The invention relates to a piston for an internal combustion engine, having a piston crown followed radially on the outside by a ring belt and a piston skirt, wherein the piston skirt consists of two skirt elements that lie opposite one another, which border on pin bosses, each having a pin bore.
A piston of the type indicated initially is known from the Offenlegungsschrift [unexamined patent application published for public scrutiny] DE 4326978. It is disadvantageous, in this connection, that the skirt elements are configured very massively in the region of the ring belt, so that in the event of a temperature-related, radial expansion of the piston, stresses occur between cylinder wall and piston skirt, which stresses increase the pressure of the skirt elements on the inner cylinder wall, so that the friction power losses are increased and, as a result of this, the CO2 emission of the engine equipped with the known piston is increased.
It is the task of the invention to avoid these disadvantages of the state of the art and to create a piston having reduced CO2 emission.
This task is accomplished in that the skirt elements have inner surfaces, which delimit those regions of the skirt elements, radially inward, in which the skirt elements are thinner than 7% of the piston diameter “D”, that the skirt elements have outer surfaces, which, viewed in the circumference direction, delimit those regions of the skirt elements, radially outward, that lie outside of angle regions that lie on both sides of the pin bore axis, wherein the angle regions are delimited by the pin bore axis and by straight lines that stand perpendicular on the piston axis and intersect the piston bore axis, which lines, viewed in the circumference direction, lie on both sides of the pin bore axis, and form an angle of more than 40° with the pin bore axis, in each instance, and that the ratio of the contents of the inner surfaces to the ratio of the contents of the outer surfaces amounts to more than 60%.
In this way, the result is achieved that the skirt elements are configured to be elastically resilient, to such an extent that they give way in the event of a temperature-related, radial expansion of the piston, thereby causing the pressure of the skirt elements on the inner cylinder wall, the friction power losses during engine operation and thereby also the CO2 emission of the engine equipped with the piston according to the invention to be reduced.
Advantageous embodiments of the invention are the object of the dependent claims.
An exemplary embodiment of the invention will be described below, using the drawings. These show:
In
During engine operation, the outer surfaces 14, 19 of the skirt elements 8, 9 particularly lie against the wall of a cylinder bushing of an internal combustion engine, whereby during engine operation, contact forces occur in the skirt elements 8, 9, because of the greater radial thermal expansion of the piston 1 as compared with the comparatively lesser radial thermal expansion of the cylinder bushing that consists of an iron material, so that the skirt elements 8, 9 are pressed against the inner surface of the cylinder bushing with an increasing force, as heating increases, by way of their outer surfaces 14, 19, and this increases the friction power losses of the piston 1 during engine operation and thereby also the CO2 emission of the engine.
In order to reduce this force and thereby the friction power losses and the CO2 emission of the engine, the skirt elements are dimensioned as described above, which brings about the result that the skirt elements are configured to be more elastic, so that they give way to the temperature-related expansion of the piston, thereby reducing the force with which the skirt elements press onto the inner cylinder surface, and thereby reducing the friction power losses during engine operation and thereby ultimately also the CO2 emission of the internal combustion engine.
In this connection, attention must be paid to ensure that guidance of the piston in the cylinder is not impaired, and for this reason, the elastically resilient regions of the skirt elements created on the basis of the dimensional foundation described above are not too large.
In general, the piston shape is structured in such a manner that the hard skirt part, the thickness of which is greater than 7% of the piston diameter, is allowed so much play that this play is sufficient so that this region of the hard skirt part does not experience any direct pressure stresses by way of the contact between piston and cylinder when the piston expands due to temperature.
In order to furthermore guarantee the guidance of the piston in the cylinder, the soft skirt part must amount to at least 60% of the total skirt.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 115 639.2 | Sep 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2012/000920 | 9/14/2012 | WO | 00 | 4/8/2014 |