Physical feedback channel for entertainement or gaming environments

Abstract
A physical feedback system for computer gaming environments comprises: a computing device for executing an application software program, the computing device having an interface for transmitting feedback signals generated by the application software program, and a wearable receiver having means for receiving the feedback signals from the computing device and actuator means designed to enter physical feedback sensations to the body and/or head of a user using the skin of the user as an interface.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention generally relates to the field of providing physical feedback to the user of an application, such as f.e. a computer game or other entertainement application software.


BRIEF DESCRIPTION OF THE PRESENT STATE OF THE ART

To understand the proposed idea of the present invention, it is necessary to briefly describe the main features, advantages and problems of haptic interfaces and tactile communication systems according to the state of the art.


Haptic interfaces represent an interesting alternative to conventional human-machine interfaces and feature a wide variety of applications. Examples include virtual-reality (VR) applications for immersive simulation, teleoperated master-slave robot systems, and robotic surgery. A haptic interface according to the state of the art comprises a special input/output device (e.g. a force-feedback joystick, a haptic mouse, or an exoskeleton), a real-time controller, and a real-time simulation of a virtual environment. The controller thereby collects information from integrated sensors of the input/output device (e.g. position, velocity, force or torque sensors), which are then used as input information to the simulation. The simulation estimates the forces a user should feel based on this input information and the internal state of the simulation itself. The simulation outputs are then used by the controller to drive the input/output device's actuators, which allows said user to touch, feel, and manipulate virtual environments.


WO 01/41636 A1 refers to a tactile communication system enabling remotely control of tactile output devices, e.g. motor actuators, which are used for a sensory/tactile stimulation of human muscles, limbs, and body joints by vibrations, warmth electromagnetic pulses, etc.


WO 98/14860 pertains to a method for transmitting the touch of a sensor array via a computer or computer network and a corresponding system for transmitting perceptible feelings, which comprises at least one computer, a sensor array for detecting touches from a person and providing sensor signals, an actuator array for generating physically perceptible pressure signals, and a control unit linking the sensor array and the actuator array to the computer.


In EP 0 875 821 A2, a communication terminal device with a tactile feedback is described. The device comprises a pen-input tablet, a microphone, an acceleration sensor and a number of pressure sensors.


A computerized system including a touch-/pressure-sensitive transducer and a computer responsive thereto for producing a sentic cycle and recording touch expression is disclosed in U.S. Pat. No. 5,305,423.


PROBLEMS OF PRIOR-ART SOLUTIONS

Today, entertainment and gaming software such as e.g. adventure games are getting more and more realistic due to a more and more enhanced graphical resolution and frame rate. Modern game console platforms are also used in combination with hand-held controller devices providing a haptic force-feedback function. However, these force-feedback controller devices according to the state of the art do not provide a realistic way of feeling tactile sensations in virtual game scenarios.


OBJECT OF THE PRESENT INVENTION

In view of the explanations mentioned above, it is the object of the present invention to provide a controlling device which allows a more realistic (intuitive) feedback.


This object is achieved by means of the features of the independent claims. Advantageous features are defined in the subordinate claims. Further objects and advantages of the invention are apparent in the detailed description which follows.


SUMMARY OF THE INVENTION

A system providing realistic physical feedback in a computer gaming environment according can comprise:

    • a computing device for executing an application software program,
    • the computing device having an interface for transmitting feedback signals generated by the application software program, and
    • a wearable receiver having means for receiving the feedback signals from the computing device and actuator means designed to enter physical feedback sensations to the body and/or head of a user using the skin of the user as an interface.


The wearable reveicer can be integrated in a piece of garment.


A display can be integrated into the piece of garment.


The wearable receiver can comprise a controller for controlling an array of actuators according to an operational pattern depending on any feedback signal received.


The sytem furthermore can comprise a channel for transmitting signals representing biological data from the user to the computing device hosting the application software program.


The application software can be an entertainement or game-type software.


The feedback signals can be generated depending on a background scene and/or a virtual actor of a game-type software.


The application software can be divided into several logical parts, wherein each part is associated with a channel of the feedback signals and each channel is associated with a respective subgroup of the actuator means.


The actuator means can comprise means for generating vibrational, tactile an/or heat.


The wearable receiver can comprise means for adjusting manually operational parameters of the actuator means.


According to another aspect of the present invention, a method for providing physical feedback sensations to the body of a user of an application software program can comprise the following steps:

    • generating feedback signals in an application software program,
    • transmitting the feedback signals to a wearable receiver, and
    • entering, based on the received feedback signals, physical feedback sensations to the body and/or head of a user using the skin of the user as an interface.


Another aspect relates to computer program product, a computer game console and a wearable game accesory respectively supporting such a method.




BRIEF DESCRIPTION OF THE DRAWINGS

Further advantages and conceivable applications of the present invention result from the subordinate claims as well as from the following description of one embodiment of the invention as depicted in the following drawings:



FIG. 1 shows a user wearing a piece of clothing which includes integrated actuators for generating vibrations, heat or coolness, pressure and/or electric pulses generated by actuators worn on or placed near the user's body,



FIG. 2 block diagram showing the interaction between biometric sensors placed on or close to the body of a person wearing said piece of clothing, a game console platform and its controlling unit,



FIG. 3
a shows a piece of clothing (e.g. a shirt) comprising a wearable display,



FIG. 3
b shows a piece of clothing (e.g. a shirt) comprising a wearable display which shows a simulated heavy violation by coloring parts of said shirt red,



FIG. 4
a illustrates a tactile communication scenario according to a first embodiment of the invention, and



FIG. 4
b illustrates a tactile communication scenario according to a second embodiment of this invention,




DETAILED DESCRIPTION OF THE PRESENT INVENTION

In the following, different embodiments of the present invention as depicted in FIGS. 1 to 4b shall be explained in detail. The meaning of the symbols designated with reference numerals and signs in these figures can be taken from an annexed table.


The present invention particularly refers to a piece of clothing or wearable accessory 101 equipped with at least one wearable computing device 100, wherein the computing device is connected to the central controlling unit 109″ e.g. of a game console application 109′ or any type of application software running on an external controlling device 109 over a wireless or wirebound link 199. It comprises means (100C) for receiving (S202′) and processing (S202″) e.g. digitally encoded control information representing physical feedback singals from the external controlling device 109, actuating means 106a-d placed on or close to the body of a person wearing said piece of clothing or wearable accessory 101, which generate multi-sensorial feedback e.g. from a virtual gaming scene by generating (S104′) visual, auditive, tactile, gustatoric and/or olfactoric stimuli, particualrly stimuli using the skin of a user as an interface, as well as means (206) for activating, controlling and deactivating (S104) these actuating means 106a-d according to said control information.


The central controlling unit can be connected operatively with a monitor device, as it is well known f.e. from game consoles, to transmit and eventually receive signals from the monitor device.


According to a further aspect of the invention, said device 100 features a tactile interface 103 which comprises different sensing means 105a-c for detecting tactile input information when being touched by a user and/or a number of actuating means 106a-d for generating (S104′) tactile stimuli, which provides said user with sensoric feedback f.e. from a virtual gaming scene according to said control information.


According to a first embodiment of the invention as depicted in FIG. 4a, tactile stimulation is achieved by means of a dedicated piece of clothing equipped with one or a number of the same or different types of mechanical and/or electric actuators 106a-d (e.g. micro motors, micro speakers, piezo elements, micro fans and electrostatic discharge modules for simulating e.g. “laser shocks”, etc.). Said actuators are embedded into a piece of clothing 101 or into a part of said clothing worn by the player, wearable accessories or intelligent jewelries that are preferably worn on the upper part of the person's body or on his/her arms. To get a more realistic impression of the gaming atmosphere (displayed on the monitor device), simulated environmental conditions such as wind, rain or heat become feelable to said player. The intensity of simulated tactile sensations, which is under main control of the game console application software and also controlled by different controlling means which are directly controllable by the player, depends on the number of worn clothing layers. The game console application 109′ is usually responsible for controlling only a single actuator 106 or a number of actuators 106a-d at a time and works according to a predefined set of rules.


As shown in FIGS. 1 and 2, in addition to the signals originating from the game console, furthermore feedback data from the player, detected by a number of biometric (105a-c) and/or environmental sensors (105′) placed on or close to the user's body can also be used to influence the game console application software. The sensors are used for measuring e.g. the skin conductivity, which indicates the degree of sweating, body temperature, blood volume pressure, respiration and/or pulse rate (and therewith the excitement level) of the player or several environmental conditions (e.g. the temperature, atmospheric pressure, relative humidity and/or wind speed) in the environment of said person, respectively.


There are usually different types of visual or audio information conveyed to the user. Possible categories are:

    • (1)information regarding the atmosphere, e.g. via the rhythm of music indicating danger,
    • (2)information about what the main character in a virtual game scenario shown on the monitor is doing (e.g. jumping or firing), and
    • (3)information related to other characters such as enemies and partners of the main character. These different categories of information (background, main and foreground information) can be conveyed by different types of actuators (acoustic, optical, haptic actuators or special actuators that generate signals stimulating a player's gustatoric or olfactoric sense) to represent different levels of information to the user. For each category, the intensity of a signal can be varied.


The controlling unit 100C of a wearable computing device 100 integrated into the player's clothes thereby acts as a wireless or wired link between the actuators 106a-d and the game console platform 109. Besides conventional wireless standards such as Bluetooth, ZigBee or IEEE 802.11b WLAN technology, high-speed fixed network connections such as Ethernet, USB or 1394 can also be supported.


A second embodiment of the present invention as depicted in FIG. 4b is based on an active wearable device 100 driven by e.g. a game console platform 109 which targets a relaxing stimulation of a person wearing a piece of clothing 101 including such an embedded active wearable device 100. This device comprises at least one haptic interface 103 and/or a number of sensors 105a-c and actuators 106a-d placed on or close to a user's body (e.g. on the neck, shoulders and/or arms of said person), which are used for sensing tactile input information, monitoring his/her physiological, physical and/or psychological condition (which especially includes physical expressions of affection reflecting the player's feelings, emotional states or states of mind) and generating different types of stimulation (e.g. heat, pressure, vibrational and/or electric pulses, etc.) based on this information, respectively. In this connection, so-called “relax software titles” are needed which are specially designed to control the actuators in a way that is being received by said person as a tactile sensation and/or relaxing stimulation. The software for running the haptic interface 103 can also be supported by relaxing music, video or graphical scenes. Also conceivable is a combination of the first and said second embodiment.


A third embodiment of the present invention is directed to an interactive tactile communication scenario, wherein wearable computing devices of at least two players, each wearing a piece of clothing as described above and having a communication platform (i.e. a game console or PC) with the appropriate interfaces and application software, are interconnected via a wireless or wired network link. Thereby, a number of biometric (110c) and/or environmental signals (110c′) indicating the physical condition, emotional states and/or states of mind of a first person wearing a first piece of clothing 101 equipped with a first wearable computing device 100 and/or tactile sensations perceived by said first person are continuously (or intermittently) sensed and monitored (S100). After having extracted (S101) a number of features from said biometric (110c) and/or environmental signals (110c′), these features are analyzed (S102) and mapped (S103) to a number of emotional patterns (meta information), that are stored in an integrated read access memory (RAM) for further processing. This meta information is then transmitted (S201) to a second person wearing a second piece of clothing 101′ equipped with at least one further wearable computing device 100′ for receiving (S202) and reproducing (S104) tactile sensations perceived and/or physical affection expressed by said first person. The application software thereby allows a “remote touch” by opening an e.g. Internet-based “tactile remote control” connection between the two players. Each player can alternatively select to control the distant wearable device of his/her counterpart or his/her own wearable device. Therefore, the application software provides predefined patterns for a mutual tactile stimulation and also enables the users to create their own individual “remote touch” patterns or sequences. In case of an online connection, real-time entertaining is available; for non-real-time operation the provision of an email interface to drive the “remote touch” scenario is also possible. Finally, it should be mentioned that this embodiment can advantageously be combined with said first and/or said second embodiment described above.


In addition to the haptic interface 103, a user can also wear a piece of clothing 300a/b (e.g. a shirt) that comprises optical fibers and/or any other type of wearable optical displays 102, 102′ or 102″. These displays can e.g.

    • show the name and/or logo of an interactive network game or display the current high-score rank of a player participating in said game and/or any other game-related information (cf. FIG. 3a),
    • show a simulated heavy violation by using integrated optical fibers for coloring parts of said shirt red (cf. FIG. 3b), or
    • display relaxing images, images reflecting emotional states of a user wearing said piece of clothing—e.g. in the form of emoticons (“smileys”, e.g. “:-)”, “:- -”, or “:-(”, etc.) or other symbols and signs—or any other type of visual information (cf. FIG. 1a).


According to a further aspect of the invention, the haptic interface 103 additionally comprises actuators 106a-d which are used for generating low-frequency vibrations or acoustic signals making the player feeling tired, stressed or unconcentrated and simulating physical strain.

TABLEDepicted Featuresand their Corresponding Reference SignsNo.(Technical Feature (System Component or Procedure Step)100wearable computing device, integrated into a first pieceof clothing 101 (e.g. a smart jacket) or any type of wearableaccessory such as watches, wrist or arm bracelets,rings, brooches, etc. (so-called “digital jewelry”), comprisingactuators transmitting feedback-information usingthe skin of a user as an interface for entering informationalsensation to the body of the user,100′wearable computing device, integrated into a second pieceof clothing 101′ worn by a second user100″wearable computing device,100Ccentral controlling unit (μC) of the wearable computingdevice 100100C′central controlling unit (μC′) of the wearable computingdevice 100′100Ttransmitting means of the wearable computing device 100,100R′receiving means of the wearable computing device 100′ forwirelessly receiving information100T″transmitting means of the wearable computing device 100″,that is used for wirelessly transmitting information100R″receiving means of the wearable computing device 100″ forwirelessly receiving information100adiagram showing a user wearing a piece of clothing 101which includes a number of integrated electronic devicesfor monitoring tactile sensations, emotional states and/orthe state of mind of the user, analyzing said feelings andcombining vibrational, heat, pressure or electric pulsesgenerated by actuators 106a-c worn on and/or placed nearthe user's body for stimulating said user100bblock diagram showing the feature extraction and tactilestimulation procedure according to the present invention101first piece of clothing (e.g. a smart jacket) equippedwith at least one wearable computing device as describedabove, worn by a first person,101′second piece of clothing (e.g. a smart jacket) equippedwith at least one further integrated wearable computingdevice, worn by a second person, that is specially adaptedto receive digitally encoded information from said firstpiece of clothing or wearable accessory 101102liquid crystal display (LCD), incorporated into the upperright front part of the piece of clothing 101, that isused e.g. to display relaxing images, images reflectingemotional states of a person wearing said piece of clothing101 - e.g. in the form of emoticons (“smileys”, e.g.“:-)”, “:-|”, “:-(”, etc.) or other symbols and signs - orany other type of visual information102′wearable display, embedded into a piece of clothing 300a(e.g. a shirt), which displays the name and/or logo of aninteractive network game, the current high-score rank of aplayer participating in said game, game-related and/or anyother type of textual and/or visual information102″wearable display, embedded into another piece of clothing300b (e.g. a shirt), which displays a simulated heavy violationby using integrated optical fibers made of quartzglass and/or plastics for illuminating and/or coloringparts of said shirt red103tactile interface, integrated into said piece of clothing101, which is used for sensing tactile input information,monitoring a user's physiological, physical and/or psychologicalcondition and generating heat, pressure, vibrationaland/or electric pulses or other types of stimulationbased on this tactile input information, physical ormental strain of said user and/or context information providedby applications running on a game console 109104smart button for buttoning up said jacket 101, which canalso be used for activating or deactivating an integratedfunction allowing the wearer of said jacket 101 e.g. tolisten his/her favorite music stored on an integrated microchip,tune into his/her favorite radio channel, displaymoving images on the liquid crystal display 102, activateor deactivate integrated heating elements, etc.105,different biometric sensors (body temperature, blood volume105a-cpressure, skin conductivity, respiration rate and/orpulse rate sensors, etc.) for monitoring a number of biometricsignals indicating the physical condition and excitementlevel of a user wearing the jacket 101,105′different meteorological sensors 105′ (e.g. thermometer,barometer, hygrometer and/or wind speed meter) indicatingdifferent climatic and/or meteorological conditions (temperature,atmospheric pressure, relative humidity and windspeed) in the environment of said user106,actuating means (micro motors, micro speakers, piezo elements,106a-dheating elements and micro fans or electrostaticdischarge modules, etc.) for generating vibrations, acousticsignals, heat or coolness, pressure or electric pulsesstimulating the user, which are integrated e.g. into thewaist belt of the user's smart jacket 101106′processing means for extracting (S101) features from biometricsignals taken from a user wearing said jacket 101,which indicate the physical condition of said user, and/ormeasured meteorological parameters in the environment ofthe user, analyzing (S102′) user inputs by evaluating oraland/or written user statements and signs (e.g. Internet orSMS emoticons such as “:-)”, “:-|”, or “:-(” typed in onan integrated keyboard 107a of a user's smart jacket 101),which reflect perceived sensations of said user, mapping(S103) the results of this analysis to emotional patternsstored in a read access memory (RAM) and using these patternsfor activating/deactivating (S104) at least one ofthe available actuators 106a-d that are integrated intothe piece of clothing 101 for stimulating the wearer's energylevel, said processing means being integrated e.g.into the waist belt of the user's smart jacket 101106″battery pack, integrated into the waist belt of the user'ssmart jacket 101107control display, integrated into the left sleeve of theuser's smart jacket 101107akeyboard for inputting user and control information neededfor controlling said control display 107, integrated intothe left sleeve of said jacket 101107b“JogDial” button, integrated into the left sleeve of saidjacket 101, which gives a rundown on the user's physicalperformances after a sporting activity108fake pocket, integrated into the upper left front part ofsaid user's jacket 101, which includes a digital pocketstorage109game console platform, driving the haptic interface 103 ofa wearable computing device 100 integrated into a piece ofclothing 101 or any other type of wearable accessory109′game console application, running on said game console 109109″controlling unit of the game console application, used forcontrolling the haptic interface 103 of the wearable computingdevice 100 or a number of different sensors 105,105′ and actuators 106a-d placed on or close to saiduser's body110asigns (e.g. Internet or SMS emoticons such as “:-)”, “:-|”, or “:-(” typed in on an integrated keyboard 107a ofthe user's smart jacket 101), that reflect perceived sensationsand/or emotional states of a user wearing saidjacket110bwritten statements and/or spoken utterances reflectingtactile sensations and/or emotional states perceived by auser wearing said jacket110cbiometric signals indicating the physical condition of auser's body, detected by different biometric sensors 105(e.g. body temperature, blood volume pressure, respirationrate and/or pulse rate sensors) integrated into the pieceof clothing 101 worn by said user110c′environmental signals indicating climatic and/or meteorologicalconditions (e.g. temperature, atmospheric pressure,relative humidity, and/or wind speed) in the environmentof said user, detected by different meteorologicalsensors 105′ (e.g. thermometer, barometer, hygrometer, andwind speed meter)112literally, lexically and syntactically analyzed and semanticallyinterpreted written statement typed in on an integratedkeyboard 107a of the piece of clothing 101 or phonetically,lexically and syntactically analyzed and semanticallyinterpreted spoken utterance of a user wearingsaid jacket 101 (“feeling language statement”), which reflectsexpressed feelings of said user114vibrations, heat or coolness, pressure and/or electricpulses generated by actuators worn on and/or placed nearthe user's body for stimulating the user depending on theperceived and analyzed sensations of said user300apiece of clothing (e.g. a shirt) comprising a wearabledisplay which shows the name or logo of an interactivenetwork game or displays the current high-score rank of aplayer participating in said game and/or any other game-related information300bpiece of clothing (e.g. a shirt) comprising a wearabledisplay which shows a simulated heavy violation by coloringparts of said shirt red400atactile communication scenario according to a first embodimentof the present invention (“Shock U”), wherein awearable computing device 100 comprising at least one hapticinterface 103 or a number of actuators 106a-d placedon or close to a user's body, which are used for generatingdifferent types of stimulation (e.g. heat, pressure,vibrational and/or electric pulses), is controlled by thecontrolling unit 109″ of a game console platform 109400btactile communication scenario according to a secondembodiment of this invention (“Relax U”), wherein a wearablecomputing device 100 - comprising at least one haptic interface103 or a number of sensors 105a-c and actuators106a-d placed on or close to a user's body, that are respectivelyused for sensing tactile input information,monitoring his/her physiological, physical and/or psychologicalcondition (which especially includes physical expressionsof affection reflecting said user's feelings,emotional states and/or states of mind) and generatingdifferent types of stimulation (e.g. heat, pressure, vibrationaland/or electric pulses, etc.) based on this inputinformation, physical or mental strain of the user -is controlled by the controlling unit 109″ of the gameconsole platform 109S100step #100: sensing and monitoring different biometric signals(e.g. body temperature, blood volume pressure, respirationrate and/or pulse rate) indicating the physicalcondition of a person wearing said jacket 101S100′step #100′: measuring meteorological parameters(e.g. temperature, atmospheric pressure, relative humidity and/orwind speed) indicating climatic and meteorologicalconditions in the environment of said userS101step #101: extracting features from biometric signalstaken from a user wearing said jacket 101, which indicatethe physical condition of said user, and/or measuredmeteorological conditions in the environment of said userS102step #102: analyzing these featuresS102′step #102′: analyzing user inputs by evaluating oraland/or written user statements and signs (e.g. Internet orSMS emoticons such as “:-)”, “:-|”, or “:-(” typed in onan integrated keyboard 107a of a user's smart jacket 101),which reflect perceived sensations of the userS103step #103: translating these signals into a “feeling languagestatement”, that reflects perceived sensationsand/or emotional states of said user, by mapping resultsof this analysis to a number of emotional patterns (metainformation) stored in a read access memory (RAM)S104step #104: using these patterns for activating or deactivatingat least one of the available actuators 106a-d integratedinto the piece of clothing 101 for stimulating auser's energy levelS104′step #104′: continuously or intermittently generating visual,auditive, tactile, gustatoric and/or olfactoric stimulibased on digitally encoded control information receivedfrom an external controlling unit 109″ via a wirelessor wired linkS201step #201: transmitting meta information from a first personwearing a first piece of clothing 101 equipped with atleast one integrated wearable computing device to a secondperson wearing a second piece of clothing 101′ equippedwith at least one further integrated wearable computingdevice for receiving said meta information, evaluating andreproducing feelable signals, tactile sensations perceivedand/or physical affection expressed by said first personS202step #202: receiving meta information representing feelablesignals, tactile sensations perceived and/or physicalaffection expressed by a first person wearing a firstpiece of clothing 101 equipped with at least one integratedwearable computing deviceS202′step #202′: receiving digitally encoded control informationreceived from an external controlling unit 109″ viaa wireless or wired linkS202″step #202″: processing this control informationS301step #301: character scan procedure for automaticallyrecognizing characters, numbers and/or symbols typed in onthe integrated keyboard 107a of said smart jacket 101S301′step #301′: phonetic scan procedure for automaticallyrecognizing the phonemes in a spoken utterance of a personwearing this piece of clothing 101S302step #302: lexical scan procedure for automatically recognizingfeeling language tokens belonging to a “feelinglanguage vocabulary” reflecting perceived sensations and/or emotional states of a user wearing said jacketS303step #303: syntax scan procedure for analyzing the grammaticalstructure of a recognized “feeling language statement”S304step #304: semantic scan procedure for interpreting expressedfeelings by performing a semantic analysis of thisrecognized and syntactically analyzed feeling languagestatementS401step #401: searching the read access memory (RAM) integratedinto the wearable computing device of the firstpiece of clothing 101 worn by said first person, whichserves as a repository for meta information representingfeelings, tactile sensations perceived and/or physical affectionexpressed by said first personS401′step #401′: selecting a pattern dependent on an interpretationof a tactile sensation perceived or a feeling expressedby said first person gained by a literal and/orphonetic, lexical, syntactical and semantic analysis of astatement typed in on an integrated keyboard 107a of saidfirst piece of clothing 101 and/or a spoken utterance ofsaid first person wearing this particular piece of clothing101, respectivelyS402step #402: enriching or updating the UPF pattern descriptors600 of said patterns with additional information derivedfrom available context information provided by anumber of different biometric (105) and/or environmentalsensors (105′) integrated into the first piece of clothing101 worn by said first person

Claims
  • 1-20. (canceled)
  • 21. A system comprising: a computing device for executing an application software program, the computing device having an interface for transmitting feedback signals generated by the application software program, and a wearable receiver having means for receiving the feedback signals from the computing device and actuator means designed to enter physical feedback sensations to the body and/or head of a user using the skin of the user as an interface.
  • 22. A system according to claim 21, characterized in that the wearable receiver is integrated in a piece of garment.
  • 23. A system according to claim 22, characterized in that a display is integrated into the piece of garment, wherein the display is designed to react to the feedback signals from the computing device.
  • 24. A system according to claim 21, characterized in that the wearable receiver comprises a controller for controlling an array of actuators according to an operational pattern depending on any feedback signal received.
  • 25. A system according to claim 21, characterized in that it furthermore comprises a channel for transmitting signals representing biological data from the user to the computing device hosting the application software program.
  • 26. A system according to claim 21, characterized in that the application software is an entertainment or game-type software.
  • 27. A system according to claim 26, characterized in that the feedback signals are generated depending on a user or application context.
  • 28. A system according to claim 27, characterized in that the feedback signals are generated depending on a background scene, defined virtual objects, sounds, colors and/or a virtual actor generated by a game-type software.
  • 29. A system according to claim 21, characterized in that the application software is designed to display scenes on the monitor, wherein different elements of the scenes displayed are respectively associated with a channel of the feedback signals and each channel is associated with a respective subgroup of the actuator means.
  • 30. A system according to claim 21, characterized in that the actuator means comprise means for generating vibrational, tactile an/or heat stimuli.
  • 31. A system according to claim 21, characterized in that the wearable receiver comprises means for adjusting manually operational parameters of the actuator means.
  • 32. A method for providing physical feedback sensations to the body of a user of an application software program, the method comprising the following steps: generating feedback signals in an application software program, transmitting the feedback signals to a wearable receiver, and entering, based on the received feedback signals, physical feedback sensations to the body and/or head of a user using the skin of the user as an interface.
  • 33. A method according to claim 32, characterized in that an array of actuators is controlled according to an operational pattern depending on any feedback signal.
  • 34. A method according to claim 32, characterized in that signals representing biological data from the user are transmitted to the computing device hosting the application software program for further processing.
  • 35. A method according to claim 32, characterized in that the feedback signals are generated depending on a background scene, defined virtual objects, sounds, colors and/or a virtual actor generated by a game-type software.
  • 36. A method according to claim 32, characterized in that the application software is divided into several logical parts, wherein each part is associated with a channel of the feedback signals and each channel is associated with a respective subgroup of the actuator means.
  • 37. A method according to claim 32, characterized in that the actuator means comprise means generating vibrational, tactile an/or heat stimuli to a user.
  • 38. A computer program product, supporting a method according to claim 32 when running on a computing device.
  • 39. A computer game console, designed to support a method according to claim 32.
  • 40. A wearable game accessory, comprising a controller supporting a method according to claim 32.
Priority Claims (1)
Number Date Country Kind
03 026 896.5 Nov 2003 EP regional