This application claims priority to U.S. patent application Ser. No. 14/267,739, filed May 1, 2014, which is incorporated herein by reference in its entirety.
Embodiments of the subject matter described herein relate generally to sensors for sensing and/or determining physiological characteristics of subcutaneous interstitial fluid, and more particularly, to such sensors that determine constituents of subcutaneous interstitial fluid, such as glucose levels in subcutaneous interstitial fluid, during in vivo or in vitro applications and to methods for forming such sensors.
The determination of glucose levels in subcutaneous interstitial fluid is useful in a variety of applications. One particular application is for use by diabetics in combination with an insulin infusion pump system. The use of insulin pumps is frequently indicated for patients, particularly for diabetics whose conditions are best treated or stabilized by the use of insulin infusion pumps. Glucose sensors are useful in combination with such pumps, since these sensors may be used to determine glucose levels and provide information useful to the system to monitor the administration of insulin in response to actual and/or anticipated changes in blood glucose levels. For example, glucose levels are known to change in response to food and beverage intake, as well as to normal metabolic function. While certain diabetics are able to maintain proper glucose-insulin levels with conventional insulin injection or other insulin administration techniques, some individuals experience unusual problems giving rise to the need for a substantially constant glucose monitoring system to maintain an appropriate glucose-insulin balance in their bodies.
Glucose, as a compound, is difficult to determine on a direct basis electrochemically, since its properties lead to relatively poor behavior during oxidation and/or reduction activity. Furthermore, glucose levels in subcutaneous interstitial fluid are difficult to determine inasmuch as most mechanisms for sensing and/or determining glucose levels are affected by the presence of other constituents or compounds normally found in subcutaneous interstitial fluid. For these reasons, it has been found desirable to utilize various enzymes and/or other protein materials that provide specific reactions with glucose and yield readings and/or by-products which are capable of analyses quantitatively.
For example, sensors have been outfitted with enzymes or other reagent proteins that are covalently attached to the surface of a working electrode to conduct electrochemical determinations either amperometrically or potentiometrically. When glucose and oxygen in subcutaneous interstitial fluid come into contact with the enzyme or reagent protein in the sensor, the glucose and oxygen are converted into hydrogen peroxide and gluconic acid. The hydrogen peroxide then contacts the working electrode. A voltage is applied to the working electrode, causing the hydrogen peroxide to breakdown into hydrogen, oxygen and two electrons. Generally, when glucose levels are high, more hydrogen peroxide is generated, and more electric current is generated and measured by the sensor. For such sensors, performance of the working electrode is directly correlated to the amount of conductive material forming the working electrode. Further, performance of the working electrode is inversely correlated to the impedance of the working electrode. Working electrodes having large surface areas and low impedance allow for a larger degree of hydrogen peroxide oxidation at the electrode surface, thereby generating a higher current and signal. However, there is a space constraint for working electrodes on sensors, particularly when utilizing multiple working electrodes across a sensor layout.
While amperometric sensors are commonly used to monitor glucose, embodiments of these sensors may encounter technical challenges when scaled. Specifically, smaller electrodes with reduced surface areas may have difficulty in effectively measuring glucose levels. In view of these and other issues, glucose sensors and methods for forming glucose sensors designed to enhance glucose sensing performance are desirable.
An exemplary embodiment of a method for forming a physiological characteristic sensor is provided. The exemplary method for forming a physiological characteristic sensor includes immersing a sensor electrode in a platinum electrolytic bath. Further, the method includes performing an electrodeposition process by sequentially applying a pulsed signal to the sensor electrode, wherein the pulsed signal includes a repeated cycle of a first current and a second current different from the first current, and applying a non-pulsed continuous signal to the sensor electrode, wherein the non-pulsed continuous signal includes a non-repeated application of a third current, to form a platinum deposit on the sensor electrode.
A method for forming a platinum deposit having a rough surface is provided herein. The method includes contacting a deposition site with a platinum electrolyte. The method further includes performing a hybrid pulse/continuous electrodeposition process by sequentially applying a pulsed signal to the deposition site and applying a non-pulsed continuous signal to the deposition site to form the platinum deposit on the deposition site. The pulsed signal includes a repeated cycle of a first current and a second current different from the first current. The non-pulsed continuous signal includes a non-repeated application of a third current.
Also provided is an exemplary embodiment of a method for forming a physiological characteristic sensor having a sensor base, an electrode located on the sensor base, a semipermeable membrane selective to an analyte positioned over the electrode, a reagent encapsulated between the semipermeable membrane and the electrode, a protein layer encapsulated between the semipermeable membrane and the electrode, and an adhesion promoter layer between the protein layer and the semipermeable membrane. The method includes performing an electrodeposition process to form a platinum coating as the sensor electrode, wherein the platinum coating has a cross sectional area and an electrochemical real surface area at least about 80 times greater than the cross sectional area.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. Also, while the preceding background discusses glucose sensing and exemplary physiological characteristic sensors are described as glucose sensors herein, such description is for convenience and is not limiting. The claimed subject matter may include any type of physiological characteristic sensor utilizing an embodiment of the sensor electrode described herein.
Embodiments of physiological characteristic sensors provided herein use biological elements to convert a chemical analyte in a matrix into a detectable signal. In certain embodiments, a physiological characteristic sensor of the type presented here is designed and configured for subcutaneous operation in the body of a patient. The physiological characteristic sensor includes electrodes that are electrically coupled to a suitably configured electronics module that applies the necessary excitation voltages and monitors the corresponding electrical responses (e.g., electrical current, impedance, or the like) that are indicative of physiological characteristics of the body of the patient. For the embodiment described here, the physiological characteristic sensor includes at least one working electrode, which is fabricated in a particular manner to provide the desired electrochemical characteristics. In this regard, for sensing glucose levels in a patient, the physiological characteristic sensor works according to the following chemical reactions:
The glucose oxidase (GOx) is provided in the sensor and is encapsulated by a semipermeable membrane adjacent the working electrode. The semipermeable membrane allows for selective transport of glucose and oxygen to provide contact with the glucose oxidase. The glucose oxidase catalyzes the reaction between glucose and oxygen to yield gluconic acid and hydrogen peroxide (Equation 1). The H2O2 then contacts the working electrode and reacts electrochemically as shown in Equation 2 under electrocatalysis by the working electrode. The resulting current can be measured by a potentiostat. These reactions, which occur in a variety of oxidoreductases known in the art, are used in a number of sensor designs. As the size of glucose sensors and their components scale, the capability of the working electrode to efficiently electrocatalyze hydrogen peroxide is reduced. Embodiments of physiological characteristic sensors and methods for forming physiological characteristic sensors are provided herein to enhance sensor electrode performance despite scaling.
The sensor 10 includes sensor electrodes 11 designed for subcutaneous placement at a selected site in the body of a user. When placed in this manner, the sensor electrodes 11 are exposed to the user's bodily fluids such that they can react in a detectable manner to the physiological characteristic of interest, e.g., blood glucose level. In certain embodiments, the sensor electrodes 11 may include one or more working electrodes 12, adjacent counter electrodes 13, and reference electrodes (not shown). For the embodiments described here, the sensor electrodes 11 employ thin film electrochemical sensor technology of the type used for monitoring blood glucose levels in the body. Further description of flexible thin film sensors of this general type are found in U.S. Pat. No. 5,391,250, entitled METHOD OF FABRICATING THIN FILM SENSORS, which is herein incorporated by reference. In other embodiments, different types of implantable sensor technology, such as chemical based, optical based, or the like, may be used.
The sensor electrodes 11 cooperate with sensor electronics, which may be integrated with the sensor electrodes 11 in a sensor device package, or which may be implemented in a physically distinct device or component that communicates with the sensor electrodes 11 (such as a monitor device, an infusion pump device, a controller device, or the like). In this regard, any or all of the remaining elements shown in
In the embodiment of
In
The micro-circles and circular subsections 15 of the working electrodes 12 and the counter electrodes 13 defining the sensor electrodes 11 of
In
In an exemplary embodiment, the physiological characteristic sensor 10 is formed by sputtering the adhesion layer 22 onto the base layer 24. Then, the metallization layer 18 is sputtered onto the adhesion layer. Thereafter, the insulation layer 14 is formed on the metallization layer 18. The insulation layer 14 may be patterned after application onto the metallization layer 18 to expose the surfaces 16 of the metallization layer 18 forming the sensor electrodes 11.
After formation of the physiological characteristic sensor 10 shown in
Referring to
The hybrid pulse/continuous electrodeposition process described herein applies, separately and sequentially, a pulsed electrical signal and a non-pulsed continuous electrical signal to the sensor electrode to electrodeposit platinum thereon. To do so, the method includes immersing the sensor electrode or electrodes 11 in a platinum electrolytic bath at step 31. An exemplary platinum electrolytic bath is a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2. 3H2O), although other suitable electrolytic baths may be used.
The hybrid pulse/continuous electrodeposition process is performed at step 32 to electrodeposit platinum on the sensor electrode. As shown, the hybrid pulse/continuous electrodeposition process includes applying a pulsed electrical signal at step 33 and applying a non-pulsed continuous electrical signal at step 34. Steps 33 and 34 may be performed in either order. In an exemplary process, steps 33 and 34 may be performed immediately one after the other, or with a break of from about two seconds to about five seconds between steps 33 and 34. It is possible that there may be a longer break, such as for minutes or hours, between steps 33 and 34. While examples of pulsed and continuous electrical signals are provided herein as having pulsed currents and continuous currents, the pulsed and continuous electrical signals may instead or additionally include signals with pulsed voltages and signals with continuous voltages.
Three variables that are characteristic of a “pulsed” current are the duty cycle, peak current density, and number of repeated cycles. Duty cycle is calculated as a ratio between the ON-time (T_On) and combined ON- and OFF-time according to the equation:
Duty Cycle=T_On/(T_on+T_off)
Duty cycle is a major factor in distinguishing between a pulsed and continuous current. Based on the journal article, “Pulse and pulse reverse plating—Conceptual, advantages and applications (2008),” pulse plating usually involves a duty cycle of 5% or greater in practice.
With continuous or direct current, there is no second current. Therefore, T_off is 0 and the duty cycle is 100%. Further, there is no repetition (i.e. repeated cycles) for a continuous or direct current. Thus, as used herein, the “pulsed” current is a cycle of a first current followed by second current (or a 0 μA current) wherein the second current is different than the first current and wherein the cycle is repeated. As used herein, a “continuous” current uses a single current for a given period of time with no second current and does not exceed 1 cycle.
After the hybrid pulse/continuous electrodeposition process 32 is completed, the method 30 continues at step 36 with the encapsulation of sensor layers between the electrode and a selective permeable membrane. The selective permeable membrane acts as a glucose limiting membrane during operation as a glucose sensor and limits excess glucose molecules from reacting with immobilized enzyme molecules while maximizing the availability of oxygen.
In an exemplary embodiment, the sensor layers include an analyte sensing layer, such as an enzyme. An exemplary enzyme is glucose oxidase (GOx). Over the enzyme is a protein layer. An exemplary protein layer is human serum albumin (HSA) The HSA may be spray coated over the enzyme layer. An adhesion promoting composition is provided over the protein layer. The adhesion promoting composition assists in adhesion between the selective permeable membrane and the enzyme (GOx)/protein (HSA) matrix.
It is envisioned that the hybrid pulse/continuous electrodeposition process 32 may be performed in a variety of embodiments. In a simplified process, step 33 may be performed first, followed by step 34. For example, a pulsed current may be applied to the sensor electrode by alternating a first current and a second current (or no current). In an exemplary embodiment, the first current and second current are applied for duration of about 0.1 to about 5 seconds, such as for about 2 seconds. The first and second currents may be alternated for a desired number of cycles, such as from about 100 to about 300 cycles. The first current may be from about −50 μA to about −140 μA. The second current may be zero μA to −40 μA. After application of the pulsed current is completed, the continuous direct current may be applied to the sensor electrode for a duration of from about 50 seconds to about 210 seconds. An exemplary continuous direct current is from about −50 μA to about −110 μA.
In other embodiments, the hybrid pulse/continuous electrodeposition process 32 includes performing step 34 first, followed by step 33. For example, a continuous direct current of from about −70 μA to about −110 μA may be applied to the sensor electrode. The continuous direct current may be applied for a duration of from about 120 seconds to about 300 seconds, such as from about 180 seconds to about 240 seconds, for example for about 210 seconds. Then, a pulsed current may be applied to the sensor electrode. For example, a first current and a second current (or no current) may be alternated. An exemplary pulsed current is in the form of an alternating square pulse waveform. In an exemplary embodiment, the first current and second current are applied for duration of about 0.1 to about 5 seconds, such as for about 2 seconds. The first and second currents may be alternated for a desired number of cycles, such as from about 100 to about 200 cycles. The first current may be from about −90 μA to about −110 μA, such as about −103 μA. The second current may be zero μA, i.e., no current.
Referring to
After completion of steps 41 and 42, the hybrid pulse/continuous electrodeposition process 32 may include a single application of a continuous direct current of from about −70 μA to about −110 μA to the sensor electrode. An exemplary continuous direct current is applied for a duration of from about 60 seconds to about 200 seconds.
In
In
The platinum deposit 70 is formed with a continuous base portion 74. In an exemplary embodiment, the platinum is dense and uniform in the base portion 74. Further, the platinum deposit 70 is formed with a discontinuous upper portion 76 that forms the upper surface 71. As shown, the discontinuous upper portion 76 is interrupted by valleys or chasms 77 formed in the upper surface 71. In an exemplary embodiment, the thickness or height of the base portion 74 is from about 0.6 to about 1.2 μm, such as about 1.0 μm, and the thickness or height of the upper portion 76 is from about 0.6 to about 2.4 μm. It is believed that the initial pulse electrodeposition sequence helps develop a compact base layer of platinum while the continuous (direct current) sequence creates a rough layer on top of the compact base layer. By introducing more cycles into the pulse deposition process, the thickness of the compact layer will become greater. The continuous component (direct current) influences the roughness of the platinum deposit. Longer continuous current times will contribute to a thicker rough layer. When using a larger current (and consequently larger current density) and longer deposition times during continuous current electroplating, the thickness of rough platinum deposition tends to be much more pronounced at the edges of the electrode.
While various embodiments of the hybrid pulse/continuous electrodeposition process 32 have been illustrated, they are provided without limitation and other embodiments are contemplated. As described, the hybrid pulse/continuous electrodeposition process 32 includes application of at least one non-pulsed continuous current to the sensor electrode and application of at least one pulsed current to the sensor electrode. Examples of the hybrid pulse/continuous electrodeposition process are provided without limitation.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 40 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a continuous direct current of −103 μA for 210 seconds, followed by application of a pulsing sequence with an initial biased current of −103 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 165 cycles.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 40 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a continuous direct current of −85 μA for 210 seconds, followed by application of a pulsing sequence with an initial biased current of −103 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 185 cycles.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 40 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −103 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 185 cycles, followed by a continuous direct current of −85 μA for 210 seconds.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 40 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −103 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 185 cycles, followed by another sequence of a pulse current with an initial biased current of −89 μA for two seconds, followed by −81 μA current for 2 seconds, repeated for 17 cycles, followed by application of a continuous direct current of −85 μA for 145 seconds.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 40 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −103 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 145 cycles, followed by another sequence of a pulse current with an initial biased current of −89 μA for two seconds, followed by −81 μA current for 2 seconds, repeated for 25 cycles, followed by application of a continuous direct current of −85 μA for 210 seconds.
A sensor with two working electrodes in a distributed pattern of micro-circles having a 48 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −120 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 125 cycles, followed by a continuous direct current of −98 μA for 125 seconds.
SAR measurements pertaining to Example 6 (two working electrode sensor) are provided in Tables A-E below in relation to examples of conventional continuous current (direct current) electrodeposition. Specifically, Tables A-D provide SAR data for platinum deposits formed by prior art continuous current electrodeposition, while Table E provides SAR data for platinum deposits formed according to Example 6. For conventional continuous current (direct current) electrodeposition, the surface area ratio of platinum deposition may increase by increasing the current density. However, the electrodeposited platinum may extend beyond the area of the insulation wall when increasing the current density as evidenced in the SEM images of a working electrode formed with a continuous current of −98 μA applied for 210 seconds in
A sensor with two working electrodes in a distributed pattern of micro-circles having a 48 μm diameter was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −120 μA for two seconds, followed by −20 μA current for 2 seconds, repeated for 107 cycles, followed by a continuous direct current of −98 μA for 125 seconds.
A sensor with four working electrodes in a distributed pattern of rectangles was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −104 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 135 cycles, followed by a continuous direct current of −88 μA for 140 seconds.
A sensor with four working electrodes in a distributed pattern of rectangles was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −104 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 135 cycles, followed by another sequence of a pulse current with an initial biased current of −92 μA for two seconds, followed by −84 μA current for 2 seconds, repeated for 17 cycles, followed by application of a continuous direct current of −88 μA for 72 seconds.
A sensor with four working electrodes in a distributed pattern of rectangles was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −67 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 261 cycles, followed by a continuous direct current of −67 μA for 69 seconds.
A sensor with four working electrodes in a distributed pattern of rectangles was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −67 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 241 cycles, followed by a continuous direct current of −67 μA for 109 seconds.
A sensor with four working electrodes in a distributed pattern of rectangles was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −67 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 221 cycles, followed by a continuous direct current of −67 μA for 149 seconds.
A sensor with working electrodes in a distributed electrode layout was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −67 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 181 cycles, followed by a continuous direct current of −67 μA for 229 seconds. The electrodeposition forms a base platinum layer with edge portions having a thickness (or height) of about 2.58 μm and a central portion having a thickness of about 1.22 μm to about 1.51 μm and forms an upper platinum region with edge portions having a thickness of about 1.79 μm and a central portion having a thickness of from about 1.61 μm to about 1.74 μm.
A sensor with working electrodes in a distributed electrode layout was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current sequence with an initial biased current of −67 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 181 cycles, followed by application of a first step current of −13 μA for one second, a second step current of −26 μA for one second, a third step current of −39 μA for one second, and a fourth step current of −52 μA for one second, not repeated, followed by a continuous direct current of −67 μA for 229 seconds. The electrodeposition forms a base platinum layer with edge portions having a thickness (or height) of about 2.43 μm and a central portion having a thickness of about 1.22 μm to about 1.41 μm and forms an upper platinum region with edge portions having a thickness of about 1.98 μm and a central portion having a thickness of from about 1.56 μm to about 1.71 μm.
Table F provides data regarding the roughness average for platinum deposits formed according to Examples 10-14.
A sensor with working electrodes in a distributed electrode layout was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −73 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 130 cycles, followed by a continuous direct current of −54 μA for 165 seconds. The electrodeposition forms a base platinum layer with edge portions having a thickness (or height) of about 0.853 μm and a central portion having a thickness of about 0.754 μm and forms an upper platinum region with edge portions having a thickness of about 0.913 μm and a central portion having a thickness of about 0.794 μm.
A sensor with working electrodes in a distributed electrode layout was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −73 μA for two seconds, followed by zero μA current (no current) for 2 seconds, repeated for 130 cycles, followed by a continuous direct current of −66 μA for 165 seconds. The electrodeposition forms a base platinum layer with edge portions having a thickness (or height) of from about 1.55 μm to about 2.02 μm and a central portion having a thickness of from about 0.814 μm to about 0.853 μm and forms an upper platinum region with edge portions having a thickness of from about 0.913 μm to about 1.07 μm and a central portion having a thickness of from about 1.37 μm to about 1.49 μm.
A sensor with working electrodes was electroplated in a solution of hydrogen hexachloroplatinate (H2PtCl6) and lead acetate trihydrate (Pb(CH3COO)2.3H2O) from application of a pulse current with an initial biased current of −165 μA for two seconds, followed by −60 μA current for 2 seconds, repeated for 80 cycles, followed by a continuous direct current of −165 μA for 75 seconds, followed by application of a pulse current with an initial biased current of −165 μA for two seconds, followed by −60 μA current for 2 seconds, repeated for 80 cycles, and followed by a continuous direct current of −165 μA for 75 seconds. Under conditions of alternating square pulse waveform and a direct current, the platinum is deposited with a compact base layer having a thickness (or height) of from about 0.636 μm to about 1.08 μm and to form rough upper regions including edge portions having a thickness of about 3.80 μm to about 4.27 μm, a central portion having a thickness of about 0.788 μm to about 1.66 μm, and a thicker central portion having a thickness of from about 1.63 μm to about 2.29 μm.
Glucose sensors and methods for forming glucose sensors designed to enhance glucose sensing performance are provided herein. As described, methods for forming glucose sensors include performing an electrodeposition process by sequentially applying a pulsed signal to the electrode and applying a non-pulsed continuous signal to the electrode to form a platinum deposit on the electrode. The signal may include pulsed and continuous applications of current and/or voltage. Exemplary platinum deposits have increased surface area as compared to platinum deposits formed by conventional processes.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application.
Number | Name | Date | Kind |
---|---|---|---|
4755173 | Konopka et al. | Jul 1988 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5485408 | Blomquist | Jan 1996 | A |
5522803 | Teissen-Simony | Jun 1996 | A |
5665065 | Colman et al. | Sep 1997 | A |
5800420 | Gross et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5954643 | Van Antwerp et al. | Sep 1999 | A |
6017328 | Fischell et al. | Jan 2000 | A |
6080504 | Taylor et al. | Jun 2000 | A |
6186982 | Gross et al. | Feb 2001 | B1 |
6246992 | Brown | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6306277 | Strangman et al. | Oct 2001 | B1 |
6340421 | Vachon et al. | Jan 2002 | B1 |
6355021 | Nielsen et al. | Mar 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6544212 | Galley et al. | Apr 2003 | B2 |
6558351 | Steil et al. | May 2003 | B1 |
6591876 | Safabash | Jul 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6736797 | Larsen et al. | May 2004 | B1 |
6749587 | Flaherty | Jun 2004 | B2 |
6766183 | Walsh et al. | Jul 2004 | B2 |
6801420 | Talbot et al. | Oct 2004 | B2 |
6804544 | Van Antwerp et al. | Oct 2004 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7029444 | Shin et al. | Apr 2006 | B2 |
7066909 | Peter et al. | Jun 2006 | B1 |
7137964 | Flaherty | Nov 2006 | B2 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7442186 | Blomquist | Oct 2008 | B2 |
7602310 | Mann et al. | Oct 2009 | B2 |
7647237 | Malave et al. | Jan 2010 | B2 |
7699807 | Faust et al. | Apr 2010 | B2 |
7727148 | Talbot et al. | Jun 2010 | B2 |
7785313 | Mastrototaro | Aug 2010 | B2 |
7806886 | Kanderian, Jr. et al. | Oct 2010 | B2 |
7819843 | Mann et al. | Oct 2010 | B2 |
7828764 | Moberg et al. | Nov 2010 | B2 |
7879010 | Hunn et al. | Feb 2011 | B2 |
7887681 | Zhou | Feb 2011 | B2 |
7890295 | Shin et al. | Feb 2011 | B2 |
7892206 | Moberg et al. | Feb 2011 | B2 |
7892748 | Norrild et al. | Feb 2011 | B2 |
7901394 | Ireland et al. | Mar 2011 | B2 |
7942844 | Moberg et al. | May 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7955305 | Moberg et al. | Jun 2011 | B2 |
7963954 | Kavazov | Jun 2011 | B2 |
7977112 | Burke et al. | Jul 2011 | B2 |
7979259 | Brown | Jul 2011 | B2 |
7985330 | Wang et al. | Jul 2011 | B2 |
8024201 | Brown | Sep 2011 | B2 |
8100852 | Moberg et al. | Jan 2012 | B2 |
8114268 | Wang et al. | Feb 2012 | B2 |
8114269 | Cooper et al. | Feb 2012 | B2 |
8137314 | Mounce et al. | Mar 2012 | B2 |
8181849 | Bazargan et al. | May 2012 | B2 |
8182462 | Istoc et al. | May 2012 | B2 |
8192395 | Estes et al. | Jun 2012 | B2 |
8195265 | Goode, Jr. et al. | Jun 2012 | B2 |
8202250 | Stutz, Jr. | Jun 2012 | B2 |
8207859 | Enegren et al. | Jun 2012 | B2 |
8226615 | Bikovsky | Jul 2012 | B2 |
8257259 | Brauker et al. | Sep 2012 | B2 |
8267921 | Yodfat et al. | Sep 2012 | B2 |
8275437 | Brauker et al. | Sep 2012 | B2 |
8277415 | Mounce et al. | Oct 2012 | B2 |
8292849 | Bobroff et al. | Oct 2012 | B2 |
8298172 | Nielsen et al. | Oct 2012 | B2 |
8303572 | Adair et al. | Nov 2012 | B2 |
8305580 | Aasmul | Nov 2012 | B2 |
8308679 | Hanson et al. | Nov 2012 | B2 |
8313433 | Cohen et al. | Nov 2012 | B2 |
8318443 | Norrild et al. | Nov 2012 | B2 |
8323250 | Chong et al. | Dec 2012 | B2 |
8343092 | Rush et al. | Jan 2013 | B2 |
8352011 | Van Antwerp et al. | Jan 2013 | B2 |
8353829 | Say et al. | Jan 2013 | B2 |
9681828 | Jacks | Jun 2017 | B2 |
20030102226 | Gabe et al. | Jun 2003 | A1 |
20050016858 | Barstad et al. | Jan 2005 | A1 |
20070123819 | Mernoe et al. | May 2007 | A1 |
20070173711 | Shah et al. | Jul 2007 | A1 |
20100096278 | Shah | Apr 2010 | A1 |
20100160861 | Causey, III et al. | Jun 2010 | A1 |
20110152654 | Wang et al. | Jun 2011 | A1 |
20140243634 | Huang et al. | Aug 2014 | A1 |
Entry |
---|
Chandrasekar et al., “Pulse and Pulse Reverse Plating—Conceptual, Advantages and Applications” Electrochim. Acta 53, pp. 3313-3322 (2008). (Year: 2008). |
Number | Date | Country | |
---|---|---|---|
20170248542 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14267739 | May 2014 | US |
Child | 15595687 | US |