms in which the alkyl group may have a substituent. Specific examples of the unsubstituted alkyl group for R13 can include, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a heptyl group, an undecyl group, an isopropyl group, a 1-ethylpentyl group, a 2,4,4-trimethylpentyl group, cyclohexyl group, 2,4-dimethyl-3-cyclohexenyl group, 3,5-dimethyl-3-cyclohexenyl group, and the like. Examples of the substituent for the alkyl group can include, similar to the substituent of R11, a halogen atom, an alkoxy group, an alkylthio group, an aryloxy group, an arylthio group, an acylamino group, a sulfonamide group, a sulfonyl group, a phosphoryl group, an oxycarbonyl group, a carbamoyl group, a sulfamoyl group, and the like.


4) Preferred Substituents


R11 and R11′ are preferably a primary, secondary or tertiary alkyl group having 1 to 15 carbon atoms and can include, specifically, a methyl group, an isopropyl group, a t-butyl group, a t-amyl group, a t-octyl group, a cyclohexyl group, a cyclopentyl group, a 1-methylcyclohexyl group, a 1-methylcyclopropyl group, and the like. R11 and R11′ each represent, more preferably, an alkyl group having 1 to 8 carbon atoms and, among them, a methyl group, a t-butyl group, a t-amyl group, and a 1-methylcyclohexyl group are further preferred and, a methyl group and a t-butyl group being most preferred.


R12 and R12′ are preferably an alkyl group having 1 to 20 carbon atoms and can include, specifically, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a t-butyl group, a t-amyl group, a cyclohexyl group, a 1-methylcyclohexyl group, a benzyl group, a methoxymethyl group, a methoxyethyl group, and the like. More preferred are a methyl group, an ethyl group, a propyl group, an isopropyl group, and a t-butyl group, and particularly preferred are a methyl group and an ethyl group.


X1 and X1′ are preferably a hydrogen atom, a halogen atom, or an alkyl group, and more preferably a hydrogen atom.


L is preferably a —CHR13— group.


R13 is preferably a hydrogen atom or an alkyl group having 1 to 15 carbon atoms. The alkyl group is preferably a chain or a cyclic alkyl group. And, a group which has a C═C bond in these alkyl group is also preferably used. Preferable examples of the alkyl group can include a methyl group, an ethyl group, a propyl group, an isopropyl group, a 2,4,4-trimethylpentyl group, a cyclohexyl group, a 2,4-dimethyl-3-cyclohexenyl group, a 3,5-dimetyl-3-cyclohexenyl group and the like. Particularly preferable R13 is a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, or a 2,4-dimethyl-3-cyclohexenyl group.


In the case where R11 and R11′ are a tertiary alkyl group and R12 and R12′ are a methyl group, R13 preferably is a primary or secondary alkyl group having 1 to 8 carbon atoms (a methyl group, an ethyl group, a propyl group, an isopropyl group, a 2,4-dimethyl-3-cyclohexenyl group, or the like).


In the case where R11 and R11′ are tertiary alkyl group and R12 and R12′ are an alkyl group other than a methyl group, R13 preferably is a hydrogen atom.


In the case where R11 and R11′ are not a tertiary alkyl group, R13 preferably is a hydrogen atom or a secondary alkyl group, and particularly preferably a secondary alkyl group. As the secondary alkyl group for R13, an isopropyl group and a 2,4-dimethyl-3-cyclohexenyl group are preferred.


The reducing agent described above shows different thermal developing performances, color tones of developed silver images, or the like depending on the combination of R11, R11′, R12, R12′, and R13. Since these performances can be controlled by using two or more kinds of reducing agents at various mixing ratios, it is preferred to use two or more kinds of reducing agents in combination depending on the purpose.


Specific examples of the reducing agents of the invention including the compounds represented by formula (R) according to the invention are shown below, but the invention is not restricted to these.




embedded image


embedded image


embedded image


As preferred reducing agents of the invention other than those above, there can be mentioned compounds disclosed in JP-A Nos. 2001-188314, 2001-209145, 2001-350235, and 2002-156727, and EP No. 1278101A2.


The addition amount of the reducing agent is preferably from 0.1 g/m2 to 3.0 g/m2, more preferably from 0.2 g/m2 to 2.0 g/m2 and, even more preferably from 0.3 g/m2 to 1.0 g/m2. It is preferably contained in a range of from 5 mol % to 50 mol %, more preferably from 8 mol % to 30 mol % and, even more preferably from 10 mol % to 20 mol %, per 1 mol of silver in the image forming layer. The reducing agent is preferably contained in the image forming layer.


In the invention, the reducing agent may be incorporated into a photothermographic material by being added into the coating solution, such as in the form of a solution, an emulsion dispersion, a solid fine particle dispersion, or the like.


As well known emulsion dispersing method, there can be mentioned a method comprising dissolving the reducing agent in an oil such as dibutylphthalate, tricresylphosphate, dioctylsebacate, tri(2-ethylhexyl)phosphate, or the like, using an auxiliary solvent such as ethyl acetate, cyclohexanone, or the like, and then adding a surfactant such as sodium dodecylbenzenesulfonate, sodium oleoil-N-methyltaurinate, sodium di(2-ethylhexyl)sulfosuccinate or the like; from which an emulsion dispersion is mechanically produced. During the process, for the purpose of controlling viscosity of oil droplet and refractive index, the addition of polymer such as α-methylstyrene oligomer, poly(t-butylacrylamide), or the like is preferable.


As solid particle dispersing method, there can be mentioned a method comprising dispersing the powder of the reducing agent in a proper solvent such as water or the like, by means of ball mill, colloid mill, vibrating ball mill, sand mill, jet mill, roller mill, or ultrasonics, thereby obtaining solid dispersion. In this case, there can also be used a protective colloid (such as poly(vinyl alcohol)), or a surfactant (for instance, an anionic surfactant such as sodium triisopropylnaphthalenesulfonate (a mixture of compounds having the three isopropyl groups in different substitution sites)). In the mills enumerated above, generally used as the dispersion media are beads made of zirconia and the like, and Zr and the like eluting from the beads may be incorporated in the dispersion. Although depending on the dispersing conditions, the amount of Zr and the like generally incorporated in the dispersion is in a range of from 1 ppm to 1000 ppm. It is practically acceptable so long as Zr is incorporated in an amount of 0.5 mg or less per 1 g of silver.


Preferably, an antiseptic (for instance, benzisothiazolinone sodium salt) is added in the water dispersion.


The reducing agent is particularly preferably used as solid particle dispersion, and is added in the form of fine particles having average particle size of from 0.01 μm to 10 μm, preferably from 0.05 μm to 5 μm and, more preferably from 0.1 μm to 2 μm. In the invention, other solid dispersions are preferably used with this particle size range.


1-4. Development Accelerator


In the photothermographic material of the invention, sulfonamide phenolic compounds described in the specification of JP-A No. 2000-267222, and represented by formula (A) described in the specification of JP-A No. 2000-330234; hindered phenolic compounds represented by formula (II) described in JP-A No. 2001-92075; hydrazine compounds described in the specification of JP-A No. 10-62895, represented by formula (I) described in the specification of JP-A No. 11-15116, represented by formula (D) described in the specification of JP-A No. 2002-156727, and represented by formula (1) described in the specification of JP-A No. 2002-278017; and phenolic or naphthalic compounds represented by formula (2) described in the specification of JP-A No. 2001-264929 are used preferably as a development accelerator. Further, phenolic compounds described in JP-A Nos. 2002-311533 and 2002-341484 are also preferable. Naphthalic compounds described in JP-A No. 2003-66558 are particularly preferable. The development accelerator described above is used in a range of from 0.1 mol % to 20 mol %, preferably, in a range of from 0.5 mol % to 10 mol % and, more preferably, in a range of from 1 mol % to 5 mol % with respect to the reducing agent. The introducing methods to the photothermographic material can include similar methods as those for the reducing agent and, it is particularly preferred to add as a solid dispersion or an emulsion dispersion. In the case of adding as an emulsion dispersion, it is preferred to add as an emulsion dispersion dispersed by using a high boiling solvent which is solid at a normal temperature and an auxiliary solvent at a low boiling point, or to add as a so-called oilless emulsion dispersion not using the high boiling solvent.


In the present invention, among the development accelerators described above, it is more preferred to use hydrazine compounds described in the specification of JP-A Nos. 2002-156727 and 2002-278017, and naphtholic compounds described in the specification of JP-A No. 2003-66558.


Particularly preferred development accelerators of the invention are compounds represented by the following formulae (A-1) or (A-2).

Q1—NHNH—Q2  Formula(A-1)


wherein, Q1 represents an aromatic group or a heterocyclic group which bonds to —NHNH—Q2 at a carbon atom, and Q2 represents one selected from a carbamoyl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a sulfonyl group, or a sulfamoyl group. In formula (A-1), the aromatic group or the heterocyclic group represented by Q1 is preferably a 5 to 7-membered unsaturated ring. Preferred examples are benzene ring, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, 1,2,4-triazine ring, 1,3,5-triazine ring, pyrrole ring, imidazole ring, pyrazole ring, 1,2,3-triazole ring, 1,2,4-triazole ring, tetrazole ring, 1,3,4-thiadiazole ring, 1,2,4-thiadiazole ring, 1,2,5-thiadiazole ring, 1,3,4-oxadiazole ring, 1,2,4-oxadiazole ring, 1,2,5-oxadiazole ring, thiazole ring, oxazole ring, isothiazole ring, isooxazole ring, and thiophene ring. Condensed rings, in which the rings described above are condensed to each other, are also preferred.


The rings described above may have substituents and in a case where they have two or more substituents, the substituents may be identical or different with each other. Examples of the substituents can include halogen atom, alkyl group, aryl group, carbonamide group, alkylsulfonamide group, arylsulfonamide group, alkoxy group, aryloxy group, alkylthio group, arylthio group, carbamoyl group, sulfamoyl group, cyano group, alkylsulfonyl group, arylsulfonyl group, alkoxycarbonyl group, aryloxycarbonyl group and acyl group. In a case where the substituents are groups capable of substitution, they may have further substituents and examples of preferred substituents can include halogen atom, alkyl group, aryl group, carbonamide group, alkylsulfonamide group, arylsulfonamide group, alkoxy group, aryloxy group, alkylthio group, arylthio group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, cyano group, sulfamoyl group, alkylsulfonyl group, arylsulfonyl group, and acyloxy group.


The carbamoyl group represented by Q2 is a carbamoyl group preferably having 1 to 50 carbon atoms and, more preferably, having 6 to 40 carbon atoms, and examples can include not-substituted carbamoyl, methyl carbamoyl, N-ethylcarbamoyl, N-propylcarbamoyl, N-sec-butylcarbamoyl, N-octylcarbamoyl, N-cyclohexylcarbamoyl, N-tert-butylcarbamoyl, N-dodecylcarbamoyl, N-(3-dodecyloxypropyl)carbamoyl, N-octadecylcarbamoyl, N-{3-(2,4-tert-pentylphenoxy)propyl}carbamoyl, N-(2-hexyldecyl)carbamoyl, N-phenylcarbamoyl, N-(4-dodecyloxyphenyl)carbamoyl, N-(2-chloro-5-dodecyloxycarbonylphenyl)carbamoyl, N-naphthylcarbaoyl, N-3-pyridylcarbamoyl, and N-benzylcarbamoyl.


The acyl group represented by Q2 is an acyl group having preferably 1 to 50 carbon atoms and, more preferably 6 to 40 carbon atoms and can include, for example, formyl, acetyl, 2-methylpropanoyl, cyclohexylcarbonyl, octanoyl, 2-hexyldecanoyl, dodecanoyl, chloroacetyl, trifluoroacetyl, benzoyl, 4-dodecyloxybenzoyl, and 2-hydroxymethylbenzoyl. Alkoxycarbonyl group represented by Q2 is an alkoxycarbonyl group having preferably 2 to 50 carbon atoms, and more preferably, 6 to 40 carbon atoms and can include, for example, methoxycarbonyl, ethoxycarbonyl, isobutyloxycarbonyl, cyclohexyloxycarbonyl, dodecyloxycarbonyl, and benzyloxycarbonyl.


The aryloxy carbonyl group represented by Q2 is an aryloxycarbonyl group preferably having 7 to 50 carbon atoms and, more preferably, having 7 to 40 carbon atoms and can include, for example, phenoxycarbonyl, 4-octyloxyphenoxycarbonyl, 2-hydroxymethylphenoxycarbonyl, and 4-dodecyloxyphenoxycarbonyl. The sulfonyl group represented by Q2 is a sulfonyl group, preferably having 1 to 50 carbon atoms and, more preferably, having 6 to 40 carbon atoms and can include, for example, methylsulfonyl, butylsulfonyl, octylsulfonyl, 2-hexadecylsulfonyl, 3-dodecyloxypropylsulfonyl, 2-octyloxy-5-tert-octylphenyl sulfonyl, and 4-dodecyloxyphenyl sulfonyl.


The sulfamoyl group represented by Q2 is sulfamoyl group preferably having 0 to 50 carbon atoms, and more preferably, 6 to 40 carbon atoms and can include, for example, not-substituted sulfamoyl, N-ethylsulfamoyl group, N-(2-ethylhexyl)sulfamoyl, N-decylsulfamoyl, N-hexadecylsulfamoyl, N-{3-(2-ethylhexyloxy)propyl}sulfamoyl, N-(2-chloro-5-dodecyloxycarbonylphenyl)sulfamoyl, and N-(2-tetradecyloxyphenyl)sulfamoyl. The group represented by Q2 may further have a group mentioned as the example of the substituent of 5 to 7-membered unsaturated ring represented by Q1 at the position capable of substitution. In a case where the group has two or more substituents, such substituents may be identical or different from each other.


Then, preferred range for the compounds represented by formula (A-1) is to be described. A 5 to 6-membered unsaturated ring is preferred for Q1, and benzene ring, pyrimidine ring, 1,2,3-triazole ring, 1,2,4-triazole ring, tetrazole ring, 1,3,4-thiadiazole ring, 1,2,4-thiadiazole ring, 1,3,4-oxadiazole ring, 1,2,4-oxadiazole ring, thioazole ring, oxazole ring, isothiazole ring, isooxazole ring, and a ring in which the ring described above is condensed with a benzene ring or unsaturated hetero ring are further preferred. Further, Q2 is preferably a carbamoyl group and, particularly, a carbamoyl group having hydrogen atom on the nitrogen atom is particularly preferred.




embedded image


In formula (A-2), R1 represents one selected from an alkyl group, an acyl group, an acylamino group, a sulfonamide group, an alkoxycarbonyl group, or a carbamoyl group. R2 represents one selected from a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an acyloxy group, or a carbonate ester group. R3 and R4 each independently represent a group capable of substituting for a hydrogen atom on a benzene ring which is mentioned as the example of the substituent for formula (A-1). R3 and R4 may link together to form a condensed ring. R1 is preferably an alkyl group having 1 to 20 carbon atoms (for example, a methyl group, an ethyl group, an isopropyl group, a butyl group, a tert-octyl group, a cyclohexyl group, or the like), an acylamino group (for example, an acetylamino group, a benzoylamino group, a methylureido group, a 4-cyanophenylureido group, or the like), and a carbamoyl group (for example, a n-butylcarbamoyl group, an N,N-diethylcarbamoyl group, a phenylcarbamoyl group, a 2-chlorophenylcarbamoyl group, a 2,4-dichlorophenylcarbamoyl group, or the like). Among them, an acylamino group (including a ureido group or a urethane group) is more preferred. R2 is preferably a halogen atom (more preferably, a chlorine atom, a bromine atom), an alkoxy group (for example, a methoxy group, a butoxy group, a n-hexyloxy group, a n-decyloxy group, a cyclohexyloxy group, a benzyloxy group, or the like), or an aryloxy group (for example, a phenoxy group, a naphthoxy group, or the like).


R3 is preferably a hydrogen atom, a halogen atom, or an alkyl group having 1 to 20 carbon atoms, and most preferably a halogen atom. R4 is preferably a hydrogen atom, alkyl group, or an acylamino group, and more preferably an alkyl group or an acylamino group. Examples of the preferred substituent thereof are similar to those for R1. In a case where R4 is an acylamino group, R4 may preferably link with R3 to form a carbostyryl ring. In a case where R3 and R4 in formula (A-2) link together to form a condensed ring, a naphthalene ring is particularly preferred as the condensed ring. The same substituent as the example of the substituent referred to for formula (A-1) may bond to the naphthalene ring. In a case where formula (A-2) is a naphtholic compound, R1, is, preferably, a carbamoyl group. Among them, benzoyl group is particularly preferred. R2 is, preferably, one of an alkoxy group and an aryloxy group and, particularly preferably an alkoxy group.


Preferred specific examples for the development accelerator of the invention are to be described below. The invention is not restricted to them.




embedded image


embedded image



1-5. Hydrogen Bonding Compound


In the invention, in the case where the reducing agent has an aromatic hydroxy group (—OH) or an amino group (—NHR, R represents a hydrogen atom or an alkyl group), particularly in the case where the reducing agent is a bisphenol described above, it is preferred to use in combination, a non-reducing compound having a group capable of reacting with these groups, and that is also capable of forming a hydrogen bond therewith.


As a group capable of forming a hydrogen bond with a hydroxy group or an amino group, there can be mentioned a phosphoryl group, a sulfoxide group, a sulfonyl group, a carbonyl group, an amide group, an ester group, a urethane group, a ureido group, a tertiary amino group, a nitrogen-containing aromatic group, and the like. Preferred among them are a phosphoryl group, a sulfoxide group, an amide group (not having >N—H moiety but being blocked in the form of >N—Ra (where, Ra represents a substituent other than H)), a urethane group (not having >N—H moiety but being blocked in the form of >N—Ra (where, Ra represents a substituent other than H)), and a ureido group (not having >N—H moiety but being blocked in the form of >N—Ra (where, Ra represents a substituent other than H)).


In the invention, particularly preferable as the hydrogen bonding compound is the compound expressed by formula (D) shown below.




embedded image


In formula (D), R21 to R23 each independently represent one selected from an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, or a heterocyclic group, which may be substituted or unsubstituted.


In the case where R21 to R23 have a substituent, examples of the substituent include a halogen atom, an alkyl group, an aryl group, an alkoxy group, an amino group, an acyl group, an acylamino group, an alkylthio group, an arylthio group, a sulfonamide group, an acyloxy group, an oxycarbonyl group, a carbamoyl group, a sulfamoyl group, a sulfonyl group, a phosphoryl group, and the like, in which preferred as the substituents are an alkyl group or an aryl group, e.g., a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a t-octyl group, a phenyl group, a 4-alkoxyphenyl group, a 4-acyloxyphenyl group, and the like.


Specific examples of an alkyl group expressed by R21 to R23 include a methyl group, an ethyl group, a butyl group, an octyl group, a dodecyl group, an isopropyl group, a t-butyl group, a t-amyl group, a t-octyl group, a cyclohexyl group, a 1-methylcyclohexyl group, a benzyl group, a phenetyl group, a 2-phenoxypropyl group, and the like.


As an aryl group, there can be mentioned a phenyl group, a cresyl group, a xylyl group, a naphthyl group, a 4-t-butylphenyl group, a 4-t-octylphenyl group, a 4-anisidyl group, a 3,5-dichlorophenyl group, and the like.


As an alkoxyl group, there can be mentioned a methoxy group, an ethoxy group, a butoxy group, an octyloxy group, a 2-ethylhexyloxy group, a 3,5,5-trimethylhexyloxy group, a dodecyloxy group, a cyclohexyloxy group, a 4-methylcyclohexyloxy group, a benzyloxy group, and the like.


As an aryloxy group, there can be mentioned a phenoxy group, a cresyloxy group, an isopropylphenoxy group, a 4-t-butylphenoxy group, a naphthoxy group, a biphenyloxy group, and the like.


As an amino group, there can be mentioned are a dimethylamino group, a diethylamino group, a dibutylamino group, a dioctylamino group, an N-methyl-N-hexylamino group, a dicyclohexylamino group, a diphenylamino group, an N-methyl-N-phenylamino, and the like.


Preferred as R21 to R23 are an alkyl group, an aryl group, an alkoxy group, and an aryloxy group. Concerning the effect of the invention, it is preferred that at least one or more of R21 to R23 are an alkyl group or an aryl group, and more preferably, two or more of them are an alkyl group or an aryl group. From the viewpoint of low cost availability, it is preferred that R21 to R23 are of the same group.


Specific examples of hydrogen bonding compounds represented by formula (D) of the invention and others are shown below, but it should be understood that the invention is not limited thereto.




embedded image


embedded image


Specific examples of hydrogen bonding compounds other than those enumerated above can be found in those described in EP No. 1096310, JP-A Nos. 2002-156727 and 2002-318431.


The hydrogen bonding compound of the invention can be used in the photothermographic material by being incorporated into a coating solution in the form of solution, emulsion dispersion, or solid fine particle dispersion, similar to the case of the reducing agent. In the solution, the hydrogen bonding compound of the invention forms a hydrogen-bonded complex with a compound having a phenolic hydroxy group, and can be isolated as a complex in crystalline state depending on the combination of the reducing agent and the compound expressed by formula (D).


It is particularly preferred to use the crystal powder thus isolated in the form of a solid fine particle dispersion, because it provides stable performance. Further, it is also preferred to use a method of leading to form complex during dispersion by mixing the reducing agent and the hydrogen bonding compound of the invention in the form of powders and dispersing them with a proper dispersing agent using a sand grinder mill or the like.


The hydrogen bonding compound of the invention is preferably used in a range of from 1 mol % to 200 mol %, more preferably from 10 mol % to 150 mol %, and even more preferably, from 20 mol % to 100 mol %, with respect to the reducing agent.


1-6. Photosensitive Silver Halide


1) Halogen Composition


For the photosensitive silver halide used in the invention, there is no particular restriction on the halogen composition and silver chloride, silver chlorobromide, silver bromide, silver iodobromide, silver iodochlorobromide, or silver iodide can be used. Among them, silver bromide, silver iodobromide, and silver iodide are preferred. The distribution of the halogen composition in a grain may be uniform or the halogen composition may be changed stepwise, or it may be changed continuously. Further, a silver halide grain having a core/shell structure can be used preferably. Preferred structure is a twofold to fivefold structure and, more preferably, core/shell grain having a twofold to fourfold structure can be used. Further, a technique of localizing silver bromide or silver iodide on the surface of a silver chloride, silver bromide, or silver chlorobromide grains can also be used preferably.


2) Method of Grain Formation


The method of forming photosensitive silver halide is well-known in the relevant art and, for example, methods described in Research Disclosure No. 17029, June 1978 and U.S. Pat. No. 3,700,458 can be used. Specifically, a method of preparing a photosensitive silver halide by adding a silver-supplying compound and a halogen-supplying compound in a gelatin or other polymer solution and then mixing them with an organic silver salt is used. Further, a method described in JP-A No. 11-119374 (paragraph numbers 0217 to 0224) and methods described in JP-A Nos. 11-352627 and 2000-347335 are also preferred.


3) Grain Size


The grain size of the photosensitive silver halide is preferably small with an aim of suppressing clouding after image formation and, specifically, it is 0.20 μm or less, more preferably, from 0.01 μm to 0.15 μm and, even more preferably, from 0.02 μm to 0.12 μm. The grain size as used herein means an average diameter of a circle converted such that it has a same area as a projected area of the silver halide grain (projected area of a major plane in a case of a tabular grain).


4) Grain Shape


The shape of the silver halide grain can include, for example, cubic, octahedral, tabular, spherical, rod-like or potato-like shape. The cubic grain is particularly preferred in the invention. Silver halide grains rounded at corners can also be used preferably. The surface indices (Miller indices) of the outer surface of a photosensitive silver halide grain is not particularly restricted, and it is preferable that the ratio occupied by the {100} face is large, because of showing high spectral sensitization efficiency when a spectral sensitizing dye is adsorbed. The ratio is preferably 50% or more, more preferably, 65% or more and, further preferably, 80% or more. The ratio of the {100} face, Miller indices, can be determined by a method described in T. Tani; J. Imaging Sci., vol. 29, page 165, (1985) utilizing adsorption dependency of the {111} face and {100} face in adsorption of a sensitizing dye.


5) Heavy Metal


The photosensitive silver halide grain of the invention can contain metals or complexes of metals belonging to groups 3 to 13 of the periodic table (showing groups 1 to 18). Among the metals or complexes of metals belonging to groups 3 to 13 of the periodic table, preferred are ferrum, rhodium, ruthenium, or iridium of groups 6 to 10 of the periodic table. The metal complex may be used alone, or two or more kinds of complexes comprising identical or different species of metals may be used together. The content is preferably in a range of from 1×10−9 mol to 1×10−3 mol per 1 mol of silver. The heavy metals, metal complexes and the adding method thereof are described in JP-A No. 7-225449, in paragraph numbers 0018 to 0024 of JP-A No. 11-65021, and in paragraph numbers 0227 to 0240 of JP-A No. 11-119374.


In the present invention, a silver halide grain having a hexacyano metal complex present on the outermost surface of the grain is preferred. The hexacyano metal complex includes, for example, [Fe(CN)6]4−, [Fe(CN)6]3−, [Ru(CN)6]4−, [Os(CN)6]4−, [Co(CN)6]3−, [Rh(CN)6]3−, [Ir(CN)6]3−, [Cr(CN)6]3−, and [Re(CN)6]3−. In the invention, hexacyano Fe complex is preferred.


Since the hexacyano complex exists in ionic form in an aqueous solution, paired cation is not important and alkali metal ion such as sodium ion, potassium ion, rubidium ion, cesium ion, and lithium ion, ammonium ion, and alkyl ammonium ion (for example, tetramethyl ammonium ion, tetraethyl ammonium ion, tetrapropyl ammonium ion, and tetra(n-butyl) ammonium ion), which are easily miscible with water and suitable to precipitation operation of a silver halide emulsion are preferably used.


The hexacyano metal complex can be added while being mixed with water, as well as a mixed solvent of water and an appropriate organic solvent miscible with water (for example, alcohols, ethers, glycols, ketones, esters, amides, or the like) or gelatin.


The addition amount of the hexacyano metal complex is preferably from 1×10−5 mol to 1×10−2 mol and, more preferably, from 1×10−4 mol to 1×10−3, per 1 mol of silver in each case.


In order to allow the hexacyano metal complex to be present on the outermost surface of a silver halide grain, the hexacyano metal complex is directly added in any stage of: after completion of addition of an aqueous solution of silver nitrate used for grain formation, before completion of an emulsion formation step prior to a chemical sensitization step, of conducting chalcogen sensitization such as sulfur sensitization, selenium sensitization, and tellurium sensitization or noble metal sensitization such as gold sensitization, during a washing step, during a dispersion step and before a chemical sensitization step. In order not to grow fine silver halide grains, the hexacyano metal complex is rapidly added preferably after the grain is formed, and it is preferably added before completion of an emulsion formation step.


Addition of the hexacyano complex may be started after addition of 96% by weight of an entire amount of silver nitrate to be added for grain formation, more preferably started after addition of 98% by weight and, particularly preferably, started after addition of 99% by weight.


When any of the hexacyano metal complexes is added after addition of an aqueous silver nitrate just before completion of grain formation, it can be adsorbed to the outermost surface of the silver halide grain and most of them form an insoluble salt with silver ions on the surface of the grain. Since silver salt of hexacyano iron (II) is a less soluble salt than AgI, re-dissolution with fine grains can be prevented and fine silver halide grains with smaller grain size can be prepared.


Metal atoms that can be contained in the silver halide grain used in the invention (for example, [Fe(CN)6]4−), desalting method of a silver halide emulsion and chemical sensitizing method are described in paragraph numbers 0046 to 0050 of JP-A No. 11-84574, in paragraph numbers 0025 to 0031 of JP-A No. 11-65021, and paragraph numbers 0242 to 0250 of JP-A No. 11-119374.


6) Gelatin


As the gelatin contained the photosensitive silver halide emulsion used in the invention, various kinds of gelatins can be used. It is necessary to maintain an excellent dispersion state of a photosensitive silver halide emulsion in an organic silver salt containing coating solution, and gelatin having a molecular weight of from 10,000 to 1,000,000 is preferably used. Phthalated gelatin is also preferably used. These gelatins may be used at grain formation step or at the time of dispersion after desalting treatment and it is preferably used at grain formation step.


7) Sensitizing Dye


As the sensitizing dye applicable in the invention, those capable of spectrally sensitizing silver halide grains in a desired wavelength region upon adsorption to silver halide grains having spectral sensitivity suitable to the spectral characteristic of an exposure light source can be advantageously selected. The sensitizing dyes and the adding method are disclosed, for example, JP-A No. 11-65021 (paragraph numbers 0103 to 0109), as a compound represented by the formula (II) in JP-A No. 10-186572, dyes represented by the formula (I) in JP-A No. 11-119374 (paragraph number 0106), dyes described in U.S. Pat. Nos. 5,510,236 and 3,871,887 (Example 5), dyes disclosed in JP-A Nos. 2-96131 and 59-48753, as well as in page 19, line 38 to page 20, line 35 of EP No. 0803764A1, and in JP-A Nos. 2001-272747, 2001-290238 and 2002-23306. The sensitizing dyes described above may be used alone or two or more of them may be used in combination. In the invention, sensitizing dye can be added preferably after a desalting step and before coating, and more preferably after a desalting step and before the completion of chemical ripening.


In the invention, the sensitizing dye may be added at any amount according to the property of sensitivity and fogging, but it is preferably added from 10−6 mol to 1 mol, and more preferably from 10−4 mol to 10−1 mol, per 1 mol of silver halide in the image forming layer.


The photothermographic material of the invention may also contain super sensitizers in order to improve the spectral sensitizing effect. The super sensitizers usable in the invention can include those compounds described in EP-A No. 587338, U.S. Pat. Nos. 3,877,943 and 4,873,184, JP-A Nos. 5-341432, 11-109547, and 10-111543, and the like.


8) Chemical Sensitization


The photosensitive silver halide grain in the invention is preferably chemically sensitized by a sulfur sensitizing method, selenium sensitizing method or tellurium sensitizing method. As the compound used preferably for sulfur sensitizing method, selenium sensitizing method, and tellurium sensitizing method, known compounds, for example, compounds described in JP-A No. 7-128768 can be used. Particularly, tellurium sensitization is preferred in the invention and compounds described in the literature cited in paragraph number 0030 in JP-A No. 11-65021 and compounds shown by formulae (II), (III), or (IV) in JP-A No. 5-313284 are preferred.


The photosensitive silver halide grain in the invention is preferably chemically sensitized by gold sensitizing method alone or in combination with the chalcogen sensitization described above. As the gold sensitizer, those having an oxidation number of gold of either +1 or +3 are preferred and those gold compounds used usually as the gold sensitizer are preferred. As typical examples, chloroauric acid, bromoauric acid, potassium chloroaurate, potassium bromoaurate, auric trichloride, potassium auric thiocyanate, potassium iodoaurate, tetracyanoauric acid, ammonium aurothiocyanate, and pyridyl trichloro gold are preferred. Further, gold sensitizers described in U.S. Pat. No. 5,858,637 and JP-A No. 2002-278016 are also used preferably.


In the invention, chemical sensitization can be applied at any time so long as it is after grain formation and before coating and it can be applied, after desalting, (1) before spectral sensitization, (2) simultaneously with spectral sensitization, (3) after spectral sensitization, (4) just before coating, or the like.


The addition amount of sulfur, selenium, and tellurium sensitizer used in the invention may vary depending on the silver halide grain used, the chemical ripening condition, and the like and it is used in an amount of from about 10−8 mol to 10−2 mol, and preferably, from 10−7 mol to 10−3 mol, per 1 mol of silver halide.


The addition amount of the gold sensitizer may vary depending on various conditions and it is about from 10−7 mol to 10−3 mol and, more preferably, from 10−6 mol to 5×10−4 mol, per 1 mol of silver halide.


There is no particular restriction on the condition for the chemical sensitization in the invention and, appropriately, the pH is from 5 to 8, the pAg is from 6 to 11, and the temperature is at from 40° C. to 95° C.


In the silver halide emulsion used in the invention, a thiosulfonate compound may be added by the method shown in EP-A No. 293917.


A reductive compound is preferably used for the photosensitive silver halide grain in the invention. As the specific compound for the reduction sensitization, ascorbic acid and thiourea dioxide are preferred, as well as use of stannous chloride, aminoimino methane sulfonic acid, hydrazine derivatives, borane compounds, silane compounds, and polyamine compounds are preferred. The reduction sensitizer may be added at any stage in the photosensitive emulsion production process from crystal growth to a preparation step just before coating. Further, it is preferred to apply reduction sensitization by ripening while keeping the pH to 7 or higher or the pAg to 8.3 or lower for the emulsion, and it is also preferred to apply reduction sensitization by introducing a single addition portion of silver ions during grain formation.


9) Compound that can be One-electron-oxidized to Provide a One-electron Oxidation Product which Releases One or More Electrons


The photothermographic material of the invention preferably contains a compound that can be one-electron-oxidized to provide a one-electron oxidation product which releases one or more electrons. The said compound can be used alone or in combination with various chemical sensitizers described above to increase the sensitivity of silver halide.


The compound that can be one-electron-oxidized to provide a one-electron oxidation product which releases one or more electrons is a compound selected from the following Groups 1 or 2.


(Group 1) a compound that can be one-electron-oxidized to provide a one-electron oxidation product which further releases one or more electrons, due to being subjected to a subsequent bond cleavage reaction;


(Group 2) a compound that can be one-electron-oxidized to provide a one-electron oxidation product, which further releases one or more electrons after being subjected to a subsequent bond formation reaction.


The compound of Group 1 will be explained below.


In the compound of Group 1, as for a compound that can be one-electron-oxidized to provide a one-electron oxidation product which further releases one electron, due to being subjected to a subsequent bond cleavage reaction, specific examples include examples of compound referred to as “one photon two electrons sensitizer” or “deprotonating electron-donating sensitizer” described in JP-A No. 9-211769 (Compound PMT-1 to S-37 in Tables E and F, pages 28 to 32); JP-A No. 9-211774; JP-A No. 11-95355 (Compound INV 1 to 36); JP-W No. 2001-500996 (Compound 1 to 74, 80 to 87, and 92 to 122); U.S. Pat. Nos. 5,747,235 and 5,747,236; EP No. 786692A1 (Compound INV 1 to 35); EP No. 893732A1; U.S. Pat. Nos. 6,054,260 and 5,994,051; etc. Preferred ranges of these compounds are the same as the preferred ranges described in the quoted specifications.


In the compound of Group 1, as for a compound that can be one-electron-oxidized to provide a one-electron oxidation product which further releases one or more electrons, due to being subjected to a subsequent bond cleavage reaction, specific examples include the compounds represented by formula (1) (same as formula (1) described in JP-A No. 2003-114487), formula (2) (same as formula (2) described in JP-A No. 2003-114487), formula (3) (same as formula (1) described in JP-A No. 2003-114488), formula (4) (same as formula (2) described in JP-A No. 2003-114488), formula (5) (same as formula (3) described in JP-A No. 2003-114488), formula (6) (same as formula (1) described in JP-A No. 2003-75950), formula (7) (same as formula (2) described in JP-A No. 2003-75950), and formula (8), and the compound represented by formula (9) among the compounds which can undergo the chemical reaction represented by reaction formula (1). And the preferable range of these compounds is the same as the preferable range described in the quoted specification.




embedded image


embedded image


In the formulae, RED1 and RED2 represent a reducing group. R1 represents a nonmetallic atomic group forming a cyclic structure equivalent to a tetrahydro derivative or an octahydro derivative of a 5 or 6-membered aromatic ring (including a hetero aromatic ring) with a carbon atom (C) and RED1. R2 represents a hydrogen atom or a substituent. In the case where plural R2s exist in a same molecule, these may be identical or different from each other. L1 represents a leaving group. ED represents an electron-donating group. Z1 represents an atomic group capable to form a 6-membered ring with a nitrogen atom and two carbon atoms of a benzene ring. X1 represents a substituent, and m1 represents an integer of from 0 to 3. Z2 represents one selected from —CR11R12—, —NR13—, or —O—. R11 and R12 each independently represent a hydrogen atom or a substituent. R13 represents one selected from a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group. X1 represents one selected from an alkoxy group, an aryloxy group, a heterocyclic oxy group, an alkylthio group, an arylthio group, a heterocyclic thio group, an alkylamino group, an arylamino group, or a heterocyclic amino group. L2 represents a carboxyl group or a salt thereof, or a hydrogen atom. X2 represents a group to form a 5-membered heterocycle with C═C. Y2 represents a group to form a 5-membered aryl group or heterocyclic group with C═C. M represents one selected from a radical, a radical cation, or a cation.


Next, the compound of Group 2 is explained.


In the compound of Group 2, as for a compound that can be one-electron-oxidized to provide a one-electron oxidation product which further releases one or more electrons, after being subjected to a subsequent bond cleavage reaction, specific examples can include the compound represented by formula (10) (same as formula (1) described in JP-A No.2003-140287), and the compound represented by formula (11) which can undergo the chemical reaction represented by reaction formula (1). The preferable range of these compounds is the same as the preferable range described in the quoted specification.




embedded image


In the formulae described above, X represents a reducing group which can be one-electron-oxidized. Y represents a reactive group containing a carbon-carbon double bond part, a carbon-carbon triple bond part, an aromatic group part or benzo-condensed nonaromatic heterocyclic group which can react with one-electron-oxidized product formed by one-electron-oxidation of X to form a new bond. L2 represents a linking group to link X and Y. R2 represents a hydrogen atom or a substituent. In the case where plural R2s exist in a same molecule, these may be identical or different from each other. X2 represents a group to form a 5-membered heterocycle with C═C. Y2 represents a group to form a 5 or 6-membered aryl group or heterocyclic group with C═C. M represents one selected from a radical, a radical cation, or a cation.


The compounds of Groups 1 or 2 preferably are “the compound having an adsorptive group to silver halide in a molecule” or “the compound having a partial structure of a spectral sensitizing dye in a molecule”. The representative adsorptive group to silver halide is the group described in JP-A No. 2003-156823, page 16 right, line 1 to page 17 right, line 12. A partial structure of a spectral sensitizing dye is the structure described in JP-A No. 2003-156823, page 17 right, line 34 to page 18 right, line 6.


As the compound of Groups 1 or 2, “the compound having at least one adsorptive group to silver halide in a molecule” is more preferred, and “the compound having two or more adsorptive groups to silver halide in a molecule” is further preferred. In the case where two or more adsorptive groups exist in a single molecule, those adsorptive groups may be identical or different from each other.


As preferable adsorptive group, a mercapto-substituted nitrogen-containing heterocyclic group (e.g., a 2-mercaptothiazole group, a 3-mercapto-1,2,4-triazole group, a 5-mercaptotetrazole group, a 2-mercapto-1,3,4-oxadiazole group, a 2-mercaptobenzoxazole group, a 2-mercaptobenzothiazole group, a 1,5-dimethyl-1,2,4-triazolium-3-thiolate group, or the like) or a nitrogen-containing heterocyclic group having —NH— group as a partial structure of heterocycle capable to form a silver imidate (>NAg) (e.g., a benzotriazole group, a benzimidazole group, an indazole group, or the like) are described. A 5-mercaptotetrazole group, a 3-mercapto-1,2,4-triazole group and a benzotriazole group are particularly preferable and a 3-mercapto-1,2,4-triazole group and a 5-mercaptotetrazole group are most preferable.


As an adsorptive group, the group which has two or more mercapto groups as a partial structure in a molecule is also particularly preferable. Herein, a mercapto group (—SH) may become a thione group in the case where it can tautomerize. Preferred examples of an adsorptive group having two or more mercapto groups as a partial structure (dimercapto-substituted nitrogen-containing heterocyclic group and the like) are a 2,4-dimercaptopyrimidine group, a 2,4-dimercaptotriazine group and a 3,5-dimercapto-1,2,4-triazole group.


Further, a quaternary salt structure of nitrogen or phosphorus is also preferably used as an adsorptive group. As typical quaternary salt structure of nitrogen, an ammonio group (a trialkylammonio group, a dialkylarylammonio group, a dialkylheteroarylammonio group, an alkyldiarylammonio group, an alkyldiheteroarylammonio group, or the like) and a nitrogen-containing heterocyclic group containing quaternary nitrogen atom can be used. As a quaternary salt structure of phosphorus, a phosphonio group (a trialkylphosphonio group, a dialkylarylphosphonio group, a dialkylheteroarylphosphonio group, an alkyldiarylphosphonio group, an alkyldiheteroarylphosphonio group, a triarylphosphonio group, a triheteroarylphosphonio group, or the like) is described. A quaternary salt structure of nitrogen is more preferably used and a 5 or 6-membered aromatic heterocyclic group containing a quaternary nitrogen atom is further preferably used. Particularly preferably, a pyrydinio group, a quinolinio group and an isoquinolinio group are used. These nitrogen-containing heterocyclic groups containing a quaternary nitrogen atom may have any substituent.


Examples of counter anions of quaternary salt are a halogen ion, carboxylate ion, sulfonate ion, sulfate ion, perchlorate ion, carbonate ion, nitrate ion, BF4, PF6, Ph4B, and the like. In the case where the group having negative charge at carboxylate group and the like exists in a molecule, an inner salt may be formed with it. As a counter ion outside of a molecule, chloro ion, bromo ion and methanesulfonate ion are particularly preferable.


The preferred structure of the compound represented by Groups 1 or 2 having a quaternary salt of nitrogen or phosphorus as an adsorptive group is represented by formula (X).




embedded image


In formula (X), P and R each independently represent a quaternary salt structure of nitrogen or phosphorus, which is not a partial structure of a spectral sensitizing dye. Q1 and Q2 each independently represent a linking group and typically represent a single bond, an alkylene group, an arylene group, a heterocyclic group, —O—, —S—, —NRN, —C(═O)—, —SO2—, —SO—, —P(═O)— and the group which consists of combination of these groups. Herein, RN represents one selected from a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group. S represents a residue which is obtained by removing one atom from the compound represented by Group 1 or 2. i and j are an integer of one or more and are selected in a range of i+j=2 to 6. The case where i is 1 to 3 and j is 1 to 2 is preferable, the case where i is 1 or 2 and j is 1 is more preferable, and the case where i is 1 and j is 1 is particularly preferable. The compound represented by formula (X) preferably has 10 to 100 carbon atoms in total, more preferably 10 to 70 carbon atoms, further preferably 11 to 60 carbon atoms, and particularly preferably 12 to 50 carbon atoms in total.


The compounds of Groups 1 or 2 may be used at any time during preparation of the photosensitive silver halide emulsion and production of the photothermographic material. For example, the compound may be used in a photosensitive silver halide grain formation step, in a desalting step, in a chemical sensitization step, and before coating, etc. The compound may be added in several times, during these steps. The compound is preferably added after the photosensitive silver halide grain formation step and before the desalting step; at the chemical sensitization step (just before the chemical sensitization to immediately after the chemical sensitization); or before coating. The compound is more preferably added at the chemical sensitization step to before mixing with the non-photosensitive organic silver salt.


It is preferred that the compound of Groups 1 or 2 used in the invention is dissolved in water, a water-soluble solvent such as methanol and ethanol, or a mixed solvent thereof. In the case where the compound is dissolved in water and solubility of the compound is increased by increasing or decreasing a pH value of the solvent, the pH value may be increased or decreased to dissolve and add the compound.


The compound of Groups 1 or 2 used in the invention is preferably used in the image forming layer comprising the photosensitive silver halide and the non-photosensitive organic silver salt. The compound may be added to a surface protective layer or an intermediate layer, as well as the image forming layer comprising the photosensitive silver halide and the non-photosensitive organic silver salt, to be diffused to the image forming layer in the coating step. The compound may be added before or after addition of a sensitizing dye. Each compound is contained in the image forming layer preferably in an amount of from 1×10−9 mol to 5×10−1 mol, and more preferably from 1×10−8 mol to 5×10−2 mol, per 1 mol of silver halide.


10) Compound having Adsorptive Group and Reducing Group


The photothermographic material of the present invention preferably comprises a compound having an adsorptive group to silver halide and a reducing group in a molecule. It is preferred that the compound is represented by the following formula (I).

A-(W)n-B  Formula (I)


In formula (I), A represents a group capable of adsorption to a silver halide (hereafter, it is called an adsorptive group), W represents a divalent linking group, n represents 0 or 1, and B represents a reducing group.


In formula (I), the adsorptive group represented by A is a group to adsorb directly to a silver halide or a group to promote adsorption to a silver halide. As typical examples, a mercapto group (or a salt thereof), a thione group (—C(═S)—), a nitrogen atom, a heterocyclic group containing at least one atom selected from a nitrogen atom, a sulfur atom, a selenium atom, or a tellurium atom, a sulfide group, a disulfide group, a cationic group, an ethynyl group, and the like are described.


The mercapto group as an adsorptive group means a mercapto group (and a salt thereof) itself and simultaneously more preferably represents a heterocyclic group or an aryl group or an alkyl group substituted by at least one mercapto group (or a salt thereof). Herein, as the heterocyclic group, a monocyclic or a condensed aromatic or nonaromatic heterocyclic group having at least a 5 to 7-membered ring, for example, an imidazole ring group, a thiazole ring group, an oxazole ring group, a benzimidazole ring group, a benzothiazole ring group, a benzoxazole ring group, a triazole ring group, a thiadiazole ring group, an oxadiazole ring group, a tetrazole ring group, a purine ring group, a pyridine ring group, a quinoline ring group, an isoquinoline ring group, a pyrimidine ring group, a triazine ring group, and the like are described. A heterocyclic group having a quaternary nitrogen atom may also be adopted, wherein a mercapto group as a substituent may dissociate to form a mesoion. When the mercapto group forms a salt, a counter ion of the salt may be a cation of an alkaline metal, an alkaline earth metal, a heavy metal, or the like, such as Li+, Na+, K+, Mg2+, Ag+ and Zn2+; an ammonium ion; a heterocyclic group containing a quaternary nitrogen atom; a phosphonium ion; or the like.


Further, the mercapto group as an adsorptive group may become a thione group by a tautomerization.


The thione group used as the adsorptive group also include a linear or cyclic thioamide group, thiouredide group, thiourethane group, and dithiocarbamate ester group.


The heterocyclic group, as an adsorptive group, which contains at least one atom selected from a nitrogen atom, a sulfur atom, a selenium atom, or a tellurium atom, represents a nitrogen-containing heterocyclic group having —NH— group, as a partial structure of a heterocycle, capable to form a silver iminate (>NAg) or a heterocyclic group, having an —S— group, a —Se— group, a —Te— group or a ═N— group as a partial structure of a heterocycle, and capable to coordinate to a silver ion by a chelate bonding. As the former examples, a benzotriazole group, a triazole group, an indazole group, a pyrazole group, a tetrazole group, a benzimidazole group, an imidazole group, a purine group, and the like are described. As the latter examples, a thiophene group, a thiazole group, an oxazole group, a benzophthiophene group, a benzothiazole group, a benzoxazole group, a thiadiazole group, an oxadiazole group, a triazine group, a selenoazole group, a benzoselenazole group, a tellurazole group, a benzotellurazole group, and the like are described.


The sulfide group or disulfide group as an adsorptive group contains all groups having “—S—” or “—S—S—” as a partial structure.


The cationic group as an adsorptive group means the group containing a quaternary nitrogen atom, such as an ammonio group or a nitrogen-containing heterocyclic group including a quaternary nitrogen atom. As examples of the heterocyclic group containing a quaternary nitrogen atom, a pyridinio group, a quinolinio group, an isoquinolinio group, an imidazolio group, and the like are described.


The ethynyl group as an adsorptive group means —C≡CH group and the said hydrogen atom may be substituted.


The adsorptive group described above may have any substituent.


Further, as typical examples of an adsorptive group, the compounds described in pages 4 to 7 in the specification of JP-A No. 11-95355 are described.


As an adsorptive group represented by A in formula (I), a heterocyclic group substituted by a mercapto group (e.g., a 2-mercaptothiadiazole group, a 2-mercapto-5-aminothiadiazole group, a 3-mercapto-1,2,4-triazole group, a 5-mercaptotetrazole group, a 2-mercapto-1,3,4-oxadiazole group, a 2-mercaptobenzimidazole group, a 1,5-dimethyl-1,2,4-triazorium-3-thiolate group, a 2,4-dimercaptopyrimidine group, a 2,4-dimercaptotriazine group, a 3,5-dimercapto-1,2,4-triazole group, a 2,5-dimercapto-1,3-thiazole group, or the like) and a nitrogen atom containing heterocyclic group having an —NH— group capable to form an imino-silver (>NAg) as a partial structure of heterocycle (e.g., a benzotriazole group, a benzimidazole group, an indazole group, or the like) are preferable, and more preferable as an adsorptive group are a 2-mercaptobenzimidazole group and a 3,5-dimercapto-1,2,4-triazole group.


In formula (I), W represents a divalent linking group. The said linking group may be any divalent linking group, as far as it does not give a bad effect toward photographic properties. For example, a divalent linking group which includes a carbon atom, a hydrogen atom, an oxygen atom, a nitrogen atom, or a sulfur atom, can be used. As typical examples, an alkylene group having 1 to 20 carbon atoms (e.g., a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, or the like), an alkenylene group having 2 to 20 carbon atoms, an alkynylene group having 2 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms (e.g., a phenylene group, a naphthylene group, or the like), —CO—, —SO2—, —O—, —S—, —NR1—, and the combinations of these linking groups are described. Herein, R1 represents a hydrogen atom, an alkyl group, a heterocyclic group, or an aryl group.


The linking group represented by W may have any substituent.


In formula (I), a reducing group represented by B represents the group capable to reduce a silver ion. As the examples, a formyl group, an amino group, a triple bond group such as an acetylene group, a propargyl group and the like, a mercapto group, and residues which are obtained by removing one hydrogen atom from hydroxylamines, hydroxamic acids, hydroxyureas, hydroxyurethanes, hydroxysemicarbazides, reductones (reductone derivatives are contained), anilines, phenols (chroman-6-ols, 2,3-dihydrobenzofuran-5-ols, aminophenols, sulfonamidophenols, and polyphenols such as hydroquinones, catechols, resorcinols, benzenetriols, bisphenols are included), acylhydrazines, carbamoylhydrazines, 3-pyrazolidones, and the like can be described. They may have any substituent.


The oxidation potential of a reducing group represented by B in formula (I), can be measured by using the measuring method described in Akira Fujishima, “DENKIKAGAKU SOKUTEIHO”, pages 150 to 208, GIHODO SHUPPAN and The Chemical Society of Japan, “ZIKKEN KAGAKUKOZA”, 4th ed., vol. 9, pages 282 to 344, MARUZEN. For example, the method of rotating disc voltammetry can be used; namely the sample is dissolved in the solution (methanol: pH 6.5 Britton-Robinson buffer=10%: 90% (% by volume)) and after bubbling with nitrogen gas during 10 minutes the voltamograph can be measured under the conditions of 1000 rotations/minute, the sweep rate 20 mV/second, at 25° C. by using a rotating disc electrode (RDE) made by glassy carbon as a working electrode, a platinum electrode as a counter electrode and a saturated calomel electrode as a reference electrode. The half wave potential (E1/2) can be calculated by that obtained voltamograph.


When a reducing group represented by B in the present invention is measured by the method described above, an oxidation potential is preferably in a range of from about −0.3 V to about 1.0 V, more preferably from about −0.1 V to about 0.8 V, and particularly preferably about from 0 V to about 0.7 V.


In formula (I), a reducing group represented by B is preferably a residue which is obtained by removing one hydrogen atom from hydroxylamines, hydroxamic acids, hydroxyureas, hydroxysemicarbazides, reductones, phenols, acylhydrazines, carbamoylhydrazines, or 3-pyrazolidones.


The compound of formula (I) according to the present invention may have the ballasted group or polymer chain in it generally used in the non-moving photographic additives as a coupler. And as a polymer, for example, the polymer described in JP-A No. 1-100530 can be selected.


The compound of formula (I) according to the present invention may be bis or tris type of compound. The molecular weight of the compound represented by formula (I) according to the present invention is preferably from 100 to 10000, more preferably from 120 to 1000, and particularly preferably from 150 to 500.


The examples of the compound represented by formula (I) according to the present invention are shown below, but the present invention is not limited in these.




embedded image


embedded image


embedded image


Further, example compounds 1 to 30 and 1″-1 to 1″-77 shown in EP No. 1308776A2, pages 73 to 87 are also described as preferable examples of the compound having an adsorptive group and a reducing group according to the invention.


These compounds can be easily synthesized by any known method. The compound of formula (I) in the present invention can be used alone, but it is preferred to use two or more kinds of the compounds in combination. When two or more kinds of the compounds are used in combination, those may be added to the same layer or the different layers, whereby adding methods may be different from each other.


The compound represented by formula (I) according to the present invention is preferably added to an image forming layer and more preferably is to be added at an emulsion preparing process. In the case, where these compounds are added at an emulsion preparing process, these compounds may be added at any step in the process. For example, the compounds may be added during the silver halide grain formation step, the step before starting of desalting step, the desalting step, the step before starting of chemical ripening, the chemical ripening step, the step before preparing a final emulsion, or the like. The compound can be added in several times during these steps. It is preferred to be added in the image forming layer. But the compound may be added to a surface protective layer or an intermediate layer, in combination with its addition in the image forming layer, to be diffused to the image forming layer at the coating step.


The preferred addition amount is largely dependent on the adding method described above or the kind of the compound, but generally from 1×10−6 mol to 1 mol, preferably from 1×10−5 mol to 5×10−1 mol, and more preferably from 1×10−4 mol to 1×10−1 mol, per 1 mol of photosensitive silver halide in each case.


The compound represented by formula (I) according to the present invention can be added by dissolving in water or water-soluble solvent such as methanol, ethanol and the like or a mixed solution thereof. At this time, the pH may be arranged suitably by an acid or an alkaline and a surfactant can coexist. Further, these compounds can be added as an emulsified dispersion by dissolving them in an organic solvent having a high boiling point and also can be added as a solid dispersion.


11) Combined use of a Plurality of Silver Halides


The photosensitive silver halide emulsion in the photothermographic material used in the invention may be used alone, or two or more kinds of them (for example, those of different average particle sizes, different halogen compositions, of different crystal habits and of different conditions for chemical sensitization) may be used together. Gradation can be controlled by using plural kinds of photosensitive silver halides of different sensitivity. The relevant techniques can include those described, for example, in JP-A Nos. 57-119341, 53-106125, 47-3929, 48-55730, 46-5187, 50-73627, and 57-150841. It is preferred to provide a sensitivity difference of 0.2 or more in terms of log E between each of the emulsions.


12) Coating Amount


The addition amount of the photosensitive silver halide, when expressed by the amount of coated silver per 1 m2 of the photothermographic material, is preferably from 0.03 g/m2 to 0.6 g/m2, more preferably, from 0.05 g/m2 to 0.4 g/m2 and, further preferably, from 0.07 g/m2 to 0.3 g/m2. The photosensitive silver halide is used in a range of from 0.01 mol to 0.5 mol, preferably, from 0.02 mol to 0.3 mol, and further preferably from 0.03 mol to 0.2 mol, per 1 mol of the organic silver salt.


13) Mixing Photosensitive Silver Halide and Organic Silver Salt


The method of mixing the photosensitive silver halide and the organic silver salt can include a method of mixing separately prepared silver halide grains and organic silver salt by a high speed stirrer, ball mill, sand mill, colloid mill, vibration mill, or homogenizer, or a method of mixing a photosensitive silver halide completed for preparation at any timing in the preparation of an organic silver salt and preparing the organic silver salt. The effect of the invention can be obtained preferably by any of the methods described above. Further, a method of mixing two or more kinds of aqueous dispersions of organic silver salts and two or more kinds of aqueous dispersions of photosensitive silver salts upon mixing is used preferably for controlling the photographic properties.


14) Mixing Silver Halide into Coating Solution


In the invention, the time of adding silver halide to the coating solution for the image forming layer is preferably in a range from 180 minutes before to just prior to the coating, more preferably, 60 minutes before to 10 seconds before coating. But there is no restriction for mixing method and mixing condition as long as the effect of the invention is sufficient. As an embodiment of a mixing method, there is a method of mixing in a tank and controlling an average residence time. The average residence time herein is calculated from addition flux and the amount of solution transferred to the coater. And another embodiment of mixing method is a method using a static mixer, which is described in 8th edition of “Ekitai Kongo Gijutu” by N. Harnby and M. F. Edwards, translated by Koji Takahashi (Nikkan Kogyo Shinbunsha, 1989).


1-7. Antifoggant


As an antifoggant, stabilizer and stabilizer precursor usable in the invention, there can be mentioned those disclosed as patents in paragraph number 0070 of JP-A No. 10-62899 and in line 57 of page 20 to line 7 of page 21 of EP-A No. 0803764A1, the compounds described in JP-A Nos. 9-281637 and 9-329864, U.S. Pat. No. 6,083,681, and EP No. 1048975. As an antifoggant, the following organic polyhalogen compound is preferable.


(Organic Polyhalogen Compound)


Preferable organic polyhalogen compound that can be used in the invention is explained specifically below. In the invention, preferred organic polyhalogen compound is the compound expressed by the following formula (H).

Q—(Y)n-C(Z1)(Z2)X  Formula (H)


In formula (H), Q represents one selected from an alkyl group, an aryl group, or a heterocyclic group; Y represents a divalent linking group; n represents 0 or 1; Z1 and Z2 each represent a halogen atom; and X represents a hydrogen atom or an electron-attracting group.


In formula (H), Q is preferably an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, or a heterocyclic group comprising at least one nitrogen atom (pyridine, quinoline, or the like).


In the case where Q is an aryl group in formula (H), Q preferably is a phenyl group substituted by an electron-attracting group whose Hammett substituent constant σp yields a positive value. For the details of Hammett substituent constant, reference can be made to Journal of Medicinal Chemistry, vol. 16, No. 11 (1973), pp. 1207 to 1216, and the like. As such electron-attracting groups, examples include, halogen atoms, an alkyl group substituted by an electron-attracting group, an aryl group substituted by an electron-attracting group, a heterocyclic group, an alkylsulfonyl group, an arylsulfonyl group, an acyl group, an alkoxycarbonyl group, a carbamoyl group, sulfamoyl group and the like. Preferable as the electron-attracting group is a halogen atom, a carbamoyl group, or an arylsulfonyl group, and particularly preferred among them is a carbamoyl group.


X is preferably an electron-attracting group. As the electron-attracting group, preferable are a halogen atom, an aliphatic arylsulfonyl group, a heterocyclic sulfonyl group, an aliphatic arylacyl group, a heterocyclic acyl group, an aliphatic aryloxycarbonyl group, a heterocyclic oxycarbonyl group, a carbamoyl group, and a sulfamoyl group; more preferable are a halogen atom and a carbamoyl group; and particularly preferable is a bromine atom.


Z1 and Z2 each are preferably a bromine atom or an iodine atom, and more preferably, a bromine atom.


Y preferably represents —C(═O)—, —SO—, —SO2—, —C(═O)N(R)—, or —SO2N(R)—; more preferably, —C(═O)—, —SO2—, or —C(═O)N(R)—; and particularly preferably, —SO2— or —C(═O)N(R)—. Herein, R represents a hydrogen atom, an aryl group, or an alkyl group, preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom. n represents 0 or 1, and preferably represents 1.


In formula (H), in the case where Q is an alkyl group, Y is preferably —C(═O)N(R)—. And, in the case where Q is an aryl group or a heterocyclic group, Y is preferably —SO2—.


In formula (H), the form where the residues, which are obtained by removing a hydrogen atom from the compound, bind to each other (generally called bis type, tris type, or tetrakis type) is also preferably used.


In formula (H), the form having a substituent of a dissociative group (for example, a COOH group or a salt thereof, an SO3H group or a salt thereof, a PO3H group or a salt thereof, or the like), a group containing a quaternary nitrogen cation (for example, an ammonium group, a pyridinium group, or the like), a polyethyleneoxy group, a hydroxy group, or the like is also preferable.


Specific examples of the compound expressed by formula (H) of the invention are shown below.




embedded image


embedded image


embedded image


As preferred organic polyhalogen compounds of the invention other than those above, there can be mentioned compounds disclosed in U.S. Pat. Nos. 3,874,946, 4,756,999, 5,340,712, 5,369,000, 5,464,737, and 6,506,548, JP-A Nos. 50-137126, 50-89020, 50-119624, 59-57234, 7-2781, 7-5621, 9-160164, 9-244177, 9-244178, 9-160167, 9-319022, 9-258367, 9-265150, 9-319022, 10-197988, 10-197989, 11-242304, 2000-2963, 2000-112070, 2000-284410, 2000-284412, 2001-33911, 2001-31644, 2001-312027, and 2003-50441. Particularly, compounds disclosed in JP-A Nos. 7-2781, 2001-33911 and 20001-312027 are preferable.


The compound expressed by formula (H) of the invention is preferably used in an amount of from 10−4 mol to 1 mol, more preferably, from 10−3 mol to 0.5 mol, and further preferably, from 1×10−2 mol to 0.2 mol, per 1 mol of non-photosensitive silver salt incorporated in the image forming layer.


In the invention, usable methods for incorporating the antifoggant into the photothermographic material are those described above in the method for incorporating the reducing agent, and also for the organic polyhalogen compound, it is preferably added in the form of a solid fine particle dispersion.


(Other Antifoggants)


As other antifoggants, there can be mentioned a mercury (II) salt described in paragraph number 0113 of JP-A No. 11-65021, benzoic acids described in paragraph number 0114 of the same literature, a salicylic acid derivative described in JP-A No. 2000-206642, a formaline scavenger compound expressed by formula (S) in JP-A No. 2000-221634, a triazine compound related to claim 9 of JP-A No. 11-352624, a compound expressed by formula (III), 4-hydroxy-6-methyl-1,3,3a,7-tetrazaindene and the like, described in JP-A No. 6-11791.


The photothermographic material of the invention may further contain an azolium salt in order to prevent fogging. Azolium salts useful in the present invention include a compound expressed by formula (XI) described in JP-A No. 59-193447, a compound described in Japanese Patent Application Publication (JP-B) No. 55-12581, and a compound expressed by formula (II) in JP-A No. 60-153039. The azolium salt may be added to any part of the photothermographic material, but as an additional layer, it is preferred to select a layer on the side having thereon the image forming layer, and more preferred is to select the image forming layer itself. The azolium salt may be added at any time of the process of preparing the coating solution; in the case where the azolium salt is added into the image forming layer, any time of the process may be selected, from the preparation of the organic silver salt to the preparation of the coating solution, but preferred is to add the salt after preparing the organic silver salt and just before coating. As the method for adding the azolium salt, any method using a powder, a solution, a fine-particle dispersion, and the like, may be used. Furthermore, it may be added as a solution having mixed therein other additives such as sensitizing agents, reducing agents, toners, and the like. In the invention, the azolium salt may be added at any amount, but preferably, it is added in a range of from 1×10−6 mol to 2 mol, and more preferably, from 1×10−3 mol to 0.5 mol, per 1 mol of silver.


1-8. Other Additives


1) Mercapto Compounds, Disulfides, and Thiones


In the invention, mercapto compounds, disulfide compounds, and thione compounds can be added in order to control the development by suppressing or enhancing development, to improve spectral sensitization efficiency, and to improve storage properties before and after development. Descriptions can be found in paragraph numbers 0067 to 0069 of JP-A No. 10-62899, a compound expressed by formula (I) of JP-A No. 10-186572 and specific examples thereof shown in paragraph numbers 0033 to 0052, in lines 36 to 56 in page 20 of EP No. 0803764A1. Among them, mercapto-substituted heterocyclic aromatic compounds described in JP-A Nos. 9-297367, 9-304875, 2001-100358, 2002-303954, 2002-303951, and the like are preferred.


2) Toner


In the photothermographic material of the present invention, the addition of a toner is preferred. The description of the toner can be found in JP-A No.10-62899 (paragraph numbers 0054 to 0055), EP No. 0803764A1 (page21, lines 23 to 48), JP-A Nos. 2000-356317 and 2000-187298. Preferred are phthalazinones (phthalazinone, phthalazinone derivatives and metal salts thereof, (e.g., 4-(1-naphthyl)phthalazinone, 6-chlorophthalazinone, 5,7-dimethoxyphthalazinone, and 2,3-dihydro-1,4-phthalazinedione); combinations of phthalazinones and phthalic acids (e.g., phthalic acid, 4-methylphthalic acid, 4-nitrophthalic acid, diammonium phthalate, sodium phthalate, potassium phthalate, and tetrachlorophthalic anhydride); phthalazines (phthalazine, phthalazine derivatives and metal salts thereof, (e.g., 4-(1-naphthyl)phthalazine, 6-isopropylphthalazine, 6-tert-butylphthalazine, 6-chlorophthalazine, 5,7-dimethoxyphthalazine, and 2,3-dihydrophthalazine); combinations of phthalazines and phthalic acids. Particularly preferred is a combination of phthalazines and phthalic acids. Among them, particularly preferable are the combination of 6-isopropylphthalazine and phthalic acid, and the combination of 6-isopropylphthalazine and 4-methylphthalic acid.


3) Plasticizer and Lubricant


In the invention, well-known plasticizer and lubricant can be used to improve physical properties of film. Particularly, to improve handling facility during manufacturing process or scratch resistance during thermal development, it is preferred to use a lubricant such as a liquid paraffin, a long chain fatty acid, an amide of fatty acid, an ester of fatty acid and the like. Particularly preferred are a liquid paraffin obtained by removing components having low boiling point and an ester of fatty acid having a branch structure and a molecular weight of 1000 or more.


Concerning plasticizers and lubricants usable in the image forming layer and in the non-photosensitive layer, compounds described in paragraph No. 0117 of JP-A No. 11-65021 and in JP-A Nos. 2000-5137, 2004-219794, 2004-219802, and 2004-334077 are preferable.


4) Dyes and Pigments


From the viewpoint of improving color tone, preventing the generation of interference fringes and preventing irradiation on laser exposure, various kinds of dyes and pigments (for instance, C.I. Pigment Blue 60, C.I. Pigment Blue 64, and C.I. Pigment Blue 15:6) can be used in the image forming layer of the invention. Detailed description can be found in WO No. 98/36322, JP-A Nos. 10-268465 and 11-338098, and the like.


5) Nucleator


Concerning the photothermographic material of the invention, it is preferred to add a nucleator into the image forming layer. Details on the nucleators, method for their addition and addition amount can be found in paragraph No. 0118 of JP-A No. 11-65021, paragraph Nos. 0136 to 0193 of JP-A No. 11-223898, as compounds expressed by formulae (H), (1) to (3), (A), and (B) in JP-A No. 2000-284399; as for a nucleation accelerator, description can be found in paragraph No. 0102 of JP-A No. 11-65021, and in paragraph Nos. 0194 to 0195 of JP-A No. 11-223898.


In the case of using formic acid or formates as a strong fogging agent, it is preferably incorporated into the side having thereon the image forming layer containing photosensitive silver halide, at an amount of 5 mmol or less, and preferably 1 mmol or less, per 1 mol of silver.


In the case of using a nucleator in the photothermographic material of the invention, it is preferred to use an acid resulting from hydration of diphosphorus pentaoxide, or a salt thereof in combination. Acids resulting from the hydration of diphosphorus pentaoxide or salts thereof include metaphosphoric acid (salt), pyrophosphoric acid (salt), orthophosphoric acid (salt), triphosphoric acid (salt), tetraphosphoric acid (salt), hexametaphosphoric acid (salt), and the like. Particularly preferred acids obtainable by the hydration of diphosphorus pentaoxide or salts thereof include orthophosphoric acid (salt) and hexametaphosphoric acid (salt). Specifically mentioned as the salts are sodium orthophosphate, sodium dihydrogen orthophosphate, sodium hexametaphosphate, ammonium hexametaphosphate, and the like.


The addition amount of the acid obtained by hydration of diphoshorus pentaoxide or the salt thereof (i.e., the coating amount per 1 m2 of the photothermographic material) may be set as desired depending on sensitivity and fogging, but preferred is an amount of from 0.1 mg/m2 to 500 mg/m2, and more preferably, from 0.5 mg/m2 to 100 mg/m2.


The reducing agent, hydrogen bonding compound, development accelerator, and organic polyhalogen compound according to the invention are preferably used in the form of a solid dispersion. Preferred methods for preparing these solid dispersions are described in JP-A No. 2002-55405.


6) Hardener


A hardener may be used in each of image forming layer, protective layer, back layer, and the like of the invention. As examples of the hardener, descriptions of various methods can be found in pages 77 to 87 of T. H. James, “THE THEORY OF THE PHOTOGRAPHIC PROCESS, FOURTH EDITION” (Macmillan Publishing Co., Inc., 1977). Preferably used are, in addition to chromium alum, sodium salt of 2,4-dichloro-6-hydroxy-s-triazine, N,N-ethylene bis(vinylsulfonacetamide), and N,N-propylene bis(vinylsulfonacetamide), polyvalent metal ions described in page 78 of the above literature and the like, polyisocyanates described in U.S. Pat. No. 4,281,060, JP-A No. 6-208193, and the like, epoxy compounds of U.S. Pat. No. 4,791,042 and the like, and vinyl sulfone compounds of JP-A No. 62-89048.


The hardener is added as a solution, and the solution is added to a coating solution 180 minutes before coating to just before coating, preferably 60 minutes before to 10 seconds before coating. However, so long as the effect of the invention is sufficiently exhibited, there is no particular restriction concerning the mixing method and the conditions of mixing. As specific mixing methods, there can be mentioned a method of mixing in the tank, in which the average stay time calculated from the flow rate of addition and the feed rate to the coater is controlled to yield a desired time, or a method using static mixer as described in Chapter 8 of N. Harnby, M. F. Edwards, A. W. Nienow (translated by Koji Takahashi) “Ekitai Kongo Gijutu (Liquid Mixing Technology)” (Nikkan Kogyo Shinbunsha, 1989), and the like.


7) Surfactant


Concerning the surfactant, the solvent, the support, antistatic agent and the electrically conductive layer, and the method for obtaining color images applicable in the invention, there can be used those disclosed in paragraph numbers 0132, 0133, 0134, 0135, and 0136, respectively, of JP-A No. 11-65021. Concerning lubricants, there can be used those disclosed in paragraph numbers 0061 to 0064 of JP-A No. 11-84573 and in paragraph numbers 0049 to 0062 of JP-A No. 2001-83679.


In the invention, it is preferred to use a fluorocarbon surfacant. Specific examples of fluorocarbon surfacants can be found in those described in JP-A Nos. 10-197985, 2000-19680, and 2000-214554. Polymer fluorocarbon surfacants described in JP-A 9-281636 can be also used preferably. For the photothermographic material in the invention, the fluorocarbon surfacants described in JP-A Nos. 2002-82411, 2003-57780, and 2001-264110 are preferably used. Especially, the usage of the fluorocarbon surfacants described in JP-A Nos. 2003-57780 and 2001-264110 in an aqueous coating solution is preferred viewed from the standpoint of capacity in static control, stability of the coating surface state and sliding facility. The fluorocarbon surfactant described in JP-A No. 2001-264110 is mostly preferred because of high capacity in static control and that it needs small amount to use.


According to the invention, the fluorocarbon surfactant can be used on either side of image forming layer side or back layer side, but is preferred to use on the both sides. Further, it is particularly preferred to use in combination with electrically conductive layer including metal oxides described below. In this case the amount of the fluorocarbon surfactant on the side of the electrically conductive layer can be reduced or removed.


The addition amount of the fluorocarbon surfactant is preferably in a range of from 0.1 mg/m2 to 100 mg/m2 on each side of image forming layer and back layer, more preferably from 0.3 mg/m2 to 30 mg/m2, and further preferably from 1 mg/m2 to 10 mg/m2. Especially, the fluorocarbon surfactant described in JP-A No. 2001-264110 is effective, and used preferably in a range of from 0.01 mg/m2 to 10 mg/m2, and more preferably from 0.1 mg/m2 to 5 mg/m2.


8) Other Additives


Furthermore, antioxidant, stabilizing agent, plasticizer, UV absorbent, or a film-forming promoting agent may be added to the photothermographic material. Each of the additives is added to either of the image forming layer or the non-photosensitive layer. Reference can be made to WO No. 98/36322, EP No. 803764A1, JP-A Nos. 10-186567 and 10-18568, and the like.


1-9. Preferred Solvent of Coating Solution


In the invention, a solvent of a coating solution for the image forming layer in the photothermographic material of the invention (wherein a solvent and water are collectively described as a solvent for simplicity) is preferably an aqueous solvent containing water at 30% by weight or more. Examples of solvents other than water may include any of water-miscible organic solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, methyl cellosolve, ethyl cellosolve, dimethylformamide and ethyl acetate. A water content in a solvent is more preferably 50% by weight or more, and even more preferably 70% by weight or more. Concrete examples of a preferable solvent composition, in addition to water=100, are compositions in which methyl alcohol is contained at ratios of water/methyl alcohol=90/10 and 70/30, in which dimethylformamide is further contained at a ratio of water/methyl alcohol/dimethylformamide=80/15/5, in which ethyl cellosolve is further contained at a ratio of water/methyl alcohol/ethyl cellosolve=85/10/5, and in which isopropyl alcohol is further contained at a ratio of water/methyl alcohol/isopropyl alcohol=85/10/5 (wherein the numerals presented above are values in % by weight).


1-10. Preparation of Coating Solution and Coating


The temperature for preparing the coating solution for the image forming layer of the invention is preferably from 30° C. to 65° C., more preferably, 35° C. or more and less than 60° C., and further preferably, from 35° C. to 55° C. Furthermore, the temperature of the coating solution for the image forming layer immediately after adding the polymer latex is preferably maintained in the temperature range from 30° C. to 65° C.


1-11. Layer Constitution of Image Forming Layer


The photothermographic material of the invention has one or more image forming layers constructed on a support. In the case of constituting the image forming layer from one layer, the image forming layer comprises an organic silver salt, a photosensitive silver halide, a reducing agent, and a binder, and may further comprise additional materials as desired and necessary, such as an antifoggant, a toner, a film-forming promoting agent, and other auxiliary agents.


In the case of constituting the image forming layer from two or more layers, the first image forming layer (in general, a layer placed nearer to the support) contains an organic silver salt and a photosensitive silver halide. Some of the other components are incorporated in the second image forming layer or in both of the layers. The constitution of a multicolor photothermographic material may include combinations of two layers for those for each of the colors, or may contain all the components in a single layer as described in U.S. Pat. No. 4,708,928. In the case of multicolor photothermographic material, each of the image forming layers is maintained distinguished from each other by incorporating functional or non-functional barrier layer between each of the image forming layers as described in U.S. Pat. No. 4,460,681.


In the case of constituting the image forming layer from two or more layers, when the above-described mass ratio of solid content other than the binder relative to the binder is applied in at least one image forming layer, the effect of the present invention can be obtained.


2. Layer Constitution and Constituting Components of the Layers Other than the Image Forming Layer


2-1. Layer Constitution


The photothermographic material according to the invention can have a non-photosensitive layer in addition to the image forming layer. The non-photosensitive layers can be classified depending on the layer arrangement into (a) a surface protective layer provided on the image forming layer (on the side farther from the support), (b) an intermediate layer provided among plural image forming layers or between the image forming layer and the protective layer, (c) an undercoat layer provided between the image forming layer and the support, and (d) a back layer provided to the side opposite to the image forming layer.


Furthermore, a layer that functions as an optical filter may be provided as (a) or (b) above. An antihalation layer may be provided as (c) or (d) to the photothermographic material.


In the present invention, either one of the non-photosensitive layer on the image forming layer side of the support preferably contains a hydrophobic polymer in an amount of 50% by weight or more as a binder, more preferably 70% by weight or more, and even more preferably 90% by weight or more. When the binder of the non-photosensitive layer contains a hydrophobic polymer in an amount of 50% by weight or more, the brittleness on the cutting surface of the photothermographic material is improved.


It is preferred that the non-photosensitive layer, which contains a hydrophobic polymer in an amount of 50% by weight or more, is provided on the side farther than the image forming layer from the support. In particular, the said non-photosensitive layer is preferably provided on the side farther than the image forming layer from the support and also is provided as a layer adjacent to the image forming layer, namely as an intermediate layer.


1) Surface Protective Layer


The photothermographic material of the invention can comprise a surface protective layer with an object to prevent adhesion of the image forming layer. The surface protective layer may be a single layer, or plural layers.


Description of the surface protective layer may be found in paragraph numbers 0119 to 0120 of JP-A No. 11-65021 and in JP-A No. 2000-171936.


Preferred as the binder of the surface protective layer of the invention is gelatin, but poly(vinyl alcohol) (PVA) may be used preferably instead, or in combination. As gelatin, there can be used an inert gelatin (e.g., Nitta gelatin 750), a phthalated gelatin (e.g., Nitta gelatin 801), and the like. Usable as PVA are those described in paragraph numbers 0009 to 0020 of JP-A No. 2000-171936, and preferred are the completely saponified product PVA-105 and the partially saponified PVA-205 and PVA-335, as well as modified poly(vinyl alcohol) MP-203 (trade name of products from Kuraray Ltd.). The coating amount of poly(vinyl alcohol) (per 1 m2 of support) in the protective layer (per one layer) is preferably in a range of from 0.3 g/m2 to 4.0 g/m2, and more preferably, from 0.3 g/m2 to 2.0 g/m2.


The coating amount of total binder (including water-soluble polymer and latex polymer) (per 1 m2 of support) in the surface protective layer (per one layer) is preferably in a range of from 0.3 g/m2 to 5.0 g/m2, and more preferably, from 0.3 g/m2 to 2.0 g/m2.


Further, it is preferred to use a lubricant such as a liquid paraffin and an ester of fatty acid in the surface protective layer. The addition amount of the lubricant is in a range of from 1 mg/m2 to 200 mg/m2, preferably from 10 mg/m2 to 150 mg/m2 and, more preferably from 20 mg/m2 to 100 mg/m2.


2) Intermediate Layer


The intermediate layer is disposed as a boundary layer between the image forming layer and the surface protective layer. Usually, most of the intermediate layer is occupied by the binder. However in addition to the binder, any additives described above can be added to the intermediate layer. According to the present invention, the binder of the intermediate layer preferably contains a hydrophobic polymer in an amount of 50% by weight or more. The intermediate layer may be of one layer or plural layers. In the case of plural layers, when the binder in at least one layer of the intermediate layer contains a hydrophobic polymer in an amount of 50% by weight or more, the manufacturing-related brittleness is significantly improved in the practice of the present invention. Especially, the manufacturing-related brittleness becomes extremely excellent when the said hydrophobic polymer-containing layer is disposed adjacent to the image forming layer.


3) Antihalation Layer


The photothermographic material of the present invention can comprise an antihalation layer provided to the side farther from the light source with respect to the image forming layer.


Descriptions on the antihalation layer can be found in paragraph numbers 0123 to 0124 of JP-A No. 11-65021, in JP-A Nos. 11-223898, 9-230531, 10-36695, 10-104779, 11-231457, 11-352625, 11-352626, and the like.


The antihalation layer contains an antihalation dye having its absorption at the wavelength of the exposure light. In the case the exposure wavelength is in the infrared region, an infrared-absorbing dye may be used, and in such a case, preferred are dyes having no absorption in the visible region.


In the case of preventing halation from occurring by using a dye having absorption in the visible region, it is preferred that the color of the dye would not substantially remain after image formation, and is preferred to employ a means for decoloring by the heat of thermal development; in particular, it is preferred to add a thermal bleaching dye and a base precursor to the non-photosensitive layer to impart function as an antihalation layer. Those techniques are described in JP-A No. 11-231457 and the like.


The addition amount of the bleaching dye is determined depending on the usage of the dye. In general, it is used at an amount as such that the optical density (absorbance) exceeds 0.1 when measured at the desired wavelength. The optical density is preferably in a range of from 0.15 to 2, and more preferably from 0.2 to 1. The addition amount of dyes to obtain optical density in the above range is generally about from 0.001 g/m2 to 1 g/m2.


By decoloring the dye in such a manner, the optical density after thermal development can be lowered to 0.1 or lower. Two or more kinds of bleaching dyes may be used in combination in a photothermographic material. Similarly, two or more kinds of base precursors may be used in combination.


In the case of thermal decolorization by the combined use of a bleaching dye and a base precursor, it is advantageous from the viewpoint of thermal decolorization efficiency to further use a substance capable of lowering the melting point by at least 3° C. (deg) when mixed with the base precursor (e.g., diphenylsulfone, 4-chlorophenyl(phenyl)sulfone, 2-naphthyl benzoate, or the like) as disclosed in JP-A No. 11-352626.


4) Back Layer


Back layers usable in the invention are described in paragraph numbers 0128 to 0130 of JP-A No. 11-65021.


In the invention, coloring matters having maximum absorption in a wavelength range of from 300 nm to 450 nm can be added in order to improve color tone of developed silver images and a deterioration of the images during aging. Such coloring matters are described in JP-A Nos. 62-210458, 63-104046, 63-103235, 63-208846, 63-306436, 63-314535, 01-61745, 2001-100363, and the like.


Such coloring matters are generally added in a range of from 0.1 mg/m2 to 1 g/m2, preferably to the back layer which is provided on the side opposite to the image forming layer.


Further, in order to control the basic color tone, it is preferred to use a dye having an absorption peak in the wavelength range of from 580 nm to 680 nm. As a dye satisfying this purpose, preferred are oil-soluble azomethine dyes described in JP-A Nos. 4-359967 and 4-359968, or water-soluble phthalocyanine dyes described in JP-A No. 2003-295388, which have low absorption intensity on the short wavelength side. The dyes for this purpose may be added to any of the layers, but more preferred is to add them in a non-photosensitive layer on the image forming side, or in the back side.


The photothermographic material of the invention is preferably a so-called one-side photosensitive material, which comprises at least one layer of a image forming layer containing silver halide emulsion on one side of the support, and a back layer on the other side.


5) Support


As the transparent support, preferably used is polyester, particularly, polyethylene terephthalate, which is subjected to heat treatment in the temperature range of from 130° C. to 185° C. in order to relax the internal strain caused by biaxial stretching and remaining inside the film, and to remove strain ascribed to heat shrinkage generated during thermal development. In the case of a photothermographic material for medical use, the transparent support may be colored with a blue dye (for instance, dye-1 described in the Example of JP-A No. 8-240877), or may be uncolored. As to the support, it is preferred to apply undercoating technology, such as water-soluble polyester described in JP-A No. 11-84574, a styrene-butadiene copolymer described in JP-A No. 10-186565, a vinylidene chloride copolymer described in JP-A No. 2000-39684, and the like. The moisture content of the support is preferably 0.5% by weight or less when coating for image forming layer and back layer is conducted on the support.


2-2. Constituting Components of the Layers other than the Image Forming Layer


1) Matting Agent


In the invention, a matting agent is preferably added to the surface protective layer in order to improve transportability. Description of the matting agent can be found in paragraphs Nos. 0126 to 0127 of JP-A No.11-65021. The addition amount of the matting agent is preferably in a range of from 1 mg/m2 to 400 mg/m2, and more preferably, from 5 mg/m2 to 300 mg/m2, with respect to the coating amount per 1 m2 of the photothermographic material.


The shape of the matting agent usable in the invention may fixed form or non-fixed form. Preferred is to use those having fixed form and globular shape.


Volume weighted mean equivalent spherical diameter of the matting agent used in the image forming layer surface is preferably in a range of from 0.3 μm to 10 μm, and more preferably, from 0.5 μm to 7 μm. Further, the particle distribution of the matting agent is preferably set as such that the variation coefficient may become from 5% to 80%, and more preferably, from 20% to 80%. The variation coefficient, herein, is defined by (the standard deviation of particle diameter)/(mean diameter of the particle)×100. Furthermore, two or more kinds of matting agents having different mean particle size can be used in the image forming layer surface. In this case, it is preferred that the difference between the mean particle size of the biggest matting agent and the mean particle size of the smallest matting agent is from 2 μm to 8 μm, and more preferred, from 2 μm to 6 μm.


Volume weighted mean equivalent spherical diameter of the matting agent used in the back surface is preferably in a range of from 1 μm to 15 μm, and more preferably, from 3 μm to 10 μm. Further, the particle distribution of the matting agent is preferably set as such that the variation coefficient may become from 3% to 50%, and more preferably, from 5% to 30%. Furthermore, two or more kinds of matting agents having different mean particle size can be used in the back surface. In this case, it is preferred that the difference between the mean particle size of the biggest matting agent and the mean particle size of the smallest matting agent is from 2 μm to 14 μm, and more preferred, from 2 μm to 9 μm.


The level of matting on the surface of the image forming layer is not restricted as far as star-dust trouble occurs, but the level of matting of from 30 seconds to 2000 seconds is preferred, particularly preferred, from 40 seconds to 1500 seconds as Beck's smoothness. Beck's smoothness can be calculated easily, by using Japan Industrial Standared (JIS) P8119 “The method of testing Beck's smoothness for papers and sheets using Beck's test apparatus”, or TAPPI standard method T479.


The level of matting on the surface of the back layer in the invention is preferably in a range of 1200 seconds or less and 10 seconds or more; more preferably, 800 seconds or less and 20 seconds or more; and further preferably, 500 seconds or less and 40 seconds or more when expressed by Beck's smoothness.


In the present invention, a matting agent is preferably contained in an outermost layer, in a layer which can function as an outermost layer, or in a layer nearer to outer surface of the photothermographic material, and is also preferably contained in a layer which can function as a so-called protective layer.


2) Polymer Latex


A polymer latex is preferably used in the surface protective layer or back layer of the photothermographic material according to the present invention. Concerning such polymer latex, descriptions can be found in “Gosei Jushi Emulsion (Synthetic resin emulsion)” (Taira Okuda and Hiroshi Inagaki, Eds., published by Kobunshi Kankokai (1978)), “Gosei Latex no Oyo (Application of synthetic latex)” (Takaaki Sugimura, Yasuo Kataoka, Soichi Suzuki, and Keiji Kasahara, Eds., published by Kobunshi Kankokai (1993)), and “Gosei Latex no Kagaku (Chemistry of synthetic latex)” (Soichi Muroi, published by Kobunshi Kankokai (1970)). More specifically, there can be mentioned a latex of methyl methacrylate (33.5% by weight)/ethyl acrylate (50% by weight)/methacrylic acid (16.5% by weight) copolymer, a latex of methyl methacrylate (47.5% by weight)/butadiene (47.5% by weight)/itaconic acid (5% by weight) copolymer, a latex of ethyl acrylate/methacrylic acid copolymer, a latex of methyl methacrylate (58.9% by weight)/2-ethylhexyl acrylate (25.4% by weight)/styrene (8.6% by weight)/2-hydroethyl methacrylate (5.1% by weight)/acrylic acid (2.0% by weight) copolymer, a latex of methyl methacrylate (64.0% by weight)/styrene (9.0% by weight)/butyl acrylate (20.0% by weight)/2-hydroxyethyl methacrylate (5.0% by weight)/acrylic acid (2.0% by weight) copolymer, and the like. Further, concerning the binder for the surface protective layer, techniques described in paragraph numbers 0021 to 0025 of JP-A No. 2000-267226 and paragraph numbers 0023 to 0041 of JP-A No. 2000-19678 may be applied. The polymer latex in the surface protective layer is preferably contained in an amount of from 10% by weight to 90% by weight, particularly preferably, from 20% by weight to 80% by weight of the total weight of binder.


3) Antistatic Agent


The photothermographic material of the invention preferably contains an electrically conductive layer including metal oxides or electrically conductive polymers. The antistatic layer may serve as an undercoat layer, a back surface protective layer, or the like, but can also be placed specially. As an electrically conductive material of the antistatic layer, metal oxides having enhanced electric conductivity by the method of introducing oxygen defects or different types of metallic atoms into the metal oxides are preferably for use. Examples of metal oxides are preferably selected from ZnO, TiO2, or SnO2. As the combination of different types of atoms, preferred are ZnO combined with Al, or In; SnO2 with Sb, Nb, P, halogen atoms, or the like; TiO2 with Nb, Ta, or the like. Particularly preferred for use is SnO2 combined with Sb. The addition amount of different types of atoms is preferably in a range of from 0.01 mol % to 30 mol %, and more preferably, in a range of from 0.1 mol % to 10 mol %. The shape of the metal oxides can include, for example, spherical, needle-like, or tabular. The needle-like particles, with the rate of (the major axis)/(the minor axis) is 2.0 or more, and more preferably, from 3.0 to 50, is preferred viewed from the standpoint of the electric conductivity effect. The metal oxides is preferably used in a range of from 1 mg/m2 to 1000 mg/m2, more preferably from 10 mg/m2 to 500 mg/m , and even more preferably from 20 mg/m2 to 200 mg/m2. The antistatic layer can be laid on either side of the image forming layer surface side or the back layer surface side, it is preferred to set between the support and the back layer. Specific examples of the antistatic layer in the invention include described in paragraph number 0135 of JP-A No. 11-65021, in JP-A Nos. 56-143430, 56-143431, 58-62646, and 56-120519, and in paragraph numbers 0040 to 0051 of JP-A No. 11-84573, in U.S. Pat. No. 5,575,957, and in paragraph numbers 0078 to 0084 of JP-A No. 11-223898.


4) Other Additives


In addition, a hardener, lubricient, placticizer, and surfactant can be added appropriately. Furthermore, an antioxidant, stabilizing agent, UV absorbent, or film-forming promoting agent may be added to the photothermographic material.


5) Surface pH


The surface pH of the photothermographic material according to the invention preferably yields a pH of 7.0 or lower, more preferably, 6.6 or lower, before thermal developing process. Although there is no particular restriction concerning the lower limit, the lower limit of pH value is about 3, and the most preferred surface pH range is from 4 to 6.2. From the viewpoint of reducing the surface pH, it is preferred to use an organic acid such as phthalic acid derivative or a non-volatile acid such as sulfuric acid, or a volatile base such as ammonia for the adjustment of the surface pH. In particular, ammonia can be used favorably for the achievement of low surface pH, because it can easily vaporize to remove it before the coating step or before applying thermal development.


It is also preferred to use a non-volatile base such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like, in combination with ammonia. The method of measuring surface pH value is described in paragraph No. 0123 of the specification of JP-A No. 2000-284399.


3. Preparation of Photothermographic Material


1) Coating Method


The photothermographic material of the invention may be coated by any method. More specifically, various types of coating operations inclusive of extrusion coating, slide coating, curtain coating, immersion coating, knife coating, flow coating, or an extrusion coating using the kind of hopper described in U.S. Pat. No. 2,681,294 are used. Preferably used is extrusion coating or slide coating described in pages 399 to 536 of Stephen F. Kistler and Petert M. Schweizer, “LIQUID FILM COATING” (Chapman & Hall, 1997), and particularly preferably used is slide coating. Example of the shape of the slide coater for use in slide coating is shown in FIG. 11b.1, page 427, of the same literature. If desired, two or more layers can be coated simultaneously by the method described in pages 399 to 536 of the same literature, or by the method described in U.S. Pat. No. 2,761,791 and British Patent No. 837095. The coating methods particularly preferred in the invention are the methods described in JP-A Nos. 2001-194748, 2002-153808, 2002-153803, and 2002-182333.


The coating solution for the image forming layer in the invention is preferably a so-called thixotropic fluid. Concerning this technology, reference can be made to JP-A No. 11-52509. Viscosity of the coating solution for the image forming layer of the invention at a shear velocity of 0.1 S−1 is preferably from 400 mPa·s to 100,000 mPa·s, and more preferably, from 500 mPa·s to 20,000 mPa·s. At a shear velocity of 1000 S−1, the viscosity is preferably from 1 mPa·s to 200 mPa·s, and more preferably, from 5 mPa·s to 80 mPa·s.


In the case of mixing two types of liquids on preparing the coating solution of the invention, known in-line mixer and in-plant mixer can be used favorably. Preferred in-line mixer of the invention is described in JP-A No. 2002-85948, and the in-plant mixer is described in JP-A No. 2002-90940.


The coating solution of the invention is preferably subjected to defoaming treatment to maintain the coated surface in a fine state. Preferred defoaming treatment method in the invention is described in JP-A No. 2002-66431.


In the case of applying the coating solution of the invention to the support, it is preferred to perform diselectrification in order to prevent the adhesion of dust, particulates, and the like due to charge up. Preferred example of the method of diselectrification for use in the invention is described in JP-A No. 2002-143747.


Since a non-setting coating solution is used for the image forming layer in the invention, it is important to precisely control the drying wind and the drying temperature. Preferred drying method for use in the invention is described in detail in JP-A Nos. 2001-194749 and 2002-139814.


In order to improve the film-forming properties in the photothermographic material of the invention, it is preferred to apply a heat treatment immediately after coating and drying. The temperature of the heat treatment is preferably in a range of from 60° C. to 100° C. at the film surface, and time period for heating is preferably in a range of from 1 second to 60 seconds. More preferably, heating is performed in a temperature range of from 70° C. to 90° C. at the film surface, and the time period for heating is from 2 seconds to 10 seconds. A preferred method of heat treatment for the invention is described in JP-A No. 2002-107872.


Furthermore, the producing methods described in JP-A Nos. 2002-156728 and 2002-182333 are preferably used in the invention in order to stably and continuously produce the photothermographic material of the invention.


The photothermographic material is preferably of mono-sheet type (i.e., a type which can form image on the photothermographic material without using other sheets such as an image-receiving material).


2) Wrapping Material


In order to suppress fluctuation from occurring on the photographic property during a preservation of the photothermographic material of the invention before thermal development, or in order to improve curling or winding tendencies when the photothermographic material is manufactured in a roll state, it is preferred that a wrapping material having low oxygen transmittance and/or vapor transmittance is used. Preferably, oxygen transmittance is 50 mL·atm−1m−2day−1 or lower at 25° C., more preferably, 10 mL·atm−1m−2day−1 or lower, and further preferably, 1.0 mL·atm−1m−2 day−1 or lower. Preferably, vapor transmittance is 10 g·atm−1m−2day−1 or lower, more preferably, 5 g·atm−1m−2day−1 or lower, and further preferably, 1 g·atm−1m−2 day−1 or lower.


As specific examples of a wrapping material having low oxygen transmittance and/or vapor transmittance, reference can be made to, for instance, the wrapping material described in JP-A Nos.8-254793 and 2000-206653.


3) Other Applicable Techniques


Techniques which can be used for the photothermographic material of the invention also include those in EP No. 803764A1, EP No. 883022A1, WO No. 98/36322, JP-A Nos. 56-62648, and 58-62644, JP-A Nos. 09-43766, 09-281637, 09-297367, 09-304869, 09-311405, 09-329865, 10-10669, 10-62899, 10-69023, 10-186568, 10-90823, 10-171063, 10-186565, 10-186567, 10-186569 to 10-186572, 10-197974, 10-197982, 10-197983, 10-197985 to 10-197987, 10-207001, 10-207004, 10-221807, 10-282601, 10-288823, 10-288824, 10-307365, 10-312038, 10-339934, 11-7100, 11-15105, 11-24200, 11-24201, 11-30832, 11-84574, 11-65021, 11-109547, 11-125880, 11-129629, 11-133536 to 11-133539, 11-133542, 11-133543, 11-223898, 11-352627, 11-305377, 11-305378, 11-305384, 11-305380, 11-316435, 11-327076, 11-338096, 11-338098, 11-338099, and 11-343420, JP-A Nos. 2000-187298, 2001-200414, 2001-234635, 2002-20699, 2001-275471, 2001-275461, 2000-313204, 2001-292844, 2000-324888, 2001-293864, and 2001-348546.


4. Image Forming Method


4-1. Imagewise Exposure


As a source of imagewise exposure according to the invention, He—Ne laser of red through infrared emission, red laser diode, or Ar+, He—Ne, He—Cd laser of blue through green emission, or blue laser diode can be used. Preferred laser is red to infrared laser diode and the peak wavelength of the laser beam is from 600 nm to 900 nm, and more preferably 620 nm to 850 nm.


In recent years, development has been made particularly on a light source module with an SHG (a second harmonic generator) and a laser diode integrated into a single piece whereby a laser output apparatus in a short wavelength region has come into the limelight. A blue laser diode enables high definition image recording and makes it possible to obtain an increase in recording density and a stable output over a long lifetime, which results in expectation of an expanded demand in the future. The peak wavelength of blue laser beam is preferably from 300 nm to 500 nm, and particularly preferably from 400 nm to 500 nm.


Laser beam which oscillates in a longitudinal multiple modulation by a method such as high frequency superposition is also preferably employed.


4-2. Thermal Development


Although any method may be used for the development of the photothermographic material of the invention, the thermal developing process is usually performed by elevating the temperature of the photothermographic material exposed imagewise. The temperature of development is preferably in a range of from 80° C. to 250° C., more preferably from 100° C. to 140° C., and even more preferably from 110° C. to 130° C. Time period for development is preferably in a range of from 1 second to 60 seconds, more preferably from 3 seconds to 30 seconds, even more preferably from 5 seconds to 25 seconds, and particularly preferably from 7 seconds to 15 seconds.


In the process of thermal development, either a drum type heater or a plate type heater can be used, but a plate type heater is preferred. A preferable process of thermal development by a plate type heater is a process described in JP-A No. 11-133572, which discloses a thermal developing apparatus in which a visible image is obtained by bringing a photothermographic material with a formed latent image into contact with a heating means at a thermal developing section, wherein the heating means comprises a plate heater, and a plurality of pressing rollers are oppositely provided along one surface of the plate heater, the thermal developing apparatus is characterized in that thermal development is performed by passing the photothermographic material between the pressing rollers and the plate heater. It is preferred that the plate heater is divided into 2 to 6 steps, with the leading end having a lower temperature by 1° C. to 10° C. For example, 4 sets of plate heaters which can be independently subjected to the temperature control are used, and are controlled so that they respectively become 112° C., 119° C., 121° C., and 120° C. Such a process is also described in JP-A No. 54-30032, which allows for passage of moisture and organic solvents included in the photothermographic material out of the system, and also allows for suppressing the change of shapes of the support of the photothermographic material upon rapid heating of the photothermographic material.


For downsizing the thermal developing apparatus and for reducing the time period for thermal development, it is preferred that the heater is more stably controlled, and a top part of one sheet of the photothermographic material is exposed and thermal development of the exposed part is started before exposure of the end part of the sheet has completed. Preferable imagers which enable a rapid process according to the invention are described in, for example, JP-A Nos. 2002-289804 and 2002-287668. Using such imagers, thermal development within 14 seconds is possible with a plate type heater having three heating plates which are controlled, for example, at 107° C., 121° C. and 121° C., respectively. Thus, the output time period for the first sheet can be reduced to about 60 seconds. For such a rapid developing process, there exist various problems described above, so it is particularly preferred to use the photothermographic materials of the invention in combination with the process.


4-3. System


Examples of a medical laser imager equipped with a light exposing portion and a thermal developing portion include Fuji Medical Dry Laser Imager FM-DPL and DRYPIX 7000. In connection with FM-DPL, description is found in Fuji Medical Review No. 8, pages 39 to 55. The described techniques may be applied as the laser imager for the photothermographic material of the invention. In addition, the present photothermographic material can be also applied as a photothermographic material for the laser imager used in “AD network” which was proposed by Fuji Film Medical Co., Ltd. as a network system accommodated to DICOM standard.


5. Application of the Invention


The photothermographic material of the invention can be used for photothermographic materials for use in medical diagnosis, photothermographic materials for use in industrial photographs, photothermographic materials for use in graphic arts, as well as for COM, through forming black and white images by silver imaging. In particular, the photothermographic material of the invention is preferably used for photothermographic materials for use in medical diagnosis.


EXAMPLES

The present invention is specifically explained by way of Examples below, which should not be construed as limiting the invention thereto.


Example 1

(Preparation of PET Support)


1) Film Manufacturing


PET having IV (intrinsic viscosity) of 0.66 (measured in phenol/tetrachloroethane=6/4 (mass ratio) at 25° C.) was obtained according to a conventional manner using terephthalic acid and ethylene glycol. The product was pelletized, dried at 130° C. for 4 hours, and melted at 300° C. Thereafter, the mixture was extruded from a T-die and rapidly cooled to form a non-tentered film.


The film was stretched along the longitudinal direction by 3.3 times using rollers of different peripheral speeds, and then stretched along the transverse direction by 4.5 times using a tenter machine. The temperatures used for these operations were 110° C. and 130° C., respectively. Then, the film was subjected to thermal fixation at 240° C. for 20 seconds, and relaxed by 4% along the transverse direction at the same temperature. Thereafter, the chucking part was slit off, and both edges of the film were knurled. Then the film was rolled up at the tension of 4 kg/cm2 to obtain a roll having the thickness of 175 μm.


2) Surface Corona Discharge Treatment


Both surfaces of the support were treated at room temperature at 20 m/minute using Solid State Corona Discharge Treatment Machine Model 6KVA manufactured by Piller GmbH. It was proven that treatment of 0.375 KV·A·minute·m−2 was executed, judging from the readings of current and voltage on that occasion. The frequency upon this treatment was 9.6 kHz, and the gap clearance between the electrode and dielectric roll was 1.6 mm.


3) Undercoating














Formula (1) (for undercoat layer on the image forming layer side)









Pesresin A-520 manufactured by Takamatsu Oil & Fat Co.,
46.8
g


Ltd. (30% by weight solution)


BAIRONAARU MD-1200 manufactured by Toyo
10.4
g


Boseki Co., Ltd.


Polyethyleneglycol monononylphenylether (average
11.0
g


ethylene oxide number = 8.5) 1% by weight solution


MP-1000 manufactured by Soken Chemical & Engineering
0.91
g


Co., Ltd. (polymer fine particle, mean particle diameter


of 0.4 μm)


Distilled water
931
mL







Formula (2) (for first layer on the backside)









Styrene-butadiene copolymer latex (solid content of 40%
130.8
g


by weight, styrene/butadiene mass ratio = 68/32)


Sodium salt of 2,4-dichloro-6-hydroxy-S-triazine (8% by
5.2
g


weight aqueous solution)


1% by weight aqueous solution of sodium
10
mL


laurylbenzenesulfonate


Polystyrene particle dispersion (mean particle diameter of 2
0.5
g


μm, 20% by weight)


Distilled water
854
mL







Formula (3) (for second layer on the backside)









SnO2/SbO (9/1 mass ratio, mean particle diameter of
84
g


0.5 μm, 17% by weight dispersion)


Gelatin
7.9
g


METOLOSE TC-5 manufactured by Shin-Etsu Chemical
10
g


Co., Ltd. (2% by weight aqueous solution)


1% by weight aqueous solution of sodium
10
mL


dodecylbenzenesulfonate


NaOH (1% by weight)
7
g


Proxel (manufactured by Imperial Chemical Industries PLC)
0.5
g


Distilled water
881
mL









Both surfaces of the biaxially tentered polyethylene terephthalate support having the thickness of 175 μm were subjected to the corona discharge treatment as described above, respectively. Thereafter, the aforementioned formula (1) of the coating solution for the undercoat was coated on one surface (image forming layer side) with a wire bar so that the amount of wet coating became 6.6 mL/m2 (per one side), and dried at 180° C. for 5 minutes. Then, the aforementioned formula (2) of the coating solution for the undercoat was coated on the reverse side (backside) with a wire bar so that the amount of wet coating became 5.7 mL/m2, and dried at 180° C. for 5 minutes. Furthermore, the aforementioned formula (3) of the coating solution for the undercoat was coated on the reverse side (backside) with a wire bar so that the amount of wet coating became 8.4 mL/m2, and dried at 180° C. for 6 minutes. Thus, an undercoated support was produced.


(Back Layer)


1) Preparation of Coating Solution for Back Layer


<<Preparation of Dispersion of Solid Fine Particles (a) of Base Precursor>>


2.5 kg of base precursor-1, 300 g of a surfactant (trade name: DEMOL N, manufactured by Kao Corporation), 800 g of diphenylsulfone, and 1.0 g of benzoisothiazolinone sodium salt were mixed with distilled water to give the total amount of 8.0 kg. This mixed liquid was subjected to beads dispersion using a horizontal sand mill (UVM-2: manufactured by AIMEX Co., Ltd.). Process of dispersion includes feeding the mixed liquid to UVM-2 packed with zirconia beads having a mean particle diameter of 0.5 mm with a diaphragm pump, followed by the dispersion at the inner pressure of 50 hPa or higher until desired mean particle diameter could be achieved.


The dispersion was continued until the ratio of the optical density at 450 nm and the optical density at 650 nm for the spectral absorption of the dispersion (D450/D650) became 3.0 upon spectral absorption measurement. Thus resulting dispersion was diluted with distilled water so that the concentration of the base precursor becomes 25% by weight, and filtrated (with a polypropylene filter having a mean fine pore diameter of 3 μm) for eliminating dust to put into practical use.


<<Preparation of Solid Fine Particle Dispersion of Dye>>


Cyanine dye-1 in an amount of 6.0 kg, 3.0 kg of sodium p-dodecylbenzenesulfonate, 0.6 kg of DEMOL SNB (a surfactant manufactured by Kao Corporation), and 0.15 kg of a defoaming agent (trade name: SURFYNOL 104E, manufactured by Nissin Chemical Industry Co., Ltd.) were mixed with distilled water to give the total amount of 60 kg. The mixed liquid was subjected to dispersion with 0.5 mm zirconia beads using a horizontal sand mill (UVM-2: manufactured by AIMEX Co., Ltd.).


The dispersion was dispersed until the ratio of the optical density at 650 nm and the optical density at 750 nm for the spectral absorption of the dispersion (D650/D750) becomes 5.0 or higher upon spectral absorption measurement. Thus resulting dispersion was diluted with distilled water so that the concentration of the cyanine dye became 6% by weight, and filtrated with a filter (mean fine pore diameter: 1 μm) for eliminating dust to put into practical use.


<<Preparation of Coating Solution for Antihalation Layer>>


A vessel was kept at 40° C., and thereto were added 40 g of gelatin, 20 g of monodispersed polymethyl methacrylate fine particles (mean particle size of 8 μm, standard deviation of particle diameter of 0.4), 0.1 g of benzoisothiazolinone, and 490 mL of water to allow gelatin to be dissolved. Additionally, 2.3 mL of a 1 mol/L sodium hydroxide aqueous solution, 40 g of the above-mentioned dispersion of the solid fine particles of the dye, 90 g of the above-mentioned dispersion of the solid fine particles (a) of the base precursor, 12 mL of a 3% by weight aqueous solution of sodium polystyrenesulfonate, and 180 g of a 10% by weight solution of SBR latex were admixed. Just prior to the coating, 80 mL of a 4% by weight aqueous solution of N,N-ethylenebis(vinylsulfone acetamide) was admixed to give a coating solution for the antihalation layer.


2) Preparation of Coating Solution for Back Surface Protective Layer


A vessel was kept at 40° C., and thereto were added 40 g of gelatin, 35 mg of benzoisothiazolinone, and 840 mL of water to allow gelatin to be dissolved. Additionally, 5.8 mL of a 1 mol/L sodium hydroxide aqueous solution, 5 g of a 10% by weight emulsion of liquid paraffin, 5 g of a 10% by weight emulsion of tri(isostearic acid)-trimethylol-propane, 10 mL of a 5% by weight aqueous solution of di(2-ethylhexyl) sodium sulfosuccinate, 20 mL of a 3% by weight aqueous solution of sodium polystyrenesulfonate, 2.4 mL of a 2% by weight solution of a fluorocarbon surfactant (F-1), 2.4 mL of a 2% by weight solution of another fluorocarbon surfactant (F-2), and 32 g of a 19% by weight solution of methyl methacrylate/styrene/butyl acrylate/hydroxyethyl methacrylate/acrylic acid copolymer (mass ratio of the copolymerization of 57/8/28/5/2) latex were admixed. Just prior to the coating, 25 mL of a 4% by weight aqueous solution of N,N-ethylenebis(vinylsulfone acetamide) was admixed to give a coating solution for the back surface protective layer.


3) Coating of Back Layer


The back side of the undercoated support described above was subjected to simultaneous double coating so that the coating solution for the antihalation layer gave the coating amount of gelatin of 0.52 g/m2, and so that the coating solution for the back surface protective layer gave the coating amount of gelatin of 1.7 g/m2, followed by drying to produce a back layer.


(Image Forming Layer, Intermediate Layer, and Surface Protective Layer)


1. Preparations of Coating Material


1) Preparation of Silver Halide Emulsion


<<Preparation of Silver Halide Emulsion 1>>


A liquid was prepared by adding 3.1 mL of a 1% by weight potassium bromide solution, and then 3.5 mL of 0.5 mol/L sulfuric acid and 31.7 g of phthalated gelatin to 1421 mL of distilled water. The liquid was kept at 30° C. while stirring in a stainless steel reaction vessel, and thereto were added total amount of: solution A prepared through diluting 22.22 g of silver nitrate by adding distilled water to give the volume of 95.4 mL; and solution B prepared through diluting 15.3 g of potassium bromide and 0.8 g of potassium iodide with distilled water to give the volume of 97.4 mL, over 45 seconds at a constant flow rate. Thereafter, 10 mL of a 3.5% by weight aqueous solution of hydrogen peroxide was added thereto, and 10.8 mL of a 10% by weight aqueous solution of benzimidazole was further added. Moreover, a solution C prepared through diluting 51.86 g of silver nitrate by adding distilled water to give the volume of 317.5 mL and a solution D prepared through diluting 44.2 g of potassium bromide and 2.2 g of potassium iodide with distilled water to give the volume of 400 mL were added. A controlled double jet method was executed through adding total amount of the solution C at a constant flow rate over 20 minutes, accompanied by adding the solution D while maintaining the pAg at 8.1. Potassium hexachloroiridate (III) was added in its entirely to give 1×10−4 mol per 1 mol of silver, at 10 minutes post initiation of the addition of the solution C and the solution D. Moreover, at 5 seconds after completing the addition of the solution C, a potassium hexacyanoferrate (II) in an aqueous solution was added in its entirety to give 3×10−4 mol per 1 mol of silver. The mixture was adjusted to the pH of 3.8 with 0.5 mol/L sulfuric acid. After stopping stirring, the mixture was subjected to precipitation/desalting/water washing steps. The mixture was adjusted to the pH of 5.9 with 1 mol/L sodium hydroxide to produce a silver halide dispersion having the pAg of 8.0.


The above-described silver halide dispersion was kept at 38° C. with stirring, and thereto was added 5 mL of a 0.34% by weight methanol solution of 1,2-benzisothiazoline-3-one, followed by elevating the temperature to 47° C. at 40 minutes thereafter. At 20 minutes after elevating the temperature, sodium benzene thiosulfonate in a methanol solution was added at 7.6×10−5 mol per 1 mol of silver. At additional 5 minutes later, a tellurium sensitizer C in a methanol solution was added at 2.9×10−4 mol per 1 mol of silver and subjected to ripening for 91 minutes. Thereafter, a methanol solution of a spectral sensitizing dye A and a spectral sensitizing dye B with a molar ratio of 3:1 was added thereto at 1.2×10−3 mol in total of the spectral sensitizing dye A and B per 1 mol of silver. At 1 minute later, 1.3 mL of a 0.8% by weight methanol solution of N,N′-dihydroxy-N″,N″-diethylmelamine was added thereto, and at additional 4 minutes thereafter, 5-methyl-2-mercaptobenzimidazole in a methanol solution at 4.8×10−3 mol per 1 mol of silver, 1-phenyl-2-heptyl-5-mercapto-1,3,4-triazole in a methanol solution at 5.4×10−3 mol per 1 mol of silver, and 1-(3-methylureidophenyl)-5-mercaptotetrazole in an aqueous solution at 8.5×10−3 mol per 1 mol of silver were added to produce a silver halide emulsion 1.


Grains in thus prepared silver halide emulsion were silver iodobromide grains having a mean equivalent spherical diameter of 0.042 μm, a variation coefficient of an equivalent spherical diameter distribution of 20%, which uniformly include iodine at 3.5 mol %. Grain size and the like were determined from the average of 1000 grains using an electron microscope. The {100} face ratio of these grains was found to be 80% using a Kubelka-Munk method.


<<Preparation of Silver Halide Emulsion 2>>


Preparation of silver halide dispersion 2 was conducted in a similar manner to the process in the preparation of the silver halide emulsion 1 except that: the temperature of the liquid upon the grain forming process was altered from 30° C. to 47° C.; the solution B was changed to that prepared through diluting 15.9 g of potassium bromide with distilled water to give the volume of 97.4 mL; the solution D was changed to that prepared through diluting 45.8 g of potassium bromide with distilled water to give the volume of 400 mL; time period for adding the solution C was changed to 30 minutes; and potassium hexacyanoferrate (II) was deleted; further the precipitation/desalting/ water washing/dispersion were carried out similarly to the silver halide emulsion 1. Furthermore, the spectral sensitization, chemical sensitization, and addition of 5-methyl-2-mercaptobenzimidazole and 1-phenyl-2-heptyl-5-mercapto-1,3,4-triazole were executed to the silver halide dispersion 2 similar to the silver halide emulsion 1 except that: the amount of the tellurium sensitizer C to be added was changed to 1.1×10−4 mol per 1 mol of silver; the amount of the methanol solution of the spectral sensitizing dye A and a spectral sensitizing dye B with a molar ratio of 3:1 to be added was changed to 7.0×10−4 mol in total of the spectral sensitizing dye A and the spectral sensitizing dye B per 1 mol of silver; the addition of 1-phenyl-2-heptyl-5-mercapto-1,3,4-triazole was changed to give 3.3×10−3 mol per 1 mol of silver; and the addition of 1-(3-methylureidophenyl)-5-mercaptotetrazole was changed to give 4.7×10−3 mol per 1 mol of silver, to produce silver halide emulsion 2. Grains in the silver halide emulsion 2 were cubic pure silver bromide grains having a mean equivalent spherical diameter of 0.080 μm and a variation coefficient of an equivalent spherical diameter distribution of 20%.


<<Preparation of Silver Halide Emulsion 3>>


Preparation of silver halide dispersion 3 was conducted in a similar manner to the process in the preparation of the silver halide emulsion 1 except that the temperature of the liquid upon the grain forming process was altered from 30° C. to 27° C., and in addition, the precipitation/desalting/water washing/dispersion were carried out similarly to the silver halide emulsion 1. Silver halide emulsion 3 was obtained similarly to the silver halide emulsion 1 except that: to the silver halide dispersion 3, the addition of the methanol solution of the spectral sensitizing dye A and the spectral sensitizing dye B was changed to the solid dispersion (aqueous gelatin solution) at a molar ratio of 1:1 with the amount to be added being 6.0×10−3 mol in total of the spectral sensitizing dye A and spectral sensitizing dye B per 1 mol of silver; the amount of the tellurium sensitizer C to be added was changed to 5.2×10−4 mol per 1 mol of silver; and bromoauric acid at 5×10−4 mol per 1 mol of silver and potassium thiocyanate at 2×10−3 mol per 1 mol of silver were added at 3 minutes following the addition of the tellurium sensitizer. Grains in the silver halide emulsion 3 were silver iodobromide grains having a mean equivalent spherical diameter of 0.034 μm and a variation coefficient of an equivalent spherical diameter distribution of 20%, which uniformly include iodine at 3.5 mol %.


<<Preparation of Mixed Emulsion A for Coating Solution>>


The silver halide emulsion 1 at 70% by weight, the silver halide emulsion 2 at 15% by weight, and the silver halide emulsion 3 at 15% by weight were dissolved, and thereto was added benzothiazolium iodide in a 1% by weight aqueous solution to give 7×10−3 mol per 1 mol of silver.


Further, as “a compound that can be one-electron-oxidized to provide a one-electron oxidation product, which releases one or more electrons”, the compounds Nos. 1, 2, and 3 were added respectively in an amount of 2×10−3 mol per 1 mol of silver contained in silver halide.


Thereafter, as “a compound having an adsorptive group and a reducing group”, the compound Nos. 1 and 2 were added respectively in an amount of 5×10−3 mol per 1 mol of silver halide.


Further, water was added thereto to give the content of silver of 38.2 g per 1 kg of the mixed emulsion for a coating solution, and 1-(3-methylureidophenyl)-5-mercaptotetrazole was added to give 0.34 g per 1 kg of the mixed emulsion for a coating solution.


The solid content in 1 kg of the mixed emulsion for a coating solution was 68 g.


2) Preparation of Dispersion of Silver Salt of Fatty Acid


<<Preparation of Recrystallized Behenic Acid>>


Behenic acid manufactured by Henkel Co. (trade name: Edenor C22-85R) in an amount of 100 kg was admixed with 1200 kg of isopropyl alcohol, and dissolved at 50° C. The mixture was filtrated through a 10 μm filter, and cooled to 30° C. to allow recrystallization. Cooling speed for the recrystallization was controlled to be 3° C./hour. The resulting crystal was subjected to centrifugal filtration, and washing was performed with 100 kg of isopropyl alcohol. Thereafter, the crystal was dried. The resulting crystal was esterified, and subjected to GC-FID analysis to give the results of the content of behenic acid being 96 mol %, lignoceric acid 2 mol %, and arachidic acid 2 mol %. In addition, erucic acid was included at 0.001 mol %.


<<Preparation of Dispersion of Silver Salt of Fatty Acid>>


88 kg of the recrystallized behenic acid, 422 L of distilled water, 49.2 L of 5 mol/L sodium hydroxide aqueous solution, 120 L of t-butyl alcohol were admixed, and subjected to a reaction with stirring at 75° C. for one hour to give a solution of sodium behenate. Separately, 206.2 L of an aqueous solution of 40.4 kg of silver nitrate (pH 4.0) was provided, and kept at a temperature of 10° C. A reaction vessel charged with 635 L of distilled water and 30 L of t-butyl alcohol was kept at 30° C., and thereto were added the total amount of the solution of sodium behenate and the total amount of the aqueous silver nitrate solution with sufficient stirring at a constant flow rate over 93 minutes and 15 seconds, and 90 minutes, respectively. Upon this operation, during first 11 minutes following the initiation of adding the aqueous silver nitrate solution, the added material was restricted to the aqueous silver nitrate solution alone. The addition of the solution of sodium behenate was thereafter started, and during 14 minutes and 15 seconds following the completion of adding the aqueous silver nitrate solution, the added material was restricted to the solution of sodium behenate alone. The temperature inside of the reaction vessel was then set to be 30° C., and the temperature outside was controlled so that the liquid temperature could be kept constant. In addition, the temperature of a pipeline for the addition system of the solution of sodium behenate was kept constant by circulation of warm water outside of a double wall pipe, so that the temperature of the liquid at an outlet in the leading edge of the nozzle for addition was adjusted to be 75° C. Further, the temperature of a pipeline for the addition system of the aqueous silver nitrate solution was kept constant by circulation of cool water outside of a double wall pipe. Position at which the solution of sodium behenate was added and the position, at which the aqueous silver nitrate solution was added, was arranged symmetrically with a shaft for stirring located at a center. Moreover, both of the positions were adjusted to avoid contact with the reaction liquid.


After completing the addition of the solution of sodium behenate, the mixture was left to stand at the temperature as it was for 20 minutes. The temperature of the mixture was then elevated to 35° C. over 30 minutes followed by ripening for 210 minutes. Immediately after completing the ripening, solid matters were filtered out with centrifugal filtration. The solid matters were washed with water until the electric conductivity of the filtrated water became 30 μS/cm. A silver salt of fatty acid was thus obtained. The resulting solid matters were stored as a wet cake without drying.


When the shape of the resulting particles of the silver behenate was evaluated by an electron micrography, a crystal was revealed having a=0.21 μm, b=0.4 μm and c=0.4 μm on the average value, with a mean aspect ratio of 2.1, and a variation coefficient of an equivalent spherical diameter distribution of 11% (a, b and c are as defined aforementioned.).


To the wet cake corresponding to 260 kg of a dry solid matter content, were added 19.3 kg of poly(vinyl alcohol) (trade name: PVA-217) and water to give the total amount of 1000 kg. Then, a slurry was obtained from the mixture using a dissolver blade. Additionally, the slurry was subjected to preliminary dispersion with a pipeline mixer (manufactured by MIZUHO Industrial Co., Ltd.: PM-10 type).


Next, a stock liquid after the preliminary dispersion was treated three times using a dispersing machine (trade name: Microfluidizer M-610, manufactured by Microfluidex International Corporation, using Z type Interaction Chamber) with the pressure controlled to be 1150 kg/cm2 to give a dispersion of the silver behenate. For the cooling manipulation, coiled heat exchangers were equipped in front of and behind the interaction chamber respectively, and accordingly, the temperature for the dispersion was set to be 18° C. by regulating the temperature of the cooling medium.


3) Preparation of Reducing Agent-1 Dispersion


To 10 kg of reducing agent-1 (6,6′-di-t-butyl-4,4′-dimethyl-2,2′-butylidenediphenol)) and 16 kg of a 10% by weight aqueous solution of modified poly(vinyl alcohol) (manufactured by Kuraray Co., Ltd., Poval MP-203) was added 10 kg of water, and thoroughly mixed to give a slurry. This slurry was fed with a diaphragm pump, and was subjected to dispersion with a horizontal sand mill (UVM-2: manufactured by AIMEX Co., Ltd.) packed with zirconia beads having a mean particle diameter of 0.5 mm for 3 hours and 30 minutes. Thereafter, 0.2 g of a benzoisothiazolinone sodium salt and water were added thereto, thereby adjusting the concentration of the reducing agent to be 25% by weight. This dispersion was warmed at 40° C. for one hour, followed by a subsequent heat treatment at 80° C. for one hour to obtain reducing agent-1 dispersion. Particles of the reducing agent included in the resulting reducing agent dispersion had a median diameter of 0.50 μm, and a maximum particle diameter of 1.6 μm or less. The resultant reducing agent dispersion was subjected to filtration with a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust, and stored.


4) Preparation of Hydrogen Bonding Compound-1 Dispersion


To 10 kg of hydrogen bonding compound-1 (tri(4-t-butylphenyl)phosphineoxide) and 16 kg of a 10% by weight aqueous solution of modified poly(vinyl alcohol) (manufactured by Kuraray Co., Ltd., Poval MP203) was added 10 kg of water, and thoroughly mixed to give a slurry. This slurry was fed with a diaphragm pump, and was subjected to dispersion with a horizontal sand mill (UVM-2: manufactured by AIMEX Co., Ltd.) packed with zirconia beads having a mean particle diameter of 0.5 mm for 4 hours. Thereafter, 0.2 g of a benzisothiazolinone sodium salt and water were added thereto, thereby adjusting the concentration of the hydrogen bonding compound to be 25% by weight. This dispersion was warmed at 40° C. for one hour, followed by a subsequent heat treatment at 80° C. for one hour to obtain hydrogen bonding compound-1 dispersion. Particles of the hydrogen bonding compound included in the resulting hydrogen bonding compound dispersion had a median diameter of 0.45 μm, and a maximum particle diameter of 1.3 μm or less. The resultant hydrogen bonding compound dispersion was subjected to filtration with a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust, and stored.


5) Preparation of Development Accelerator-1 Dispersion


To 10 kg of development accelerator-1 and 20 kg of a 10% by weight aqueous solution of modified poly(vinyl alcohol) (manufactured by Kuraray Co., Ltd., Poval MP203) was added 10 kg of water, and thoroughly mixed to give a slurry. This slurry was fed with a diaphragm pump, and was subjected to dispersion with a horizontal sand mill (UVM-2: manufactured by AIMEX Co., Ltd.) packed with zirconia beads having a mean particle diameter of 0.5 mm for 3 hours and 30 minutes. Thereafter, 0.2 g of a benzisothiazolinone sodium salt and water were added thereto, thereby adjusting the concentration of the development accelerator to be 20% by weight. Accordingly, development accelerator-1 dispersion was obtained. Particles of the development accelerator included in the resulting development accelerator dispersion had a median diameter of 0.48 μm, and a maximum particle diameter of 1.4 μm or less. The resultant development accelerator dispersion was subjected to filtration with a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust, and stored.


6) Preparations of Solid Dispersions of Development Accelerator-2 and Color-tone-adjusting Agent


Also concerning solid dispersions of development accelerator-2 and color-tone-adjusting agent-1, dispersion was executed similar to the development accelerator-1, and thus dispersions of 20% by weight and 15% by weight were respectively obtained.


7) Preparations of Organic Polyhalogen Compound Dispersion


<<Preparation of Organic Polyhalogen Compound-1 Dispersion>>


10 kg of organic polyhalogen compound-1 (tribromomethane sulfonylbenzene), 10 kg of a 20% by weight aqueous solution of modified poly(vinyl alcohol) (manufactured by Kuraray Co., Ltd., Poval MP203), 0.4 kg of a 20% by weight aqueous solution of sodium triisopropylnaphthalenesulfonate and 14 kg of water were thoroughly admixed to give a slurry. This slurry was fed with a diaphragm pump, and was subjected to dispersion with a horizontal sand mill (UVM-2: manufactured by AIMEX Co., Ltd.) packed with zirconia beads having a mean particle diameter of 0.5 mm for 5 hours. Thereafter, 0.2 g of a benzisothiazolinone sodium salt and water were added thereto, thereby adjusting the concentration of the organic polyhalogen compound to be 26% by weight. Accordingly, organic polyhalogen compound-1 dispersion was obtained. Particles of the organic polyhalogen compound included in the resulting organic polyhalogen compound dispersion had a median diameter of 0.41 μm, and a maximum particle diameter of 2.0 μm or less. The resultant organic polyhalogen compound dispersion was subjected to filtration with a polypropylene filter having a pore size of 10.0 μm to remove foreign substances such as dust, and stored.


<<Preparation of Organic Polyhalogen Compound-2 Dispersion>>


10 kg of organic polyhalogen compound-2 (N-butyl-3-tribromomethane sulfonylbenzamide), 20 kg of a 10% by weight aqueous solution of modified poly(vinyl alcohol) (manufactured by Kuraray Co., Ltd., Poval MP203) and 0.4 kg of a 20% by weight aqueous solution of sodium triisopropylnaphthalenesulfonate were thoroughly admixed to give a slurry. This slurry was fed with a diaphragm pump, and was subjected to dispersion with a horizontal sand mill (UVM-2: manufactured by AIMEX Co., Ltd.) packed with zirconia beads having a mean particle diameter of 0.5 mm for 5 hours. Thereafter, 0.2 g of a benzisothiazolinone sodium salt and water were added thereto, thereby adjusting the concentration of the organic polyhalogen compound to be 30% by weight. This dispersion was heated at 40° C. for 5 hours to obtain organic polyhalogen compound-2 dispersion. Particles of the organic polyhalogen compound included in the resulting organic polyhalogen compound dispersion had a median diameter of 0.40 μm, and a maximum particle diameter of 1.3 μm or less. The resultant organic polyhalogen compound dispersion was subjected to filtration with a polypropylene filter having a pore size of 3.0 μm to remove foreign substances such as dust, and stored.


8) Preparation of Phthalazine Compound-1 Solution


Modified poly(vinyl alcohol) MP-203 in an amount of 8 kg was dissolved in 174.57 kg of water, and then thereto were added 3.15 kg of a 20% by weight aqueous solution of sodium triisopropylnaphthalenesulfonate and 14.28 kg of a 70% by weight aqueous solution of phthalazine compound-1 (6-isopropyl phthalazine) to prepare a 5% by weight phthalazine compound-1 solution.


9) Preparation of Aqueous Solution of Mercapto Compound-1


Mercapto compound-1 (1-(3-methylureidophenyl)-5-mercaptotetrazole) in an amount of 20 g was dissolved in 980 g of water to give a 2.0% by weight aqueous solution.


10) Preparation of Pigment-1 Dispersion


C.I. Pigment Blue 60 in an amount of 64 g and 6.4 g of DEMOL N manufactured by Kao Corporation were added to 250 g of water and thoroughly mixed to give a slurry. Zirconia beads having the mean particle diameter of 0.5 mm were provided in an amount of 800 g, and charged in a vessel with the slurry. Dispersion was performed with a dispersing machine (¼ G sand grinder mill: manufactured by AIMEX Co., Ltd.) for 25 hours. Thereto was added water to adjust so that the concentration of the pigment became 5% by weight to obtain a pigment-1 dispersion. Particles of the pigment included in the resulting pigment dispersion had a mean particle diameter of 0.21 μm.


11) Preparation of SBR Latex (TP-1) Solution


To a polymerization tank of a gas monomer reaction apparatus (manufactured by Taiatsu Techno Corporation, TAS-2J type), were charged 287 g of distilled water, 7.73 g of a surfactant (Pionin A-43-S (manufactured by TAKEMOTO OIL & FAT CO., LTD.): solid matter content of 48.5% by weight), 14.06 mL of 1 mol/L sodium hydroxide, 0.15 g of ethylenediamine tetraacetate tetrasodium salt, 255 g of styrene, 11.25 g of acrylic acid, and 3.0 g of tert-dodecyl mercaptan, followed by sealing of the reaction vessel and stirring at a stirring rate of 200 rpm. Degassing was conducted with a vacuum pump, followed by repeating nitrogen gas replacement several times. Thereto was injected 108.75 g of 1,3-butadiene, and the inner temperature is elevated to 60° C. Thereto was added a solution of 1.875 g of ammonium persulfate dissolved in 50 mL of water, and the mixture was stirred for 5 hours as it stands. The temperature was further elevated to 90° C., followed by stirring for 3 hours. After completing the reaction, the inner temperature was lowered to reach to the room temperature, and thereafter the mixture was treated by adding 1 mol/L sodium hydroxide and ammonium hydroxide to give the molar ratio of Na+ ion:NH4+ ion=1:5.3, and thus, the pH of the mixture was adjusted to 8.4. Thereafter, filtration with a polypropylene filter having the pore size of 1.0 μm was conducted to remove foreign substances such as dust followed by storage. Accordingly, SBR latex was obtained in an amount of 774.7 g. Upon the measurement of halogen ion by ion chromatography, concentration of chloride ion was revealed to be 3 ppm. As a result of the measurement of the concentration of the chelating agent by high performance liquid chromatography, it was revealed to be 145 ppm.


The aforementioned latex had a mean particle diameter of 90 nm, Tg of 17° C., solid matter concentration of 44% by weight, the equilibrium moisture content at 25° C. and 60% RH of 0.6% by weight, ionic conductance of 4.80 mS/cm (measurement of the ionic conductance performed using a conductivity meter CM-30S manufactured by Toa Electronics Ltd. for the latex stock solution (44% by weight) at 25° C.).


SBR latexes having different Tg were prepared in a similar manner except that appropriately changing the ratio of styrene and butadiene.


12) Preparation of Isoprene Latex (TP-2) Dispersion


1500 g of distilled water were poured into the polymerization vessel of gas monomer reaction apparatus (type TAS-2J manufactured by Tiatsu Garasu Kogyo Ltd.), and the vessel was heated for 3 hours at 90° C. to make passive film over the stainless vessel surface and stainless stirring device. Thereafter, 582.28 g of distilled water deaerated by nitrogen gas for one hour, 9.49 g of surfactant “PIONIN A-43-S” (trade name, available from Takemoto Oil & Fat Co., Ltd.), 19.56 g of 1 mol/L sodium hydroxide, 0.20 g of ethylenediamine tetraacetic acid tetrasodium salt, 314.99 g of styrene, 190.87 g of isoprene, 10.43 g of acrylic acid, and 2.09 g of tert-dodecyl mercapatn were added into the pretreated reaction vessel. And then, the reaction vessel was sealed and the mixture was stirred at the stirring rate of 225 rpm, followed by elevating the inner temperature to 65° C. A solution obtained by dissolving 2.61 g of ammonium persulfate in 40 mL of water was added to the aforesaid mixture and kept for 6 hours with stirring. At the point the polymerization ratio was 90% according to the solid content measurement. Thereto a solution obtained by dissolving 5.22 g of acrylic acid in 46.98 g of water was added, and then 10 g of water and a solution obtained by dissolving 1.30 g of ammonium persulfate in 50.7 mL of water were added. After the addition, the mixture was heated to 90° C. and stirred for 3 hours. After the reaction was finished, the inner temperature of the vessel was cooled to room temperature. And then, the mixture was treated by adding 1 mol/L sodium hydroxide and ammonium hydroxide to give the molar ratio of Na+ ion:NH4+ ion=1:5.3, and thus, the pH of the mixture was adjusted to 8.4. Thereafter, the resulting mixture was filtered with a polypropylene filter having a pore size of 1.0 μm to remove foreign substances such as dust, and stored. 1248 g of isoprene latex (TP-2) was obtained. The measurement of halogen ion by an ion chromatography showed that the concentration of residual chloride ion was 3 p.p.m. The measurement by a high speed liquid chromatography showed that residual chelating agent concentration was 142 p.p.m.


The obtained latex has an average particle size of 113 nm, Tg=15° C., a solid content of 41.3% by weight, an equilibrium moisture content under the atmosphere of 25° C. and 60RH% of 0.4% by weight, and an ionic conductivity of 5.23 mS/cm (the measurement of which was carried out at 25° C. using a conductometer CM-30S produced by DKK-TOA Corp.).


13) Preparation of Acrylic Latex (TP-3) Solution


Into three necked glass flask with cooling tube and stirring device, 296 g of distilled water, 10.89 g of surfactant (“SANDET BL” produced by Sanyo Kasei Co., Ltd., which was purified with Micro Acilyzer G3 manufactured by Asahi Kasei Co., Ltd,(membrane used: AC110-800) until electric conductivity of the filtrate became unchanged; solid content 27.6% by weight), 15 ml of 1 mol/L sodium hydroxide, 0.3 g of nitrilotriacetic acid, 135 g of methyl methacrylate, 150 g of butylacrylate, 12 g of sodium styrene sulfonate, 3 g of methyl bis-acrylamide, and 2.4 g of tert-dodecyl mercaptan were added, stirred at the stirring rate of 200 rpm in a nitrogen gas atmosphere, and elevated the inner temperature to 60° C. Thereafter a solution obtained by dissolving 0.6 g of sodium persulfate in 40 mL of water was added to the aforesaid mixture and stirred for 5 hours, and then heated to 90° C. with stirring for 3 hours. After the reaction was finished, the inner temperature was cooled to room temperature. And then, the mixture was treated by adding 1 mol/L sodium hydroxide and ammonium hydroxide to give the molar ratio of Na+ ion:NH4+ ion=1:5.3, and thus, the pH of the mixture was adjusted to 8.4. Thereafter, the resulting mixture was filtered with a polypropylene filter having a pore size of 1.0 μm to remove foreign substances such as dust, and stored. 622 g of acrylic latex (TP-3) was obtained (solid content 45% by weight, particle size 108 nm, average molecular weight 140,000, and Tg=5° C.), the measurement of halogen ion by an ion chromatography showed that the concentration of residual chloride ion was 10 p.p.m., and the measurement by a high speed liquid chromatography showed that residual chelating agent concentration was 450 p.p.m.


2. Preparations of Coating Solution


1) Preparation of Coating Solution-1 for Image Forming Layer


To the dispersion of silver salt of fatty acid obtained as described above in an amount of 1000 g and 135 mL of water were serially added 36 g of the pigment-1 dispersion, 25 g of the organic polyhalogen compound-1 dispersion, 39 g of the organic polyhalogen compound-2 dispersion, 171 g of the phthalazine compound solution, 1060 g of the SBR latex (Tg: 17° C.) solution, 153 g of the reducing agent-1 dispersion, 55 g of the hydrogen bonding compound-1 dispersion, 4.8 g of the development accelerator-1 dispersion, 5.2 g of the development accelerator-2 dispersion, 2.1 g of the color-tone-adjusting agent-1 dispersion, and 8 mL of the mercapto compound-1 aqueous solution. The mixed emulsion A for coating solution was added thereto in an amount of 140 g, followed by thorough mixing just prior to the coating, which is fed directly to a coating die, and was coated.


In the coating solution-1 for the image forming layer, the mass of SBR latex, the binder, was 9.43 g and the total mass of the solid contents other than binder (the silver salt of fatty acid, pigment (C. I. Pigment Blue 60), organic polyhalogen compound-1, organic polyhalogen compound-2, phthalazine compound-1, reducing agent-1, hydrogen bonding compound-1, development accelerator-1, development accelerator-2, mercapto compound-1, and silver halide) was 7.23 g. The value, solid content other than binder/binder, was 0.77.


Viscosity of the above-described coating solution for image forming layer was 40 [mPa·s] which was measured with a B type viscometer at 40° C. (No. 1 rotor, 60 rpm).


Viscosity of the coating solution at 38° C. when it was measured using Rheo Stress RS150 manufactured by Haake Co. Ltd. was 30, 43, 41, 28, and 20 [mPa·s], respectively, at the shearing rate of 0.1, 1, 10, 100, 1000 [1/second].


The amount of zirconium in the coating solution was 0.30 mg per 1 g of silver.


2) Preparations of Coating Solution-2 to -25 for Image Forming Layer


Preparations of coating solution-2 to -5 for image forming layer were conducted similar to the process in the preparation of coating solution-1 for image forming layer, except that changing the addition amount of SBR latex (TP-1).


Preparations of coating solution-6 to -15 for image forming layer were conducted similar to the process in the preparation of coating solution-1 for image forming layer, except that using SBR latexes having different glass transition temperature, instead of using SBR latex (TP-1, Tg=17° C.), and further changing the addition amounts of the SBR latex, as show in Table 1.


Further, preparations of coating solution-16 to -25 for image forming layer were conducted similar to the process in the preparation of coating solution-1 for image forming layer, except that using other latexes instead of using SBR latex (TP-1) and changing the addition amounts of the latex, as show in Table 1.


3) Preparation of Coating Solution for Intermediate Layer


To 1000 g of poly(vinyl alcohol) PVA-205 (manufactured by Kuraray Co., Ltd.), 163 g of the pigment-1 dispersion, 33 g of a 18.5% by weight aqueous solution of a blue dye-1 (manufactured by Nippon Kayaku Co., Ltd.: Kayafect turquoise RN liquid 150), 27 mL of a 5% by weight aqueous solution of di(2-ethylhexyl) sodium sulfosuccinate, and 4200 mL of a 19% by weight solution of methyl methacrylate/styrene/butyl acrylate/hydroxyethyl methacrylate/acrylic acid copolymer (mass ratio of the copolymerization of 57/8/28/5/2) latex, 27 mL of a 5% by weight aqueous solution of aerosol OT (manufactured by American Cyanamid Co.), 135 mL of a 20% by weight aqueous solution of diammonium phthalate was added water to give total amount of 10000 g. The mixture was adjusted with sodium hydroxide to give the pH of 7.5. Accordingly, the coating solution for the intermediate layer was prepared, and was fed to a coating die to provide 8.9 mL/m2.


Viscosity of the coating solution was 58 [mPa-s] which was measured with a B type viscometer at 40° C. (No. 1 rotor, 60 rpm).


4) Preparation of Coating Solution for First Layer of Surface Protective Layers


In 840 mL of water were dissolved 100 g of inert gelatin and 10 mg of benzoisothiazolinone, and thereto were added 180 g of a 19% by weight solution of methyl methacrylate/styrene/butyl acrylate/hydroxyethyl methacrylate/acrylic acid copolymer (mass ratio of the copolymerization of 57/8/28/5/2) latex, 46 mL of a 15% by weight methanol solution of phthalic acid, and 5.4 mL of a 5% by weight aqueous solution of di(2-ethylhexyl)sodium sulfosuccinate, and were mixed. Immediately before coating, 40 mL of a 4% by weight chrome alum which had been mixed with a static mixer was fed to a coating die so that the amount of the coating solution became 26.1 mL/m2.


Viscosity of the coating solution was 20 [mPa·s] which was measured with a B type viscometer at 40° C. (No. 1 rotor, 60 rpm).


5) Preparation of Coating Solution for Second Layer of Surface Protective Layers


In 800 mL of water were dissolved 100 g of inert gelatin and 10 mg of benzoisothiazolinone, and thereto were added 40 g of a 10% by weight liquid paraffin emulsion, 40 g of a 10% by weight emulsion of dipentaerythritol hexa-isostearate, 180 g of a 19% by weight solution of methyl methacrylate/styrene/butyl acrylate/hydroxyethyl methacrylate/acrylic acid copolymer (mass ratio of the copolymerization of 57/8/28/5/2) latex, 40 mL of a 15% by weight methanol solution of phthalic acid, 5.5 mL of a 1% by weight solution of a fluorocarbon surfactant (F-1), 5.5 mL of a 1% by weight aqueous solution of another fluorocarbon surfactant (F-2), 28 mL of a 5% by weight aqueous solution of di(2-ethylhexyl)sodium sulfosuccinate, 4 g of polymethyl methacrylate fine particles (mean particle diameter of 0.7 μm, volume weighted mean distribution of 30%) and 21 g of polymethyl methacrylate fine particles (mean particle diameter of 3.6 μm, volume weighted mean distribution of 60%), and the obtained mixture was mixed to give a coating solution for the surface protective layer, which was fed to a coating die so that 8.3 mL/m2 could be provided.


Viscosity of the coating solution was 19 [mPa·s] which was measured with a B type viscometer at 40° C. (No. 1 rotor, 60 rpm).


3. Preparations of Photothermographic Material-1 to -25


1) Preparation of Photothermographic Material-1


Reverse surface of the back surface on which the back layer was coated was subjected to simultaneous overlaying coating by a slide bead coating method in order of coating solution-1 for the image forming layer, the coating solution for intermediate layer, the coating solution for the first layer of the surface protective layers, and the coating solution for the second layer of the surface protective layers, starting from the undercoated face, and thus photothermographic material-1 was produced. In this method, the temperature of the coating solution was adjusted to 31° C. for the image forming layer and intermediate layer, to 36° C. for the first layer of the surface protective layers, and to 37° C. for the second layer of the surface protective layers.


The coating amount of each compound (g/m2) for the image forming layer is as follows.


















Silver salt of fatty acid
5.27



Pigment (C.I. Pigment Blue 60)
0.036



Organic polyhalogen compound-1
0.014



Organic polyhalogen compound-2
0.028



Phthalazine compound-1
0.18



SBR latex (TP-1)
9.43



Reducing agent-1
0.77



Hydrogen bonding compound-1
0.28



Development accelerator-1
0.019



Development accelerator-2
0.016



Color-tone-adjusting agent-1
0.006



Mercapto compound-1
0.003



Silver halide (on the basis of Ag content)
0.13










Conditions for coating and drying were as follows.


Coating was performed at the speed of 160 m/min. The clearance between the leading end of the coating die and the support was from 0.10 mm to 0.30 mm. The pressure in the vacuum chamber was set to be lower than atmospheric pressure by 196 Pa to 882 Pa. The support was decharged by ionic wind.


In the subsequent cooling zone, the coating solution was cooled by wind having the dry-bulb temperature of from 10° C. to 20° C. Transportation with no contact was carried out, and the coated support was dried with an air of the dry-bulb of from 23° C. to 45° C. and the wet-bulb of from 15° C. to 21° C. in a helical type contactless drying apparatus.


After drying, moisture conditioning was performed at 25° C. in the humidity of from 40% RH to 60% RH. Then, the film surface was heated to be from 70° C. to 90° C., and after heating, the film surface was cooled to 25° C.


Thus prepared photothermographic material had a level of matting of 550 seconds on the image forming layer side, and 130 seconds on the back surface as Beck's smoothness. In addition, measurement of pH of the film surface on the image forming layer side gave the result of 6.0.


2) Preparations of Photothermographic Material-2 to -25


Preparations of photothermographic material-2 to -25 were conducted in a similar manner to the process in the preparation of photothermographic material-I, except that using either of coating solution-2 to -25 for image forming layer, instead of using the coating solution-1 for image forming layer.


Chemical structures of the compounds used in Examples of the invention are shown below.




embedded image



Compound 1 that can be one-electron-oxinized to provide a one-electron oxidation product which releases one or more electrons




embedded image



Compound 2 that can be one-electron-oxidized to provide a one-electron oxidation product which releases one or more electrons




embedded image



Compound 1 that can be one-electron-oxinized to provide a one-electron oxidation product which releases one or more electrons




embedded image



Compound 1 having adsorptive group and reducing group




embedded image



Compound 2 having adsorptive group and reducing group




embedded image


embedded image


embedded image



4. Evaluation of Photographic Properties


1) Preparation


The obtained sample was cut into a half-cut size (43 cm in length×35 cm in width), and was wrapped with the following packaging material under an environment of 25° C. and 50% RH, and stored for 2 weeks at an ambient temperature.


<Packaging Material>


A film laminated with PET 10 μm/PE 12 μm/aluminum foil 9 μm/Ny 15 μm/polyethylene 50 μm containing carbon at 3% by weight:


oxygen permeability at 25° C.: 0.02 mL·atm−1m−2day−1;


vapor permeability at 25° C.: 0.10 g·atm−1m−2day−1.


2) Exposure and Thermal Development


To the photothermographic material-1 to -25, exposure and thermal development (14 seconds in total with 3 panel heaters set to 107° C.-121° C.-121° C.) with Fuji Medical Dry Laser Imager DRYPIX 7000 (equipped with 660 nm laser diode having a maximum output of 50 mW (IIIB)) were performed. Evaluation on an obtained image was performed with a densitometer.


3) Evaluation of Photographic Properties


<Sensitivity>


The density of the obtained image was measured using Macbeth densitometer, and therefrom a photographic characteristic curve was formed by plotting the density to a logarithm of the exposure value. Sensitivity is expressed by a reciprocal of the exposure value necessary to give an optical density of fog +2.0. Sensitivities are shown by a difference when the sensitivity of Sample No.1 is taken as a standard (±0). The bigger to plus side is the value, the higher is the sensitivity.


<Evaluation of Manufacturing-Related Brittleness>


The photothermographic materials were cut using a cutting machine having an upper blade with a nose angle of 90°, a lower blade with a nose angle of 90°, and a shear angle of 0.5°, and a clearance of 70 μm. Thereafter, the peeling states of the image forming layer in the cutting surface on the lower blade side were observed. In case of the sample with poor film-forming property, peeling of the image forming layer may occur in the image forming layer near to the interface between the image forming layer and the support. The peeling of the image forming layer can be depressed by strengthening the film-forming property.


The ratio of the length of peeling of the image forming layer to the length of the cutting surface is measured. The manufacturing-related brittleness is evaluated by the following criteria:


⊚: 0%,


◯: more than 0% and less than 5%,


Δ: 5% or more and less than 20%,


×: 20% or more and less than 50%


××: 50% or more.


Practically, the level of less than 5% (⊚ and ◯) is allowable.


4) Results of Evaluation


The results of evaluation for photothermographic material-1 to -25 are shown in the following Table 1.


When the ratio of solid content other than binder relative to the binder in the image forming layer is from 0.80 to 1.10 by mass ratio, the photothermographic material can be thermally developed at higher speed. Especially, in the case where the said solid content ratio is from 0.85 to 1.05, more excellent result is obtained. Moreover in the above range, the manufacturing-related brittleness is also excellent.












TABLE 1









Image Forming Layer















Solid





Photothermo-

Content

Manufacturing-


graphic
Binder
Ratio

related


Material No.
(Tg° C.)
(vs. Binder)
Sensitivity
Brittleness
Note















1
SBR (TP-1)
0.77
±0.00

Comparative



(17° C.)


2
SBR (TP-1)
0.82
+0.12

Invention



(17° C.)


3
SBR (TP-1)
0.95
+0.18

Invention



(17° C.)


4
SBR (TP-1)
1.08
+0.20

Invention



(17° C.)


5
SBR (TP-1)
1.13
+0.23
X
Comparative



(17° C.)


6
SBR (28° C.)
0.77
+0.02

Comparative


7
SBR (28° C.)
0.82
+0.12

Invention


8
SBR (28° C.)
0.95
+0.20

Invention


9
SBR (28° C.)
1.08
+0.23
Δ
Invention


10
SBR (28° C.)
1.13
+0.24
X
Comparative


11
SBR (5° C.)
0.77
±0.00

Comparative


12
SBR (5° C.)
0.82
+0.11

Invention


13
SBR (5° C.)
0.95
+0.17

Invention


14
SBR (5° C.)
1.08
+0.20

Invention


15
SBR (5° C.)
1.13
+0.21
X
Comparative


16
TP-2 (15° C.)
0.77
+0.02

Comparative


17
TP-2 (15° C.)
0.82
+0.15

Invention


18
TP-2 (15° C.)
0.95
+0.19

Invention


19
TP-2 (15° C.)
1.08
+0.22

Invention


20
TP-2 (15° C.)
1.13
+0.23
X
Comparative


21
TP-3 (5° C.)
0.77
±0.00

Comparative


22
TP-3 (5° C.)
0.82
+0.10

Invention


23
TP-3 (5° C.)
0.95
+0.17

Invention


24
TP-3 (5° C.)
1.08
+0.20
Δ
Invention


25
TP-3 (5° C.)
1.13
+0.20
X
Comparative









Example 2

Photothermographic material-101 to -125 were prepared in a similar manner to the process in the preparation of Example 1 except that an additional intermediate layer-A was coated between the image forming layer and the intermediate layer of photothermographic material-1 to -25 of Example 1. The intermediate layer-A was coated using the coating solution A for intermediate layer described below.


<<Preparation of Coating Solution A for Intermediate layer>>


The coating solution A for intermediate layer was prepared by mixing 2792 g of SBR latex (TP-1) and 25 mL of a 5% by weight aqueous solution of sodium di(2-ethylhexyl) sulfosuccinate and water to make the total amount to be 5116 g. Thereafter, the mixture was adjusted to the pH of 7.5 with sodium hydroxide and then fed to a coating die so that 16.7 mL/m2 could be provided.


Viscosity of the coating solution was 3.1 [mPa·s] which was measured with a B type viscometer at 40° C. (No. 1 rotor, 60 rpm).


Similar evaluation to Example 1 was performed for the obtained samples. Sensitivity is expressed by a value when the sensitivity of photothermographic material-101 is taken as a standard. Results are shown in Table 2.


Even in the case where a hydrophobic polymer is used for the binder of the non-photosensitive layer, the photothermographic material can be thermally developed at higher speed when the ratio of the solid content other than the binder relative to the binder is from 0.80 to 1.10 by mass ratio. Especially, when the said solid content ratio is from 0.85 to 1.05, an excellent result is obtained. Furthermore, an extremely good degree of the manufacturing-related brittleness is obtained when hydrophobic polymer is used for the binder of the non-photosensitive layer.












TABLE 2









Image Forming Layer















Solid





Photothermo-

Content

Manufacturing-


graphic
Binder
Ratio

related


Material No.
(Tg° C.)
(vs. Binder)
Sensitivity
Brittleness
Note















101
SBR (TP-1)
0.77
±0.00

Comparative



(17° C.)


102
SBR (TP-1)
0.82
+0.10

Invention



(17° C.)


103
SBR (TP-1)
0.95
+0.17

Invention



(17° C.)


104
SBR (TP-1)
1.08
+0.18

Invention



(17° C.)


105
SBR (TP-1)
1.13
+0.22
X
Comparative



(17° C.)


106
SBR (28° C.)
0.77
+0.01

Comparative


107
SBR (28° C.)
0.82
+0.10

Invention


108
SBR (28° C.)
0.95
+0.18

Invention


109
SBR (28° C.)
1.08
+0.23

Invention


110
SBR (28° C.)
1.13
+0.23
X
Comparative


111
SBR (5° C.)
0.77
±0.00

Comparative


112
SBR (5° C.)
0.82
+0.09

Invention


113
SBR (5° C.)
0.95
+0.15

Invention


114
SBR (5° C.)
1.08
+0.17

Invention


115
SBR (5° C.)
1.13
+0.18
Δ
Comparative


116
TP-2 (15° C.)
0.77
+0.01

Comparative


117
TP-2 (15° C.)
0.82
+0.13

Invention


118
TP-2 (15° C.)
0.95
+0.17

Invention


119
TP-2 (15° C.)
1.08
+0.19

Invention


120
TP-2 (15° C.)
1.13
+0.21
Δ
Comparative


121
TP-3 (5° C.)
0.77
±0.00

Comparative


122
TP-3 (5° C.)
0.82
+0.19

Invention


123
TP-3 (5° C.)
0.95
+0.15

Invention


124
TP-3 (5° C.)
1.08
+0.18

Invention


125
TP-3 (5° C.)
1.13
+0.19
Δ
Comparative









Example 3

The photothermographic material-101 to -125 prepared in Example 2 were subjected to imagewise exposure using Fuji Medical Dry Laser Imager DRYPIX 7000 (equipped with 660 nm laser diode having a maximum output of 50 mW (IIIB)) and thermal development with the following two conditions.


Condition A: The temperature of three panel heaters were set to 107° C.-121° C.-121° C., and the total time period for thermal development was set to be 14 seconds.


Condition B: The temperature of three panel heaters were set to 105° C.-119° C.-119° C., and the total time period for thermal development was set to be 14 seconds.


The color tone of the obtained image at a density area of 1.2 was measured, and thereby the variation in color tone (color difference AE) of the samples which were processed with the above condition A and condition B was determined according to the following.


<Evaluation of Variation in Color Tone>


Measurement of the color tone at a density area of 1.2 of each processed sample was performed using a Spectrolino spectrometer (trade name, produced by Gretag-Macbeth Ltd.) under an illumination of the fluorescent lamp F 6, and thereby the value in CIELAB color space was calculated. The color difference ΔE is expressed according to the following equation in which L*A, a*A, and b*A refer to the amounts (chromaticity coordinates) concerning the sample processed with the development condition A, and L*B, a*B, and b*B refer to the amounts concerning the sample processed with the development condition B.

ΔE={(ΔL*)2+(Δa*)2+(Δb*)2}1/2

wherein ΔL*=L*A−L*B, Δa*=a*A−a*B, and Δb*=b*A−b*B.


The obtained results are shown in Table 3.


From the results shown in Table 3, it is understood that the temperature dependency of thermal developing process can be significantly lowered by using the binder in the amount of the present invention. Especially, photothermographic materials which can depress the variation of color tone resulting from thermal development at low temperature condition are obtained.












TABLE 3









Image Forming Layer















Solid





Photothermo-

Content

Variation in


graphic
Binder
Ratio
Sensitivity
Color Tone


Material No.
(Tg° C.)
(vs. Binder)
(Condition A)
(ΔE)
Note















101
SBR (TP-1)
0.77
±0.00
2.9
Comparative



(17° C.)


102
SBR (TP-1)
0.82
+0.10
0.7
Invention



(17° C.)


103
SBR (TP-1)
0.95
+0.17
0.6
Invention



(17° C.)


104
SBR (TP-1)
1.08
+0.18
0.7
Invention



(17° C.)


105
SBR (TP-1)
1.13
+0.22
3.1
Comparative



(17° C.)


106
SBR (28° C.)
0.77
+0.01
3.0
Comparative


107
SBR (28° C.)
0.82
+0.10
0.7
Invention


108
SBR (28° C.)
0.95
+0.18
0.7
Invention


109
SBR (28° C.)
1.08
+0.23
0.7
Invention


110
SBR (28° C.)
1.13
+0.23
3.1
Comparative


111
SBR (5° C.)
0.77
±0.00
2.9
Comparative


112
SBR (5° C.)
0.82
+0.09
0.6
Invention


113
SBR (5° C.)
0.95
+0.15
0.6
Invention


114
SBR (5° C.)
1.08
+0.17
0.7
Invention


115
SBR (5° C.)
1.13
+0.18
3.0
Comparative


116
TP-2 (15° C.)
0.77
+0.01
3.0
Comparative


117
TP-2 (15° C.)
0.82
+0.13
0.7
Invention


118
TP-2 (15° C.)
0.95
+0.17
0.6
Invention


119
TP-2 (15° C.)
1.08
+0.19
0.7
Invention


120
TP-2 (15° C.)
1.13
+0.21
3.0
Comparative


121
TP-3 (5° C.)
0.77
±0.00
3.1
Comparative


122
TP-3 (5° C.)
0.82
+0.19
0.7
Invention


123
TP-3 (5° C.)
0.95
+0.15
0.6
Invention


124
TP-3 (5° C.)
1.08
+0.18
0.6
Invention


125
TP-3 (5° C.)
1.13
+0.19
3.0
Comparative








Claims
  • 1. A photothermographic material comprising, on a support, at least a non-photosensitive layer, and an image forming layer comprising at least a photosensitive silver halide, a non-photosensitive organic silver salt, a reducing agent, and a binder, wherein a content of the binder in the image forming layer is from approximately 55.6% to approximately 47.6% by mass ratio to a total solid content in the image forming layer.
  • 2. The photothermographic material according to claim 1, wherein the content of the binder in the image forming layer is from approximately 54.1% to approximately 48.1% by mass ratio to the total solid content in the image forming layer.
  • 3. The photothermographic material according to claim 1, wherein the content of the binder in the image forming layer is from approximately 51.3% to approximately 48.8% by mass ratio to the total solid content in the image forming layer.
  • 4. The photothermographic material according to claim 1, wherein the non-photosensitive layer contains binder containing hydrophobic polymer in an amount of approximately 50% by weight or more.
  • 5. The photothermographic material according to claim 1, wherein the non-photosensitive layer contains binder containing hydrophobic polymer in an amount of approximately 90% by weight or more.
  • 6. The photothermographic material according to claim 1, wherein the non-photosensitive layer is provided on the side farther from the support than the image forming layer and adjacent to the image forming layer.
  • 7. The photothermographic material according to claim 6, further comprising a non-photosensitive outermost layer provided on the side of the support having the image forming layer and the non-photosensitive layer.
  • 8. The photothermographic material according to claim 7, further comprising a non-photosensitive intermediate layer provided between the image forming layer and the non-photosensitive layer.
Priority Claims (2)
Number Date Country Kind
2002-351466 Dec 2002 JP national
2004-209560 Jul 2004 JP national
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. patent application Ser. No. 11/179,770, filed Jul. 13, 2005 now abandoned which claims priority under 35 USC 119 from Japanese Patent Application No. 2004-209560, and is a continuation-in-part of earlier filed application Ser. No. 10/724,706, filed Dec. 2, 2003, which claims priority under 35 USC 119 from Japanese Patent Application No. 2002-351,466, the disclosures of which are incorporated by reference herein.

US Referenced Citations (40)
Number Name Date Kind
3544336 Milton Dec 1970 A
4332889 Siga et al. Jun 1982 A
4411985 Morrow et al. Oct 1983 A
5286619 Tsuji Feb 1994 A
H1578 Taguchi Aug 1996 H
5637449 Harring et al. Jun 1997 A
5958668 Matsumoto et al. Sep 1999 A
5998126 Toya et al. Dec 1999 A
6013410 Arai Jan 2000 A
6132948 Hatakeyama Oct 2000 A
6140037 Katoh et al. Oct 2000 A
6140038 Ishizuka et al. Oct 2000 A
6143488 Utterhoeven et al. Nov 2000 A
6156491 Goto Dec 2000 A
6174663 Kato Jan 2001 B1
6187528 Uytterhoeven et al. Feb 2001 B1
6258524 Hirabayashi et al. Jul 2001 B1
6280923 Uytterhoeven et al. Aug 2001 B1
6312885 Fujita et al. Nov 2001 B1
6331386 Ezoe et al. Dec 2001 B1
6333147 Toya Dec 2001 B1
6461805 Habu et al. Oct 2002 B1
6528244 Katoh et al. Mar 2003 B1
6607872 Uytterhoeven et al. Aug 2003 B1
6696237 Yoshioka et al. Feb 2004 B1
20010023049 Yasuda et al. Sep 2001 A1
20020048732 Oya et al. Apr 2002 A1
20020058220 Tsukada et al. May 2002 A1
20020068245 Yoshioka et al. Jun 2002 A1
20020102502 Fukui et al. Aug 2002 A1
20020146654 Tsukada et al. Oct 2002 A1
20020197570 Ohzeki Dec 2002 A1
20030091947 Tsukada et al. May 2003 A1
20040115572 Tsukada et al. Jun 2004 A1
20040121273 Nakagawa et al. Jun 2004 A1
20040142287 Nakagawa et al. Jul 2004 A1
20040161714 Suzuki Aug 2004 A1
20050214701 Oyamada Sep 2005 A1
20060014113 Nakagawa Jan 2006 A1
20060210932 Oyamada Sep 2006 A1
Foreign Referenced Citations (16)
Number Date Country
0803764 Oct 1997 EP
0903624 Mar 1999 EP
0903628 Mar 1999 EP
0911691 Apr 1999 EP
A08-297345 Nov 1996 JP
A10-10669 Jan 1998 JP
A11-149136 Jun 1999 JP
A2000-10229 Jan 2000 JP
A2000-512030 Sep 2000 JP
A2000-305213 Nov 2000 JP
A2001-013618 Jan 2001 JP
A2001-272743 Oct 2001 JP
A2001-350235 Dec 2001 JP
A2002-156727 May 2002 JP
A2002-303953 Oct 2002 JP
WO 9704355 Feb 1997 WO
Related Publications (1)
Number Date Country
20060204908 A1 Sep 2006 US
Continuation in Parts (2)
Number Date Country
Parent 11179770 Jul 2005 US
Child 11374215 US
Parent 10724706 Dec 2003 US
Child 11179770 US