Embodiments of the subject matter described herein relate generally to sensors for sensing and/or determining physiological characteristics of subcutaneous interstitial fluid, and more particularly, to such sensors that determine constituents of subcutaneous interstitial fluid, such as glucose levels in subcutaneous interstitial fluid, during in vivo or in vitro applications and to methods for forming such sensors.
The determination of glucose levels in subcutaneous interstitial fluid is useful in a variety of applications. One particular application is for use by diabetics in combination with an insulin infusion pump system. The use of insulin pumps is frequently indicated for patients, particularly for diabetics whose conditions are best treated or stabilized by the use of insulin infusion pumps. Glucose sensors are useful in combination with such pumps, since these sensors may be used to determine glucose levels and provide information useful to the system to monitor the administration of insulin in response to actual and/or anticipated changes in blood glucose levels. For example, glucose levels are known to change in response to food and beverage intake, as well as to normal metabolic function. While certain diabetics are able to maintain proper glucose-insulin levels with conventional insulin injection or other insulin administration techniques, some individuals experience unusual problems giving rise to the need for a substantially constant glucose monitoring system to maintain an appropriate glucose-insulin balance in their bodies.
Glucose, as a compound, is difficult to determine on a direct basis electrochemically, since its properties lead to relatively poor behavior during oxidation and/or reduction activity. Furthermore, glucose levels in subcutaneous interstitial fluid are difficult to determine inasmuch as most mechanisms for sensing and/or determining glucose levels are affected by the presence of other constituents or compounds normally found in subcutaneous interstitial fluid. For these reasons, it has been found desirable to utilize various enzymes and/or other protein materials that provide specific reactions with glucose and yield readings and/or by-products which are capable of analyses quantitatively.
For example, sensors have been outfitted with enzymes or other reagent proteins that are covalently attached to the surface of a working electrode to conduct electrochemical determinations either amperometrically or potentiometrically. When glucose and oxygen in subcutaneous interstitial fluid come into contact with the enzyme or reagent protein in the sensor, the glucose and oxygen are converted into hydrogen peroxide and gluconic acid. The hydrogen peroxide then contacts the working electrode. A voltage is applied to the working electrode, causing the hydrogen peroxide to breakdown into hydrogen, oxygen and two electrons. Generally, when glucose levels are high, more hydrogen peroxide is generated, and more electric current is generated and measured by the sensor.
For such sensors, performance of the working electrode is directly correlated to the amount of conductive material forming the working electrode. Further, performance of the working electrode is inversely correlated to the impedance of the working electrode. Working electrodes having large surface areas and low impedance allow for a larger degree of hydrogen peroxide oxidation at the electrode surface, thereby generating a higher current and signal. However, there is a space constraint for working electrodes on sensors, particularly when utilizing multiple working electrodes across a sensor layout.
While amperometric sensors are commonly used to monitor glucose, embodiments of these sensors may encounter technical challenges when scaled. Specifically, smaller electrodes with reduced surface areas may have difficulty in effectively measuring glucose levels. In view of these and other issues, glucose sensors and methods for forming glucose sensors designed to enhance glucose sensing performance are desirable.
An exemplary embodiment of a method for forming a physiological characteristic sensor is provided. The exemplary method for forming a physiological characteristic sensor includes immersing a sensor electrode in a platinum electrolytic bath. Further, the method includes performing an electrodeposition process by sequentially applying a pulsed electrical signal to the sensor electrode and applying a non-pulsed continuous electrical signal to the sensor electrode to form a platinum deposit on the sensor electrode.
Further, an exemplary method for forming a platinum deposit is provided herein. The method includes contacting a deposition site with a platinum electrolyte. The method further includes performing a hybrid pulse/continuous electrodeposition process by sequentially applying a pulsed electrical signal to the deposition site and applying a non-pulsed continuous electrical signal to the deposition site to form the platinum deposit on the deposition site.
Also provided is an exemplary embodiment of a physiological characteristic sensor. The physiological characteristic sensor includes a sensor base and an electrode located on the sensor base. The electrode has a cross sectional area and an electrochemical real surface area that is at least about 80 times greater than the cross sectional area. The physiological characteristic sensor further includes a semipermeable membrane selective to an analyte positioned over the electrode. A reagent is encapsulated between the membrane and the electrode. Also, a protein layer is encapsulated between the semipermeable membrane and the electrode. The sensor further includes an adhesion promoter layer provided between the protein layer and the semipermeable membrane.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. Also, while the preceding background discusses glucose sensing and exemplary physiological characteristic sensors are described as glucose sensors herein, such description is for convenience and is not limiting. The claimed subject matter may include any type of physiological characteristic sensor utilizing an embodiment of the sensor electrode described herein.
Embodiments of physiological characteristic sensors provided herein use biological elements to convert a chemical analyte in a matrix into a detectable signal. In certain embodiments, a physiological characteristic sensor of the type presented here is designed and configured for subcutaneous operation in the body of a patient. The physiological characteristic sensor includes electrodes that are electrically coupled to a suitably configured electronics module that applies the necessary excitation voltages and monitors the corresponding electrical responses (e.g., electrical current, impedance, or the like) that are indicative of physiological characteristics of the body of the patient. For the embodiment described here, the physiological characteristic sensor includes at least one working electrode, which is fabricated in a particular manner to provide the desired electrochemical characteristics. In this regard, for sensing glucose levels in a patient, the physiological characteristic sensor works according to the following chemical reactions:
The glucose oxidase (GOx) is provided in the sensor and is encapsulated by a semipermeable membrane adjacent the working electrode. The semipermeable membrane allows for selective transport of glucose and oxygen to provide contact with the glucose oxidase. The glucose oxidase catalyzes the reaction between glucose and oxygen to yield gluconic acid and hydrogen peroxide (Equation 1). The H2O2 then contacts the working electrode and reacts electrochemically as shown in Equation 2 under electrocatalysis by the working electrode. The resulting current can be measured by a potentiostat. These reactions, which occur in a variety of oxidoreductases known in the art, are used in a number of sensor designs. As the size of glucose sensors and their components scale, the capability of the working electrode to efficiently electrocatalyze hydrogen peroxide is reduced. Embodiments of physiological characteristic sensors and methods for forming physiological characteristic sensors are provided herein to enhance sensor electrode performance despite scaling.
The sensor 10 includes sensor electrodes 11 designed for subcutaneous placement at a selected site in the body of a user. When placed in this manner, the sensor electrodes 11 are exposed to the user's bodily fluids such that they can react in a detectable manner to the physiological characteristic of interest, e.g., blood glucose level. In certain embodiments, the sensor electrodes 11 may include one or more working electrodes 12, adjacent counter electrodes 13, and reference electrodes (not shown). For the embodiments described here, the sensor electrodes 11 employ thin film electrochemical sensor technology of the type used for monitoring blood glucose levels in the body. Further description of flexible thin film sensors of this general type are found in U.S. Pat. No. 5,391,250, entitled METHOD OF FABRICATING THIN FILM SENSORS, which is herein incorporated by reference. In other embodiments, different types of implantable sensor technology, such as chemical based, optical based, or the like, may be used.
The sensor electrodes 11 cooperate with sensor electronics, which may be integrated with the sensor electrodes 11 in a sensor device package, or which may be implemented in a physically distinct device or component that communicates with the sensor electrodes 11 (such as a monitor device, an infusion pump device, a controller device, or the like). In this regard, any or all of the remaining elements shown in
In the embodiment of
In
The micro-circles and circular subsections 15 of the working electrodes 12 and the counter electrodes 13 defining the sensor electrodes 11 of
In
In an exemplary embodiment, the physiological characteristic sensor 10 is formed by sputtering the adhesion layer 22 onto the base layer 24. Then, the metallization layer 18 is sputtered onto the adhesion layer. Thereafter, the insulation layer 14 is formed on the metallization layer 18. The insulation layer 14 may be patterned after application onto the metallization layer 18 to expose the surfaces 16 of the metallization layer 18 forming the sensor electrodes 11.
After formation of the physiological characteristic sensor 10 shown in
Referring to
The hybrid pulse/continuous electrodeposition process described herein applies, separately and sequentially, a pulsed electrical signal and a non-pulsed continuous electrical signal to the sensor electrode to electrodeposit platinum thereon. To do so, the method includes immersing the sensor electrode or electrodes 11 in a platinum electrolytic bath at step 31. An exemplary platinum electrolytic bath is a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O), although other suitable electrolytic baths may be used.
The hybrid pulse/continuous electrodeposition process is performed at step 32 to electrodeposit platinum on the sensor electrode. As shown, the hybrid pulse/continuous electrodeposition process includes applying a pulsed electrical signal at step 33 and applying a non-pulsed continuous electrical signal at step 34. Steps 33 and 34 may be performed in either order. In an exemplary process, steps 33 and 34 may be performed immediately one after the other, or with a break of from about two seconds to about five seconds between steps 33 and 34. It is possible that there may be a longer break, such as for minutes or hours, between steps 33 and 34. While examples of pulsed and continuous electrical signals are provided herein as having pulsed currents and continuous currents, the pulsed and continuous electrical signals may instead or additionally include signals with pulsed voltages and signals with continuous voltages.
Three variables that are characteristic of a “pulsed” current are the duty cycle, peak current density, and number of repeated cycles. Duty cycle is calculated as a ratio between the ON-time (T_On) and combined ON- and OFF-time according to the equation:
Duty Cycle=T_On/(T_on+T_off)
Duty cycle is a major factor in distinguishing between a pulsed and continuous current. Based on the journal article, “Pulse and pulse reverse plating—Conceptual, advantages and applications (2008),” pulse plating usually involves a duty cycle of 5% or greater in practice.
With continuous or direct current, there is no second current. Therefore, T_off is 0 and the duty cycle is 100%. Further, there is no repetition (i.e. repeated cycles) for a continuous or direct current. Thus, as used herein, the “pulsed” current is a cycle of a first current followed by second current (or a 0 μA current) wherein the second current is different than the first current and wherein the cycle is repeated. As used herein, a “continuous” current uses a single current for a given period of time with no second current and does not exceed 1 cycle.
After the hybrid pulse/continuous electrodeposition process 32 is completed, the method 30 continues at step 36 with the encapsulation of sensor layers between the electrode and a selective permeable membrane. The selective permeable membrane acts as a glucose limiting membrane during operation as a glucose sensor and limits excess glucose molecules from reacting with immobilized enzyme molecules while maximizing the availability of oxygen.
In an exemplary embodiment, the sensor layers include an analyte sensing layer, such as an enzyme. An exemplary enzyme is glucose oxidase (GOx). Over the enzyme is a protein layer. An exemplary protein layer is human serum albumin (HSA) The HSA may be spray coated over the enzyme layer. An adhesion promoting composition is provided over the protein layer. The adhesion promoting composition assists in adhesion between the selective permeable membrane and the enzyme (GOx)/protein (HSA) matrix.
It is envisioned that the hybrid pulse/continuous electrodeposition process 32 may be performed in a variety of embodiments. In a simplified process, step 33 may be performed first, followed by step 34. For example, a pulsed current may be applied to the sensor electrode by alternating a first current and a second current (or no current). In an exemplary embodiment, the first current and second current are applied for duration of about 0.1 to about 5 seconds, such as for about 2 seconds. The first and second currents may be alternated for a desired number of cycles, such as from about 100 to about 300 cycles. The first current may be from about −50 μA to about −140 μA. The second current may be zero μA to −40 μA. After application of the pulsed current is completed, the continuous direct current may be applied to the sensor electrode for a duration of from about 50 seconds to about 210 seconds. An exemplary continuous direct current is from about −50 μA to about −110 μA.
In other embodiments, the hybrid pulse/continuous electrodeposition process 32 includes performing step 34 first, followed by step 33. For example, a continuous direct current of from about −70 μA to about −110 μA may be applied to the sensor electrode. The continuous direct current may be applied for a duration of from about 120 seconds to about 300 seconds, such as from about 180 seconds to about 240 seconds, for example for about 210 seconds. Then, a pulsed current may be applied to the sensor electrode. For example, a first current and a second current (or no current) may be alternated. An exemplary pulsed current is in the form of an alternating square pulse waveform. In an exemplary embodiment, the first current and second current are applied for duration of about 0.1 to about 5 seconds, such as for about 2 seconds. The first and second currents may be alternated for a desired number of cycles, such as from about 100 to about 200 cycles. The first current may be from about −90 μA to about −110 μA, such as about −103 μA. The second current may be zero μA, i.e., no current.
Referring to
After completion of steps 41 and 42, the hybrid pulse/continuous electrodeposition process 32 may include a single application of a continuous direct current of from about −70 μA to about −110 μA to the sensor electrode. An exemplary continuous direct current is applied for a duration of from about 60 seconds to about 200 seconds.
In
In
The platinum deposit 70 is formed with a continuous base portion 74. In an exemplary embodiment, the platinum is dense and uniform in the base portion 74. Further, the platinum deposit 70 is formed with a discontinuous upper portion 76 that forms the upper surface 71. As shown, the discontinuous upper portion 76 is interrupted by valleys or chasms 77 formed in the upper surface 71. In an exemplary embodiment, the thickness or height of the base portion 74 is from about 0.6 to about 1.2 μm, such as about 1.0 μm, and the thickness or height of the upper portion 76 is from about 0.6 to about 2.4 μm. It is believed that the initial pulse electrodeposition sequence helps develop a compact base layer of platinum while the continuous (direct current) sequence creates a rough layer on top of the compact base layer. By introducing more cycles into the pulse deposition process, the thickness of the compact layer will become greater. The continuous component (direct current) influences the roughness of the platinum deposit. Longer continuous current times will contribute to a thicker rough layer. When using a larger current (and consequently larger current density) and longer deposition times during continuous current electroplating, the thickness of rough platinum deposition tends to be much more pronounced at the edges of the electrode.
While various embodiments of the hybrid pulse/continuous electrodeposition process 32 have been illustrated, they are provided without limitation and other embodiments are contemplated. As described, the hybrid pulse/continuous electrodeposition process 32 includes application of at least one non-pulsed continuous current to the sensor electrode and application of at least one pulsed current to the sensor electrode. Examples of the hybrid pulse/continuous electrodeposition process are provided without limitation.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 40 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a continuous direct current of −103 μA for 210 seconds, followed by application of a pulsing sequence with an initial biased current of −103 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 165 cycles.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 40 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a continuous direct current of −85 μA for 210 seconds, followed by application of a pulsing sequence with an initial biased current of −103 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 185 cycles.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 40 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −103 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 185 cycles, followed by a continuous direct current of −85 μA for 210 seconds.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 40 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −103 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 185 cycles, followed by another sequence of a pulse current with an initial biased current of −89 μA for two seconds, followed by −81 μA current for 2 seconds, repeated for 17 cycles, followed by application of a continuous direct current of −85 μA for 145 seconds.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 40 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −103 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 145 cycles, followed by another sequence of a pulse current with an initial biased current of −89 μA for two seconds, followed by −81 μA current for 2 seconds, repeated for 25 cycles, followed by application of a continuous direct current of −85 μA for 210 seconds.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 48 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −120 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 125 cycles, followed by a continuous direct current of −98 μA for 125 seconds.
SAR measurements pertaining to Example 6 (two working electrode sensor) are provided in Tables A-E below in relation to examples of conventional continuous current (direct current) electrodeposition. Specifically, Tables A-D provide SAR data for platinum deposits formed by prior art continuous current electrodeposition, while Table E provides SAR data for platinum deposits formed according to Example 6. For conventional continuous current (direct current) electrodeposition, the surface area ratio of platinum deposition may increase by increasing the current density. However, the electrodeposited platinum may extend beyond the area of the insulation wall when increasing the current density as evidenced in the SEM images of a working electrode formed with a continuous current of −98 μA applied for 210 seconds in
A sensor with two working electrodes in a distributed pattern of micro-circles having a 48 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −120 μA for two seconds, followed by −20 μA current for 2 seconds, repeated for 107 cycles, followed by a continuous direct current of −98 μA for 125 seconds.
A sensor with four working electrodes in a distributed pattern of rectangles was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −104 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 135 cycles, followed by a continuous direct current of −88 μA for 140 seconds.
A sensor with four working electrodes in a distributed pattern of rectangles was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −104 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 135 cycles, followed by another sequence of a pulse current with an initial biased current of −92 μA for two seconds, followed by −84 μA current for 2 seconds, repeated for 17 cycles, followed by application of a continuous direct current of −88 μA for 72 seconds.
A sensor with four working electrodes in a distributed pattern of rectangles was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −67 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 261 cycles, followed by a continuous direct current of −67 μA for 69 seconds.
A sensor with four working electrodes in a distributed pattern of rectangles was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −67 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 241 cycles, followed by a continuous direct current of −67 μA for 109 seconds.
A sensor with four working electrodes in a distributed pattern of rectangles was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −67 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 221 cycles, followed by a continuous direct current of −67 μA for 149 seconds.
A sensor with working electrodes in a distributed electrode layout was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −67 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 181 cycles, followed by a continuous direct current of −67 μA for 229 seconds. The electrodeposition forms a base platinum layer with edge portions having a thickness (or height) of about 2.58 μm and a central portion having a thickness of about 1.22 μm to about 1.51 μm and forms an upper platinum region with edge portions having a thickness of about 1.79 μm and a central portion having a thickness of from about 1.61 μm to about 1.74 μm.
A sensor with working electrodes in a distributed electrode layout was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current sequence with an initial biased current of −67 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 181 cycles, followed by application of a first step current of −13 μA for one second, a second step current of −26 μA for one second, a third step current of −39 μA for one second, and a fourth step current of −52 μA for one second, not repeated, followed by a continuous direct current of −67 μA for 229 seconds. The electrodeposition forms a base platinum layer with edge portions having a thickness (or height) of about 2.43 μm and a central portion having a thickness of about 1.22 μm to about 1.41 μm and forms an upper platinum region with edge portions having a thickness of about 1.98 μm and a central portion having a thickness of from about 1.56 μm to about 1.71 μm.
Table F provides data regarding the roughness average for platinum deposits formed according to Examples 10-14.
A sensor with working electrodes in a distributed electrode layout was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −73 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 130 cycles, followed by a continuous direct current of −54 μA for 165 seconds. The electrodeposition forms a base platinum layer with edge portions having a thickness (or height) of about 0.853 μm and a central portion having a thickness of about 0.754 μm and forms an upper platinum region with edge portions having a thickness of about 0.913 μm and a central portion having a thickness of about 0.794 μm.
A sensor with working electrodes in a distributed electrode layout was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −73 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 130 cycles, followed by a continuous direct current of −66 μA for 165 seconds. The electrodeposition forms a base platinum layer with edge portions having a thickness (or height) of from about 1.55 μm to about 2.02 μm and a central portion having a thickness of from about 0.814 μm to about 0.853 μm and forms an upper platinum region with edge portions having a thickness of from about 0.913 μm to about 1.07 μm and a central portion having a thickness of from about 1.37 μm to about 1.49 μm.
A sensor with working electrodes was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −165 μA for two seconds, followed by −60 μA current for 2 seconds, repeated for 80 cycles, followed by a continuous direct current of −165 μA for 75 seconds, followed by application of a pulse current with an initial biased current of −165 μA for two seconds, followed by −60 μA current for 2 seconds, repeated for 80 cycles, and followed by a continuous direct current of −165 μA for 75 seconds. Under conditions of alternating square pulse waveform and a direct current, the platinum is deposited with a compact base layer having a thickness (or height) of from about 0.636 μm to about 1.08 μm and to form rough upper regions including edge portions having a thickness of about 3.80 μm to about 4.27 μm, a central portion having a thickness of about 0.788 μm to about 1.66 μm, and a thicker central portion having a thickness of from about 1.63 μm to about 2.29 μm.
Glucose sensors and methods for forming glucose sensors designed to enhance glucose sensing performance are provided herein. As described, methods for forming glucose sensors include performing an electrodeposition process by sequentially applying a pulsed signal to the electrode and applying a non-pulsed continuous signal to the electrode to form a platinum deposit on the electrode. The signal may include pulsed and continuous applications of current and/or voltage. Exemplary platinum deposits have increased surface area as compared to platinum deposits formed by conventional processes.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application.
Number | Name | Date | Kind |
---|---|---|---|
3631847 | Hobbs, II | Jan 1972 | A |
4212738 | Henne | Jul 1980 | A |
4270532 | Franetzki et al. | Jun 1981 | A |
4282872 | Franetzki et al. | Aug 1981 | A |
4373527 | Fischell | Feb 1983 | A |
4395259 | Prestele et al. | Jul 1983 | A |
4433072 | Pusineri et al. | Feb 1984 | A |
4443218 | DeCant, Jr. et al. | Apr 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4542532 | McQuilkin | Sep 1985 | A |
4550731 | Batina et al. | Nov 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4562751 | Nason et al. | Jan 1986 | A |
4671288 | Gough | Jun 1987 | A |
4678408 | Nason et al. | Jul 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4731051 | Fischell | Mar 1988 | A |
4731726 | Allen, III | Mar 1988 | A |
4781798 | Gough | Nov 1988 | A |
4803625 | Fu et al. | Feb 1989 | A |
4809697 | Causey, III et al. | Mar 1989 | A |
4826810 | Aoki | May 1989 | A |
4871351 | Feingold | Oct 1989 | A |
4898578 | Rubalcaba, Jr. | Feb 1990 | A |
5003298 | Havel | Mar 1991 | A |
5011468 | Lundquist et al. | Apr 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5080653 | Voss et al. | Jan 1992 | A |
5097122 | Colman et al. | Mar 1992 | A |
5100380 | Epstein et al. | Mar 1992 | A |
5101814 | Palti | Apr 1992 | A |
5108819 | Heller et al. | Apr 1992 | A |
5153827 | Coutre et al. | Oct 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5247434 | Peterson et al. | Sep 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5284140 | Allen et al. | Feb 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5317506 | Coutre et al. | May 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5339821 | Fujimoto | Aug 1994 | A |
5341291 | Roizen et al. | Aug 1994 | A |
5350411 | Ryan et al. | Sep 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5357427 | Langen et al. | Oct 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5370622 | Livingston et al. | Dec 1994 | A |
5371687 | Holmes, II et al. | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5403700 | Heller et al. | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5482473 | Lord et al. | Jan 1996 | A |
5485408 | Blomquist | Jan 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5543326 | Heller et al. | Aug 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5569187 | Kaiser | Oct 1996 | A |
5573506 | Vasko | Nov 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593390 | Castellano et al. | Jan 1997 | A |
5593852 | Heller et al. | Jan 1997 | A |
5594638 | Illiff | Jan 1997 | A |
5609060 | Dent | Mar 1997 | A |
5626144 | Tacklind et al. | May 1997 | A |
5630710 | Tune et al. | May 1997 | A |
5643212 | Coutre et al. | Jul 1997 | A |
5660163 | Schulman et al. | Aug 1997 | A |
5660176 | Iliff | Aug 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5685844 | Marttila | Nov 1997 | A |
5687734 | Dempsey et al. | Nov 1997 | A |
5704366 | Tacklind et al. | Jan 1998 | A |
5750926 | Schulman et al. | May 1998 | A |
5754111 | Garcia | May 1998 | A |
5764159 | Neftel | Jun 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5779665 | Mastrototaro et al. | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5807336 | Russo et al. | Sep 1998 | A |
5814015 | Gargano et al. | Sep 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5832448 | Brown | Nov 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5861018 | Feierbach et al. | Jan 1999 | A |
5868669 | Iliff | Feb 1999 | A |
5871465 | Vasko | Feb 1999 | A |
5879163 | Brown et al. | Mar 1999 | A |
5885245 | Lynch et al. | Mar 1999 | A |
5897493 | Brown | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5904708 | Goedeke | May 1999 | A |
5913310 | Brown | Jun 1999 | A |
5917346 | Gord | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5933136 | Brown | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5940801 | Brown | Aug 1999 | A |
5956501 | Brown | Sep 1999 | A |
5960403 | Brown | Sep 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5972199 | Heller et al. | Oct 1999 | A |
5978236 | Faberman et al. | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999849 | Gord et al. | Dec 1999 | A |
6009339 | Bentsen et al. | Dec 1999 | A |
6032119 | Brown et al. | Feb 2000 | A |
6043437 | Schulman et al. | Mar 2000 | A |
6080504 | Taylor | Jun 2000 | A |
6081736 | Colvin et al. | Jun 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6101478 | Brown | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6183412 | Benkowski et al. | Feb 2001 | B1 |
6246992 | Brown | Jun 2001 | B1 |
6259937 | Schulman et al. | Jul 2001 | B1 |
6306277 | Strangman | Oct 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6340421 | Vachon | Jan 2002 | B1 |
6408330 | DeLaHuerga | Jun 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6472122 | Schulman et al. | Oct 2002 | B1 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6503381 | Gotoh et al. | Jan 2003 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6544173 | West et al. | Apr 2003 | B2 |
6553263 | Meadows et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560741 | Gerety et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6591125 | Buse et al. | Jul 2003 | B1 |
6592745 | Feldman et al. | Jul 2003 | B1 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607658 | Heller et al. | Aug 2003 | B1 |
6616819 | Liamos et al. | Sep 2003 | B1 |
6618934 | Feldman et al. | Sep 2003 | B1 |
6623501 | Heller et al. | Sep 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6671554 | Gibson et al. | Dec 2003 | B2 |
6676816 | Mao et al. | Jan 2004 | B2 |
6689265 | Heller et al. | Feb 2004 | B2 |
6728576 | Thompson et al. | Apr 2004 | B2 |
6733471 | Ericson et al. | May 2004 | B1 |
6746582 | Heller et al. | Jun 2004 | B2 |
6747556 | Medema et al. | Jun 2004 | B2 |
6749740 | Liamos et al. | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6809653 | Mann et al. | Oct 2004 | B1 |
6881551 | Heller et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6893545 | Gotoh et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6916159 | Rush et al. | Jul 2005 | B2 |
6932584 | Gray et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6942518 | Liamos et al. | Sep 2005 | B2 |
7153263 | Carter et al. | Dec 2006 | B2 |
7153289 | Vasko | Dec 2006 | B2 |
7396330 | Banet et al. | Jul 2008 | B2 |
7887681 | Zhou | Feb 2011 | B2 |
20010044731 | Coffman et al. | Nov 2001 | A1 |
20020013518 | West et al. | Jan 2002 | A1 |
20020055857 | Mault et al. | May 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020137997 | Mastrototaro et al. | Sep 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20030060765 | Campbell et al. | Mar 2003 | A1 |
20030078560 | Miller et al. | Apr 2003 | A1 |
20030088166 | Say et al. | May 2003 | A1 |
20030102226 | Gabe | Jun 2003 | A1 |
20030144581 | Conn et al. | Jul 2003 | A1 |
20030152823 | Heller | Aug 2003 | A1 |
20030176183 | Drucker et al. | Sep 2003 | A1 |
20030188427 | Say et al. | Oct 2003 | A1 |
20030199744 | Buse et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030220552 | Reghabi et al. | Nov 2003 | A1 |
20040061232 | Shah et al. | Apr 2004 | A1 |
20040061234 | Shah et al. | Apr 2004 | A1 |
20040064133 | Miller et al. | Apr 2004 | A1 |
20040064156 | Shah et al. | Apr 2004 | A1 |
20040073095 | Causey, III et al. | Apr 2004 | A1 |
20040074785 | Holker et al. | Apr 2004 | A1 |
20040093167 | Braig et al. | May 2004 | A1 |
20040097796 | Berman et al. | May 2004 | A1 |
20040102683 | Khanuja et al. | May 2004 | A1 |
20040111017 | Say et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040167465 | Mihai et al. | Aug 2004 | A1 |
20040263354 | Mann et al. | Dec 2004 | A1 |
20050016858 | Barstad | Jan 2005 | A1 |
20050038331 | Silaski et al. | Feb 2005 | A1 |
20050038680 | McMahon et al. | Feb 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20060229694 | Schulman et al. | Oct 2006 | A1 |
20060238333 | Welch et al. | Oct 2006 | A1 |
20060293571 | Bao et al. | Dec 2006 | A1 |
20070088521 | Shmueli et al. | Apr 2007 | A1 |
20070135866 | Baker et al. | Jun 2007 | A1 |
20070173711 | Shah | Jul 2007 | A1 |
20080154503 | Wittenber et al. | Jun 2008 | A1 |
20090081951 | Erdmann et al. | Mar 2009 | A1 |
20090082635 | Baldus et al. | Mar 2009 | A1 |
20110152654 | Wang | Jun 2011 | A1 |
20140243634 | Huang | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
4329229 | Mar 1995 | DE |
0319268 | Nov 1988 | EP |
0806738 | Nov 1997 | EP |
0880936 | Dec 1998 | EP |
1338295 | Aug 2003 | EP |
1631036 | Mar 2006 | EP |
2218831 | Nov 1989 | GB |
WO 9620745 | Jul 1996 | WO |
WO 9636389 | Nov 1996 | WO |
WO 9637246 | Nov 1996 | WO |
WO 9721456 | Jun 1997 | WO |
WO 9820439 | May 1998 | WO |
WO 9824358 | Jun 1998 | WO |
WO 9842407 | Oct 1998 | WO |
WO 9849659 | Nov 1998 | WO |
WO 9859487 | Dec 1998 | WO |
WO 9908183 | Feb 1999 | WO |
WO 9910801 | Mar 1999 | WO |
WO 9918532 | Apr 1999 | WO |
WO 9922236 | May 1999 | WO |
WO 0010628 | Mar 2000 | WO |
WO 0019887 | Apr 2000 | WO |
WO 0048112 | Aug 2000 | WO |
WO 02058537 | Aug 2002 | WO |
WO 03001329 | Jan 2003 | WO |
WO 03094090 | Nov 2003 | WO |
WO 2005065538 | Jul 2005 | WO |
WO 2012082717 | Jun 2012 | WO |
Entry |
---|
Chandrasekar et al., “Pulse and Pulse Reverse Plating-Conceptual, Advantages and Applications” Electrochim. Acta 53, pp. 3313-3322 (2008). |
PCT Search Report (PCT/US02/03299), Oct. 31, 2002, Medtronic Minimed, Inc. |
(Animas Corporation, 1999). Animas . . . bringing new life to insulin therapy. |
Bode B W, et al. (1996). Reduction in Severe Hypoglycemia with Long-Term Continuous Subcutaneous Insulin Infusion in Type I Diabetes. Diabetes Care, vol. 19, No. 4, 324-327. |
Boland E (1998). Teens Pumping it Up! Insulin Pump Therapy Guide for Adolescents. 2nd Edition. |
Brackenridge B P (1992). Carbohydrate Gram Counting a Key to Accurate Mealtime Boluses in Intensive Diabetes Therapy. Practical Diabetology, vol. 11, No. 2, pp. 22-28. |
Brackenridge, B P et al. (1995). Counting Carbohydrates How to Zero in on Good Control. MiniMed Technologies Inc. |
Farkas-Hirsch R et al. (1994). Continuous Subcutaneous Insulin Infusion: A Review of the Past and Its Implementation for the Future. Diabetes Spectrum From Research to Practice, vol. 7, No. 2, pp. 80-84, 136-138. |
Hirsch I B et al. (1990). Intensive Insulin Therapy for Treatment of Type I Diabetes. Diabetes Care, vol. 13, No. 12, pp. 1265-1283. |
Kulkami K et al. (1999). Carbohydrate Counting a Primer for Insulin Pump Users to Zero in on Good Control. MiniMed Inc. |
Marcus A O et al. (1996). Insulin Pump Therapy Acceptable Alternative to Injection Therapy. Postgraduate Medicine, vol. 99, No. 3, pp. 125-142. |
Reed J et al. (1996). Voice of the Diabetic, vol. 11, No. 3, pp. 1-38. |
Skyler J S (1989). Continuous Subcutaneous Insulin Infusion [CSII] With External Devices: Current Status. Update in Drug Delivery Systems, Chapter 13, pp. 163-183. Fututa Publishing Company. |
Skyler J S et al. (1995). The Insulin Pump Therapy Book Insights from the Experts. MiniMed•Technologies. |
Strowig S M (1993). Initiation and Management of Insulin Pump Therapy. The Diabetes Educator, vol. 19, No. 1, pp. 50-60. |
Walsh J, et al. (1989). Pumping Insulin: The Art of Using an Insulin Pump. Published by MiniMed•Technologies. |
(Intensive Diabetes Management, 1995). Insulin Infusion Pump Therapy. pp. 66-78. |
Disetronic My ChoiceIM D-TRONIM Insulin Pump Reference Manual. (no date). |
Disetronic H-TRON® plus Quick Start Manual. (no date). |
Disetronic My Choice H-TRONplus Insulin Pump Reference Manual. (no date). |
Disetronic H-TRON® plus Reference Manual. (no date). |
(MiniMed, 1996). The MiniMed 506. 7 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19961111054527/www.minimed.com/files/506—pic.htm. |
(MiniMed, 1997). MiniMed 507 Specifications. 2 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19970124234841/www.minimed.com/files/mmn075.htm. |
(MiniMed, 1996). FAQ: The Practical Things . . . pp. 1-4. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19961111054546/www.minimed.com/files/faq—pract.htm. |
(MiniMed, 1997). Wanted: a Few Good Belt Clips! 1 page. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19970124234559/www.minimed.com/files/mmn002.htm. |
(MiniMed Technologies, 1994). MiniMed 506 Insulin Pump User's Guide. |
(MiniMed Technologies, 1994). MiniMed™ Dosage Calculator Initial Meal Bolus Guidelines / MiniMed™ Dosage Calculator Initial Basal Rate Guidelines Percentage Method. 4 pages. |
(MiniMed, 1996). MinimedIM 507 Insulin Pump User's Guide. |
(MiniMed, 1997). MiniMed™ 507 Insulin Pump User's Guide. |
(MiniMed, 1998). MiniMed 507C Insulin Pump User's Guide. |
(MiniMed International, 1998). MiniMed 507C Insulin Pump for those who appreciate the difference. |
(MiniMed Inc., 1999). MiniMed 508 Flipchart Guide to Insulin Pump Therapy. |
(MiniMed Inc., 1999). Insulin Pump Comparison / Pump Therapy Will Change Your Life. |
(MiniMed, 2000). MiniMed® 508 User's Guide. |
(MiniMed Inc., 2000). MiniMed® Now [I] Can Meal Bolus Calculator / MiniMed® Now [I] Can Correction Bolus Calculator. |
(MiniMed Inc., 2000). Now [I] Can MiniMed Pump Therapy. |
(MiniMed Inc., 2000). Now [I] Can MiniMed Diabetes Management. |
(Medronic MiniMed, 2002). The 508 Insulin Pump a Tradition of Excellence. |
(Midtronic MiniMed, 2002). Medronic MiniMed Meal Bolus Calculator and Correction Bolus Calculator. International Version. |
Abel, P., et al., “Experience with an implantable glucose sensor as a prerequiste of an artificial beta cell,” Biomed. Biochim. Acta 43 (1984) 5, pp. 577-584. |
Bindra, Dilbir S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for a Subcutaneous Monitoring,” American Chemistry Society, 1991, 63, pp. 1692-1696. |
Boguslavsky, Leonid, et al., “Applications of redox polymers in biosensors,” Sold State Ionics 60, 1993, pp. 189-197. |
Geise, Robert J., et al., “Electropolymerized 1,3-diaminobenzene for the construction of a 1,1′-dimethylferrocene mediated glucose biosensor,” Analytica Chimica Acta, 281, 1993, pp. 467-473. |
Gernet, S., et al., “A Planar Glucose Enzyme Electrode,” Sensors and Actuators, 17, 1989, pp. 537-540. |
Gernet, S., et al., “Fabrication and Characterization of a Planar Electromechanical Cell and its Application as a Glucose Sensor,” Sensors and Actuators, 18, 1989, pp. 59-70. |
Gorton, L., et al., “Amperometric Biosensors Based on an Apparent Direct Electron Transfer Between Electrodes and Immobilized Peroxiases,” Analyst, Aug. 1991, vol. 117, pp. 1235-1241. |
Gorton, L., et al., “Amperometric Glucose Sensors Based on Immobilized Glucose-Oxidizing Enymes and Chemically Modified Electrodes,” Analytica Chimica Acta, 249, 1991, pp. 43-54. |
Gough, D. A., et al., “Two-Dimensional Enzyme Electrode Sensor for Glucose,” Analytical Chemistry, vol. 57, No. 5, 1985, pp. 2351-2357. |
Gregg, Brian A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications,” Analytical Chemistry, 62, pp. 258-263. |
Gregg, Brian A., et al., “Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone,” The Journal of Physical Chemistry, vol. 95, No. 15, 1991, pp. 5970-5975. |
Hashiguchi, Yasuhiro, MD, et al., “Development of a Miniaturized Glucose Monitoring System by Combining a Needle-Type Glucose Sensor with Microdialysis Sampling Method,” Diabetes Care, vol. 17, No. 5, May 1994, pp. 387-389. |
Heller, Adam, “Electrical Wiring of Redox Enzymes,” Acc. Chem. Res., vol. 23, No. 5, May 1990, pp. 128-134. |
Jobst, Gerhard, et al., “Thin-Film Microbiosensors for Glucose-Lactate Monitoring,” Analytical Chemistry, vol. 68, No. 18, Sep. 15, 1996, pp. 3173-3179. |
Johnson, K.W., et al., “In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue,” Biosensors & Bioelctronics, 7, 1992, pp. 709-714. |
Jönsson, G., et al., “An Electomechanical Sensor for Hydrogen Peroxide Based on Peroxidase Adsorbed on a Spectrographic Graphite Electrode,” Electroanalysis, 1989, pp. 465-468. |
Kanapieniene, J. J., et al., “Miniature Glucose Biosensor with Extended Linearity,” Sensors and Actuators, B. 10, 1992, pp. 37-40. |
Kawamori, Ryuzo, et al., “Perfect Normalization of Excessive Glucagon Responses to Intraveneous Arginine in Human Diabetes Mellitus with the Artificial Beta-Cell,” Diabetes vol. 29, Sep. 1980, pp. 762-765. |
Kimura, J., et al., “An Immobilized Enzyme Membrane Fabrication Method,” Biosensors 4, 1988, pp. 41-52. |
Koudelka, M., et al., “In-vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors,” Biosensors & Bioelectronics 6, 1991, pp. 31-36. |
Koudelka, M., et al., “Planar Amperometric Enzyme-Based Glucose Microelectrode,” Sensors & Actuators, 18, 1989, pp. 157-165. |
Mastrototaro, John J., et al., “An electroenzymatic glucose sensor fabricated on a flexible substrate,” Sensors & Actuators, B. 5, 1991, pp. 139-144. |
Mastrototaro, John J., et al., “An Electroenzymatic Sensor Capable of 72 Hour Continuous Monitoring of Subcutaneous Glucose,” 14th Annual International Diabetes Federation Congress, Washington D.C., Jun. 23-28, 1991. |
McKean, Brian D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors,” IEEE Transactions on Biomedical Engineering, Vo. 35, No. 7, Jul. 1988, pp. 526-532. |
Monroe, D., “Novel Implantable Glucose Sensors,” ACL, Dec. 1989, pp. 8-16. |
Morff, Robert J., et al., “Microfabrication of Reproducible, Economical, Electroenzymatic Glucose Sensors,” Annuaal International Conference of teh IEEE Engineering in Medicine and Biology Society, Vo. 12, No. 2, 1990, pp. 483-484. |
Moussy, Francis, et al., “Performance of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel Trilayer Coating,” Analytical Chemistry, vol. 65, No. 15, Aug. 1, 1993, pp. 2072-2077. |
Nakamoto, S., et al., “A Lift-Off Method for Patterning Enzyme-Immobilized Membranes in Multi-Biosensors,” Sensors and Actuators 13, 1988, pp. 165-172. |
Nishida, Kenro, et al., “Clinical applications of teh wearable artifical endocrine pancreas with the newly designed needle-type glucose sensors,” Elsevier Sciences B.V., 1994, pp. 353-358. |
Nishida, Kenro, et al., “Development of ferrocene-mediated needle-type glucose sensor covered with newly designd biocompatible membrane, 2-methacryloyloxyethylphosphorylcholine-co-n-butyl nethacrylate,” Medical Progress Through Technology, vol. 21, 1995, pp. 91-103. |
Poitout, V., et al., “A glucose monitoring system for on line estimation oin man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue adn a wearable control unit,” Diabetologia, vol. 36, 1991, pp. 658-663. |
Reach, G., “A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors,” Biosensors 2, 1986, pp. 211-220. |
Shaw, G. W., et al., “In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients,” Biosensors & Bioelectronics 6, 1991, pp. 401-406. |
Shichiri, M., “A Needle-Type Glucose Sensor—A Valuable Tool Not Only for a Self-Blood Glucose Monitoring but for a Wearable Artificial Pancreas,” Life Support Systems Proceedings, XI Annual Meeting ESAO, Alpbach-Innsbruck, Austria, Sep. 1984, pp. 7-9. |
Shichiri, Motoaki, et al., “An artificial endocrine pancreas—problems awaiting solution for long-term clinical applications of a glucose sensor,” Frontiers Med. Biol. Engng., 1991, vol. 3, No. 4, pp. 283-292. |
Shichiri, Motoaki, et al., “Closed-Loop Glycemic Control with a Wearable Artificial Endocrine Pancreas—Variation in Daily Insulin Requirements to Glycemic Response,” Diabetes, vol. 33, Dec. 1984, pp. 1200-1202. |
Shichiri, Motoaki, et al., “Glycaemic Control in a Pacreatectomized Dogs with Wearable Artificial Endocrine Pancreas,” Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers,” Hormone and Metabolic Research, Supplement Series vol. No. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane design for extending the long-life of an implantable glucose sensor,” Diab. Nutr. Metab., vol. 2, No. 4, 1989, pp. 309-313. |
Shichiri, Motoaki, et al., “Normalization of the Paradoxic Secretion of Glucagon in Diabetes Who Were Controlled by the Artificial Beta Cell,” Diabetes, vol. 28, Apr. 1979, pp. 272-275. |
Shichiri, Motoaki, et al., “Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A useful Tool for Blood Glucose Monitoring in Diabetic Individuals,” Diabetes Care, vol. 9, No. 3, May-Jun. 1986, pp. 298-301. |
Shichiri, Motoaki, et al., “Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor,” The Lancet, Nov. 20, 1982, pp. 1129-1131. |
Shichiri, Motoaki, et al., “The Wearable Artificial Endocrine Pancreas with a Needle-Type Glucose Sensor: Perfect Glycemic Control in Ambulatory Diabetes,” Acta Paediatr Jpn 1984, vol. 26, pp. 359-370. |
Shinkai, Seiji, “Molecular Recognition of Mono- and Di-saccharides by Phenylboronic Acids in Solvent Extraction and as a Monolayer,” J. Chem. Soc., Chem. Commun., 1991, pp. 1039-1041. |
Shults, Mark C., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors,” IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, Oct. 1994, pp. 937-942. |
Sternberg, Robert, et al., “Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors,” Biosensors, vol. 4, 1988, pp. 27-40. |
Tamiya, E., et al., “Micro Glucose Sensors using Electron Mediators Immobilized on a Polypyrrole-Modified Electrode,” Sensors and Actuators, vol. 18, 1989, pp. 297-307. |
Tsukagoshi, Kazuhiko, et al., “Specific Complexation with Mono- and Disaccharides that can be Detected by Circular Dichroism,” J. Org. Chem., vol. 56, 1991, pp. 4089-4091. |
Urban, G., et al., “Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications,” Biosensors & Bioelectronics, vol. 7, 1992, pp. 733-739. |
Urban, G., et al., “Miniaturized thin-film biosensors using covalently immobilized glucose oxidase,” Biosensors & Bioelectronics, vol. 6, 1991, pp. 555-562. |
Velho, G., et al., “In vivo calibration of a subcutaneous glucose sensor for determination of subcutaneous glucose kinetics,” Diab. Nutr. Metab., vol. 3, 1988, pp. 227-233. |
Wang, Joseph, et al., “Needle-Type Dual Microsensor for the Simultaneous Monitoring of Glucose and Insulin,” Analytical Chemistry, vol. 73, 2001, pp. 844-847. |
Yamasaki, Yoshimitsu, et al., “Direct Measurement of Whole Blood Glucose by a Needle-Type Sensor,” Clinics Chimica Acta, vol. 93, 1989, pp. 93-98. |
Yokoyama, K., “Integrated Biosensor for Glucose and Galactose,” Analytica Chimica Acta, vol. 218, 1989, pp. 137-142. |
Number | Date | Country | |
---|---|---|---|
20150316499 A1 | Nov 2015 | US |