Piezo-actuated virtual buttons for touch surfaces

Information

  • Patent Grant
  • 10578499
  • Patent Number
    10,578,499
  • Date Filed
    Sunday, February 17, 2013
    11 years ago
  • Date Issued
    Tuesday, March 3, 2020
    4 years ago
Abstract
Systems and methods of creating a touch sensitive surface structure comprising a piezo structure in communication with a deformable surface such that the piezo structure, or any suitable pressure sensing device, is capable of sensing pressure from a touch upon the deformable surface and communicating that pressure signal to an actuating circuit. The actuating circuit, upon receiving a suitable pressure signal, sends a piezo actuating signal to the piezo structure. The piezo structure, upon receiving the piezo actuating signal, is capable of communicating a mechanical signal to the deformable surface, sufficient for a person's finger to feel a “click” and/or haptic sensation. In one embodiment, the piezo actuating signal comprises a first slow charging portion and a second fast discharging portion, sufficient for the piezo structure to communicate the click and/or haptic sensation.
Description
BACKGROUND

In the area of touch sensitive screens, it is known to have touch actuation affected by capacitive interactions between the human touch (as the human body has a known capacitance) and the screen. Capacitive sensors in the screen may be able to detect slight changes in capacitances that differ from the air. As a result, capacitive sensor may be able to detect proximity, position, displacement and the like.


However, to employ capacitive technology to actuating “buttons” on a touch screen surface may tend to have certain challenges. For example, capacitive buttons may tend to feel different from authentic mechanical buttons that have an “up” and “down” feel to their actuation. Capacitive buttons may also have a high number of “false” readings—i.e., they may poorly indicate to the system (which detecting touches and interpreting their meaning) that the user has intended to push a virtual button on the screen.


SUMMARY

The following presents a simplified summary of the innovation in order to provide a basic understanding of some aspects described herein. This summary is not an extensive overview of the claimed subject matter. It is intended to neither identify key or critical elements of the claimed subject matter nor delineate the scope of the subject innovation. Its sole purpose is to present some concepts of the claimed subject matter in a simplified form as a prelude to the more detailed description that is presented later.


Systems and methods of creating a touch sensitive surface structure comprising a piezo structure in communication with a deformable surface such that the piezo structure, or any suitable pressure sensing device, is capable of sensing pressure from a touch upon the deformable surface and communicating that pressure signal to an actuating circuit. The actuating circuit, upon receiving a suitable pressure signal, sends a piezo actuating signal to the piezo structure. The piezo structure, upon receiving the piezo actuating signal, is capable of communicating a mechanical signal to the deformable surface, sufficient for a person's finger to feel a “click” and/or haptic sensation. In one embodiment, the piezo actuating signal comprises a first slow charging portion and a second fast discharging portion, sufficient for the piezo structure to communicate the click and/or haptic sensation.


In one embodiment, a piezo-actuated structure is disclosed, said structure comprising: a deformable layer; a piezo layer, said piezo layer mechanically mated to said deformable layer; wherein said piezo layer (or a suitable pressure sensing device) is capable of sensing pressure applied to said deformable layer; and further wherein said piezo layer is capable of transmitting a haptic response to said deformable layer in response to said pressure.


In another embodiment, a method for actuating a piezo-actuated structure is disclosed, said piezo-actuated structure comprising a piezo layer, a deformable layer, a pressure sensing device, said piezo layer mechanically mated to said deformable layer, the method comprising: receiving a first pressure applied to said deformable layer; communicating said first pressure to said pressure sensing device; sending a pressure detection signal to a sensing circuit; in response to said pressure detection signal, sending a piezo actuating signal from an actuation circuit to said piezo layer; and communicating a mechanical signal to said deformable layer by movement of said piezo layer in response to said piezo actuating signal.


In yet another embodiment, a touch sensitive surface structure comprising: a touch sensitive surface, said touch sensitive surface further comprising a deformable layer; a piezo layer, said piezo layer in mechanical communication with said deformable layer; a pressure sensing device, such that a first pressure of a desired amount is sufficient for said pressure sensing device to send a first pressure sensing signal; a sensing circuit, said sensing circuit in electrical communication with said pressure sensing device and further wherein said sensing circuit capable of detecting said first electrical sensing signal and a piezo actuating circuit, said piezo actuating circuit in electrical communication with said sensing circuit and said piezo layer and further wherein piezo actuating circuit is capable of sending a piezo actuating signal to said piezo layer upon receiving a pressure sensing signal from said sensing circuit.


Other features and aspects of the present system are presented below in the Detailed Description when read in connection with the drawings presented within this application.





BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.



FIGS. 1A and 1B are two embodiments of piezo-actuated structures mated to a deformable layer on a touch sensitive surface, as made in accordance with the principles of the present application.



FIGS. 2A and 2B depict two other embodiments of a piezo-actuator structures that may suffice for a touch sensitive surface, as made in accordance with the principles of the present application.



FIG. 3A depicts one embodiment of a piezo structure as made in a cantilever configuration.



FIG. 3B depicts a graph of force vs. displacement of one embodiment of a piezo structure.



FIGS. 4A and 4B depict two embodiments of control lines for a structure comprising a piezo structure and capacitive sensing structure.



FIGS. 5A and 5B depict two embodiments of waveforms for signals driving piezo structures, as made in accordance with the principles of the present application.



FIG. 6 is one embodiment of piezo sensing circuit.



FIG. 7 is one embodiment of a piezo driving circuit.



FIG. 8 is one embodiment of one embodiment of a piezo controller in communication with a piezo drive circuit and piezo element.





DETAILED DESCRIPTION

As utilized herein, terms “component,” “system,” “interface,” and the like are intended to refer to a computer-related entity, either hardware, software (e.g., in execution), and/or firmware. For example, a component can be a process running on a processor, a processor, an object, an executable, a program, and/or a computer. By way of illustration, both an application running on a server and the server can be a component. One or more components can reside within a process and a component can be localized on one computer and/or distributed between two or more computers.


The claimed subject matter is described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the subject innovation. It may be evident, however, that the claimed subject matter may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the subject innovation.


Introduction


In many embodiments of the present system, a piezo-actuated bender may be employed to provide suitable virtual button actuation. In preferred embodiments “piezo” may refer to benders employing piezoceramic materials, for example PZT, but it may also refer to benders employing other piezoelectric materials such as electroactive polymers or electromechanical polymers. The bender may be in whatever form (e.g., a bar, disk, or any other desired shape) is convenient for the application (e.g., home button on a touch-sensitive tablet, a virtual button or the like). In many embodiments, such piezo-actuated bender may be mechanically mated (e.g., glued, affixed by support structures or the like) to the surface of a suitably bendable touch surface—e.g., thin glass, plastic or the like—in order to simulate a “dome switch”, mechanical button or some other haptic sensation.


Such a piezo-actuated button and/or bender may be able to sense finger pressure and/or position—for, e.g., sensing an intentional button actuation by the user and/or to prevent unintentional button actuation. In other embodiments, it may be possible to employ one or more capacitive sensors (in addition to the piezo-actuated bender/button) to aid in sensing finger position, pressure and motion for decreasing the incidence of such false-positives (i.e., failing to detect an inadvertent user actuation) and false-negatives (i.e. failing to detect an intentional user actuation).


In other embodiments, apart from pressure sensing from piezo-layers and/or structures, it may be possible to incorporate other sensing devices—for example, force sensitive resistors (FSR), piezo-resistive elements, capacitive sensing and/or any other devices, means and/or methods known in the art. These pressure-sensing devices may be incorporated with the piezo structures mentioned herein—and may be used in any combination possible. In fact, one embodiment may be to sense pressure with a non-piezo based structure (even though the piezo structure may be capable of sensing pressure itself). It may suffice for the purposes of the present application that pressure-sensing capability be possible with many of the embodiments disclosed herein.


In other embodiments, it may be possible to use orientation sensors to inform the system (e.g., smart phone or tablet using such a touch screen) when button pushes may be valid or invalid. It may also be desirable to have the system allow a digital pen/pencil to disable and prevent actuation when such digital pen/pencil is in use.


Embodiments of Piezo-Actuated Structures



FIGS. 1A and 1B are two possible embodiments (100′ and 100, respectively) of piezo-actuated structures (104′, 104) mated to a deformable layer (102′, 102)—e.g., such as on a touch sensitive surface. As shown, piezo-actuated structures may comprise a single (104′) or multi-layered (104) structures, depending on various factors, including the manner of mechanical mating to the piezo structure to deformable layer (102′, 102). In this embodiment, it is possible to achieve a suitable mechanical mating with an adhesive layer 106. Adhesive layer 106 bonds piezo actuator 108 to deformable layer 102. Deformable layer (102′, 102) may comprise glass (e.g. “Gorilla Glass”) or some transparent/translucent plastic layer suitable for a transparent display.


In one embodiment, deformable layer (102′, 102) should be of a suitable thickness (e.g., depending upon the material used), such that an average depression (e.g., a user pressing a finger) allows a suitable deformation 112 to allow detection by a sensor and/or circuit, as will be discussed herein.



FIGS. 2A and 2B are other embodiments of suitable piezo-actuator structures (200′ and 200, respectively) that may suffice for a touch sensitive surface 200. As with FIG. 1, deformable layer (202′, 202) provides suitable deformation/deflection upon actuation by the piezo layer (204′, 204), and by a touch from a user, if pressure sensing is to be employed. Piezo layer (204′, 204) may be mechanically mated to deformable layer (202′, 202) as before, with any known mechanical mating (e.g., adhesive, gluing, chemical bonding, mechanical fixtures or the like), or simply positioned to push, particularly at its center point.


In FIG. 1A, piezo layer 204′ is also in mechanically communication to layer 202′ via a pusher structure 206′—which may also communicate pressure from touches or piezo actuation. Piezo layer 204′ is also supported by support structures 208′, as seen in FIG. 1A. Support structures may be mechanically mated to the piezo layer and/or may be in mechanical communications (e.g., touching) the piezo layer.


In FIG. 1B, there is a plurality of stood-off mounting portions 206. Mounting portions 206 may position the piezo away from the deformable layer 202 to allow the piezo to bend at an optimal radius, while pushing deformable layer 202 about the center point of piezo layer 204. Mounting portions 206 may provide a sufficient amount of electrical and/or mechanical insulation or damping from surrounding piezo and/or capacitive structures. In addition, mounting portions 206 may be constructed to provide mechanical dampening of deformations from user touches in the near vicinity—e.g., a touch meant for one area of the touch surface but which may be confused for a touch meant for a different piezo structures.


In one embodiment, it may be desirable to simulate a “virtual dome switch”. Such a switch may comprise a piezo bender (as shown in FIGS. 1 and 2), glued to (or mounted against) the underside of glass (for example, Gorilla Glass at about 0.55 mm thickness)—and which, when stimulated with an electrical pulse and/or waveform, bends the glass and transmits a sharp feeling to a person's finger, simulating the experience of an actuated dome switch. In one embodiment the pulse is produced upon both the press and release of the person's finger, thus creating complete in/out dome switch experience. In other embodiments, the pulse may be produced only upon press (or only upon release) to simulate other types of switches or under light touches to provide sensations of the surface texture to help people locate the button before actuation—e.g., when in the dark or not looking directly at the button


Embodiments for Piezo Actuation


In addition to the embodiments mentioned in FIGS. 1A, 1B and 2A and 2B above, there are several ways in which the piezo bender and/or bar may be implemented. When a voltage is applied to a piezo bar, the piezo bar tries to elongate or foreshorten. Using this effect, there are two possible implementations may be realized either as a “unimorph” configuration or, alternatively, as a “bimorph” configuration.


In a unimorph configuration, a single piezo bar may be mated (e.g. by gluing or otherwise affixing in any known manner) to a rigid backing. By contrast, in a bimorph configuration, two piezo-structures may be glued, mechanically mated and/or otherwise layered on top of each other. If two piezos are glued on top of each other, and if one piezo foreshortens while the other elongates, then the whole structure will bend.


A bimorph configuration may work well in a three-point-mounting configuration (as depicted in FIG. 2A), where it may not be desirable to glue the bar along its length to a rigid structure. Alternatively, a unimorph or a bimorph configuration may work in a cantilever configuration (as depicted in FIG. 3A). In FIG. 3A, piezo structure 304 may be mated to a clapping fixture 302 (e.g., embedded to a depth of d, as shown—and as desired to affect the suitable deflection). Piezo 304 may comprise a free end that allows for a displacement (shown as 304′) when actuated.


One Embodiment


In the embodiment whereby a piezo bar is glued along the entire length of the glass, it may be desired to allow the glass sufficient freedom of movement to bend. To affect this, it may be desired to provide for a gap depth in the adhesive securing the glass to any nearby structures, such as a bezel or frame.


With this gap depth (e.g., 20 mm), it may be possible to achieve a suitable deflection range (e.g. possibly 10-12 um deflection) for piezo bar driven at a desired voltage (e.g. 30V). At higher voltage (e.g., 60V), it may be possible to achieve a larger deflection (e.g., 18-20 um). In one embodiment, it may be desirable to achieve an effective glass stiffness of approximately 40N/mm.


As in some embodiments, a larger gap may not necessarily provide greater flexibility—while a smaller gap may reduce flexibility. A gap of zero, however, may tend to constrict the glass to very small deflections (e.g., 2-3 microns at 30V). Such different configurations are possible; but it may be desirable to implement the sensing elements to perform for these various displacements.


To better understand the operation of the piezo bar, the piezo bar may be characterized in terms of:

    • (1) BF (blocking force): the force exerted by the bar when constrained and not allowed to move; and
    • (2) FD (free displacement): the displacement of the bar when totally unopposed.


These specifications have a particular context (as depicted in FIG. 3A). However, these specifications apply in the configuration where the piezo bar is glued (or otherwise mated) to the glass along the length, and the deflection occurs in the middle (e.g., “three-point mounting”, whereby the two ends and the center point are mechanically mated). The stiffness of the piezo bar may be derived from BF/FD. With BF and FD, it may be possible to know the stiffness of the load and possible to calculate (or otherwise model) the deflection from a static standpoint (i.e. where the inertial effects of mass may be ignored and just consider balanced forces at steady state).


Haptic Response


With these configurations, it may be possible to create a haptics response for a virtual button that: (1) may be localized to the finger; (2) may be felt in any of the touch screen's orientations (e.g., in the hand, flat on the table, in the user's lap, propped up on its stand on a table, etc.); (3) may not need mechanical isolation; and (4) may function under a continuous sheet of glass. In addition, these configurations may provide varies haptic response, for example to indicate finger proximity.


For example, in the embodiment comprising a piezo bar/bender mated to the underside of the glass, it may be possible to provide and/or transmit a haptic response such as a positive, localized click feeling. In this case, the bender bends the glass, and the user may feel this sensation on the fingertip. In addition, this embodiment may not require “mechanical isolation”—i.e., the need for the construction of a mechanically distinct structure.


Proximity Sensing and Activation on Pressure


As a piezo bar may be implemented as a wideband device, it may be driven in a variety of ways to create varying haptic feelings—e.g., from buzzes to clicks. It may also be used as a pressure sensor “for free,” allowing for a different modality of virtual button interaction.


In one embodiment, it is possible to affect capacitive sensing (“capsense” or “capsensing”) to work in conjunction with the piezo structures recited herein. Capsense may function as before, may be used to detect proximity, and trigger a haptic buzz, thus, aiding the user in locating the button. Pressure sensing of the piezo structure may aid in determining actual button actuation. Haptics—working in conjunction with pressure—may give a very convincing virtual button and/or dome switch feeling.


In one embodiment, to impart a strong click feeling, it may be possible to account for peak surface velocity, as another possible control parameter, such as peak surface deflection. For example, in one embodiment, a target for peak velocity around 20-30 mm/sec may suffice for such effect.


In this embodiment, it may be desired to have a suitable deflection. FIG. 3B is a graph of force vs. displacement modeled for one embodiment. As seen, a displacement of around 10 um may be desired in order to sense actuation—with 20-30 um being a more comfortable operating point.


In the graph of FIG. 3B, the load is represented by line 302, and the BF/FD performance of the piezo is represented by line 304. The resultant deflection is given by where the lines cross, where the force balances.


In this example, at a BF of 0.6N, a FD of 60-microns, and a glass load of 40N/mm, the deflection is approximately 12 um. Of course, a different piezo bar may be designed to meet a desired deflection. For example, a bar with greater BF and smaller FD might cross the line at the same point. Thus, some designing may go into matching a piezo bar to a load of known stiffness and mass, while optimizing deflections and velocities.


In some embodiments, it may be desirable to have a piezo bar that leans towards greater BF, to accommodate greater stiffness in the glass, if needed, to provide a little margin. In addition, BF and FD may be affected by changing piezo geometries. In FIG. 3B, for a particular piezo device, 308 shows the BF (the force at zero displacement 306), and 310 shows the free displacement, the unopposed static displacement.


Embodiments Using Capsense with Piezo Structures


As mentioned above, it may be possible and/or desirable to employ capsense in conjunction with piezo-actuation. In such embodiments, it may be desired to shield the capsense from piezo driving signals. In a piezo structure, there may be a plurality of ways to provide piezo signals. For example, FIG. 4A is one possible embodiment of control lines for a piezo structure comprising piezos 404a and 404b. Metal carrying plate 402 (which may face the glass surface) may provide grounding and possibly serve as a shield. Control signal lines 406 and 408 as shown in FIG. 4A may not be optimally designed, however. As shown, line 406 is driven to 50V and may allow electrical interference with neighboring capsense lines. However, in FIG. 4B, if the polarities of lines 406 and 408 are reversed (as in lines 406′ and 408′), then line 406′ is at ground—and may prevent noise coupling to the capsense lines.


Piezo Driving Signals


In order to affect the feeling of a sharp button click for the piezo-actuators, it may be possible to create such a feeling from a high velocity deflection of the piezo structure. Embodiment for creating that feeling may be affected by using a fast ramp for the piezo driving signals.



FIGS. 5A and 5B are two possible embodiments of such a driving signal for a suitable piezo structure. In FIG. 5A, it may be seen that there are two ramps for charging/energizing the piezo structure—a first high-velocity (e.g., fast) charging ramp 502 (up to a first charging level—e.g., substantially in the range of 30-75V), followed by a slower decaying and/or discharging (e.g. slow) ramp 504. With this type of driving signal to the piezo structure, a click sensation occurs during the high-velocity portion 502 of the waveform. During slower decaying portion 504, the finger may tend to feel nothing or have a much less sensation.


Alternatively, in FIG. 5B, it is possible to have a slower charging/energizing ramp 502′ (up to a first charging level—e.g., substantially in the range of 30-75V), followed by a high-velocity decaying ramp 504′. As before, the click sensation tends to occur during the high-velocity portion of the waveform, 504′, at the end. The finger tends to feel nothing (or have a much less sensation) during the charging ramp.


Although both drive signals are possible for the present systems, the drive signal of FIG. 5B may be desirable from the standpoint of limiting the size of the current pulses. For some designs, the limit may be in the range of 100-200 mA. It may be desirable to reach the first charging level over a longer time period (e.g. longer than 1-2 ms ramp) to stay within such current limits. Thus, while it may be possible to reduce the current draw spikes with large storage caps, it may be desirable to avoid the added expense and board area requirements.


In other embodiments, it may be possible to design a PWM to drive the charge cycle, and a separate PWM to drive the discharge cycle. Due to the practical limitations of the driving circuit, or the desire to create other sensations (such as those that would be effective for proximity sensing), it may be desirable to construct driving signals using asymmetrical triangles (or other asymmetrical wave forms) as the basis functions. Varying heights, varying charge and discharge times, as well as varying the pulse-width schedule of the PWM driving the switcher, are all possible variations to affect different sensations.


In one embodiment, during a click event, the piezo may first be charged by generating a PWM that drives a simple FET/inductor/diode boost circuit. The PWM “on” time may be matched to the characteristics of the discrete components—e.g., it may be the time desired to establish max current in the inductor. Leaving the FET turned on any longer may tend to waste power by shunting current to GND longer than suitable. The overall charge time may be controlled by varying the PWM period. The charge time may be controlled to limit the maximum current spikes taken from e.g., the system's battery.


In one embodiment, the charge cycle may be run open-loop—i.e., the PWM may be run for a fixed number of cycles (possibly determined heuristically or by experimentation) to charge the piezo to the desired voltage. However, the relationship between the final piezo voltage and the number of PWM cycles may depend on many variables in the system, including the actual piezo capacitance, the driver source voltage, the FET, diode, and inductor characteristics, etc.


Once the piezo has been charged to 60V, it may be quickly discharged back to the driver idle voltage (e.g., ˜5V). This discharge may be performed by generating another PWM that drives a discharge FET/resistor. The resistor may provide a limit on the discharge rate (e.g., ˜600 uS)—so for a maximum discharge rate, the PWM may not be desired and may just be run wide open (100% duty cycle). Slower discharge rates may then be achieved by adjusting the PWM duty cycle.


As with charging, the discharge cycle may also be run open loop, i.e. it is possible to discharge the piezo for a fixed number of cycles. However, it may be desirable to have a suitable number of cycles. Otherwise, there may be some residual voltage on the piezo, which could build up over repeated actuations and may interfere with accurate pressure sensing.


In one embodiment, it may be desirable to close the loop on the charge and/or discharge cycles. It may be desirable to have an additional circuit that can measure the voltage across the piezo. Due to the high voltages used to drive the piezo and the low voltage produced by the piezo when used as a sensor, it may be desirable to have multiple gain modes in the measurement circuit. Switching between the gain modes may be done to ensure voltage limits are not exceeded on sensitive components such as FET amplifier and/or ADC inputs. For example, during discharge it may be desirable to switch the measurement circuit from low gain mode to high gain mode. However, it may be undesirable to do this too early—as the high voltage may damage components in the measurement circuit. Therefore, it may be desirable to discharge first in low gain mode until a piezo voltage is reached that, when switched over to high gain mode, may still be within the operating range of the measurement circuit. It may then be possible to continue to discharge in high gain mode until the desired driver idle voltage is reached.


Depending on the characteristics of the FET, it may be possible that the lowest measureable voltage in low gain mode may still be higher than the highest measureable voltage in high gain mode. In this case, it may be desirable to run the discharge open-loop for several additional PWM cycles before switching to high gain mode.


However, one concern with closing the loop on the piezo discharge may be that the time constant of the measurement circuit may not be insignificant compared to the total piezo discharge time. Therefore, by the time the system senses that the piezo voltage is as desired, it may have already been discharged beyond that point.


Thus, it may be desirable to anticipate this and terminate the discharge cycle when the sensed voltage is somewhat above a desired target. For example, this voltage offset may be designed so there may be a slight residual voltage on the piezo left over. This would tend to avoid wasting power by turning on the driver diode during discharge. This offset may not accumulate over repeated actuations because the system may discharge to the substantially same voltage after each actuation. The residual voltage may slowly discharge to the driver idle voltage (e.g., via leakage in the measurement circuit and piezo). In one embodiment, the pressure sensing algorithm may be designed to allow the baseline to track downward as the piezo voltage drifts down.


In another embodiment, closed-loop discharge may be affected a long settling time of the mechanical system after a discharge. Thus, even after the system has stopped discharging, the piezo voltage may continue to change while the mechanical system (piezo, adhesive, glass, finger, etc.) settles to its final steady state condition. In one embodiment, the time constant of this mechanical system (30-50 ms) may be long compared to the total discharge time (<1 ms). Typically the piezo voltage may increase after discharge is stopped. If the system attempted to resume sensing piezo pressure soon after the end of the discharge cycle, the system may see the piezo voltage rising fast enough and far enough to indicate increasing finger pressure on the piezo.


Thus, it may be desirable that, after each haptics event (charge followed by discharge), the controller may enter a special haptics recovery mode. In this mode, pressure sensing may be suspended and the piezo voltage is discharged approximately every 10 ms until a specified settling time (35 ms) has expired. At the end of this settling time, it may be the case that the mechanical system is sufficiently settled and pressure sensing is resumed.


Piezo Pressure Sensing Embodiments


When using the piezo as a sensor, it may be possible to measure the voltage across the piezo—e.g., when it is not being driven as an actuator. If the piezo is not being deflected by any pressure from the user's finger, this voltage may tend to be the idle voltage generated by the piezo driver. This idle voltage may vary slowly due to component variations, temperature, etc. However, it may be possible to calibrate out these slow variations to detect faster variation due to piezo deflection caused by pressure from the user's finger. It may be possible to compare the current piezo voltage to the calibrated baseline voltage and “detect” a press when the difference exceeds a threshold. Therefore, to activate the virtual button, the user would press down slightly on the virtual button sensor.


This embodiment may be sensitive enough that only a light pressure on the virtual button is applied for detection. In one embodiment, the piezo driver may be activated to give the user haptics feedback—e.g., that the button has been pressed. This haptics feedback may consist of a gradual (approx. 10 ms) ramp up of the piezo voltage (e.g., to ˜60V) from its starting point (e.g., of ˜5V) plus the pressure-induced voltage. Once the piezo voltage reaches a desired level (e.g., 60V), it may be quickly discharged (e.g., in about 1-2 ms). It is this rapid discharge that creates the “click” feel (and sound) of a dome switch being depressed.


Once the discharge is done, it may be possible to resume using the piezo as a pressure sensor to determine when declining pressure from the user's finger indicates a “release” of the virtual button. In one embodiment, it may be desirable to use piezo pressure to detect button press—while using the capacitive sensors to detect release. This embodiment may provide feedback to the user that tends to be consistent with a mechanical dome switch. In this embodiment, it may be desirable to detect the release and trigger the haptics feedback before the user's finger has actually left the surface, otherwise the click will be heard but not felt. Therefore, the capacitance of the user's finger may be measured prior to initiating the press haptics feedback. After the press click event is done and the mechanical system has been allowed to settle, it may be possible to resume capacitance measurements. The system may keep track of the peak capacitance measurement measured (e.g., starting with the measurement taken just prior to the press haptics event) and detect button release when the finger capacitance falls to ⅞ths of the peak (e.g., relative to the baseline, no-touch capacitance). This may allow the system to have a sensitive release threshold while still compensating for wide variations in touch capacitance. In addition, using a lower threshold (e.g., ½ of the peak) may tend to reduce the probability of noise-induced, early release detection.


In one embodiment, the system may use capacitive guard sensors. When any of these guard sensors are being touched, the virtual button may be deactivated. This may tend to prevent a user—who is applying broad pressure in the virtual button area (while carrying or gripping the product)—from activating the virtual button. Therefore, only when the system sees one of the capacitive virtual button sensors being touching without any of the guards being touched does the system “prime” the piezo pressure sensor and begin looking for a press event. The sensor may stay “primed” as long as one of the virtual button sensors is touched without any guards being touched. The touch panel area near the virtual button sensor may be treated as a third “guard”. Any touches in this area may tend to have the same effect as touching the guard sensors which may surround the virtual button sensors.


Piezo Pressure Baseline Measurement


In one embodiment, the piezo pressure baseline may be the minimum pressure measured while the pressure sensor is “primed”. This may tend to ensure that if the user slides his finger onto the virtual button with a slight pressure, this will not be enough to activate the virtual button. The user would intentionally press down slightly on the virtual button with additional pressure before a button press will be recognized.


Proximity Detection


In some embodiments, there may be no surface features on the glass to indicate the position of the virtual button. In those embodiments, it may not be possible to locate the virtual button by feel alone. Therefore, to aid users in locating the virtual button by feel, a proximity detection haptics feedback may be implemented. When the user swipes into the virtual button thru one of the guards, a special piezo “rumble” may be activated as soon as the virtual button sensors are touched without any guard sensors. The rumble may comprise of a sequence of haptics clicks that have lower amplitude (<60V) and slower discharge edges than a normal click event. There may be one click per sample period, or approximately 100 clicks per second. The amplitude of the clicks may increase as the total virtual button sensor capacitance increases so the user feels a slight increase in amplitude as his finger becomes more solidly centered on the virtual button sensor. The rumble may stop after a fixed number of clicks or as soon as any guard touch is detected or the virtual button touch is removed. The number of clicks may be selected (e.g. 15 clicks or approximately 150 ms) as desired to provide useable proximity detection.


In addition, in some embodiments, it may be possible—when the virtual button sensors are touched directly without swiping thru one of the guards—to have the proximity detect rumble suppressed. If this is not done, when the user is performing a direct intentional press of the virtual button, the user may feel the proximity rumble prior to the press click which may tend to degrade the dome switch feedback.


If multiple guards are detected simultaneously, the proximity detect rumble (and priming of virtual button detection) may be suppressed until all touches are removed. This may tend to prevent the user from feeling any rumble when the user is gripping or carrying the device in the virtual button area.


Tap Detection


Even though the virtual button can be activated with a very light press, it may still be desirable to detect virtual button activations for very short taps which do not provide enough pressure to exceed the pressure threshold. In one embodiment, when one of the virtual sensors is touched without swiping thru any of the guards, the virtual button signal may be asserted; but no haptics feedback may be generated. If the touch is removed a short time later without the pressure sensor detecting a virtual button press above the pressure threshold (and if this removal is not followed within a few samples by a guard touch), then the touch may be considered to be a valid tap. The virtual button signal may be de-asserted, a single haptics click may be generated, and the system may interpret the tap as valid.


If the duration of the tap is too long (˜400 ms), tap detection may be suppressed, no haptics click is generated, and the tap may be reported as invalid. This may be affected to deal with the case where the user rests his finger on the virtual button intending to press it but later changes his/her mind and removes his/her finger.


If a pressure-induced press is detected before the touch is removed, tap detection may be suppressed for the remainder of this touch and virtual button presses may be detected and reported as normal.


Piezo Driving Circuit Embodiments



FIG. 6 is one embodiment of a piezo sense circuit and FIG. 7 is one embodiment of a piezo driving circuit for a suitable piezo structure. As may be seen, V1 is a voltage source (e.g., a battery voltage). C4 stores charge, thus limiting the size of current spikes. Inductors L1/L2, diode D1, and FET M1 form the switching components. V2 represents a PWM output from the piezo controller for the charge cycle, possibly after going through a level shifter to bump the voltage up to a desired level (e.g., 5V) to turn the FET on harder. V3 represents a PWM output from the piezo controller for the discharge cycle. FET M2 performs the discharge. R1, R7, D2, PFET M3, R8 and R4 form the piezo sense circuit. Sensor-out connects to an ADC channel on the piezo controller. The P-FET M3 is turned on at low piezo voltages, and gets pinched-off at high voltages, so the output is inverted: as pressure is increased the voltage drops. It may be desirable to add a filter capacitor in series with R4, right at the ADC input. D2 conducts to protect M3 when the piezo is activated to high voltages.



FIG. 8 is one embodiment of a piezo controller in communication with a piezo drive circuit and piezo element. As noted, piezo element 804 is in communication with piezo drive circuit 802. Drive circuit 802 is in further communications with piezo controller 806. Piezo controller 806 may supply drive and/or control signals (808) to piezo circuit 802—e.g., piezo charge PWM signal, piezo discharge PWM signal, enable and gain select line for sense circuit, enable line for level shifter (if needed). In addition, piezo drive circuit may send back the piezo voltage for ADC signal, as desired. In addition, piezo controller 806 may control the capsense system (if integrated with the piezo structures) of a virtual button.


What has been described above includes examples of the subject innovation. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the claimed subject matter, but one of ordinary skill in the art may recognize that many further combinations and permutations of the subject innovation are possible. Accordingly, the claimed subject matter is intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims.


In particular and in regard to the various functions performed by the above described components, devices, circuits, systems and the like, the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., a functional equivalent), even though not structurally equivalent to the disclosed structure, which performs the function in the herein illustrated exemplary aspects of the claimed subject matter. In this regard, it will also be recognized that the innovation includes a system as well as a computer-readable medium having computer-executable instructions for performing the acts and/or events of the various methods of the claimed subject matter.


In addition, while a particular feature of the subject innovation may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms “includes,” and “including” and variants thereof are used in either the detailed description or the claims, these terms are intended to be inclusive in a manner similar to the term “comprising.”

Claims
  • 1. A piezo-actuated structure, the piezo-actuated structure comprising: a deformable layer formed from a glass material;a piezo layer, the piezo layer mechanically mated to the deformable layer and capable of transmitting a haptic response to the deformable layer causing the glass material of the deformable layer to bend and simulate an actuated dome switch;an intermediate layer, the intermediate layer mechanically mated to the deformable layer and further the intermediate layer capable of providing mechanical communication between the deformable layer and said piezo layer; anda capacitive sensing layer, the capacitive sensing layer capable of triggering varying levels of haptic response transmitted by the piezo layer.
  • 2. The piezo-actuated structure of claim 1 wherein the piezo layer comprises one of a group, the group being: piezoceramic material, PZT, electroactive polymers and electromechanical polymers.
  • 3. The piezo-actuated structure of claim 1 wherein the glass material of the deformable layer comprises gorilla glass.
  • 4. The piezo-actuated structure of claim 1 wherein the piezo layer is mechanically mated to the deformable layer by one of a group, the group being: adhesive, pusher structure, support structures and mounting structures.
  • 5. The piezo-actuated structure of claim 1 wherein the piezo-actuated structure further comprises: support structures, the support structures mechanically mated to the piezo-actuated structure and further capable of supporting the piezo layer.
  • 6. The piezo-actuated structure of claim 1 wherein the piezo-actuated structure further comprises: a pressure sensing device, the pressure sensing device being one of a group, the group being: the piezo layer, piezo-actuated button, piezo-actuated bender, piezo-actuated bar, capacitive sensing device, force sensitive resistors and piezo-resistive device.
  • 7. The piezo-actuated structure of claim 1 wherein the piezo-actuated structure comprises a bimorph configuration and further at least a first piezo layer and a second piezo layer mechanically mated to each other, the first piezo layer on top of the second piezo layer.
  • 8. The piezo-actuated structure of claim 1 wherein the piezo-actuated structure comprises a unimorph configuration and further a clamping structure, such that a first end of the piezo-actuated structure is clamped by the clamping structure and a second end of the piezo-actuated structure is capable of free movement.
  • 9. The piezo-actuated structure of claim 1 wherein the deformable layer is capable of a first deflection range upon activation of piezo layer.
  • 10. The piezo-actuated structure of claim 9 wherein the piezo layer is capable of being activated by a first electric waveform; and further the piezo layer is capable of deflecting a first deflection range upon activation of the first electric waveform.
  • 11. The piezo-actuated structure of claim 10 wherein the first waveform comprises a first fast charging portion and a second slow discharging portion.
  • 12. The piezo-actuated structure of claim 10 wherein the first waveform comprises a first slow charging portion and a second fast discharging portion.
  • 13. A method for actuating a piezo-actuated structure, the piezo-actuated structure comprising: a piezo layer;a deformable layer formed from a glass material;an intermediate layer, the intermediate layer mechanically mated to the deformable layer and further the intermediate layer being capable of providing mechanical communication between the deformable layer and the piezo layer;a capacitive sensing layer, the capacitive sensing layer capable of triggering varying levels of haptic response transmitted by the piezo layer; andthe piezo layer mechanically mated to the deformable layer, the method being: receiving a first pressure applied to the deformable layer and transmitted through the intermediate layer to the piezo layer;in response to the receiving of the first pressure applied to the deformable layer, sending a piezo actuating signal from an actuation circuit to the piezo layer; andcommunicating a mechanical signal to the deformable layer by movement of the piezo layer in response to the piezo actuating signal causing the glass material of the deformable layer to bend and simulate an actuated dome switch.
  • 14. The method of claim 13 wherein receiving the first pressure further comprises receiving pressure from a finger pressing against the touch sensitive surface.
  • 15. The method of claim 14 wherein the intermediate layer providing mechanical communication between the deformable layer and the piezo layer further comprises transmitting a mechanical deformation from the touch sensitive surface to a pressure sensing device, the pressure sensing device being one of a group, the group being: the piezo layer, piezo-actuated button, piezo-actuated bender, piezo-actuated bar, capacitive sensing device, force sensitive resistors and piezo-resistive device.
  • 16. The method of claim 15 wherein sending a piezo actuating signal further comprises sending an actuating waveform to the piezo layer.
  • 17. The method of claim 16 wherein sending an actuating waveform to the piezo layer further comprises sending a waveform having a first fast charging portion and a second slow discharging portion.
  • 18. The method of claim 16 wherein sending an actuating waveform to the piezo layer further comprises sending a first slow charging portion and a second fast discharging portion.
  • 19. A touch sensitive surface structure comprising: a touch sensitive surface, the touch sensitive surface further being a deformable layer formed from a glass material;a piezo layer, the piezo layer in mechanical communication with the deformable layer and capable of sensing pressure and transmitting a haptic response to the deformable layer causing the glass material of the deformable layer to bend and simulate an actuated dome switch;an intermediate layer, the intermediate layer mechanically mated to the deformable layer and further the intermediate layer capable of providing mechanical communication between the deformable layer and the piezo layer;a capacitive sensing layer, the capacitive sensing layer capable of triggering varying levels of haptic response transmitted by the piezo layer; anda piezo actuating circuit, the piezo actuating circuit in electrical communication with the piezo layer and further wherein the piezo actuating circuit is capable of sending a piezo actuating signal to the piezo layer in response to sensing a pressure applied by a finger.
  • 20. The touch sensitive surface structure of claim 19 wherein the piezo actuating signal comprises a waveform having a first slow charging portion and a second fast discharging portion.
US Referenced Citations (738)
Number Name Date Kind
578325 Fleming Mar 1897 A
4046975 Seeger, Jr. Sep 1977 A
4065649 Carter et al. Dec 1977 A
4243861 Strandwitz Jan 1981 A
4279021 See et al. Jul 1981 A
4302648 Sado et al. Nov 1981 A
4317013 Larson Feb 1982 A
4326193 Markley et al. Apr 1982 A
4365130 Christensen Dec 1982 A
4492829 Rodrique Jan 1985 A
4527021 Morikawa et al. Jul 1985 A
4559426 Van Zeeland et al. Dec 1985 A
4577822 Wilkerson Mar 1986 A
4588187 Dell May 1986 A
4607147 Ono et al. Aug 1986 A
4651133 Ganesan et al. Mar 1987 A
4735394 Facco Apr 1988 A
4890832 Komaki Jan 1990 A
5149923 Demeo Sep 1992 A
5220521 Kikinis Jun 1993 A
5283559 Kalendra et al. Feb 1994 A
5331443 Stanisci Jul 1994 A
5480118 Cross Jan 1996 A
5489900 Cali et al. Feb 1996 A
5510783 Findlater et al. Apr 1996 A
5546271 Gut et al. Aug 1996 A
5548477 Kumar et al. Aug 1996 A
5558577 Kato Sep 1996 A
5576981 Parker et al. Nov 1996 A
5612719 Beernink et al. Mar 1997 A
5617343 Danielson et al. Apr 1997 A
5618232 Martin Apr 1997 A
5681220 Bertram et al. Oct 1997 A
5745376 Barker et al. Apr 1998 A
5748114 Koehn May 1998 A
5781406 Hunte Jul 1998 A
5807175 Davis et al. Sep 1998 A
5818361 Acevedo Oct 1998 A
5828770 Leis et al. Oct 1998 A
5842027 Oprescu et al. Nov 1998 A
5859642 Jones Jan 1999 A
5862381 Advani et al. Jan 1999 A
5874697 Selker et al. Feb 1999 A
5909211 Combs et al. Jun 1999 A
5926170 Oba Jul 1999 A
5942733 Allen et al. Aug 1999 A
5971635 Wise Oct 1999 A
6002389 Kasser Dec 1999 A
6005209 Burleson et al. Dec 1999 A
6012714 Worley et al. Jan 2000 A
6040823 Seffernick et al. Mar 2000 A
6044717 Biegelsen et al. Apr 2000 A
6061644 Leis May 2000 A
6112797 Colson et al. Sep 2000 A
6147859 Abboud Nov 2000 A
6177926 Kunert Jan 2001 B1
6178443 Lin Jan 2001 B1
6239786 Burry et al. May 2001 B1
6254105 Rinde et al. Jul 2001 B1
6279060 Luke et al. Aug 2001 B1
6329617 Burgess Dec 2001 B1
6344791 Armstrong Feb 2002 B1
6380497 Hashimoto et al. Apr 2002 B1
6429846 Rosenberg et al. Aug 2002 B2
6437682 Vance Aug 2002 B1
6477561 Robsman Nov 2002 B1
6506983 Babb et al. Jan 2003 B1
6511378 Bhatt et al. Jan 2003 B1
6532147 Christ, Jr. Mar 2003 B1
6543949 Ritchey et al. Apr 2003 B1
6565439 Shinohara et al. May 2003 B2
6597347 Yasutake Jul 2003 B1
6600121 Olodort et al. Jul 2003 B1
6603408 Gaba Aug 2003 B1
6617536 Kawaguchi Sep 2003 B2
6651943 Cho et al. Nov 2003 B2
6685369 Lien Feb 2004 B2
6695273 Iguchi Feb 2004 B2
6704864 Philyaw Mar 2004 B1
6721019 Kono et al. Apr 2004 B2
6725318 Sherman et al. Apr 2004 B1
6738049 Kiser et al. May 2004 B2
6758615 Monney et al. Jul 2004 B2
6774888 Genduso Aug 2004 B1
6776546 Kraus et al. Aug 2004 B2
6781819 Yang et al. Aug 2004 B2
6784869 Clark et al. Aug 2004 B1
6813143 Makela Nov 2004 B2
6819316 Schulz et al. Nov 2004 B2
6822635 Shahoian et al. Nov 2004 B2
6856506 Doherty et al. Feb 2005 B2
6861961 Sandbach et al. Mar 2005 B2
6864573 Robertson et al. Mar 2005 B2
6898315 Guha May 2005 B2
6914197 Doherty et al. Jul 2005 B2
6950950 Sawyers et al. Sep 2005 B2
6970957 Oshins et al. Nov 2005 B1
6976799 Kim et al. Dec 2005 B2
6977352 Oosawa Dec 2005 B2
7051149 Wang et al. May 2006 B2
7083295 Hanna Aug 2006 B1
7091436 Serban Aug 2006 B2
7091955 Kramer Aug 2006 B2
7095404 Vincent et al. Aug 2006 B2
7106222 Ward et al. Sep 2006 B2
7116309 Kimura et al. Oct 2006 B1
7123292 Seeger et al. Oct 2006 B1
7194662 Do et al. Mar 2007 B2
7202837 Ihara Apr 2007 B2
7213991 Chapman et al. May 2007 B2
7224830 Nefian et al. May 2007 B2
7245292 Custy Jul 2007 B1
7277087 Hill et al. Oct 2007 B2
7280348 Ghosh Oct 2007 B2
7301759 Hsiung Nov 2007 B2
7374312 Feng et al. May 2008 B2
7401992 Lin Jul 2008 B1
7423557 Kang Sep 2008 B2
7446276 Plesko Nov 2008 B2
7447934 Dasari et al. Nov 2008 B2
7469386 Bear et al. Dec 2008 B2
7486165 Ligtenberg et al. Feb 2009 B2
7499037 Lube Mar 2009 B2
7502803 Culter et al. Mar 2009 B2
7542052 Solomon et al. Jun 2009 B2
7557312 Clark et al. Jul 2009 B2
7558594 Wilson Jul 2009 B2
7559834 York Jul 2009 B1
RE40891 Yasutake Sep 2009 E
7602384 Rosenberg et al. Oct 2009 B2
7616192 Schroeder Nov 2009 B2
7620244 Collier Nov 2009 B1
7622907 Vranish Nov 2009 B2
7636921 Louie Dec 2009 B2
7639876 Clary et al. Dec 2009 B2
7656392 Bolender Feb 2010 B2
7686694 Cole Mar 2010 B2
7728820 Rosenberg Jun 2010 B2
7728923 Kim et al. Jun 2010 B2
7731147 Rha Jun 2010 B2
7733326 Adiseshan Jun 2010 B1
7736042 Park et al. Jun 2010 B2
7773076 Pittel et al. Aug 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7774155 Sato et al. Aug 2010 B2
7777972 Chen et al. Aug 2010 B1
7782342 Koh Aug 2010 B2
7813715 McKillop et al. Oct 2010 B2
7815358 Inditsky Oct 2010 B2
7817428 Greer, Jr. et al. Oct 2010 B2
7865639 McCoy et al. Jan 2011 B2
7880727 Abanami et al. Feb 2011 B2
7884807 Hovden et al. Feb 2011 B2
7890863 Grant Feb 2011 B2
7907394 Richardson et al. Mar 2011 B2
D636397 Green Apr 2011 S
7928964 Kolmykov-Zotov et al. Apr 2011 B2
7936501 Smith et al. May 2011 B2
7945717 Rivalsi May 2011 B2
7952566 Poupyrev et al. May 2011 B2
7970246 Travis et al. Jun 2011 B2
7973771 Geaghan Jul 2011 B2
7976393 Haga et al. Jul 2011 B2
7978281 Vergith et al. Jul 2011 B2
8016255 Lin Sep 2011 B2
8018386 Qi et al. Sep 2011 B2
8018579 Krah Sep 2011 B1
8022939 Hinata Sep 2011 B2
8026904 Westerman Sep 2011 B2
8053688 Conzola et al. Nov 2011 B2
8063886 Serban et al. Nov 2011 B2
8065624 Morin et al. Nov 2011 B2
8069356 Rathi et al. Nov 2011 B2
8077160 Land et al. Dec 2011 B2
8090885 Callaghan et al. Jan 2012 B2
8094134 Suzuki et al. Jan 2012 B2
8098233 Hotelling et al. Jan 2012 B2
8115499 Osoinach et al. Feb 2012 B2
8117362 Rodriguez et al. Feb 2012 B2
8118274 McClure et al. Feb 2012 B2
8118681 Mattice et al. Feb 2012 B2
8130203 Westerman Mar 2012 B2
8154524 Wilson et al. Apr 2012 B2
8162282 Hu et al. Apr 2012 B2
D659139 Gengler May 2012 S
8169421 Wright et al. May 2012 B2
8189973 Travis et al. May 2012 B2
8216074 Sakuma Jul 2012 B2
8229509 Paek et al. Jul 2012 B2
8229522 Kim et al. Jul 2012 B2
8232963 Orsley et al. Jul 2012 B2
8267368 Torii et al. Sep 2012 B2
8269093 Naik et al. Sep 2012 B2
8274784 Franz et al. Sep 2012 B2
8279589 Kim Oct 2012 B2
8279623 Idzik Oct 2012 B2
8322290 Mignano Dec 2012 B1
8325144 Tierling et al. Dec 2012 B1
8330061 Rothkopf et al. Dec 2012 B2
8330742 Reynolds et al. Dec 2012 B2
8378972 Pance et al. Feb 2013 B2
8395587 Cauwels Mar 2013 B2
8403576 Merz Mar 2013 B2
8416559 Agata et al. Apr 2013 B2
8421757 Suzuki Apr 2013 B2
8441465 Radivojevic et al. May 2013 B2
8487751 Laitinen et al. Jul 2013 B2
8498100 Whitt, III et al. Jul 2013 B1
D696253 Akana et al. Dec 2013 S
8599152 Wurtenberger et al. Dec 2013 B1
8607651 Eventoff Dec 2013 B2
8633916 Bernstein et al. Jan 2014 B2
8638315 Algreatly Jan 2014 B2
8659555 Pihlaja Feb 2014 B2
8661363 Platzer et al. Feb 2014 B2
8674961 Posamentier Mar 2014 B2
D704702 Akana et al. May 2014 S
8757374 Kaiser Jun 2014 B1
8766925 Perlin et al. Jul 2014 B2
8831677 Villa-Real Sep 2014 B2
8836664 Colgate et al. Sep 2014 B2
8847895 Lim et al. Sep 2014 B2
8847897 Sakai et al. Sep 2014 B2
8854331 Heubel et al. Oct 2014 B2
8907871 Orsley Dec 2014 B2
8928581 Braun et al. Jan 2015 B2
8970525 de los Reyes Mar 2015 B1
9007348 Nikolovski Apr 2015 B2
9047012 Bringert et al. Jun 2015 B1
9063693 Raken et al. Jun 2015 B2
9073123 Campbell et al. Jul 2015 B2
9098304 Young et al. Aug 2015 B2
9176538 Boulanger Nov 2015 B2
9287916 Wicks Mar 2016 B2
9348605 Drasnin May 2016 B2
9360893 Bathiche et al. Jun 2016 B2
9411436 Shaw et al. Aug 2016 B2
9448631 Winter et al. Sep 2016 B2
9459160 Shaw et al. Oct 2016 B2
10061385 Churikov et al. Aug 2018 B2
10359848 Winter et al. Jul 2019 B2
20010035697 Rueger et al. Nov 2001 A1
20010035859 Kiser Nov 2001 A1
20020000977 Vranish Jan 2002 A1
20020126445 Minaguchi et al. Sep 2002 A1
20020134828 Sandbach et al. Sep 2002 A1
20020154099 Oh Oct 2002 A1
20020174389 Sato et al. Nov 2002 A1
20020188721 Lemel et al. Dec 2002 A1
20030016282 Koizumi Jan 2003 A1
20030044215 Monney et al. Mar 2003 A1
20030083131 Armstrong May 2003 A1
20030107557 Liebenow Jun 2003 A1
20030132916 Kramer Jul 2003 A1
20030163611 Nagao Aug 2003 A1
20030197687 Shetter Oct 2003 A1
20030201982 Iesaka Oct 2003 A1
20040005184 Kim et al. Jan 2004 A1
20040100457 Mandle May 2004 A1
20040174670 Huang et al. Sep 2004 A1
20040190239 Weng et al. Sep 2004 A1
20040194075 Molchanov et al. Sep 2004 A1
20040212598 Kraus et al. Oct 2004 A1
20040227721 Moilanen Nov 2004 A1
20040258924 Berger et al. Dec 2004 A1
20040267323 Dupelle Dec 2004 A1
20040268000 Barker et al. Dec 2004 A1
20050030728 Kawashima et al. Feb 2005 A1
20050057515 Bathiche Mar 2005 A1
20050057521 Aull et al. Mar 2005 A1
20050059441 Miyashita Mar 2005 A1
20050059489 Kim Mar 2005 A1
20050146512 Hill et al. Jul 2005 A1
20050190159 Skarine Sep 2005 A1
20050240949 Liu et al. Oct 2005 A1
20050264653 Starkweather et al. Dec 2005 A1
20050264988 Nicolosi Dec 2005 A1
20050285703 Wheeler et al. Dec 2005 A1
20060028095 Maruyama et al. Feb 2006 A1
20060049993 Lin et al. Mar 2006 A1
20060063073 Kawashima et al. Mar 2006 A1
20060082973 Egbert et al. Apr 2006 A1
20060085658 Allen et al. Apr 2006 A1
20060102914 Smits et al. May 2006 A1
20060103633 Gioeli May 2006 A1
20060125799 Hillis et al. Jun 2006 A1
20060132423 Travis Jun 2006 A1
20060154725 Glaser et al. Jul 2006 A1
20060156415 Rubinstein et al. Jul 2006 A1
20060158433 Serban et al. Jul 2006 A1
20060181514 Newman Aug 2006 A1
20060181521 Perreault et al. Aug 2006 A1
20060187216 Trent, Jr. et al. Aug 2006 A1
20060195522 Miyazaki Aug 2006 A1
20060197753 Hotelling Sep 2006 A1
20060197754 Keely Sep 2006 A1
20060197755 Bawany Sep 2006 A1
20060209037 Wang et al. Sep 2006 A1
20060209050 Serban Sep 2006 A1
20060238510 Panotopoulos et al. Oct 2006 A1
20060248597 Keneman Nov 2006 A1
20070018601 Steinbach et al. Jan 2007 A1
20070043725 Hotelling et al. Feb 2007 A1
20070047221 Park Mar 2007 A1
20070051792 Wheeler et al. Mar 2007 A1
20070056385 Lorenz Mar 2007 A1
20070057922 Schultz et al. Mar 2007 A1
20070062089 Homer et al. Mar 2007 A1
20070069153 Pai-Paranjape et al. Mar 2007 A1
20070072474 Beasley et al. Mar 2007 A1
20070145945 McGinley et al. Jun 2007 A1
20070152983 McKillop et al. Jul 2007 A1
20070182663 Biech Aug 2007 A1
20070182722 Hotelling et al. Aug 2007 A1
20070200830 Yamamoto Aug 2007 A1
20070205995 Woolley Sep 2007 A1
20070220708 Lewis Sep 2007 A1
20070234420 Novotney et al. Oct 2007 A1
20070236408 Yamaguchi et al. Oct 2007 A1
20070236472 Bentsen Oct 2007 A1
20070236475 Wherry Oct 2007 A1
20070247338 Marchetto Oct 2007 A1
20070247432 Oakley Oct 2007 A1
20070257821 Son et al. Nov 2007 A1
20070260892 Paul et al. Nov 2007 A1
20070274094 Schultz et al. Nov 2007 A1
20070274095 Destain Nov 2007 A1
20070283179 Burnett et al. Dec 2007 A1
20080005423 Jacobs et al. Jan 2008 A1
20080012835 Rimon et al. Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080018608 Serban et al. Jan 2008 A1
20080018611 Serban et al. Jan 2008 A1
20080024459 Poupyrev et al. Jan 2008 A1
20080042994 Gillespie et al. Feb 2008 A1
20080094367 Van De Ven et al. Apr 2008 A1
20080104437 Lee May 2008 A1
20080151478 Chern Jun 2008 A1
20080158185 Westerman Jul 2008 A1
20080167832 Soss Jul 2008 A1
20080180411 Solomon et al. Jul 2008 A1
20080196945 Konstas Aug 2008 A1
20080202251 Serban et al. Aug 2008 A1
20080202824 Philipp et al. Aug 2008 A1
20080219025 Spitzer et al. Sep 2008 A1
20080224659 Singh Sep 2008 A1
20080228969 Cheah et al. Sep 2008 A1
20080232061 Wang et al. Sep 2008 A1
20080238884 Harish Oct 2008 A1
20080253822 Matias Oct 2008 A1
20080297878 Brown et al. Dec 2008 A1
20080303646 Elwell et al. Dec 2008 A1
20080309636 Feng et al. Dec 2008 A1
20080316002 Brunet et al. Dec 2008 A1
20080316066 Minato Dec 2008 A1
20080320190 Lydon et al. Dec 2008 A1
20090002218 Rigazio et al. Jan 2009 A1
20090007001 Morin et al. Jan 2009 A1
20090009476 Daley, III Jan 2009 A1
20090046416 Daley, III Feb 2009 A1
20090049979 Naik et al. Feb 2009 A1
20090065267 Sato Mar 2009 A1
20090073060 Shimasaki et al. Mar 2009 A1
20090073957 Newland et al. Mar 2009 A1
20090079639 Hotta et al. Mar 2009 A1
20090083562 Park et al. Mar 2009 A1
20090085878 Heubel et al. Apr 2009 A1
20090090568 Min Apr 2009 A1
20090101417 Suzuki Apr 2009 A1
20090106655 Grant et al. Apr 2009 A1
20090117955 Lo May 2009 A1
20090127005 Zachut et al. May 2009 A1
20090128374 Kurth May 2009 A1
20090135142 Fu et al. May 2009 A1
20090140985 Liu Jun 2009 A1
20090160529 Lamborghini Jun 2009 A1
20090163147 Steigerwald et al. Jun 2009 A1
20090167704 Terlizzi et al. Jul 2009 A1
20090174679 Westerman Jul 2009 A1
20090182901 Callaghan et al. Jul 2009 A1
20090195497 Fitzgerald et al. Aug 2009 A1
20090200148 Honmatsu et al. Aug 2009 A1
20090219250 Ure Sep 2009 A1
20090231019 Yeh Sep 2009 A1
20090231275 Odgers Sep 2009 A1
20090251008 Sugaya Oct 2009 A1
20090259865 Sheynblat et al. Oct 2009 A1
20090262492 Whitchurch et al. Oct 2009 A1
20090265670 Kim et al. Oct 2009 A1
20090267892 Faubert Oct 2009 A1
20090284397 Lee et al. Nov 2009 A1
20090295739 Nagara Dec 2009 A1
20090303137 Kusaka et al. Dec 2009 A1
20090303204 Nasiri et al. Dec 2009 A1
20090320244 Lin Dec 2009 A1
20090321490 Groene et al. Dec 2009 A1
20100001963 Doray et al. Jan 2010 A1
20100013319 Kamiyama et al. Jan 2010 A1
20100013613 Weston Jan 2010 A1
20100026656 Hotelling et al. Feb 2010 A1
20100038821 Jenkins et al. Feb 2010 A1
20100039764 Locker et al. Feb 2010 A1
20100045609 Do et al. Feb 2010 A1
20100045633 Gettemy Feb 2010 A1
20100051356 Stern et al. Mar 2010 A1
20100051432 Lin et al. Mar 2010 A1
20100053087 Dai et al. Mar 2010 A1
20100053534 Hsieh et al. Mar 2010 A1
20100075517 Ni et al. Mar 2010 A1
20100077237 Sawyers Mar 2010 A1
20100079398 Shen et al. Apr 2010 A1
20100081377 Chatterjee et al. Apr 2010 A1
20100085321 Pundsack Apr 2010 A1
20100097198 Suzuki Apr 2010 A1
20100102182 Lin Apr 2010 A1
20100103112 Yoo et al. Apr 2010 A1
20100103131 Segal et al. Apr 2010 A1
20100103611 Yang et al. Apr 2010 A1
20100123686 Klinghult et al. May 2010 A1
20100133398 Chiu et al. Jun 2010 A1
20100137033 Lee Jun 2010 A1
20100141588 Kimura et al. Jun 2010 A1
20100142130 Wang et al. Jun 2010 A1
20100148642 Eromaki et al. Jun 2010 A1
20100149111 Olien Jun 2010 A1
20100149134 Westerman et al. Jun 2010 A1
20100156798 Archer Jun 2010 A1
20100161522 Tirpak et al. Jun 2010 A1
20100162109 Chatterjee et al. Jun 2010 A1
20100162179 Porat Jun 2010 A1
20100164857 Liu et al. Jul 2010 A1
20100171708 Chuang Jul 2010 A1
20100171891 Kaji et al. Jul 2010 A1
20100174421 Tsai et al. Jul 2010 A1
20100180063 Ananny et al. Jul 2010 A1
20100182263 Aunio et al. Jul 2010 A1
20100188299 Rinehart et al. Jul 2010 A1
20100188338 Longe Jul 2010 A1
20100206614 Park et al. Aug 2010 A1
20100206644 Yeh Aug 2010 A1
20100214239 Wu Aug 2010 A1
20100214257 Wussler et al. Aug 2010 A1
20100222110 Kim et al. Sep 2010 A1
20100231498 Large et al. Sep 2010 A1
20100231510 Sampsell et al. Sep 2010 A1
20100231556 Mines et al. Sep 2010 A1
20100238075 Pourseyed Sep 2010 A1
20100238119 Dubrovsky et al. Sep 2010 A1
20100238138 Goertz et al. Sep 2010 A1
20100244577 Shimokawa Sep 2010 A1
20100245221 Khan Sep 2010 A1
20100250988 Okuda et al. Sep 2010 A1
20100274932 Kose Oct 2010 A1
20100279768 Huang et al. Nov 2010 A1
20100289457 Onnerud et al. Nov 2010 A1
20100289508 Joguet et al. Nov 2010 A1
20100295812 Burns et al. Nov 2010 A1
20100302378 Marks et al. Dec 2010 A1
20100304793 Kim Dec 2010 A1
20100306538 Thomas et al. Dec 2010 A1
20100308778 Yamazaki et al. Dec 2010 A1
20100308844 Day et al. Dec 2010 A1
20100315267 Chung Dec 2010 A1
20100315348 Jellicoe et al. Dec 2010 A1
20100315373 Steinhauser et al. Dec 2010 A1
20100321299 Shelley et al. Dec 2010 A1
20100321301 Casparian et al. Dec 2010 A1
20100321330 Lim et al. Dec 2010 A1
20100321339 Kimmel Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20100328230 Faubert et al. Dec 2010 A1
20100331059 Apgar et al. Dec 2010 A1
20110007008 Algreatly Jan 2011 A1
20110012873 Prest et al. Jan 2011 A1
20110018556 Le et al. Jan 2011 A1
20110019123 Prest et al. Jan 2011 A1
20110031287 Le Gette et al. Feb 2011 A1
20110036965 Zhang et al. Feb 2011 A1
20110037379 Lecamp et al. Feb 2011 A1
20110037705 Yilmaz Feb 2011 A1
20110037721 Cranfill et al. Feb 2011 A1
20110043454 Modarres et al. Feb 2011 A1
20110043990 Mickey et al. Feb 2011 A1
20110049094 Wu Mar 2011 A1
20110050037 Rinner et al. Mar 2011 A1
20110050587 Natanzon et al. Mar 2011 A1
20110050630 Ikeda Mar 2011 A1
20110055407 Lydon et al. Mar 2011 A1
20110057899 Sleeman et al. Mar 2011 A1
20110059771 Kondo Mar 2011 A1
20110060926 Brooks et al. Mar 2011 A1
20110069148 Jones et al. Mar 2011 A1
20110074688 Hull et al. Mar 2011 A1
20110074702 Pertuit Mar 2011 A1
20110080347 Steeves Apr 2011 A1
20110080367 Marchand Apr 2011 A1
20110084909 Hsieh et al. Apr 2011 A1
20110095994 Birnbaum Apr 2011 A1
20110096513 Kim Apr 2011 A1
20110102326 Casparian May 2011 A1
20110102356 Kemppinen et al. May 2011 A1
20110115712 Han et al. May 2011 A1
20110115747 Powell et al. May 2011 A1
20110118025 Lukas et al. May 2011 A1
20110128227 Theimer Jun 2011 A1
20110134032 Chiu et al. Jun 2011 A1
20110134112 Koh et al. Jun 2011 A1
20110141052 Bernstein Jun 2011 A1
20110147398 Ahee et al. Jun 2011 A1
20110148793 Ciesla et al. Jun 2011 A1
20110157087 Kanehira et al. Jun 2011 A1
20110163955 Nasiri et al. Jul 2011 A1
20110164370 McClure et al. Jul 2011 A1
20110167181 Minoo et al. Jul 2011 A1
20110167287 Walsh et al. Jul 2011 A1
20110167391 Momeyer et al. Jul 2011 A1
20110167992 Eventoff et al. Jul 2011 A1
20110179864 Raasch et al. Jul 2011 A1
20110184646 Wong et al. Jul 2011 A1
20110193787 Morishige et al. Aug 2011 A1
20110193938 Oderwald et al. Aug 2011 A1
20110202878 Park et al. Aug 2011 A1
20110205161 Myers Aug 2011 A1
20110205163 Hinckley et al. Aug 2011 A1
20110205372 Miramontes Aug 2011 A1
20110209093 Hinckley Aug 2011 A1
20110209097 Hinckley Aug 2011 A1
20110209098 Hinckley et al. Aug 2011 A1
20110209099 Hinckley Aug 2011 A1
20110216266 Travis Sep 2011 A1
20110222238 Staats et al. Sep 2011 A1
20110227872 Huska Sep 2011 A1
20110227913 Hyndman Sep 2011 A1
20110231682 Kakish et al. Sep 2011 A1
20110234502 Yun et al. Sep 2011 A1
20110241999 Thier Oct 2011 A1
20110242138 Tribble Oct 2011 A1
20110248152 Svajda et al. Oct 2011 A1
20110248920 Larsen Oct 2011 A1
20110248930 Kwok Oct 2011 A1
20110248941 Abdo et al. Oct 2011 A1
20110261001 Liu Oct 2011 A1
20110261021 Modarres et al. Oct 2011 A1
20110261083 Wilson Oct 2011 A1
20110267294 Kildal Nov 2011 A1
20110267300 Serban et al. Nov 2011 A1
20110267757 Probst et al. Nov 2011 A1
20110290686 Huang Dec 2011 A1
20110291922 Stewart Dec 2011 A1
20110291951 Tong Dec 2011 A1
20110295697 Boston et al. Dec 2011 A1
20110297566 Gallagher et al. Dec 2011 A1
20110304577 Brown et al. Dec 2011 A1
20110304962 Su Dec 2011 A1
20110306424 Kazama et al. Dec 2011 A1
20110316807 Corrion Dec 2011 A1
20120007821 Zaliva Jan 2012 A1
20120011462 Westerman et al. Jan 2012 A1
20120013519 Hakansson et al. Jan 2012 A1
20120023459 Westerman Jan 2012 A1
20120024682 Huang et al. Feb 2012 A1
20120026048 Vazquez et al. Feb 2012 A1
20120044179 Hudson Feb 2012 A1
20120047368 Chinn et al. Feb 2012 A1
20120050975 Garelli et al. Mar 2012 A1
20120055770 Chen Mar 2012 A1
20120062245 Bao et al. Mar 2012 A1
20120068933 Larsen Mar 2012 A1
20120068957 Puskarich et al. Mar 2012 A1
20120072167 Cretella, Jr. et al. Mar 2012 A1
20120075198 Sulem Mar 2012 A1
20120075221 Yasuda Mar 2012 A1
20120075249 Hoch Mar 2012 A1
20120081316 Sirpal et al. Apr 2012 A1
20120087078 Medica et al. Apr 2012 A1
20120092279 Martin Apr 2012 A1
20120092350 Ganapathi et al. Apr 2012 A1
20120094257 Pillischer et al. Apr 2012 A1
20120098751 Lin Apr 2012 A1
20120099263 Lin Apr 2012 A1
20120099749 Rubin et al. Apr 2012 A1
20120105481 Baek May 2012 A1
20120106078 Probst et al. May 2012 A1
20120106082 Wu et al. May 2012 A1
20120113579 Agata et al. May 2012 A1
20120115553 Mahe et al. May 2012 A1
20120117409 Lee et al. May 2012 A1
20120127071 Jitkoff et al. May 2012 A1
20120127118 Nolting et al. May 2012 A1
20120127646 Moscovitch May 2012 A1
20120139844 Ramstein et al. Jun 2012 A1
20120140396 Zeliff et al. Jun 2012 A1
20120145525 Ishikawa Jun 2012 A1
20120155015 Govindasamy et al. Jun 2012 A1
20120162693 Ito Jun 2012 A1
20120175487 Goto Jul 2012 A1
20120182242 Lindahl et al. Jul 2012 A1
20120188180 Yang et al. Jul 2012 A1
20120194393 Utterman et al. Aug 2012 A1
20120194448 Rothkopf Aug 2012 A1
20120200517 Nikolovski Aug 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120200802 Large Aug 2012 A1
20120206401 Lin et al. Aug 2012 A1
20120206937 Travis et al. Aug 2012 A1
20120223866 Ayala Vazquez et al. Sep 2012 A1
20120224073 Miyahara Sep 2012 A1
20120229401 Birnbaum et al. Sep 2012 A1
20120235635 Sato Sep 2012 A1
20120235921 Laubach Sep 2012 A1
20120235942 Shahoian Sep 2012 A1
20120242588 Myers et al. Sep 2012 A1
20120246377 Bhesania Sep 2012 A1
20120249459 Sashida et al. Oct 2012 A1
20120249474 Pratt Oct 2012 A1
20120256848 Madabusi Srinivasan Oct 2012 A1
20120256959 Ye et al. Oct 2012 A1
20120268412 Cruz-Hernandez et al. Oct 2012 A1
20120268911 Lin Oct 2012 A1
20120274578 Snow Nov 2012 A1
20120274811 Bakin Nov 2012 A1
20120287562 Wu et al. Nov 2012 A1
20120297339 Ito Nov 2012 A1
20120299866 Pao et al. Nov 2012 A1
20120300275 Vilardell et al. Nov 2012 A1
20120304199 Homma et al. Nov 2012 A1
20120312955 Randolph Dec 2012 A1
20120327025 Huska Dec 2012 A1
20120328349 Isaac et al. Dec 2012 A1
20130009892 Salmela Jan 2013 A1
20130016059 Lowles et al. Jan 2013 A1
20130016060 Pereverzev et al. Jan 2013 A1
20130044059 Fu Feb 2013 A1
20130047747 Joung Feb 2013 A1
20130063364 Moore Mar 2013 A1
20130063389 Moore Mar 2013 A1
20130063873 Wodrich et al. Mar 2013 A1
20130076646 Krah et al. Mar 2013 A1
20130076652 Leung Mar 2013 A1
20130088431 Ballagas et al. Apr 2013 A1
20130088442 Lee Apr 2013 A1
20130094131 O'Donnell et al. Apr 2013 A1
20130097534 Lewin et al. Apr 2013 A1
20130100052 Yilmaz Apr 2013 A1
20130106766 Yilmaz et al. May 2013 A1
20130107144 Marhefka et al. May 2013 A1
20130118933 Wang et al. May 2013 A1
20130127735 Motoyama May 2013 A1
20130141370 Wang et al. Jun 2013 A1
20130167663 Eventoff Jul 2013 A1
20130194235 Zanone et al. Aug 2013 A1
20130201115 Heubel Aug 2013 A1
20130207917 Cruz-Hernandez et al. Aug 2013 A1
20130222286 Kang Aug 2013 A1
20130227836 Whitt, III Sep 2013 A1
20130228433 Shaw Sep 2013 A1
20130229273 Nodar Cortizo et al. Sep 2013 A1
20130229356 Marwah et al. Sep 2013 A1
20130229386 Bathiche Sep 2013 A1
20130249802 Yasutake Sep 2013 A1
20130275058 Awad Oct 2013 A1
20130278542 Stephanou et al. Oct 2013 A1
20130278552 Kamin-Lyndgaard Oct 2013 A1
20130300683 Birnbaum Nov 2013 A1
20130304941 Drasnin Nov 2013 A1
20130304944 Young Nov 2013 A1
20130311881 Birnbaum et al. Nov 2013 A1
20130314341 Lee et al. Nov 2013 A1
20130321291 Sim Dec 2013 A1
20130335209 Cruz-Hernandez et al. Dec 2013 A1
20130335330 Lane Dec 2013 A1
20130335902 Campbell Dec 2013 A1
20130335903 Raken Dec 2013 A1
20130342464 Bathiche et al. Dec 2013 A1
20130342465 Bathiche Dec 2013 A1
20130346636 Bathiche Dec 2013 A1
20140008203 Nathan et al. Jan 2014 A1
20140009429 Verweg Jan 2014 A1
20140020484 Shaw et al. Jan 2014 A1
20140022177 Shaw Jan 2014 A1
20140028624 Marsden et al. Jan 2014 A1
20140055375 Kim et al. Feb 2014 A1
20140062933 Coulson et al. Mar 2014 A1
20140062934 Coulson et al. Mar 2014 A1
20140083207 Eventoff Mar 2014 A1
20140085247 Leung et al. Mar 2014 A1
20140092003 Liu Apr 2014 A1
20140092055 Radivojevic et al. Apr 2014 A1
20140098058 Baharav Apr 2014 A1
20140104189 Marshall Apr 2014 A1
20140139436 Ramstein et al. May 2014 A1
20140139452 Levesque et al. May 2014 A1
20140139472 Takenaka May 2014 A1
20140197058 Huet et al. Jul 2014 A1
20140198072 Schuele et al. Jul 2014 A1
20140204059 Geaghan Jul 2014 A1
20140210742 Delattre et al. Jul 2014 A1
20140221098 Boulanger Aug 2014 A1
20140225821 Kim Aug 2014 A1
20140225857 Ma Aug 2014 A1
20140230575 Picciotto et al. Aug 2014 A1
20140232657 Aviles et al. Aug 2014 A1
20140232679 Whitman et al. Aug 2014 A1
20140253305 Rosenberg et al. Sep 2014 A1
20140306914 Kagayama Oct 2014 A1
20140320393 Modarres et al. Oct 2014 A1
20140332417 Wicks Nov 2014 A1
20140354587 Mohindra et al. Dec 2014 A1
20140370937 Park Dec 2014 A1
20150084865 Shaw et al. Mar 2015 A1
20150084909 Worfolk et al. Mar 2015 A1
20150097786 Behles et al. Apr 2015 A1
20150103427 Beck Apr 2015 A1
20150116205 Westerman et al. Apr 2015 A1
20150160778 Kim et al. Jun 2015 A1
20150185842 Picciotto et al. Jul 2015 A1
20150185950 Watanabe Jul 2015 A1
20150193034 Jeong et al. Jul 2015 A1
20150227207 Winter et al. Aug 2015 A1
20150241929 Raken et al. Aug 2015 A1
20150242012 Petcavich et al. Aug 2015 A1
20150253872 Reyes Sep 2015 A1
20150293592 Cheong et al. Oct 2015 A1
20150301642 Hanauer et al. Oct 2015 A1
20150331150 Furholz Nov 2015 A1
20150370376 Harley et al. Dec 2015 A1
20160018894 Yliaho et al. Jan 2016 A1
20160063828 Moussette et al. Mar 2016 A1
20160070398 Worfolk Mar 2016 A1
20160085268 Aurongzeb Mar 2016 A1
20160135742 Cobbett et al. May 2016 A1
20160147310 Pate May 2016 A1
20160170935 Drasnin Jun 2016 A1
20160195955 Picciotto et al. Jul 2016 A1
20160357296 Picciotto et al. Dec 2016 A1
20170023418 Shaw et al. Jan 2017 A1
20170102770 Winter et al. Apr 2017 A1
20170212591 Churikov et al. Jul 2017 A1
Foreign Referenced Citations (27)
Number Date Country
1722073 Jan 2006 CN
101118469 Feb 2008 CN
101334741 Dec 2008 CN
101763166 Jun 2010 CN
101938396 Jan 2011 CN
102043465 May 2011 CN
102117121 Jul 2011 CN
102236463 Nov 2011 CN
102292687 Dec 2011 CN
102356624 Feb 2012 CN
102906673 Jan 2013 CN
1223722 Jul 2002 EP
1591891 Nov 2005 EP
2353978 Aug 2011 EP
2381340 Oct 2011 EP
2584432 Apr 2013 EP
2178570 Feb 1987 GB
10326124 Dec 1998 JP
1173239 Mar 1999 JP
11345041 Dec 1999 JP
1020110087178 Aug 2011 KR
1038411 May 2012 NL
WO-2010011983 Jan 2010 WO
WO-2012036717 Mar 2012 WO
WO-2012173305 Dec 2012 WO
WO-2013169299 Nov 2013 WO
WO-2014098946 Jun 2014 WO
Non-Patent Literature Citations (257)
Entry
IDG TECHtalk. “Asahi Glass demos Dragontrail, a tough glass for consumer electronics”. Jan. 20, 2011. Accessed [Online] <https://www.youtube.com/watch?v=WpbOoQpwAFs>. (Year: 2011).
“International Search Report & Written Opinion for PCT Patent Application No. PCT/US2014/016151”, dated May 16, 2014, Filed Date: Feb. 13, 2014, 10 Pages.
Apple's haptic touch feedback concept uses actuators, senses force on iPhone, iPad—Published Date: Mar. 22, 2012 Proceedings: NA Author: Neil Hughes pp. NA http://appleinsider.com/articles/12/03/22/.
Taxel: Initial Progress toward Self-Morphing Visio-Haptic Interface—Published Date: Jun. 21, 2011 Proceedings: In IEEE World Haptics Conference Author: Ki-Uk Kyung, Jeong Mook Lim, Yo-An Lim, Suntak Park, Seung Koo Park, Inwook Hwang, Seungmoon Choi, Jongman Seo, Sang-Youn Kim, Tae-Neon Yang, and Dong-Soo Kwon pp. 6.
Capacitive Touch Sensors—Published Date: Jan. 12, 2010 Proceedings: Fujitsu Microelectronics Europe GmbH Author: NA pp. 12 http://www.fujitsu.com/downloads/MICRO/fme/articles/fujitsu-whitepaper-capacitive-touch-sensors.pdf.
Haptic Feedback Chips Make Virtual-Button Applications on Handheld Devices a Snap—Published Date: Sep. 10, 2009 Proceedings: NA Author: Don Tuite pp. NA http://electronicdesign.com/article/analog-and-mixed-signal/haptic-feedback-chips-make-virtual-button-applicat.
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, 2011, 4 pages.
“ACPI Docking for Windows Operating Systems”, Retrieved from: <http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php> on Jul. 6, 2012, 2012, 10 pages.
“Advanced Configuration and Power Management Specification”, Intel Corporation, Microsoft Corporation, Toshiba Corp. Revision 1, Dec. 22, 1996, 364 pages.
“Cholesteric Liquid Crystal”, Retrieved from: <http://en.wikipedia.org/wiki/Cholesteric_liquid_crystal> on Aug. 6, 2012, Jun. 10, 2012, 2 pages.
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5®”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc1500brochure1.pdf> on Jan. 29, 2013, Jan. 2013, 1 page.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, dated Apr. 9, 2013, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, dated Jul. 2, 2013, 2 pages.
“Developing Next-Generation Human Interfaces using Capacitive and Infrared Proximity Sensing”, Silicon Laboratories, Inc., Available at <http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=support%20documents/technicaldocs/capacitive%20and%20proximity%20sensing_wp.pdf&src=SearchResults>, Aug. 30, 2010, pp. 1-10.
“Directional Backlighting for Display Panels”, U.S. Appl. No. 13/021,448, filed Feb. 4, 2011, 38 pages.
“DR2PA”, retrieved from <http://www.architainment.co.uk/wp-content/uploads/2012/08/DR2PA-AU-US-size-Data-Sheet-Rev-H_LOGO.pdf> on Sep. 17, 2012, Jan. 2012, 4 pages.
“Enhancing Your Device Design Through Tactile Feedback”, Immersion, Available at <http://www.immersion.com/docs/Enhancing-Device-Design-Through-Tactile-Feedback.pdf>, Apr. 2011, pp. 1-7.
“Ex Parte Quayle Action”, U.S. Appl. No. 13/599,763, filed Nov. 14, 2014, 6 pages.
“Final Office Action”, U.S. Appl. No. 13/471,001, dated Jul. 25, 2013, 20 pages.
“Final Office Action”, U.S. Appl. No. 13/527,263, dated Jan. 27, 2015, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/603,918, dated Mar. 21, 2014, 14 pages.
“Final Office Action”, U.S. Appl. No. 13/647,479, dated Dec. 12, 2014, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/651,195, dated Apr. 18, 2013, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/651,232, dated May 21, 2013, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/651,287, dated May 3, 2013, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/651,976, dated Jul. 25, 2013, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/653,321, dated Aug. 2, 2013, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/655,065, dated Apr. 2, 2015, 23 pages.
“Final Office Action”, U.S. Appl. No. 13/655,065, dated Aug. 8, 2014, 20 pages.
“Final Office Action”, U.S. Appl. No. 13/782,137, dated May 8, 2015, 19 pages.
“Final Office Action”, U.S. Appl. No. 13/974,749, dated May 21, 2015, 19 pages.
“Final Office Action”, U.S. Appl. No. 13/974,749, dated Sep. 5, 2014, 18 pages.
“Final Office Action”, U.S. Appl. No. 13/974,994, dated Jun. 10, 2015, 28 pages.
“Final Office Action”, U.S. Appl. No. 13/974,994, dated Oct. 6, 2014, 26 pages.
“Final Office Action”, U.S. Appl. No. 13/975,087, dated Aug. 7, 2015, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/975,087, dated Sep. 10, 2014, 19 pages.
“Final Office Action”, U.S. Appl. No. 14/033,510, dated Jun. 5, 2015, 24 pages.
“Final Office Action”, U.S. Appl. No. 14/033,510, dated Aug. 21, 2014, 18 pages.
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012, Jan. 6, 2005, 2 pages.
“Force and Position Sensing Resistors: An Emerging Technology”, Interlink Electronics, Available at <http://staff.science.uva.nl/˜vlaander/docu/FSR/An_Exploring_Technology.pdf>, Feb. 1990, pp. 1-6.
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/content.asp?contentid=3898> on May 7, 2012, Jan. 7, 2005, 3 pages.
“How to Use the iPad's Onscreen Keyboard”, Retrieved from <http://www.dummies.com/how-to/content/how-to-use-the-ipads-onscreen-keyboard.html> on Aug. 28, 2012, 2012, 3 pages.
“iControlPad 2—The open source controller”, Retrieved from <http://www.kickstarter.com/projects/1703567677/icontrolpad-2-the-open-source-controller> on Nov. 20, 2012, 2012, 15 pages.
“i-Interactor electronic pen”, Retrieved from: <http://www.alibaba.com/product-gs/331004878/i_Interactor_electronic_pen.html> on Jun. 19, 2012, 2012, 5 pages.
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 2012, 4 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/068687, dated Mar. 18, 2015, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/016743, dated Jul. 24, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/056185, dated Dec. 4, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028948, dated Jun. 21, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/029461, dated Jun. 21, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/040968, dated Sep. 5, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/044871, dated Aug. 14, 2013, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/014522, dated Jun. 6, 2014, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/045283, dated Mar. 12, 2014, 19 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/044873, dated Nov. 22, 2013, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/045049, dated Sep. 16, 2013, 9 pages.
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012, Mar. 4, 2009, 2 pages.
“Microsoft Tablet PC”, Retrieved from <http://web.archive.org/web/20120622064335/https://en.wikipedia.org/wiki/Microsoft_Tablet_PC> on Jun. 4, 2014, Jun. 21, 2012, 9 pages.
“Motion Sensors”, Android Developers—retrieved from <http://developer.android.com/guide/topics/sensors/sensors_motion.html> on May 25, 2012, 2012, 7 pages.
“MPC Fly Music Production Controller”, AKAI Professional, Retrieved from: <http://www.akaiprompc.com/mpc-fly> on Jul. 9, 2012, 4 pages.
“NI Releases New Maschine & Maschine Mikro”, Retrieved from <http://www.djbooth.net/index/dj-equipment/entry/ni-releases-new-maschine-mikro/> on Sep. 17, 2012, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/021,448, dated Dec. 13, 2012, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, dated Feb. 19, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,139, dated Mar. 21, 2013, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,202, dated Feb. 11, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, dated Jan. 18, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, dated Apr. 3, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, dated Jul. 19, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/563,435, dated Jun. 14, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, dated Jun. 19, 2013, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/565,124, dated Jun. 17, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/599,763, dated May 28, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/603,918, dated Sep. 2, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/603,918, dated Dec. 19, 2013, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/645,405, dated Jan. 31, 2014, <!Refpages**>.
“Non-Final Office Action”, U.S. Appl. No. 13/645,405, dated Aug. 11, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/647,479, dated Jul. 3, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,195, dated Jan. 2, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, dated Jan. 17, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,272, dated Feb. 12, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,287, dated Jan. 29, 2013, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,304, dated Mar. 22, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,327, dated Mar. 22, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,726, dated Apr. 15, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, dated Mar. 18, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, dated Jul. 1, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, dated Feb. 22, 2013, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,321, dated Feb. 1, 2013, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, dated Feb. 7, 2013, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, dated Jun. 3, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, dated Apr. 24, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, dated Aug. 19, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, dated Dec. 19, 2014, 24 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, dated Apr. 23, 2013, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, dated Feb. 1, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, dated Jun. 5, 2013, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/759,875, dated Aug. 1, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/782,137, dated Jan. 30, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/782,137, dated Oct. 6, 2015, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,749, dated Feb. 12, 2015, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,749, dated May 8, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, dated Jan. 23, 2015, 26 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, dated Jun. 4, 2014, 24 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, dated Feb. 27, 2015, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, dated May 8, 2014, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/033,510, dated Feb. 12, 2015, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/033,510, dated Jun. 5, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/144,876, dated Jun. 10, 2015, 23 pages.
“Notice of Allowance”, U.S. Appl. No. 13/470,633, dated Mar. 22, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,202, dated May 28, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/599,763, dated Feb. 18, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/603,918, dated Jan. 22, 2015, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,195, dated Jul. 8, 2013, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,272, dated May 2, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,304, dated Jul. 1, 2013, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,327, dated Jun. 11, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,726, dated May 31, 2013, 5 pages.
“On-Screen Keyboard for Windows 7, Vista, XP with Touchscreen”, Retrieved from <www.comfort-software.com/on-screen-keyboard.html> on Aug. 28, 2012, Feb. 2, 2011, 3 pages.
“Optical Sensors in Smart Mobile Devices”, ON Semiconductor, TND415/D, Available at <http://www.onsemi.jp/pub_link/Collateral/TND415-D.PDF>, Nov. 2010, pp. 1-13.
“Optics for Displays: Waveguide-based Wedge Creates Collimated Display Backlight”, OptoIQ, retrieved from <http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display.articles.laser-focus-world.volume-46.issue-1.world-news.optics-for_displays.html> on Nov. 2, 2010, Jan. 1, 2010, 3 pages.
“Position Sensors”, Android Developers—retrieved from <http://developer.android.com/guide/topics/sensors/sensors_position.html> on May 25, 2012, 5 pages.
“Reflex LCD Writing Tablets”, retrieved from <http://www.kentdisplays.com/products/lcdwritingtablets.html> on Jun. 27, 2012, 3 pages.
“Restriction Requirement”, U.S. Appl. No. 13/603,918, dated Nov. 27, 2013, 8 pages.
“Restriction Requirement”, U.S. Appl. No. 13/471,139, dated Jan. 17, 2013, 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,304, dated Jan. 18, 2013, 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,726, dated Feb. 22, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,871, dated Feb. 7, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/715,229, dated Aug. 13, 2013, 7 pages.
“Second Written Opinion”, Application No. PCT/US2014/068687, dated Nov. 12, 2015, 6 pages.
“SMART Board™ Interactive Display Frame Pencil Pack”, Available at <http://downloads01.smarttech.com/media/sitecore/en/support/product/sbfpd/400series(interactivedisplayframes)/guides/smartboardinteractivedisplayframepencilpackv12mar09.pdf>, 2009, 2 pages.
“Snugg iPad 3 Keyboard Case—Cover Ultra Slim Bluetooth Keyboard Case for the iPad 3 & iPad 2”, Retrieved from <https://web.archive.org/web/20120810202056/http://www.amazon.com/Snugg-iPad-Keyboard-Case-Bluetooth/dp/B008CCHXJE> on Jan. 23, 2015, Aug. 10, 2012, 4 pages.
“SolRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System”, Retrieved from: < http://www.solarcsystems.com/us_multidirectional_uv_light_therapy_1_intro.html > on Jul. 25, 2012, 2011, 4 pages.
“Tactile Feedback Solutions Using Piezoelectric Actuators”, Available at: http://www.eetimes.com/document.asp?doc_id=1278418, Nov. 17, 2010, 6 pages.
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, Jun. 2012, 2 pages.
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, Mar. 28, 2008, 11 Pages.
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2—retrieved from <http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Virtualization_Getting_Started_Guide/index.html> on Jun. 13, 2012, 24 pages.
“Visus Photonics—Visionary Technologies New Generation of Production Ready Keyboard-Keypad Illumination Systems”, Available at: <http://www.visusphotonics.com/pdf/appl_keypad_keyboard_backlights.pdf>, May 2006, pp. 1-22.
“What is Active Alignment?”, http://www.kasalis.com/active_alignment.html, retrieved on Nov. 22, 2012, Nov. 22, 2012, 2 Pages.
“Write & Learn Spellboard Advanced”, Available at <http://somemanuals.com/VTECH,WRITE%2526LEARN--SPELLBOARD--ADV--71000,JIDFHE.PDF>, 2006, 22 pages.
“Writer 1 for iPad 1 keyboard + Case (Aluminum Bluetooth Keyboard, Quick Eject and Easy Angle Function!)”, Retrieved from <https://web.archive.org/web/20120817053825/http://www.amazon.com/keyboard-Aluminum-Bluetooth-Keyboard-Function/dp/B004OQLSLG> on Jan. 23, 2015, Aug. 17, 2012, 5 pages.
Akamatsu,“Movement Characteristics Using a Mouse with Tactile and Force Feedback”, in Proceedings of International Journal of Human-Computer Studies 45, No. 4, Oct. 1996, 11 pages.
Bathiche,“Input Device with Interchangeable Surface”, U.S. Appl. No. 13/974,749, Aug. 23, 2013, 51 pages.
Block,“DeviceOrientation Event Specification”, W3C, Editor's Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, Jul. 12, 2011, 14 pages.
Boulanger,“Method and System for Controlling of an Ambient Multiple Zones Haptic Feedback on Mobile Devices (W231)”, U.S. Appl. No. 14/298,658, filed Jun. 6, 2014., 34 pages.
Brown,“Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938_105-10304792-1.html> on May 7, 2012, Aug. 6, 2009, 2 pages.
Butler,“SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight_crv3.pdf> on May 29, 2012, Oct. 19, 2008, 4 pages.
Chu,“Design and Analysis of a Piezoelectric Material Based Touch Screen With Additional Pressure and Its Acceleration Measurement Functions”, In Proceedings of Smart Materials and Structures, vol. 22, Issue 12, Nov. 1, 2013, 2 pages.
Crider,“Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/> on May 4, 2012, Jan. 16, 2012, 9 pages.
Das,“Study of Heat Transfer through Multilayer Clothing Assemblies: A Theoretical Prediction”, Retrieved from <http://www.autexrj.com/cms/zalaczone_pliki/5_013_11.pdf>, Jun. 2011, 7 pages.
Dietz,“A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009, Oct. 2009, 4 pages.
Gaver,“A Virtual Window on Media Space”, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012, May 7, 1995, 9 pages.
Glatt,“Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunner.com/˜jgglatt/tutr/touch.htm> on Jun. 11, 2012, 2012, 2 pages.
Gong,“PrintSense: A Versatile Sensing Technique to Support Multimodal Flexible Surface Interaction”, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; retrieved from: http://dl.acm.org/citation.cfm?id=2556288.2557173&coll=DL&dl=ACM&CFID=571580473&CFTOKEN=89752233 on Sep. 19, 2014, Apr. 26, 2014, 4 pages.
Hanlon,“ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/ > on May 7, 2012, Jan. 15, 2006, 5 pages.
Harada,“VoiceDraw: A Hands-Free Voice-Driven Drawing Application for People With Motor Impairments”, In Proceedings of Ninth International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.7211&rep=rep1&type=pdf> on Jun. 1, 2012, Oct. 15, 2007, 8 pages.
Hinckley,“Touch-Sensing Input Devices”, In Proceedings of ACM SIGCHI 1999, May 15, 1999, 8 pages.
Iwase,“Multistep Sequential Batch Assembly of Three-Dimensional Ferromagnetic Microstructures with Elastic Hinges”, Retrieved at <<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1549861>> Proceedings: Journal of Microelectromechanical Systems, Dec. 2005, 7 pages.
Kaufmann,“Hand Posture Recognition Using Real-time Artificial Evolution”, EvoApplications'09, retrieved from <http://evelyne.lutton.free.fr/Papers/KaufmannEvolASP2010.pdf> on Jan. 5, 2012, Apr. 3, 2010, 10 pages.
Kaur,“Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/> on Jul. 27, 2012, Jun. 21, 2010, 4 pages.
Khuntontong,“Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3, Jul. 2009, pp. 152-156.
Lane,“Media Processing Input Device”, U.S. Appl. No. 13/655,065, Oct. 18, 2012, 43 pages.
Li,“Characteristic Mode Based Tradeoff Analysis of Antenna-Chassis Interactions for Multiple Antenna Terminals”, In IEEE Transactions on Antennas and Propagation, Retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6060882>, Feb. 2012, 13 pages.
Linderholm,“Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech_shows_cloth_keyboard_for_pdas.html> on May 7, 2012, Mar. 15, 2002, 5 pages.
Mackenzie,“The Tactile Touchpad”, In Proceedings of the ACM CHI Human Factors in Computing Systems Conference Available at: <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.4780&rep=rep1&type=pdf>, Mar. 22, 1997, 2 pages.
Manresa-Yee,“Experiences Using a Hands-Free Interface”, In Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://dmi.uib.es/˜cmanresay/Research/%5BMan08%5DAssets08.pdf> on Jun. 1, 2012, Oct. 13, 2008, pp. 261-262.
McLellan,“Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 7, 2012, Jul. 17, 2006, 9 pages.
McPherson,“TouchKeys: Capacitive Multi-Touch Sensing on a Physical Keyboard”, In Proceedings of NIME 2012, May 2012, 4 pages.
Miller,“MOGA gaming controller enhances the Android gaming experience”, Retrieved from <http://www.zdnet.com/moga-gaming-controller-enhances-the-android-gaming-experience-7000007550/> on Nov. 20, 2012, Nov. 18, 2012, 9 pages.
Nakanishi,“Movable Cameras Enhance Social Telepresence in Media Spaces”, In Proceedings of the 27th International Conference on Human Factors in Computing Systems, retrieved from <http://smg.ams.eng.osaka-u.ac.jp/˜nakanishi/hnp_2009_chi.pdf> on Jun. 1, 2012, Apr. 6, 2009, 10 pages.
Picciotto,“Piezo-Actuated Virtual Buttons for Touch Surfaces”, U.S. Appl. No. 13/769,356, filed Feb. 17, 2013, 31 pages.
Piltch,“ASUS Eee Pad Slider SL101 Review”, Retrieved from <http://www.laptopmag.com/review/tablets/asus-eee-pad-slider-sl101.aspx>, Sep. 22, 2011, 5 pages.
Post,“E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4, Jul. 2000, pp. 840-860.
Poupyrev,“Ambient Touch: Designing Tactile Interfaces for Handheld Devices”, In Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology Available at: <http://www.ivanpoupyrev.com/e-library/2002/uist2002_ambientouch.pdf>, Oct. 27, 2002, 10 pages.
Poupyrev,“Tactile Interfaces for Small Touch Screens”, In Proceedings of the 16th Annual ACM Symposium on User Interface Softward and Technology, Nov. 2, 2003, 4 pages.
Purcher,“Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012, Jan. 12, 2012, 15 pages.
Qin,“pPen: Enabling Authenticated Pen and Touch Interaction on Tabletop Surfaces”, In Proceedings of ITS 2010, Available at <http://www.dfki.de/its2010/papers/pdf/po172.pdf>, Nov. 2010, pp. 283-284.
Reilink,“Endoscopic Camera Control by Head Movements for Thoracic Surgery”, In Proceedings of 3rd IEEE RAS & EMBS International Conference of Biomedical Robotics and Biomechatronics, retrieved from <http://doc.utwente.nl/74929/1/biorob_online.pdf> on Jun. 1, 2012, Sep. 26, 2010, pp. 510-515.
Rendl,“PyzoFlex: Printed Piezoelectric Pressure Sensing Foil”, In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, Oct. 7, 2012, 10 pages.
Rubin,“Switched On: The Bedeviled Bezel”, Retrieved from: http://www.engadget.com/2011/07/17/switched-on-the-bedeviled-bezel/—on Nov. 19, 2015, Jul. 17, 2011, 4 pages.
Shaw,“Input Device Configuration having Capacitive and Pressure Sensors”, U.S. Appl. No. 14/033,510, filed Sep. 22, 2013, 55 pages.
Staff,“Gametel Android controller turns tablets, phones into portable gaming devices”, Retrieved from <http://www.mobiletor.com/2011/11/18/gametel-android-controller-turns-tablets-phones-into-portable-gaming-devices/#> on Nov. 20, 2012, Nov. 18, 2011, 5 pages.
Sumimoto,“Touch & Write: Surface Computing With Touch and Pen Input”, Retrieved from: <http://www.gottabemobile.com/2009/08/07/touch-write-surface-computing-with-touch-and-pen-input/> on Jun. 19, 2012, Aug. 7, 2009, 4 pages.
Sundstedt,“Gazing at Games: Using Eye Tracking to Control Virtual Characters”, In ACM SIGGRAPH 2010 Courses, retrieved from <http://www.tobii.com/Global/Analysis/Training/EyeTrackAwards/veronica_sundstedt.pdf> on Jun. 1, 2012, Jul. 28, 2010, 85 pages.
Takamatsu,“Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011, Oct. 28, 2011, 4 pages.
Titus,“Give Sensors a Gentle Touch”, http://www.ecnmag.com/articles/2010/01/give-sensors-gentle-touch, Jan. 13, 2010, 6 pages.
Travis,“Collimated Light from a Waveguide for a Display Backlight”, Optics Express, 19714, vol. 17, No. 22, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/OpticsExpressbacklightpaper.pdf> on Oct. 15, 2009, Oct. 15, 2009, 6 pages.
Travis,“The Design of Backlights for View-Sequential 3D”, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx> on Nov. 1, 2010, 4 pages.
Valli,“Notes on Natural Interaction”, retrieved from <http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lecturenotes/valli-2004.pdf> on Jan. 5, 2012, Sep. 2005, 80 pages.
Valliath,“Design of Hologram for Brightness Enhancement in Color LCDs”, Retrieved from <http://www.loreti.it/Download/PDF/LCD/44_05.pdf> on Sep. 17, 2012, May 1998, 5 pages.
Vaucelle,“Scopemate, a Robotic Microscope!”, Architectradure, retrieved from <http://architectradure.blogspot.com/2011/10/at-uist-this-monday-scopemate-robotic.html> on Jun. 6, 2012, Oct. 17, 2011, 2 pages.
Williams,“A Fourth Generation of LCD Backlight Technology”, Retrieved from <http://cds.linear.com/docs/Application%20Note/an65f.pdf>, Nov. 1995, 124 pages.
Xu,“Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors”, IUI'09, Feb. 8-11, 2009, retrieved from <http://sclab.yonsei.ac.kr/courses/10TPR/10TPR.files/Hand%20Gesture%20Recognition%20and%20Virtual%20Game%20Control%20based%20on%203d%20accelerometer%20and%20EMG%20sensors.pdf> on Jan. 5, 2012, Feb. 8, 2009, 5 pages.
Xu,“Vision-based Detection of Dynamic Gesture”, ICTM'09, Dec. 5-6, 2009, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412956> on Jan. 5, 2012, Dec. 5, 2009, pp. 223-226.
Zhang,“Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006, Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>, May 20, 2006, pp. 371-380.
Zhu,“Keyboard before Head Tracking Depresses User Success in Remote Camera Control”, In Proceedings of 12th IFIP TC 13 International Conference on Human-Computer Interaction, Part II, retrieved from <http://csiro.academia.edu/Departments/CSIRO_ICT_Centre/Papers?page=5> on Jun. 1, 2012, Aug. 24, 2009, 14 pages.
“Final Office Action”, U.S. Appl. No. 13/782,137, dated Feb. 10, 2016, 21 pages.
“Final Office Action”, U.S. Appl. No. 14/144,876, dated Feb. 3, 2016, 27 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2014/068687, dated Mar. 11, 2016, 7 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/698,318, dated Jun. 9, 2016, 2 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/025966, dated Jun. 15, 2016, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/782,137, dated Jun. 8, 2016, 22 pages.
“Notice of Allowance”, U.S. Appl. No. 14/698,318, dated May 6, 2016, 13 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/698,318, dated Aug. 15, 2016, 2 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/144,876, dated Jul. 6, 2016, 33 pages.
“Final Office Action”, U.S. Appl. No. 13/782,137, dated Dec. 29, 2016, 24 pages.
“Second Written Opinion”, Application No. PCT/US2016/025966, dated Mar. 14, 2017, 7 pages.
“Foreign Office Action”, CN Application No. 201480009165.3, dated Apr. 12, 2017, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/782,137, dated May 19, 2017, 27 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/269,594, dated Jun. 7, 2017, 27 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2016/025966, dated May 22, 2017, 8 pages.
“Using a Force Touch trackpad”, Retrieved fromhttps://support.apple.com/en-in/HT204352, Nov. 17, 2015, 3 Pages.
“Final Office Action Issued in U.S. Appl. No. 13/647,479”, dated Sep. 17, 2015, 11 Pages.
“Non-Final Office Action Issued in U.S. Appl. No. 13/647,479”, dated Apr. 28, 2015, 11 Pages.
“Final Office Action Issued in U.S. Appl. No. 13/655,065”, dated Nov. 17, 2015, 25 Pages.
“Final Office Action Issued in U.S. Appl. No. 13/759,875”, dated Mar. 27, 2015, 19 Pages.
“Final Office Action Issued in U.S. Appl. No. 13/974,749”, dated Mar. 23, 2016, 22 Pages.
“Non- Final Office Action Issued in U.S. Appl. No. 13/974,749”, dated Dec. 3, 2015, 21 Pages.
“Examiner's Answer to Appeal Brief Issued in U.S. Appl. No. 13/974,994”, dated May 18, 2016, 40 Pages.
“Non Final Office Action Issued in U.S. Appl. No. 13/975,087”, dated May 10, 2016, 19 Pages.
“Non-Final Office Action Issued in U.S. Appl. No. 14/033,290”, dated Dec. 3, 2015, 8 Pages.
“Non-Final Office Action Issued in U.S. Appl. No. 14/033,508”, dated Dec. 3, 2015, 15 Pages.
“Final Office Action Issued in U.S. Appl. No. 14/033,510”, dated Feb. 8, 2016, 28 Pages.
“Non-Final Office Action Issued in U.S. Appl. No. 14/033,510”, dated Oct. 7, 2015, 24 Pages.
“Final Office Action Issued in U.S. Appl. No. 14/591,704”, dated Nov. 25, 2016, 33 Pages.
“Non-Final Office Action Issued in U.S. Appl. No. 14/591,704”, dated Mar. 10, 2017, 26 Pages.
“Non-Final Office Action Issued in U.S. Appl. No. 14/591,704”, dated Jun. 7, 2016, 34 Pages.
“Final Office Action Issued in U.S. Appl. No. 14/697,501”, dated Apr. 18, 2016, 14 Pages.
“Non Final Office Action Issued in U.S. Appl. No. 14/697,501”, dated Sep. 29, 2015, 11 Pages.
“Final Office Action Issued in U.S. Appl. No. 14/729,793”, dated Dec. 1, 2017, 17 Pages.
“Non-Final Office Action Issued in U.S. Appl. No. 14/729,793”, dated Mar. 31, 2017, 14 Pages.
“Non-Final Office Action Issued in U.S. Appl. No. 15/004,423”, dated Jun. 29, 2017, 17 Pages.
“Non-Final Office Action Issued in U.S. Appl. No. 15/283,913”, dated Feb. 10, 2017, 20 Pages.
“First Office Action Issued in Chinese Patent Application No. 201210085821.0”, dated May 5, 2016, 18 Pages.
“First Office Action and Search Report Issued in Chinese Patent Application No. 201310316114.2”, dated Sep. 29, 2015, 13 Pages.
“Second Office Action Issued in Chinese Patent Application No. 201310316114.2”, dated Apr. 18, 2016, 10 Pages.
“Forth Office Action Issued in Chinese Patent Application No. 201480009165.3”, dated Aug. 16, 2019, 11 Pages.
“Office Action Issued in Chinese Patent Application No. 201480009165.3”, dated Nov. 2, 2018, 12 Pages.
“Second Office Action Issued in Chinese Patent Application No. 201480009165.3”, dated Dec. 1, 2017, 14 Pages.
“Third Office Action Issued in Chinese Patent Application No. 201480009165.3”, dated Jun. 4, 2018, 19 Pages.
Betters, Elyse, “What is Force Touch? Apple's Haptic Feedback Technology Explained”, Retrieved from https://web.archive.org/web/20150313103330/http://www.pocket-lint.com/news/133176-what-is-force-touch-apple-s-haptic-feedback-technology-explained, Mar. 11, 2015, 8 Pages.
De Rosa, Aurelio, “HTML5: Vibration API”, Retrieved fromhttps://code.tutsplus.com/tutorials/html5-vibration-api—mobile-22585, Mar. 10, 2014, 11 Pages.
Kadlecek, Petr, “Overview of Current Developments in Haptic APIs”, In Proceedings of 15th Central European Seminar on Computer Graphics, May 2, 2011, 8 Pages.
Odegard, “My iPad MagPad Concept”, Retrieved from http://www.pocketables.com/2011/02/my-ipad-magpad-concept.html, Feb. 26, 2011, 8 Pages.
“Second Written Opinion Issued in PCT Application No. PCT/US2014/016151”, dated Jan. 29, 2015, 6 Pages.
“International Preliminary Report on Patentability Issued in PCT Application No. PCT/US2014/016743”, dated Sep. 7, 2015, 7 Pages.
“International Preliminary Report on Patentability Issued in PCT Application No. PCT/US2014/056185”, dated Dec. 23, 2015, 7 Pages.
“Second Written Opinion Issued in PCT Application No. PCT/US2014/056185”, dated Sep. 15, 2015, 5 Pages.
“International Preliminary Report on Patentability Issued in PCT Application No. PCT/US2015/067754”, dated Jan. 10, 2017, 10 Pages.
“International Search Report and Written Opinion Issued in PCT Application No. PCT/US2015/067754”, dated Apr. 7, 2016, 13 Pages.
“Second Written Opinion Issued in PCT Application No. PCT/US2015/067754”, dated Nov. 25, 2016, 8 Pages.
“International Search Report and Written Opinion Issued in PCT Application No. PCT/US2016/028191”, dated Jun. 29, 2016, 14 Pages.
“International Preliminary Report on Patentability Issued in PCT Application No. PCT/US2016/031699”, dated Feb. 22, 2017, 6 Pages.
“International Search Report and Written Opinion Issued in PCT Application No. PCT/US2016/031699”, dated Nov. 11, 2016, 23 Pages.
“International Search Report and Written Opinion Issued in PCT Application No. PCT/US2017/013583”, dated Apr. 19, 2017, 13 Pages.
“Written Opinion Issued in PCT Application No. PCT/US2017/013583”, dated Aug. 2, 2018, 7 Pages.
Rendl, et al., “Presstures: Exploring Pressure-Sensitive Multi-Touch Gestures on Trackpads”, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Apr. 26, 2014, pp. 431-434.
“First Office Action and Search Report Issued in Chinese Patent Application No. 201680024928.0”, dated Oct. 18, 2019, 17 Pages.
Related Publications (1)
Number Date Country
20140230575 A1 Aug 2014 US