In general, the field of the invention is physiogenomics. More specifically, the invention comprises a physiotype method for predicting the results of treatment regimens in a patient.
Although clinically highly relevant, physiology has remained a systems and macroscopic embodiment of scientific thought separate from the molecular basis of genetics. The physiogenomics method of the present invention bridges the gap between the systems approach and the genomic approach by using human variability in physiological processes, either in health or disease, to drive their understanding at the genome level. Physiogenomics is particularly relevant to the phenotypes of complex diseases and the clustering of phenotypes into domains according to measurement technique, ranging from functional imaging and clinical scales to protein serology and gene expression.
Physiogenomics integrates genotypes, phenotypes and population analysis of functional variability among individuals. In physiogenomics, allelic genetic markers (single nucleotide polymorphisms or “SNPs”, haplotypes, insertion/deletions, tandem repeats) are analyzed to discover statistical associations to physiological characteristics in populations of individuals either at baseline or after they have been similarly exposed or challenged to environmental triggers. These environmental challenges span the gamut from exercise and diet to drugs and toxins, and from extremes of temperature, pressure and altitude to radiation. In the case of complex diseases we are likely to find both baseline characteristics and response phenotypes to as yet undetermined environmental triggers. Variability in a genomic marker among individuals that tracks with the variability in physiological characteristics establishes associations and mechanistic links with specific genes.
Physiogenomics is a medical application of engineering sensitivity analysis [see, e.g., G. Ruano, A. Windemuth, and T. Holford: “Physiogenomics: Integrating systems engineering and nanotechnology for personalized health”, The Biomedical Engineering Handbook, 3rd Edition, CRC Press 2006; T. R. Holford, A. Windemuth, and G. Ruano, “Personalizing public health”, Personalized Medicine, 2(3), 2005; and A. Saltelli, K. Chan, and E. M. Scott “Sensitivity Analysis”, John Wiley and Sons, Chichester, 2000]. Sensitivity analysis is the study about the relations between the input and the output of a model and the analysis utilizing systems theory, of how variation of the input leads to changes in the output quantities. Physiogenomics integrates systems engineering with molecular probes stemming from genomic markers available from industrial technologies. Physiogenomics utilizes as input the variability in genes and relates the genetic variability to variability in the physiological characteristics, which is the output. As a non-limiting example, the genetic variability may be measured by the frequency of single nucleotide polymorphisms (SNPs). With physiogenomics, ensembles of 105 to 106 SNP markers can be integrated with population analysis of functional variability among individuals similarly treated [T. R. Holford, A. Windemuth, and G. Ruano, “Personalizing public health”, Personalized Medicine, 2(3), 2005]. Variability in SNP frequency among individuals, which tracks with variability in physiological characteristics, establishes genetic associations and mechanistic links with specific genes.
The physiogenomic method of the invention marks the entry of genomics into systems biology and requires novel analytical platforms to integrate the data and derive the most robust associations. Once physiological systems are under scrutiny, the industrial tools of high-throughput genomics do not suffice, as fundamentals processes such as signal amplification, functional reserve and feedback loops of homeostasis must be incorporated.
The inventive physiogenomics method includes marker discovery and model building. Each of these interrelated components will be described in a generic fashion. Reduction to practice of the generic physiogenomic invention will then be demonstrated by our experimental data in the Examples section.
One aspect of this invention is to provide a physiogenomics method for predicting whether a particular treatment regimen will produce a beneficial effect on a patient. The method comprises (a) selecting a plurality of genetic markers based on an analysis of the entire human genome or a fraction thereof; (b) identifying significant covariates among demographic data and the other phenotypes using mathematical modeling, preferably by linear regression and R2 analysis or more preferably by principal component analysis; (c) performing for each selected genetic marker an unadjusted association test using genetic data; (d) using permutation testing to obtain a non-parametric and marker complexity probability (“p”) value for identifying significant markers, wherein the significance is shown by p<0.10, more preferably p<0.05, and even more preferably p<0.01; (e) constructing a physiogenomic model by linear regression analyses and model parameterization for the dependence of said patient's response to treatment with respect to said markers, wherein said physiogenomic model has p<0.10, more preferably p<0.05, and even more preferably p<0.01; and (f) identifying one or more genes not associated with a particular outcome in said patient to serve as a physiogenomic control.
Another aspect of this invention is to provide a method for treating an individual suffering from a disease or disorder. This method includes the steps of (1) preparing a physiogenomics database that contains a plurality of physiotypes, (2) obtaining genotype and phenotype data of the individual; (3) comparing the genotype data of the individual with said physiotypes in said physiogenomics database; and (4) recommending a treatment regimen based on said comparison.
In an example of the utility of the invention, apolipoprotein E (APOE) haplotypes are used to predict the outcome of exercise training on serum lipid profiles, such as low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and lipoprotein particle size distributions.
In another example of the utility of the invention, apolipoprotein A1 (APOA1) genotypes are used to predict the outcome of exercise training on serum lipid profiles, such as LDL-C, HDL-C and lipoprotein particle size distributions.
In still another example of the utility of the invention, genotypes for cholesterol ester transfer protein (CETP), angiotensin converting enzyme (ACE), lipoprotein lipase (LPL), hepatic lipase (LIPC), and peroxisome proliferator-activated receptor-alpha (PPARA) are provided.
In still another embodiment of the invention, cardiovascular inflammatory markers in blood are associated with exercise training, with genetic probes being derived from candidate genes relevant to energy production, inflammation, muscle structure, mitochondrial oxygen consumption, blood pressure, lipid metabolism, and behavior, as well as transcription factors potentially influencing multiple physiological axes.
In yet another embodiment of the invention, phenotypes related to plasma concentrations of interleukins and growth factors and cellular expression of ligand receptors are added to the analysis.
In still another embodiment of the invention, a physiogenomic profile is created for a patient by combining the genomic data for the patient with the patient's clinical and physiological data for each possible treatment modality, said profile serving to provide a logical basis for selecting the most efficacious treatment(s) for the patient.
A physiogenomic method for predicting whether or not a particular treatment regimen will have a beneficial outcome in a patient has been invented. The physiogenomic aspect of the method consists of determining genetic markers that are associated with beneficial effects of a particular treatment regimen, and then selecting patients for treatment who present with the beneficial genotype. The physiotype aspect of the method consists of establishing a treatment profile for the patient by combining the aforementioned genomic data with physiological and clinical data for the same patient for each of a set of possible treatments for the patient's medical condition, so as to customize interventions for the patient.
The following definitions will be used in the specification and claims:
This invention provides methods for determining physiotypes acquired from physiogenomic data and using the physiotypes to select which treatment or treatments would be most efficacious for a patient suffering from a disease or a disorder. Physiotypes are useful for describing an ensemble of genetic markers and an interpretative algorithm used as a medical device or platform to predict an individual's physiological response to a treatment. The use of physiotypes for studying environmental interactions for the prevention and treatment of disease is attractive, for several reasons. For example, because the determination of a physiotype involves, in part, a determination of a genotype component that does not change as a result of environmental stimuli, the contribution of the genotype component is not confounded with environmental stimuli. Furthermore, some genotypes associated with a phenotype can act as a surrogate marker for the phenotype, which can be useful when measurement of the phenotype is difficult, expensive, or confounded by environmental conditions. Additionally, the cost of developing robust, reliable physiotypes has decreased with the decreasing cost associated with new automated genotyping technologies, which have allowed for economic determination of multiple genotypes from different genes coding for proteins in interacting pathways.
These physiotypes taken together constitute a physiogenomics database to which a physician could refer in order to determine an efficacious, personalized treatment protocol for a patient. A physician with genetic and clinical information about a particular patient could determine which interventions would be appropriate, by comparing the patient data with the physiotypes in the physiogenomic database.
As used herein, the term “interventions” refers to any type of treatment, non-limiting examples of which include dietary changes or restrictions, drug therapy, exercise, or even specific combinations of such treatments. Generally, the number of interventions will be sufficient such that the probability that the patient will respond poorly to all of the interventions will be quite small. For example, in a scenario where there are three possible interventions, the probability that the patient's response will be in the bottom 25% for all three treatments is (¼)3= 1/64 or about 1.5%.
Development of Physiotypes
Physiotypes may be developed from genotypes from various genes and genomic regions. As set forth below, in preferred embodiments, the physiotypes are developed using either (1) hypothesis free association screening, or (2) hypothesis-led association screening. In either method of screening, genetic markers are correlated with phenotypes that may be determined from clinical studies. However, this invention also recognizes that sometimes genetic effects are not direct, and that it is advantageous to use endophenotypes in the development of physiotypes. As used herein, “endophenotypes” are observable intermediate phenotypes that can be measured to provide additional information about the association between an individual's genes and his response. Non-limiting examples of endophenotypes contemplated by the invention include mRNA expression levels, functional brain imaging data, and blood levels of cells, proteins, lipids, and metabolites. The use of endophenotypes to break down genetic/physiological associations into intermediate levels is advantageous for several reasons. First, each individual interaction is more direct, and therefore stronger (i.e., less diluted by confounding variables) and easier to detect. Second, there may be multiple associations on each level contributing to the overall association, providing a degree of redundancy such that the overall association can still be found, even if some of the components are missed. Third, the structure of the intermediate associations provides a significant amount of information about the underlying mechanism that gives rise to the association.
A. Determination of Markers by Hypothesis Free Association Screening Array Design and Fabrication
With the rapid development array technology for SNP analysis, it has now become possible to use a “hypothesis free association screening” approach to determine the genotype component of a physiotype. In this context, the term “hypothesis free association screening” refers to a method of genetic screening that involves screening the entire human genome, rather than a subset of the genome based on a pre-conceived “hypothesis” of which genes would be relevant. This method offers the possibility of discovering new, previously unknown correlations between genotypes and phenotypes.
The genetic screening contemplated by the invention for hypothesis testing is not particularly limited, and may involve any DNA screening platform that has sufficiently high throughput density and is sensitive to one or more genetic markers, non-limiting examples of which include SNPs, haplotypes, insertions/deletions, and tandem repeats. By way of example, the array may be a fixed array, wherein SNP specific reagents are deposited on a substrate using photolithographic techniques similar to that commonly used in the semiconductor industry. Alternatively, the exemplary array may be a random array, wherein the location of the SNP specific reagents is not predetermined but random, and the identity of reagents is identified by use of various markers. For example, a SNP specific random array may be a microbead array, wherein various SNP specific reagents are chemically linked to microscopic beads (e.g., 2 microns or less) that also have covalently attached fluorescent identifier molecules. Typically, in such bead-based arrays, the beads are immobilized to a surface prior to detection. (See, e.g., U.S. Pat. Nos. 6,327,410; 6,429,027; and 6,797,524, all of which are hereby incorporated by reference in their entirety.)
In a particularly preferred embodiment of the invention, the DNA array platform involves attaching oligonucleotide probes 10-20 nm long onto the surface of microbeads with an average diameter of about 2 microns. The beads are divided into different subpopulations, wherein each bead in a given subpopulation has a different SNP specific oligonucleotided (typically about 50 bases in length) which is designed to hybridize specifically to a specific spot on the genome adjacent to the SNP. Allele specific extension with labeled oligonucleotides is used to confer a fluorescent signal to only those beads that carry a matching probe for a given allele. Furthermore, the individual subpopulations are marked by subpopulation-specific markers.
In addition to the fixed and random arrays described above, this invention also contemplates the use of a “liquid arrays”, which do not require the immobilization of beads, but instead use a microfluidic device similar to a flow cytometer to identify and to read the signal from the microscopic beads while they are suspended in liquid. While current liquid arrays are suitable for small arrays only (e.g., analyzing 100 SNPs in parallel), the rapid advances in liquid array technology suggest that liquid array technology holds promise for large scale genetic analysis.
Determination of Array Size
While microarray technology, such as the bead-based microarray technology described above, can be used to produce thousands of biomarkers for subject, it is widely recognized that Type I error rates (i.e., the error rate resulting from false positives that exist when a test incorrectly reports that it has found a result when none really exists) from studies of numerous markers can become unacceptably high, producing false discoveries that arise from multiple comparisons. Accordingly, sample size must be increased to take into account these multiple comparisons. One aspect of this invention is the recognition that the logarithmic dependence of sample size on marker number makes it possible to analyze a large number of markers with only a modest increase in the number of people in the test population. For example, using a typical expression for calculating sample size, n, as well as an approximation to the error function yields a good approximation to sample size calculation with a Bonferroni adjustment, where the significance level is α/c (α=significance level, and c=number of SNPs
where σ02 and σ12 are variances of response under null and alternative hypotheses, β=Type II error (a Type II error, also called a false negative, exists when a test incorrectly reports that a result was not detected, when it was really present), z=standard normal deviate, p=carrier proportion (under Hardy-Weinberg equilibrium, p=1−(1−φ)2 where φ=allele frequency), and Δ=effect size. Thus, the increased sample size required to study 10 genes (using the Bonferroni adjustment) instead of one is the same as that required to study 100 genes instead of 10. Thus, huge gains in efficiency may be realized with a modest increase in sample size.
By way of example, Table 1 lists a few strong associations reported in the literature, along with the sample sizes needed to detect each of them as significant (alpha=0.05, power=80%), while correcting for 100,000 markers testing using the Bonferroni correction. All of the markers listed would be detected as significant in a genome wide study of 400 subjects, In particular, the angiotensin converting enzyme would be significant at N=100.
While the Bonferroni method provides a conservative estimate of the required sample size, this invention also contemplates other methods of determining sample size, such as the false discovery rate (see. e.g., A Reinere, et al. “Identifying differentially expressed genes using false discovery rate controlling procedures”, Bioinformatics 2003, 19:368-375; Y. Benjamin et al, “Controlling the false discovery rate: a practical and powerful approach to multiple testing”; Journal of the Royal Statistical Society, Series B 1995; 57:289-300; Y. Benjamin et al., “On adaptive control of the false discovery rate in multiple testing with independent statistics”; Journal of Educational and Behavior Statistics 2000; 25:60-83.)
B. Determining Physiogenomic Markers by Hypothesis-led Association Screening Association Screening
In addition to hypothesis free testing, this invention also contemplates identifying physiogenomic markers by association screening. The purpose of association screening is to identify any of a large set of genetic markers (SNPs, haplotypes, insertion/deletions, tandem repeats) associated with physiological characteristics, i.e., factors that have an influence on the disease status of the patient, the progression to disease or the response to treatment. In certain preferred embodiments of the invention, association screening uses DNA screening technology (such as the fixed or random array technology described above) in order to determine the relevant genetic markers. However, unlike the hypothesis free association screening approach, the hypothesis-led association screening approach does not examine the entire human genome, but instead uses only a subset of genome as candidate genes. Typically, candidate genes have been already reported in the literature. For example, in certain preferred embodiments, the genetic markers of interest are SNPs, and the array is constructed using SNPs that are reported in the SNP Knowledge resource database, a user-friendly source for SNP annotation that represents a compendium of information derived from dbSNP, ENSEMBL, HapMap.Org, and Illumina's database. Useful factors to consider in the designing an array include Minor Allele Frequencies (MAF) information, validation status, genome coordinates, and locations within genes (intron, exon, splice site, promoter)
Association Testing
One of the challenges in data analysis is spotting the trends in the data when the amount of data is extremely large. This is particularly true in physiogenomic studies, where the entire genome may be investigated (e.g., by hypothesis free discovery) or a large set of genetic markers has been pre-selected (e.g., by hypothesis-led association screening) One aspect of this invention is the recognition that (1) it is advantageous to log transform clinically derived data (such as the serum concentration of a particular substance) in order to derive an approximately normally distributed variable, and (2) that an association can be visualized by plotting a locally smoothed function of the genetic marker data (e.g., the SNP frequency) against such log transformed data. In one particularly preferred embodiment, the locally smoothed function of the genetic data is obtained by using LOESS (Locally-weighted Scatter plot Smooth) smoothing. LOESS is a method to smooth data using a locally weighted linear regression [e.g., see W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots”, J. Am. Stat. Assoc. 74, 829-836 (1979); W. S. Cleveland et al, “Locally weighted regression: an approach to regression analysis by local fitting, J. Am.Stat. Assoc. 83, 596-610 (1988)]. At each point on the LOESS curve, a quadratic polynomial is fitted to the data in the vicinity of that point. The data are weighted such that they contribute less if they are further away, according to the tricubic function
where x is the abscissa of the point to be estimated, the xi are data points in the vicinity, and d(x) is the maximum distance of x to the xi.
The LOESS curve generated for a particular set of data that has been plotted as the genetic marker frequency versus the log transformed clinical data is useful because it shows the localized frequency of the least common allele for sectors of the distribution. For genetic markers with strong association, the marker frequency is significantly different between the high end and the low end of the distribution. Conversely, if a marker is neutral, the LOESS curve is essentially flat, because the marker frequency will be independent of the log transformed clinical data. By way of example,
In certain embodiments, the association between each genetic marker and the outcome, whether derived from hypothesis-free discovery or by hypothesis-led association screening, is tested using logistic regression models, controlling for the other genetic markers that have been found to be relevant. The magnitude of these associations is measured with the odds ratio, and the statistical significance of these associations is determined by constructing 95% confidence intervals. Multivariate analyses are used which include all genetic markers that have been found to be important based on univariate analyses. Because the number of possible comparisons can become very large in analyses that evaluate the combined effects of two or more genes, the results include a random permutation test for the null hypothesis of no effect for two through five combinations of genes. This test is performed by randomly assigning phenotypes to each individual in the study. Random associations of phenotypes and genotypes of the invidividuals are implied by the null distribution of no genetic effect. A test statistic can be calculated that corresponds to the null hypothesis of the random combination effects of genotypes and phenotypes. Repeating this process 1000 times provides an empirical estimate of the distribution for the test statistic, and hence a p-value that takes into account the process that gave rise to the multiple comparisons.
A single association test will proceed in 3 steps:
(Step 1) Covariates
The purpose of this step is to identify significant covariates among demographic data and the other phenotypes and delineate correlated phenotypes by principal component analysis. Covariates are determined by generating a covariance matrix for all markers and selecting each significantly correlated markers for use as a covariate in the association test of each marker. Serological markers and baseline outcomes are tested using linear regression.
(Step 2) Associations
The purpose of this step is to perform an unadjusted association test, linear regression for serum levels and baselines). Tests should be performed on each marker, and markers that clear a significance threshold of p<0.05 are selected for permutation testing.
(Step 3) Multiple Comparison Corrections
In this step, a non-parametric and marker complexity adjusted p-value are generated by permutation testing. This procedure is important because the p-value is used for identifying a few significant markers out of the large number of candidates. Model-based p-values are unsuitable for such selection, because the multiple testing of every potential serological marker and every polymorphic marker will be likely to yield some results that appear to be statistically significant even though they occurred by chance alone. If not corrected, such differences will lead to spurious markers being picked as the most significant. A correction will be made by permutation testing, i.e., the same tests will be performed on a large number of data sets that differ from the original by having the response variable permuted at random with respect to the marker, thereby providing a non parametric estimate of the null distribution of the test statistics. The ranking of the non-permuted test result in the distribution of permuted test results will provide a non-parametric and statistically rigorous estimate of the false positive rate for this marker. For permutation testing, a large number (e.g., 1000) of permutated data sets are generated, and each candidate marker is retested on each of those sets. A p-value is assigned according to the ranking of the original test result within the control results. A marker is selected for model building when the original test ranks, for example, within the top 50 of the 1000 (p<0.05).
(Step 4) Genomic Controls and Negative Results
Each gene not associated with a particular outcome effectively serves as a negative control, and demonstrates neutral segregation of non-related markers. The negative controls altogether constitute a “genomic control” for the positive associations where segregation of alleles tracks segregation of outcomes. By requiring the representation of the least common allele for each gene to be at least 10% of the population, one can rule out associations clearly driven by statistical outliers. Negative results are thus particularly useful in physiogenomics. To the extent that specific candidate genes are not linked to phenotypes, one can still gain mechanistic understanding of complex systems, especially for segregating the influences of the various candidate genes among the various phenotypes.
B. Construction of Physiogenomic Models
(Step 1) Model Building
The next stage in the inventive method is physiogenomic modeling. Once the associated markers have been determined, a model is built for the dependence of response on the genetic markers. In the first phase, linear regression models of the following form are preferably used:
where R is the respective phenotype variable (e.g., BMI), Mi represents the marker variables, Di are demographic covariates, and ε is the residual unexplained variation. The model parameters that are to be estimated from the data are Ro, αi and βi.
(Step 2) Model Parameters
The models built in the previous step will include parameters based on the data. The maximum likelihood method is preferably used, as this is a well-established method for obtaining optimal estimates of parameters.
In addition to optimizing the parameters, model refinement may be performed. In the first phase linear regression model, this consists of considering a set of simplified models by eliminating each variable in turn and re-optimizing the likelihood function. The ratio between the two maximum likelihoods of the original compared to the simplified model then provides a significance measure for the contribution of each variable to the model.
(Step 3) Model Validation
A cross-validation approach is used to evaluate the performance of models by separating the data used for parameterization (training set) from the data used for testing (test set). A model to be evaluated is readjusted with parameters derived using all data except for one patient. The likelihood of the outcome for this patient is calculated using the outcome distribution from the model. The procedure is repeated for each patient, and the product of all likelihoods is computed. The resulting likelihood is compared with the likelihood of the data under the null model (no markers, predicted distribution equal to general distribution). If the likelihood ratio is p<0.05, the model should be evaluated as providing a significant improvement of the null model. If this threshold is not reached, the model is not sufficiently supported by the data, which could mean either that there is not enough data, or that the model does not reflect actual dependencies between the variables.
Physiotypes for various treatments are used for decision support in a menu driven format (see Example 6, below). For achieving a desired therapeutic outcome for a given patient, physiotypes for each of the various treatment alternatives (exercise, drugs, and diet) are applied to predict quantitatively the patient's response for each. To derive the physiotypes, physiological and clinical data gathered by the physician and genomic data from several genetic markers, are combined to produce an intervention profile menu. Predictions made by the physiotype will rank the best alternatives among the menu options to achieve a desired goal. As more options are built into the menu, the greater the chance that all patients will be served with increased precision of intervention and with optimal outcome.
As long as the appropriate physiogenomics research has been performed for each intervention in the menu, an individual's physiotypes would evaluate all possibilities for optimized healthcare. The clinician can query for simple indexes such as raising HDL, or lowering triglycerides or compounded indexes such as LDL/HDL ratios or simultaneous elevation of HDL and reduction of TG. Physiotypes are derived for each intervention to predict a single effect or combined outcomes, and the same decision-making process can proceed seamlessly.
Models can be created by the method of the invention that predict various lipid, inflammatory and anthropometric responses to diet, exercise and drugs.
The baseline physiological and clinical level is measured for several phenotypes ranging from serology, physical exam, imaging, endocrinology for genomic/proteomics markers. The response of each individual for the phenotypes is then acquired after the exposure. Physiogenomics utilizes variability in response in the cohort to derive the predictors of response. After the physiotypes have been established for each given intervention, they can be applied to predict the response of a new individual to the intervention.
The medical utility of the invention will depend on the range of options it can customize. Within each of the major treatment modes (exercise, drug and diet), alternatives should be available to achieve specified goals. For example, consider dietary intervention to raise HDL in a patient with metabolic syndrome, and a decision on whether to proceed with a low fat or low carbohydrate diet. With physiotypes discovered each for low fat and low carbohydrate diets, predictions can be drawn for an individual's response to either. The person's genetic markers would be entered into the physiotypes, and the best diet based on the physiotype's prediction can be identified for the individual. Physiotypes can be generated, not only for various kinds of diet, but also for various kinds of exercise and drug treatments. The menu of possible interventions is thus broadened. The physiotype yielding the best outcome for a given desired effect guides the mode of intervention from an increasingly diversified menu, thus allowing enhanced personalization and customization of treatment.
It is within the scope of the present invention to produce for a given patient in permanent printed form a record of the prognostic results of his/her physiogenomic analyses disclosed above. This profile will become part of the patient's records. The printed form may be produced by any means, including a computer-generated printout.
We have applied the physiogenomic prognostic method described above to several treatment regimens, including those described below in the Examples section. Examples are designed to illustrate the inventive method, and should not be interpreted as limiting the scope of the invention.
In order to determine the sample size requirements for a study, preliminary data is obtained and the percent change in BMI with treatment is assessed. For example, the standard deviation for percent change in BMI among the subjects was 5%. Table 2 shows the total sample size required, compared against the physiogenomic prevalence to detect a given percent change in BMI using a 5% two-tailed test with 80% power. This demonstrates that a study with 150 subjects should have sufficient power to detect a mean difference of 2.5% BMI if the genetic prevalence is between 25% and 75% of the population and 3.0% if between 10% and 90%.
The inventive method was tested by examining the effects of exercise on lipid profiles, as a function of the genotypes of seven marker biochemicals that are known to be involved in lipid metabolism and serum lipid levels. We correlated the exercise responses as measured by various outcomes with the variability of the selected candidate genes. The candidate genes were selected according to known mechanisms of cholesterol homeostasis and the exercise response. The candidate genes and the candidate genotypes are shown in Table 3. The genes and their abbreviations are: apolipoprotein E (APOE), apolipoprotein A1 (APOA1), cholesterol ester transfer protein (CETP), angiotensin converting enzyme (ACE), lipoprotein lipase (LPL), hepatic lipase (LIPC), and peroxisome proliferator-activated receptor-alpha (PPARA). Other genes analyzed were ATP-binding cassette, sub-family G (WHITE), member 5 (sterolin 1) (ABCG5) and cholesterol 7-alpha hydroxylase gene (CYP7).
A preferred method for obtaining additional genotypes is the BeadStation 500GX system (IIlumina® , Inc., 9885 Towne Creek Center Drive, San Diego, Calif. 02121). This is an integrated system that supports highly parallel SNP genotyping and RNA profiling applications on a single, high-performance platform that delivers a scalable range of sample throughput.
The following experiments explored the inventive concept that APOE variability is related to lipid changes with exercise training. To this end, three equal cohorts with subjects having the most common APOE haplotype pairs in the general population, APOE ⅔, 3/3, and ¾, were recruited. To control for this design characteristic, APOE haplotype was utilized as covariate for the analysis of the other genetic markers, and was found not to be associated, thus demonstrating that none of the other gentic markers were in physical linkage with APOE and assorted randomly in the three cohorts. Variability in each gene was measured by a genetic polymorphism with a frequency of at least 10%. Such sampling establishes three groups of individuals for each gene: homozygous for either allele or heterozygous.
The basis of the statistical analysis in physiogenomics is a parallel search for associations between multiple phenotypes and genetic markers for several candidate genes. The summary in Table 3 depicts the data set gathered from the initial application to exercise physiogenomics. In the top panel, each column represents a single phenotype measurement. Each row represents alleles for a given gene, and quantitatively render associations of specific alleles to the variability in the phenotype. The various numbers in the table refer to the negative logarithms of p value times 10. These p values are adjusted for multiple comparisons using the non parametric permutation test described earlier. For example, 30 refers to a p value of <0.001. Because of the large numbers of genes and outcomes that can be found, an interactive program can be prepared that can be used to search a large table with a structure similar to that shown in Table 4. As already noted, the p-value displayed in a cell is generated under the assumption of a linear trend for the effect of an intervention.
The platform allows visual recognition of highly significant association domains. There are also clearly negative fields. The same gene is associated to some phenotypes but not to others Similarly, a given phenotype may have associations to some genes, but not others. Each negative result lends power to the positive associations. Had the populations related to a phenotype being stratified based on confounder founder effects, most genes would have had specific founder alleles overrepresented in that population, and associated with similarly stratified founder phenotypes.
Table 5 above provides information on the association grid. The table lists in order of significance the “hits” of positive association between a gene alleles and a phenotype. The top ranking associations refer to APOA1 and CHGSMH, change in cholesterol, small HDL sub-fraction change (adjusted p of 32 or p<10-3.2). Noteworthy also are high ranking associations of APOE to VMAXLCHG, change in maximum oxygen consumption (adjusted p of 30 or p<10−3) and to CHGL2M (adjusted p of 23 or p<10−2.3). The “InCount” represents individuals with the associated allele, and the “OutCount”, individuals without. The counts among various phenotypes may be different depending on measurement sampling during the study. Well represented distributions among the “in” and “out” groups to assure that a given association is not being driven by outliers. In the case of rare side effects, the outliers actually represent the susceptible population associated with a lower frequency predictive marker.
The initial analysis yielded several associations.
Small dense LDL particles are atherogenic. Therefore lipoprotein particle subpopulations were analyzed in 106 subjects. Exercise decreased small LDL particle concentration by −13.7±±5.1 mg/dL selectively in those with the APOE 3/3 haplotypes, compared to increases of +5.6±5.2, and +12.6±5.6 mg/dL, respectively, in those with ⅔ and ¾ haplotypes. Surprisingly, maximal oxygen uptake, the best marker of aerobic fitness, increased 9-10% for the entire cohort, but only 5% in the 3/3 subjects vs. 13% in the ⅔ and ¾ groups. This difference in the response of exercise performance to exercise training was significantly different among the haplotypes (p<0.01 for changes). Thus, subjects with APOE 3/3 haplotypes, the most common APOE haplotype in the general population, experienced greater improvement in clinically relevant lipid parameters compared to subjects with APOE haplotypes ⅔ and ¾, despite smaller improvements in cardiorespiratory fitness.
APOA1 is necessary for nascent HDL generation. Tables 3 and 4 above also demonstrate APOA1 genetic association to Cholesterol (CH) values (LDL, HDL and their sub-fractions). The APOA1 gene has a well-characterized SNP in its promoter, namely, −75 G/A. The data demonstrates that this variant was highly predictive of changes in the concentrations of small and large HDL particles with exercise training. Exercise markedly affects HDL fractions, eliciting a transition from small to large HDL in some individuals and the opposite in others. The presence of the A allele was associated with increased small HDL by 4.7 mg/dL with exercise and decreased large HDL. In contrast, the G/G genotype was associated with increased large HDL concentration by 1.8 mg/dL and decreased small HDL particles. APOA1 appears to be involved in the switch in particle size in response to exercise and the −75A allele of APOA1 is a potential predictor of the polarity of the HDL fraction switch in response to exercise. When translated into a DNA diagnostic, would be useful for the individualization of exercise programs to effect desired changes in lipid profiles of individuals.
To illustrate the creation of predictive models that are the central part of physiogenomics, a data set was explored to find optimally predictive linear regression models for small LDL particle concentration and small HDL particle concentration. These two response variables have the strongest genetic component observed herein.
The objective of these analyses is to search for genetic markers that modify the effect produced by a particular type of intervention, which epidemiologists refer to as an effect modifier. These are be parameterized in our models as gene-intervention interactions. For example, if Mi is a 0 or 1 indicator of the presence of at least one recessive allele of gene i, and Xj represents the level of intervention, then the entire contribution to the outcome will be given by the contribution of not only the gene and intervention main effects, but their interaction, as well, i.e., Miαi+Xjβj+MiXj(αβ)ij. Under this model, when the allele is absent (Mi=0), the effect of a unit change in the intervention is described by the slope, βj, but when the allele is present (Mi=1), the effect of a unit change in the intervention is βj+(αβ)ij. Thus, the gene-intervention interaction parameter, (αβ)ij, represents the difference in the effect of the intervention seen when the allele is present.
In the usual modeling framework, the response is assumed to be a continuous variable in which the error distribution is normal with mean 0 and a constant variance. However, it is not uncommon for the outcomes to have an alternative distribution that may be skewed, such as the gamma, or it may even be categorical. In these circumstances, one can make use of a generalized linear model, which includes a component of the model that is linear, referred to as the linear predictor, thus enabling one to still consider the concept of a gene-intervention interaction, as described earlier. The advantage of this broader framework is that it allows for considerable flexibility in formulating the model through the specification of the link function that described the relationship between the mean and the linear predictor, and it also provides considerable flexibility in the specification of the error distribution, as well (McCullagh P, et al. Generalized Linear Models. London: Chapman and Hall, 1989, which is incorporated herein by reference).
To this point, an analysis has been developed in which the effect of the intervention is assumed to be linear, but in practice the effect may take place until a threshold is past, or it may even change directions. Thus, an important component of one's exploration of the intervention effect on a particular response may involve the form for the relationship. In this case one can make use of generalized additive models (GAMs, Hastie et al. Stat. Sci. 1 :297 (1986)) in which the contribution of the marker and intervention is given by Miαi+β(Xj)+Miβa(Xj). In this case, the effect when the allele is absent (Mi=0) is β(Xj) which is an unspecified function of the level of the intervention. In subject in which the allele is present (Mi=1), the effect is given by the function β(Xj)+Miβa(Xj)). In practice, these functions may be estimated through the use of cubic regression splines (Durrelman, S et al., Stat. Med. 8:551 (1989), which is incorporated herein by reference).
Predictive models may be sought by starting out with a hypothesis (which may be the null model of no marker dependence) and then adding each one out of a specified set of markers to the model in turn. The marker that most improves the p-value of the model is kept, and the process is repeated with the remaining set of markers until the model can no longer be improved by adding a marker. The p-value of a model is defined as the probability of observing a data set as consistent with the model as the actual data when in fact the null-model holds. The resulting model is then checked for any markers with coefficients that are not significantly (at p<0.05) different from zero. Such markers are removed from the model.
For predicting small LDL-C change (CHGLIS) in response to exercise, we started out with the null model, and considered the three categories of variables in Table 6. We arrived at an optimized model, specified in Table 6, containing three markers: baseline small LDL (LIS.1), pre-exercise triglycerides (TGPRE), and two APOE haplotypes (APOE GENE). The model explains 47% of the observed variance for small LDL-C change (CHGL1S) in response to exercise and has a p-value of 4×10−13. The p-values for the components are 5×10−14 for LIS.1, 8×10−9 for TGPRE, 3×10−3 for APOE GENE1, and 6×10−2 for APOE GENE2. The correlation between the response predicted by the model vs. the observed response for all subjects can be depicted graphically.
For predicting small HDL-C change (CHGSMHDL) in response to exercise, the initial hypothesis was that the response depends on APOA1 genotype, as discovered in the physiogenomics analysis. We also considered the three categories of variables in Table 6, and constructed an optimized model, specified in Table 8, The model contains three markers: two APOA1 genotypes (APOA1.), the pre-exercise small HDL cholesterol concentration (SM HDL.1), and the baseline ratio of fat mass to body mass (PERFAT.1). This model explained 43% of the observed variance for small HDL-C change (CHGSMHDL) in response to exercise and had a p-value of 7x 10-8. The p-values for the components are 9×10−3 and 9×10−1 for APOA1 genotypes (APOA1.11 and APOA1.12), 1×10−6 for SM HDL.1, and 3×10−2 for PERFAT.1. The correlation between the response predicted by the model vs. the observed response for all subjects can be depicted graphically.
The above-described analyses permits the extension of the present examples to additional genes and outcomes. For example, inflammatory markers and their relationship to atherosclerosis are an area of intense interest in clinical medicine. The ability to measure changes in inflammatory markers with exercise training and related genes provides a unique opportunity to examine genes determining the interplay of exercise response and inflammation. The gene probes are derived from candidate genes relevant to energy generation, inflammation, muscle structure, mitochondria, oxygen consumption, blood pressure, lipid metabolism, and behavior, as well as transcription factors potentially influencing multiple physiological axes. The method utilizes blood plasma and DNA from each patient to measure the appropriate genotypes and inflammatory markers in blood.
The inflammatory markers will introduce proteomics to the physiogenomic study of exercise. By profiling at high sensitivity the plasma concentrations of various interleukins, growth factors, and the cellular expression of various receptors, phenotypic components can be added to the analysis. In addition, peripheral white cell monitoring can be included in protocols to demonstrate reporter gene array expression levels. It will also be possible to introduce phenotypic morphometric markers to introduce further bridges between genotype and outcome.
Table 9 provides an example of personalized healthcare by customizing treatment intervention. In the table, the choices are to recommend a given kind of exercise, drug or diet regimen. If one of the options is high scoring, it can be used on its own. Thus in the example, diet is high scoring in the first patient, a drug in the second, and exercise in the fourth. If the options are midrange, they can be used in combination, as is the case in the third patient, where exercise and diet will each have a positive effect but unlikely to be sufficient independently. If none of the options is high or at least mid-scoring, the physiotype analysis suggests that the patient requires another option not yet in the menu. As more options are built into the menu, the greater than chance that all patients will be served at increased precision of intervention and with optimal outcome.
In this example, a physiogenomics array consisting of 384 SNPs from 215 genes known to be relevant to certain physiological processes has been designed and tested. The array has been tested on 2000 different samples from different clinical studies for validation of the gene and SNP selection process. After identifying candidate genes through an intensive review of the literature, as well as public databases (dbSNP, ensembl) for validated SNPs with known heterozygosities (HET) for mixed or Caucasian populations. The low HET limit was set to 10% to ensure a sufficient representation of the respective SNP. The high HET limit was set at 30% under the assumption that alleles with a close to even distribution are more likely to be neutral (i.e., not associated with a phenotype). The number of SNPs per gene was based on the length of the gene: <25 kb=1SNP, 25 to 100 kb=2SNPs, >100 kb=3 SNPs. The reference numbers of the identified SNPs were evaluated by Illumina using the electronic OligoDesigner software package, and only SNPs with a score higher than 0.6 were used for the gene array.
Furthermore, the OligoDesigner algorithm uses information from a variety of sources to derive a numerical value intended to score the likelihood of a given assay being developed on the Illumina platform. Some of the criteria used to calculate this value include (1) the presence of adjacent SNPs in the DNA sequence, (2) proximity to the repetitive elements, (3) uniqueness of oligo target sequences, (4) melting temperatures of any oligos selected for the assay, and (5) whether there is any complementation in the 3′ regions of the assay oligos. The result of this informatics process is a score between 0 and 1 with assays scoring 0 being disallowed.
While it is often advantageous to construct a physiogenomics array using all 384 SNPs in Table 10, this invention is not limited to such an embodiment. In other embodiments, a physiogenomics array is constructed that contains at least about 10 SNPs taken from Table 10, more preferably at least about 20 SNPs, even more preferably at least about 50 SNPs, even more preferably at least about 100 SNPs, even more preferably at least about 200 SNPs, even more preferably, at least about 300 SNPs.
The 480 samples in this example were run in five different batches of 96 samples each. The DNA was quantitated and normalized using the PicoGreen® quantitation assay. Genotyping was performed strictly according to Illumina® protocols, using a Sentrix®Array Matrix and the Illumina® Beadstation 500. Data were analyzed using GENCALL™ version 6.0.7, and reports were prepared with GTS Reports version 4.1.2.0. Table 10 shows a comprehensive listing of all the SNPs on the array with an indication of the quality of data achieved. Furthermore, a numerical measure of quality is given as the sum over all 5 arrays of the 10% percentile of the GENCALL™ scores, as reported by the Locus report of the GTS Reports. In addition, the following was defined as the quality control(QC) criteria for any given assay: (1) Fail if the p-value of the chi-squared test for Hardy-Weinberg equilibrium is less than 0.02; (2) Fail if the 10% GC score is less than 0.3; (3) Fail if the GENTRAIN™ score is less than 0.4; (4) Fail if the minor allele frequency is zero; 5) Fail if the number of calls is less than 80% of the number of samples. For each SNP assay, the number of runs in which the assay passed these quality control requirements is listed in Table 10, and the results are summarized in Table 11. There is a clear bimodal distribution, with 18% of the assays which never worked, and 36% of the assays that worked in 3 runs. We considered assays that never worked or only worked once as failures, resulting in 99 failed assays for an assay conversion rate of 73%.
This application is a continuation-in-part application of U.S. patent application Ser. No. 11/010,716, filed on Dec. 14, 2004.
Number | Name | Date | Kind |
---|---|---|---|
6081786 | Barry et al. | Jun 2000 | A |
20010034023 | Stanton, Jr. et al. | Oct 2001 | A1 |
20030219760 | Gordon et al. | Nov 2003 | A1 |
20040018491 | Gunderson et al. | Jan 2004 | A1 |
20040166519 | Cargill et al. | Aug 2004 | A1 |
20050079532 | Margus et al. | Apr 2005 | A1 |
20060223058 | Cox et al. | Oct 2006 | A1 |
20060278241 | Ruano | Dec 2006 | A1 |
20070038386 | Schadt et al. | Feb 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20060234262 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11010716 | Dec 2004 | US |
Child | 11371511 | US |