Provided herein are compositions, systems, kits, and methods for detecting cardiovascular disease, risk of cardiovascular disease, and/or reverse cholesterol transport potential in a subject based on the levels of phosphatidylinositol (4,5) bis-phosphate, herein abbreviated as PIP2, a phospholipid in the subject.
HDL plays a role in many cellular pathways via diverse mechanisms, including anti-thrombotic, vasoprotective, anti-inflammatory, and cholesterol efflux activities. HDL assembly involves the cellular lipidation of extracellular apolipoprotein A-I (apoA1) by the membrane protein ABCA1. The importance of the ABCA1 pathway in generating nascent HDL (nHDL) is demonstrated in human patients carrying mutations in ABCA1 (Tangier disease) who have extremely low levels of plasma HDL. These patients have increased accumulation of cholesterol in peripheral tissues, resulting in premature atherosclerotic vascular disease. Although recent trials of HDL-cholesterol (HDL-C) raising drugs have not appeared to prevent cardiovascular events, a consensus is building that it is HDL function in reverse cholesterol transport (RCT), rather than the levels of HDL-C, that is protective against cardiovascular disease. For example, cholesterol efflux capacity of apoB-depleted serum is inversely associated with both prevalent and incident cardiovascular disease, independent of HDL-C levels.
The mechanism of cellular lipidation of apoA1 by ABCA1 is not understood at the molecular level with various models discussed in recent reviews. ABCA1 has two well-established intermediate activities leading to apoA1 lipidation: 1) the outward translocation or “flopping” of PS to cell surface, and 2) apoA1 binding to the cell surface. We recently characterized a third activity, the unfolding of N-terminal hairpin of apoA1 on the cell surface. Interestingly, apoA1 binding to the cell surface is independent of the PS floppase activity of ABCA1, as the W590S-ABCA1 Tangier disease mutation is defective in PS floppase but not in apoA1 binding, while the C1477R-ABCA1 Tangier disease mutant is defective in apoA1 binding but not in PS floppase activity. It is important to note that both W590S and C1477R have impaired apoA1 lipidation, indicating that PS floppase and apoA1 cell surface binding are both required for efficient transfer of cellular lipids to apoA1 during nHDL biogenesis.
Several models have been proposed to explain the mechanism responsible for the specific binding of apoA1 to ABCA1-expressing cells: a) apoA1 binding to cell surface phosphatidylserine (PS) due to ABCA1 PS floppase activity; b) direct interaction between apoA1 and ABCA1 as demonstrated by protein cross-linking; c) low-capacity binding of apoA1 to ABCA1 and high-capacity binding of apoA1 to membrane lipids; d) apoA1 interaction with membrane protrusions due to ABCA1 bulk phospholipid outward translocase (floppase) activity. Recent solid-phase binding studies from the Molday lab showed no direct binding between apoA1 and purified ABCA1 in the presence or absence of several classes of phospholipids including PS. Since these experiments were carried using immobilized ABCA1, the possibility of apoA1 and ABCA1 direct interaction on cell surface cannot be ruled out.
The major phospholipid constituents of HDL are phosphatidylcholine (PC), PS, phosphatidylethanolamine (PE), and phosphatidylinositol (PI). Unlike other structural phospholipids, phosphatidylinositol phosphates (PIPs) are minor components of cellular membranes, but they serve as critical integral signaling molecules for multiple pathways. PI(4,5)bis-phosphate (PIP2) is the major cellular PIP species and it is predominantly found on the inner leaflet of the plasma membrane where it play roles in many cellular processes such as membrane ruffling, endocytosis, exocytosis, protein trafficking and receptor mediated signaling. The PIP2 binds to various effector proteins through interacting with pleckstrin homology (PH) domains thereby regulating the effector protein cellular localization and activity. PIP2 synthesis is tightly regulated by Pl-kinases, such as PI4P-5 kinase, and PIP phosphatases, such as PTEN.
Provided herein are compositions, systems, kits, and methods for detecting cardiovascular disease, risk of cardiovascular disease, and/or reverse cholesterol transport potential in a subject based on the levels of phosphatidylinositol (4,5) bis-phosphate, herein abbreviated as PIP2, a phospholipid in the subject.
In some embodiments, provided herein are methods for using circulating PIP2 phospholipid as a marker of HDL function and a diagnostic for major adverse cardiovascular events. It was discovered that phosphatidylinositol (4.5) bis-phosphate, hereafter called PIP2, plays an essential role in HDL biogenesis, and that it is carried in the circulation on HDL in both humans and mice. Furthermore, PIP2 carried on HDL can be delivered to target cells, which is in part mediated by the HDL receptor SR-BI. Based on these discoveries, in certain embodiments, the circulating levels of PIP2 can be measured (e.g., using a commercial ELISA assay) and such levels used as: 1) a surrogate for HDL function in reverse cholesterol transport; 2) An indicator of the cholesterol acceptor activity of HDL; 3) a diagnostic to predict risk for future major adverse cardiovascular events, such as myocardial infarction, stroke, the need for revascularization, and coronary or cerebral sudden death; 4) an indicator for drug treatment and measure of drug efficacy.
In some embodiments, provided herein are methods for performing an activity based on concentration level of PIP2 in a biological sample from a subject comprising: a) determining the concentration level (e.g., μg/ml or μM) of total PIP2 in a biological sample from a subject, and/or determining the concentration level (e.g., μg/ml or μM) of HDL-associated PIP2 in the biological sample from the subject; and b) performing at least one of the following: i) identifying decreased (e.g., compared to control levels from disease free or general population) total or HDL-associated PIP2 levels in the biological sample, and treating the subject with a CVD therapeutic agent; ii) generating and/or transmitting a report that indicates the total or HDL-associated PIP2 levels are decreased (e.g., compared to control levels from disease free or general population) in the sample, and that the subject is in need of a CVD therapeutic agent; iii) generating and/or transmitting a report that indicates the total or HDL-associated PIP2 levels are decreased (e.g., compared to control levels from disease free or general population) in the sample, and that the subject has or is at risk of cardiovascular disease (e.g., atherosclerotic CVD) or complication of cardiovascular disease; iv) generating and/or transmitting a report that indicates the total or HDL-associated PIP2 levels are elevated (e.g., compared to control levels from disease free or general population) in the sample, and that the subject has increased reverse-cholesterol transport function; and v) characterizing the subject as having CVD or having an increased risk for having or developing CVD (e.g., atherosclerotic disease).
In certain embodiments, the CVD therapeutic agent is selected from the group consisting of: an antibiotic, a statin, a probiotic, an alpha-adrenergic blocking drug, an angiotensin-converting enzyme inhibitor, an angiotensin receptor antagonist, an antiarrhythmic drug, an anticoagulant, an antiplatelet drug, a thrombolytic drug, a beta-adrenergic blocking drug, a calcium channel blocker, a brain acting drug, a cholesterol-lowering drug, a TMEM55b inhibitor, a OCRL1 inhibitor, a digitalis drug, a diuretic, a nitrate, a peripheral adrenergic antagonist, and a vasodilator. In particular embodiments, the subject is a human. In other embodiments, the biological sample is a plasma, serum, blood, urine, or similar sample.
In further embodiments, the biological sample is treated to isolate HDL particles, and treating the HDL sample or the unfractionated sample with solvents to extract PIP2 away from proteins in the HDL of unfractionated sample. In other embodiments, the biological sample is treated with ultracentrifugation or apoB precipitation reagent to generate the HDL sample, wherein the HDL sample is free of detectable LDL, IDL, and VLDL. In additional embodiments, the HDL sample or the unfractionated sample is treated with weak detergents to cause PIP2 to dissociate away from HDL or sample proteins.
In certain embodiments, the cardiovascular disease or complication of cardiovascular disease is one or more of the following: non-fatal myocardial infarction, stroke, angina pectoris, transient ischemic attacks, congestive heart failure, aortic aneurysm, aortic dissection, and death. In other embodiments, the risk of cardiovascular disease is a risk of having or developing cardiovascular disease within the ensuing three years.
In some embodiments, provided herein are systems comprising: a) a report for a subject indicating that the subject has decreased total or HDL-associated PIP2 levels; and b) a CVD therapeutic agent.
In certain embodiments, provided herein are methods comprising: a) identifying a subject as having reduced levels of PIP2, and b) treating the subject with a CVD therapeutic agent. In further embodiments, the identifying comprises receiving the report.
In some embodiments, provided herein are methods for evaluating the effect of a cardiovascular disease (CVD) therapeutic agent on a subject comprising: a) determining a first level (e.g., concentration) of PIP2 in a bodily sample (e.g., plasma) taken from a subject (e.g., human subject) prior to administration of a CVD therapeutic agent (e.g., lipid lowering agent), and b) determining a second level of PIP2 in a corresponding bodily fluid taken from the subject following administration of the CVD therapeutic agent.
In certain embodiments, an increase in the first level to the second level is indicative of a positive effect of the CVD therapeutic agent on cardiovascular disease in the subject. In further embodiments, the CVD therapeutic agent comprises a lipid reducing agent (e.g., a statin). In further embodiments, the CVD therapeutic agent is selected from the group consisting of: an anti-inflammatory agent, a TMEM55b inhibitor, a OCRL1 inhibitor, an insulin sensitizing agent, an anti-hypertensive agent, an anti-thrombotic agent, an anti-platelet agent, a fibrinolytic agent, a direct thrombin inhibitor, an ACAT inhibitor, a CETP inhibitor, and a glycoprotein IIb/IIIa receptor inhibitor. In particular embodiments, the CVD is atherosclerotic CVD. In other embodiments, the subject has been diagnosed as having CVD. In further embodiments, the subject has been diagnosed as being at risk of developing CVD. In certain embodiments, the bodily sample is a plasma, blood, serum, urine, or other sample. In additional embodiments, the determining in step a) and/or step b) comprises contacting the bodily sample with an anti-PIP2 antibody (e.g., ELISA or immunoturbometric assay). In other embodiments, the determining in step a) and/or step b) further comprises spectrophotometrically detecting the anti-PIP2 antibody. In certain embodiments, the anti-PIP2 antibody is a monoclonal antibody (e.g., anti-PIP2 antibody 2C11 from Abcam, Cambridge, Mass.).
In certain embodiments, provided here are methods comprising: administering a transmembrane protein 55B (Tmem55b) inhibitor and/or an inositol polyphosphate-5-phosphatase (OCRL1) inhibitor to a subject, wherein said subject has, or is suspected of having, cardiovascular disease (e.g., atherosclerotic disease).
In particular embodiments, the Tmem55b inhibitor comprises a Tmem55b siRNA sequence (e.g., SEQ ID NOS:1-3), a Tmem55b antisense sequence, a small molecule, and/or an anti-Tmem55b antibody or antigen binding fragment thereof (e.g., monoclonal antibody or antigen binding portion thereof). In further embodiments, the OCRL1 inhibitor comprises an OCLR1 siRNA sequence (e.g., SEQ ID NOS:4-6), an OCRL1 antisense sequence, a small molecule (e.g., YU142717, YU144805, or YU1422670), and/or an anti-OCRL1 antibody or antigen binding fragment thereof (e.g., monoclonal antibody or antigen binding portion thereof). In certain embodiments, Tmem55b inhibitor and/or said OCLR1 inhibitor is administered at a level to increase the PIP2 levels in said subject at least 10% (e.g., at least 10% . . . 20% . . . 30% . . . 40% . . . 50% . . . 75% . . . or 200%).
As used herein, the terms “cardiovascular disease” (CVD) or “cardiovascular disorder” are terms used to classify numerous conditions affecting the heart, heart valves, and vasculature (e.g., veins and arteries) of the body and encompasses diseases and conditions including, but not limited to arteriosclerosis, atherosclerosis, myocardial infarction, acute coronary syndrome, angina, congestive heart failure, aortic aneurysm, aortic dissection, iliac or femoral aneurysm, pulmonary embolism, primary hypertension, atrial fibrillation, stroke, transient ischemic attack, systolic dysfunction, diastolic dysfunction, myocarditis, atrial tachycardia, ventricular fibrillation, endocarditis, arteriopathy, vasculitis, atherosclerotic plaque, vulnerable plaque, acute coronary syndrome, acute ischemic attack, sudden cardiac death, peripheral vascular disease, coronary artery disease (CAD), peripheral artery disease (PAD), and cerebrovascular disease.
As used herein, the term “atherosclerotic cardiovascular disease” or “disorder” refers to a subset of cardiovascular disease that include atherosclerosis as a component or precursor to the particular type of cardiovascular disease and includes, without limitation, CAD, PAD, cerebrovascular disease. Atherosclerosis is a chronic inflammatory response that occurs in the walls of arterial blood vessels. It involves the formation of atheromatous plaques that can lead to narrowing (“stenosis”) of the artery, and can eventually lead to partial or complete closure of the arterial opening and/or plaque ruptures. Thus atherosclerotic diseases or disorders include the consequences of atheromatous plaque formation and rupture including, without limitation, stenosis or narrowing of arteries, heart failure, aneurysm formation including aortic aneurysm, aortic dissection, and ischemic events such as myocardial infarction and stroke. In certain embodiments of this disclosure, the subject has atherosclerotic cardiovascular disease.
The terms “individual,” “host,” “subject,” and “patient” are used interchangeably herein, and generally refer to a mammal, including, but not limited to, primates, including simians and humans, equines (e.g., horses), canines (e.g., dogs), felines, various domesticated livestock (e.g., ungulates, such as swine, pigs, goats, sheep, and the like), as well as domesticated pets and animals maintained in zoos. In some embodiments, the subject is specifically a human subject.
Provided herein are compositions, systems, kits, and methods for detecting cardiovascular disease, risk of cardiovascular disease, and/or reverse cholesterol transport potential in a subject based on the levels of phosphatidylinositol (4,5) bis-phosphate, herein abbreviated as PIP2, a phospholipid in the subject.
While the present invention is not limited to any particular mechanism, and an understanding of the mechanism is not necessary to practice the invention, work conducted during the development of the present disclosure discovered that: 1) Apolipoprotein A1 (apoA1) binds specifically to PIP2 with a dissociation constant of ˜100 nM; 2) PIP2 on liposomes increases their solubilization by apoA1; 3) ABCA1, the cell membrane protein that generates nascent HDL, transfers PIP2 from the inner to the outer leaflet of the plasma membrane; 4) The ability of ABCA1 to translocate PIP2 to the outer leaflet of the plasma membrane is independent of ABCA1's ability to translocate phosphatidylserine (PS) to the outer leaflet of the plasma membrane; 5) The PIP2 on the outer leaflet of the plasma membrane, due to ABCA1, is responsible and required for the observed binding of apoA1 to ABCA1 expressing cells, as well as for cholesterol efflux to apoA1; 6) PIP2 is effluxed from ABACI expressing cells to apoA1 containing media; 7) The PIP2 levels in mouse blood are dependent upon the expression level of apoA1 and are associated with HDL-C levels. Comparison of plasma PIP2 in the apoA1 knockout and over expressing mice shows that most plasma PIP2 is on HDL and not associated with albumin or other plasma proteins; 8) In human plasma almost all of the circulating PIP2 is associated with HDL, showing that there is not very much exchange of PIP2 onto LDL particles; and 9) PIP2 on HDL can be taken up by target cells, which can be partially mediated by the HDL receptor, SR-B1.
Although HDL-cholesterol (HDL-C) is inversely associated with cardiovascular disease (CVD) in epidemiological studies, recent drug trials and a genetic method call Mendelian randomization have failed to demonstrate that HDL-C is causally protective against CVD. Instead, there is a consensus building that it is HDL function which is causally protective, which is not captured by static measurements of HDL-C. As HDL participates in the reverse cholesterol transport pathway, this is one function of HDL that has been associated with decreased CVD risk, as measured by the cholesterol acceptor activity of apoB-depleted serum using cholesterol labeled cells in culture. This is a cumbersome assay, not easily scaled up. The present disclosure proposes that plasma PIP2 levels serve as a surrogate for HDL's function in reverse cholesterol transport and are useful as a biomarker that be used to predict CVD risk.
In this disclosure, it was demonstrated that PIP2 is associated with human HDL and that one can measure its levels using, for example, a commercially available ELISA assay or other detection methods (e.g., mass spectrometry). In certain embodiments, the present invention may be used as a diagnostic to predict CVD risk, to help select patients for drug therapy, and to determine the efficacy of drug treatments.
In certain embodiments, the CVD therapeutic agent comprises an antibiotic. Examples of such antibiotics include, but are not limited to, a broad spectrum antibiotic, Ampicillin; Bacampicillin; Carbenicillin Indanyl; Mezlocillin; Piperacillin; Ticarcillin; Amoxicillin-Clavulanic Acid; Ampicillin-Sulbactam; Benzylpenicillin; Cloxacillin; Dicloxacillin; Methicillin; Oxacillin; Penicillin G; Penicillin V; Piperacillin Tazobactam; Ticarcillin Clavulanic Acid; Nafcillin; Cephalosporin I Generation; Cefadroxil; Cefazolin; Cephalexin; Cephalothin; Cephapirin; Cephradine; Cefaclor; Cefamandol; Cefonicid; Cefotetan; Cefoxitin; Cefprozil; Ceftmetazole; Cefuroxime; Loracarbef; Cefdinir; Ceftibuten; Cefoperazone; Cefixime; Cefotaxime; Cefpodoxime proxetil; Ceftazidime; Ceftizoxime; Ceftriaxone; Cefepime; Azithromycin; Clarithromycin; Clindamycin; Dirithromycin; Erythromycin; Lincomycin; Troleandomycin; Cinoxacin; Ciprofloxacin; Enoxacin; Gatifloxacin; Grepafloxacin; Levofloxacin; Lomefloxacin; Moxifloxacin; Nalidixic acid; Norfloxacin; Ofloxacin; Sparfloxacin; Trovafloxacin; Oxolinic acid; Gemifloxacin; Pefloxacin; Imipenem-Cilastatin Meropenem; Aztreonam; Amikacin; Gentamicin; Kanamycin; Neomycin; Netilmicin; Streptomycin; Tobramycin; Paromomycin; Teicoplanin; Vancomycin; Demeclocycline; Doxycycline; Methacycline; Minocycline; Oxytetracycline; Tetracycline; Chlortetracycline; Mafenide; Silver Sulfadiazine; Sulfacetamide; Sulfadiazine; Sulfamethoxazole; Sulfasalazine; Sulfisoxazole; Trimethoprim-Sulfamethoxazole; Sulfamethizole; Rifabutin; Rifampin; Rifapentine; Linezolid; Streptogramins; Quinopristin Dalfopristin; Bacitracin; Chloramphenicol; Fosfomycin; Isoniazid; Methenamine; Metronidazol; Mupirocin; Nitrofurantoin; Nitrofurazone; Novobiocin; Polymyxin; Spectinomycin; Trimethoprim; Colistin; Cycloserine; Capreomycin; Ethionamide; Pyrazinamide; Para-aminosalicyclic acid; and Erythromycin ethylsuccinate. In certain embodiments, an OCRL1 inhibitor is employed to treat cardio vascular disease.
The present disclosure is not limited by the type of inhibitor. In certain embodiments, the OCRL1 inhibitor is YU142717, YU144805, or YU142670 as described in Pirruccello et al., ACS Chem Biol. 2014 Jun. 20; 9(6): 1359-1368, which is herein incorporated by reference in its entirety. The structures of YU142717, YU144805, or YU142670 are shown below:
In other embodiments, the OCRL1 inhibitor comprises an siRNA sequence, such as one selected from SEQ ID NOS:4-6, which are shown below:
Human OCRL siRNA sequences (start is relative to coding sequence start site in mRNA):
In some embodiments, a Tmemb55 inhibitor is employed to treat cardiovascular disease in a subject. In particular embodiments, the Tmem55b inhibitor comprises an siRNA sequence, such as one selected from SEQ ID NOS:1-3, which are shown below:
Human TMEM55B siRNA sequences (start is relative to coding sequence start site in mRNA):
The following examples are illustrative and not intended to limit the scope of the present invention.
High density lipoprotein (HDL) assembly involves the cellular lipidation of apolipoprotein A-I (apoA1) by the membrane protein ATP cassette binding protein A1 (ABCA1)1. ABCA1 has two known intermediate activities in HDL biogenesis, the translocation of phosphatidylserine (PS) from the inner to outer leaflet of the cell membrane and the cellular binding of apoA12, 3. Whether apoA1 binds directly to ABCA1 or to a lipid on the cell surface is controversial and several models have been proposed for this binding1-5. ApoA1 can be chemically cross linked to ABCA16; but, purified epitope tagged ABCA1 does not bind to apoA1 in the presence or absence of several classes of phospholipids including PS4. Thus, the mechanism by which ABCA1 mediates apoA1 binding and the assembly of nascent HDL is not well characterized. Here we show that apoA1 binds specifically to phosphatidylinositol (4,5) bis-phosphate (PIP2), and that ABCA1 translocates PIP2 to the outer leaflet of the cell membrane. Using specific ABCA1 mutations it was found that the PIP2 translocation of ABCA1 is independent from its PS translocation activity. It was also found that cell surface PIP2 is required to mediate apoA1 binding and cholesterol efflux. Furthermore, it was discovered that PIP2 is effluxed from cells to apoA1, it is associated with HDL in plasma, and PIP2 on HDL is taken up by target cells in an SR-BI dependent manner. While the present invention is not limited to any particular mechanism, and an understanding of the mechanism is not necessary to practice the invention, it is believed that the PIP2 translocase activity of ABCA1 is crucial for cellular binding of apoA1, lipid efflux, and HDL biogenesis, as well as that PIP2 resides on HDL and is effluxed and taken up similar to other HDL lipids.
ABCA1 is required for HDL biogenesis. It remodels the plasma membrane, translocating PS to the cell surface, and promoting apoA1 binding. To determine the lipid-binding profile of lipid-free apoA1, lipid-protein overlay assays were performed using phospholipid/phosphatidylinositol phosphate (PIP) and sphingolipid membrane strips. ApoA1 showed direct binding only to PIPs containing 2 or 3 headgroup phosphates and not to other lipids including phosphatidylcholine (PC) or PS (
Since PI(4,5)P2 is a major cellular PIP species that is particularly enriched at the cell surface8, 9, further experiments were performed using this PIP2 species. Binding of apoA1 to immobilized PIP2 was demonstrated by surface plasmon resonance (SPR) (
It was found that all of the efflux competent apoA1 isoforms were capable of binding to PIP2 in an SPR study, but that the C-terminal deleted isoform was not able to bind to PIP2, mirroring its defective efflux acceptor activity (
apoA1 binding to PIP2 in a lipid environment was confirmed via a liposome floatation assay. ApoA1 was added to palmitoyloleoyl-phosphatidylcholine (POPC) liposomes with or without PIP2 (5 mole %) in 30% sucrose, and after step-gradient ultracentrifugation it was observed increased co-migration of apoA1 with the PIP2 liposomes vs. control liposomes in the top 0% sucrose gradient fraction (
The addition of lipid-free apoA1 solubilized the PIP2 containing MLVs much faster and to a greater extent than the DMPC-only MLVs (
PIP2 is thought to be localized at the inner leaflet of plasma membrane where it plays important roles in targeting proteins to the membrane, membrane trafficking, and signal transduction18, 19. Since ABCA1 has well defined PS outward translocase (floppase) activity3, the possibility was considered that ABCA1 might act as a PIP2 floppase as well. Increased levels of cell surface PIP2 were detected in RAW264.7 cells (
To probe the consequences of the ABCA1-mediated increase in cell surface PIP2, the effect of PI-PLC treatment on apoA1 binding and cholesterol efflux was determined. In both RAW264.7 and stably transfected HEK293 cells, PI-PLC treatment greatly diminished ABCA1-induced apoA1 binding (
The PS floppase and apoA1 cellular binding activities of ABCA1 can be distinguished from each other using naturally occurring Tangier disease-associated mutations in the first and second large extracellular domains of ABCA12, 22-24. Cells expressing the W590S ABCA1 isoform are deficient in PS floppase activity but display normal apoA1 binding activity, while cells expressing the C1477R ABCA1 isoform have normal PS floppase activity but are deficient in apoA1 binding. To evaluate if the PS and PIP2 floppase activities of ABCA1 are independent of each other, stably transfected HEK293 cells with equal expression of WT-ABCA1-GFP, W590S-ABCA1-GFP, or C1477R-ABCA1-GFP GFP22 were analyzed for cholesterol efflux, cell surface exposure of PS and PIP2, as well as apoA1 binding (
Cellular PIP2 can be generated through de novo phosphorylation of PI4P by PI4P-5 kinase, or via dephosphorylation of PIP3 by PTEN; and, PIP2 can be depleted by the phosphatase activity of Tmem55b26′27 (
To determine if PIP2 could be effluxed from cells along with other phospholipids and cholesterol during HDL biogenesis cells were labeled with [3H]myo-inositol, and after chasing with apoA1, the conditioned media radioactivity in extracted lipids was measured. Efflux of inositol labeled lipids was increased upon ABCA1 induction in both RAW264.7 and BHK cells (
The conditioned media obtained from RAW264.7 and BHK cells contained elevated PIP2 only in the ABCA1-induced cells (
To determine if PIP2 can be reverse transported from macrophages to the plasma, a modified reverse cholesterol transport study was performed, where macrophages were labeled in culture with [3H]myo-inositol and implanted s.c. into A1 KO and WT mice. Plasma was collected 3 days post implantation, and radioactivity in PIP2 was determined after pulldown with a tagged PIP2 binding protein. Labeled PIP2 was recovered in the plasma, with a higher % of the injected radioactivity found in the WT hosts (
Several models have been proposed for the mechanism of apoA1 binding to ABCA1 expressing cells that initiates nascent HDL assembly: 1) direct interaction between apoA1 and ABCA1; 2) low affinity interaction of apoA1 with ABCA1 followed by high affinity interaction with membrane lipids; 3) ApoA1 interaction with highly curved membrane protrusions caused by the PC floppase activity of ABCA1; and 4) ApoA1 binding to cell surface PS due to the PS floppase activity of ABCA15, 28. Here, it is demonstrated that apoA1 binding to ABCA1 expressing cells is mediated by the PIP2 floppase activity of ABCA1, and this was put into context in a model for nascent HDL formation (
The PS floppase activity, mediated by the first large extracellular domain, promotes membrane remodeling that makes the membrane more susceptible to detergents such as sodium taurocholate or amphipathic proteins such as apoA122, 24, 25. The PIP2 floppase activity mediated by the second large extracellular domain, promotes apoA1 binding to the cell surface. Once bound to the cell, the PIP2-apoA1 interaction favors apoA1 monomerization that is thought to promote its insertion into the membrane17. It was previously demonstrated that ABCA1-mediated cellular binding of apoA1 promotes the partial unfolding of the apoA1 N-terminal helical hairpin on the cell surface22. This unfolded apoA1 can then insert into the cell membrane where it can microsolubilize cellular lipids and assemble them into nascent HDL that is released from the cell. Thus, both PS and PIP2 floppase activities are required for maximal cholesterol efflux. ApoA1 is the most abundant apolipoprotein in plasma with normal levels of 1-2 mg/ml. Any weak detergent activity of apoA1 could be detrimental to the host. While the present invention is not limited to any particular mechanism, and an understanding of the mechanism is not necessary to practice the invention, it is speculated that the ABCA1 PIP2 floppase activity may have co-evolved with PIP2 binding activity of apoA1 as a mechanism to prevent the promiscuous detergent activity of apoA1, allowing apoA1 to solubilize lipids from cells under tight control by ABCA1 expression. In addition, the discovery of circulating PIP2 on HDL and its delivery to target cells may open up a new area of HDL-mediated signal transduction that might explain many of the pleiotropic effects of HDL on various cell types.
Materials:
PIP strips (P-6001), Sphingo strips (S-6000), PIK-93 inhibitor (B0306), PTEN inhibitor SF1670 (B-0350), PI (4,5)P2 (P-4524), PI (4,5)P2 ELISA kit (K-4500), PI (4)P Grip (G0402), PI (4,5)P2 Grip (G4501), biotin-PIP2 (C-45B6), fatty acid labeled-bodipy PIP2 (C-45F16a), and FITC conjugated Anti-PIP2 antibody(Z-G045) were from Echelon Biosciences. HRP-conjugated GST antibody was from Sigma. Alexa647-Antibody labeling kit was from Molecular Probes (Cat No. A-20186). Purified recombinant human proteins apoA2 (TP721104) and apoE (TP723016) were from Origene. [3H]-labeled PIP2 (NET895005UC), myo-inositol (NET1177001MC), and cholesterol (NET13900) were from Perkin Elmer. ApoA1 was purified form human plasma29, and dialyzed against PBS. Recombinant human apoA1 and truncation mutations were prepared as previously described30. RAW264.7 cells were from ATCC. Mifepristone ABCA1-inducible BHK cells, as previously described31 were obtained from Chongren Tang, University of Washington. Mifepristone SR-BI-inducible BHK cells, as previously described32, were obtained from Alan Remaley, NIH. ABCA1-GFP and the mutant isoform stably transfected HEK cells were as previously described22.
Protein-Lipid Overlay Assays:
The PIP strip and sphingo strip membranes were blocked with 5% milk powder in PBS-Tween for 30 min, and apoA1 was added at 50 μg/ml and incubated at room temperature for 2 hr. The bound protein was detected by using anti human apoA1 goat (Meridian Life Science, #K45252G) antibody and HRP conjugated anti-goat antibody. HRP was visualized using ECL reagent (Pierce) and exposure to x-ray film. Lipids extracted from conditioned media or cells were dissolved in methanol:chloroform:12N HCl (40:80:1) and spotted onto nitrocellulose membranes. After treating with casein blocker (Thermo scientific; #37528), the membranes were incubated with GST-PLCδ-PH (1 μg/ml, Echelon Biosciences) to detect PIP2, or with GST-SiDC-3C (1 μg/ml, Echelon Biosciences) to detect PI4P. The binding interactions were detected using HRP-conjugated anti-GST antibody (Sigma) and ECL chemiluminescence.
Surface Plasmon Resonance:
Binding kinetic of PIP2 with different apolipoproteins was analyzed using a Biacore3000 instrument. Either biotinylated apoA1 or biotinylated PIP2 was immobilized on a streptavidin (SA) sensor chip (GE Healthcare). The immobilized apoA1 or PIP2 was stable over the course of the experiment and baseline drift was <10 response units (RU)/h after the washing with Hepes buffered saline (HBS) buffer. Different concentrations of apoA1 or PIP2 were injected using the KINJECT procedure at flow-rate of 10 μl/min and dissociation was monitored by injecting EMS buffer. The injections were performed in triplicate for each ligand concentration. For comparing binding kinetics of PIP2 with apoA1, apoA2 and apoE, these proteins were immobilized by covalent coupling on a CMS sensor chip (GE Healthcare) using EDC-NHS reagents. PIP2 was injected as described above. Corrected response data were fitted with BIAevaluation software version 4.01, and Kd values were calculated.
Fluorescence Anisotropy:
Increasing concentrations of apoA1 were incubated with 100 nM fatty acid-labeled bodipy PIP2 in a quartz cuvette at 25° C. Relative anisotropy was determined using polarized filters with excitation at 503 nm and emission at 513 nm in a Perkin Elmer spectrofluorimeter. The Kd was determined as the EC50 by non-linear regression of the log apoA1 concentration. A similar Kd value was obtained using 400 nM PIP2.
Liposome Clearance Assay:
1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) (Avanti Polar Lipids) with or without 5% PIP2 were dissolved in chloroform:methanol (2:1 v/v) and were dried in a stream of nitrogen and placed in vacuum overnight. DMPC or POPC was rehydrated in PBS by five cycles of freeze-thaw and extensive vortexing to form multilamellar vesicles (MLVs) at 5 mg/ml. These MLVs were subjected to apoA1 solubilization assay. Briefly, the MLVs dissolved in Tris-buffered saline-EDTA (pH7.5) were incubated with human apoA1 at 25° C. MLV solubilization by human apoA1 was monitored by measuring sample turbidity (absorbance) at 325 nm using a plate reader.
Liposome Floatation Assay.
POPC MLVs made with or without 5 mole % PIP2 were incubated at room temperature with apoA1 (20:1, lipid:apoA1 mass ratio) in 30% sucrose and placed at bottom of a sucrose density step gradient and subjected to ultracentrifugation, as previously described33. Equal volume aliquots of the top (0% sucrose) and bottom (30% sucrose) fractions were precipitated and analyzed by SDS-PAGE and apoA1 western blot.
ApoA1 Cross Linking:
ApoA1 was incubated in the presence or absence of PIP2 or POPC at 1:1 mole ratios and then incubated with bis(sulfosuccinimidyl) suberate (BS3, Pierce) crosslinker at room temperature for 30 minutes. The reactions were quenched with 1M Tris, pH 8.0 and samples were analyzed by SDS-PAGE and apoA1 western blot.
Cell Growth and ABCA1 Induction:
All cell culture incubations were performed at 37° C. in humidified 5% CO2 incubator. The growth media was Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal calf serum, 100 μg/mL penicillin, 100 μg/mL streptavidin. ABCA1 was induced in RAW26.47 cells by 16-24 hr incubation with 0.3 mM 8Br-cAMP34. ABCA1 was induced in BHK cells by 16-24 hr incubation with 10 nM mifepristone31. Inducers were included in the media during subsequent assays. ABCA1 expression was confirmed by western blot using the AC10 antibody (Santa Cruz Biotech).
Cholesterol Efflux Assay:
On day 1, cells were plated on 24-well plates at a density of 20,000 to 400,000 cells per well. On day 2, the cells were labeled with 0.5 μCi/ml [3H]cholesterol in DMEM containing 1% FBS. On day 3, the cells when indicated were treated with or without ABCA1 inducers in serum-free DMEM. On day 4 (or day 3 for HEK293 cells and ABCA1 stably transfected cells) the cells were washed and chased for 4-6 hr in serum-free DMEM in the presence or absence of 5 μg/ml apoA1. The radioactivity in the chase media was determined after brief centrifugation to pellet any residual debris. Radioactivity in the cells was determined by extraction in hexane:isopropanol (3:2) with the solvent evaporated in a scintillation vial prior to counting. The percent cholesterol efflux was calculated as 100×(medium dpm)/(medium dpm+cell dpm).
Inositol Lipid Efflux:
For [3H]myo-inositol labeling, the growth medium was replaced with inositol-free DMEM (including 10% fetal calf serum, 100 μg/mL penicillin, 100 μg/mL streptavidin and 2 mM glutamine) and [3H]myo-inositol was added to a final concentration of 40 μCi/mL for 24 hr followed by ABCA1 induction in serum-free DMEM where indicated. The cells were washed and chased for 4-6 hr in serum-free medium in the presence or absence of 5 μg/ml apoA1. The chase media was collected, centrifuged to remove any cell debris, and acidic lipid fractions containing PIPs were isolated as following the protocol provided by Echelon Bioscience: 1 ml medium was resuspended in 750 μL chloroform/methanol/12N HCl (40:80:1, v/v/v) and incubated for 15 min at RT while vortexing the sample for 1 min every 5 min. After transferring the tube to ice, 250 μL cold chloroform and 450 μL cold 0.1 M HCl was added followed by 1 min vortexing and centrifugation (6,500×g, 2 min at 4° C.). The bottom organic phase was transferred to a fresh tube, dried under N2 gas in a scintillation vial and subjected to scintillation counting.
Inositol Lipid Reverse Transport In Vivo.
Bone-marrow derived macrophages from C57BL/6 mice were labeled with 40 μci/ml of [3H]myo-inositol for 24 h as described above. An aliquot of the cells was extracted in hexane:isopropanol (3:2) to determine total 3H dpm in inositol labeled lipids. ˜1.8×106 dpm of labeled macrophages were injected s.c. into the back of each mouse. 3 days later, plasma was collected, followed by acidic extraction of lipids, resuspended in PBS-PS (PBS 0.25% Protein Stabilizer Echelon # K-GS01). This was incubated with PH-PLC δ-GST tagged protein (Echelon). The PIP2 bound to GST tagged protein was separated from other inositol labeled lipids by incubation with glutathione-beads, and after washing the bound PIP2-protein complex was eluted by incubation with 50 mM Tris, 10 mM reduced glutathione, pH=8.0. The eluate was subjected to scintillation counting. The % efflux to plasma was determined by calculating 100×PIP2 dpm calculated in total body plasma divided by the injected inositol lipid dpm.
PIP2 Cellular Reporter Assay:
RAW264.7 macrophages and ABCA1-inducible BHK cells were transfected with 2PH-PLCδ-GFP plasmid (Addgene) using Lipofectamine 2000 transfection reagent (ThermoFisher Scientific). The GFP positive colonies were visually identified by epifluorescent microscopy selected and expanded in 1.5 mg/ml G418. RAW264.7 cells and BHK cells were induced to express ABCA1 as indicated. The cells were washed with PBS and visualized by epifluorescent microscopy. Images were taken using the same exposure time.
Tmem55b Knockdown:
The siRNA to mouse Tmem55b (Origene, #SR408149) and scrambled control were transfected in RAW264.7 cells using siTran 1.0 (Origene). The cellular protein extracts were prepared using NP-40 lysis buffer containing protease inhibitors. The knockdown efficacy was determined by western blot using anti Tmem55b antibody (Santa Cruz).
Cell Surface PS, PIP2, and apoA1 Binding Assays Via Flow Cytometry:
Cell surface PS levels were determined by flow cytometry after cell scraping in PBS, re-suspension in Annexin V binding buffer, and incubation with AnnexinV-Cy5 (Biovision) at room temperature for 5 minutes in the dark. Cell surface PIP2 levels were determined by flow cytometry by incubation with Alexa647 or FITC labeled anti-PIP2 antibody (Echelon) in phenol red-free, serum-free, DMEM at room temperature for 30 min. Human apoA1 was labeled with Alexa647 (Molecular Probes) on free amines using a 6:1 mole ratio of dye: apoA1. Alexa647-apoA1 binding was determined by flow cytometry after incubation with cells for 45 minutes at room temperature. All flow cytometry assays were performed on a BD Biosciences LSRFortessa cytometer using the following settings: FITC, Ex: 488 nm, Em: 505-525 nm (Filter 515/20); Cy5 and Alexa 647, Ex: 639 nm, Em: 650-670 nm (Filter 660/20). Data was analyzed by Flowjo software and the median relative fluorescent intensities were compared.
PIP2 ELISA:
PIP2 was quantified by using the PI(4,5)P2 Mass ELISA kit from Echelon Biosciences, following the protocol provided. Briefly, conditioned media or plasma was extracted using the acidic lipid extraction protocol described above, dried, and resuspended in PBS-PS. Cells were suspended, pelleted, and washed in cold 5% TCA with 1 mM EDTA. Cell neutral lipids were extracted in 1 mL chloroform:methanol (1:2). The pellet containing acidic lipids was extracted in 750 μL chloroform:methanol:12N HCl (40:80:1). 250 μL cold chloroform and 450 μL cold 0.1 M HCl was added to the supernatant. The bottom organic phase was dried, suspended in PBS-PS. Media and cell extracts in PBS-PS were subjected to the PIP2 Mass ELISA assay according the Echelon protocol
Plasma Analyses:
0.5 ml of human plasma (obtained under informed consent in an IRB approved protocol) was separated by fast protein liquid chromatography (FPLC) on a Superose 6 column (Amersham), and 0.5 ml fractions were collected. Total cholesterol was measured in mouse plasma or human FPLC fractions using the Cholesterol LiquiColor kit (Stanbio Laboratory). PIP2 concentration was determined using the PIP2 ELISA assay (described above). Human HDL was isolated by equilibrium density ultracentrifugation at density between 1.063 and 1.21 g/ml. LC-MS/MS was used for PIP2 profiling in human HDL as previously described35. In brief, HDL lipids extracts were rapidly dried under nitrogen flow, suspended in 200 μl methanol/water (70:30), and stored under an argon atmosphere at −20° C. until analysis within 24 hr. 20 μl of the extract was introduced onto a 2690 HPLC system (Waters, Milford, Mass.) and phospholipids were separated through a C18 column (2×50 mm, Gemini 5 Phenomenex, Rancho Palos Verdes, Calif.) under gradient conditions at flow rate of 0.3 ml/min. A gradient was used by mixing mobile phase A (Methanol/water (70:30) containing 0.058% ammonium hydroxide) and B (acetonitrile/2-propanol (50:50) containing 0.058% ammonium hydroxide) as follows: isocratic elution with 100% A for 1 min, linear gradient to 100% B from 1 to 6 min, kept at 100% B for 10 min and then equilibrated with 100% A for 7 min. The HPLC column effluent was introduced onto a triple quadruple mass spectrometer (Quattro Ultima Micromass, Beverly, Mass.) and analyzed at negative electrospray ionization in the multiple reaction monitoring (MRM) mode for the targeted PIP2. The MRM transitions used to detect the PIP2 was the mass to charge ratio (m/z) for the molecular anion [MH]− and the product ion at m/z 79, arising from its phosphate group (i.e. [MH]−→m/z 79).
SR-BI Mediated PIP2 Uptake:
Mifepristone SR-BI-inducible BHK cells were treated with 10 nM mifepristone to for 14 hr. 0.5 μCi [3H] PIP2 was dried down and 650 μg (protein) of human HDL was added and incubated for 6 hr at room temperature to absorb PIP2 into HDL. The radiolabeled PIP2-HDL complex at 100 μg/ml final concentration was incubated with cells in serum free media for 4 hr at 37° C. Cellular lipids were extracted and 3H was determined by scintillation counting, and normalized to cellular protein after lysis in 0.2 N NaOH, 0.2% SDS.
Statistical Analyses:
Data are shown as mean±SD. Comparisons of 2 groups were performed by a 2-tailed t test, and comparisons of 3 or more groups were performed by ANOVA with Bonferroni posttest. All statistics were performed using Prism software (GraphPad).
All publications and patents mentioned in the specification and/or listed below are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the relevant fields are intended to be within the scope described herein
The present application claims priority to U.S. Provisional application Ser. No. 62/337,952, filed May 18, 2016, which is herein incorporated by reference in its entirety.
This invention was made with government support under grant numbers HL098055 and HL128268 awarded by the National Institutes of Health. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62337952 | May 2016 | US |