The present invention relates generally to piston systems. More particularly, embodiments of the present invention relate to piston systems having a closed-loop flow path between two or more piston chambers, pumps including such structures, and methods of driving pumps.
Numerous industries and many applications utilize reciprocating pumps for transporting fluids. For example, reciprocating pumps are found in industries such as shipping, processing, manufacturing, irrigation, gasoline supply, air conditioning systems, flood control, marine services, etc. Conventional reciprocating pumps may employ one or more piston systems comprised of a plurality of pistons and associated piston chambers in driving the pump. Conventionally, as pistons displace longitudinally within the piston chamber, one or more volumes between the piston and the piston chamber increase or decrease, depending on the direction of longitudinal displacement. The increasing volumes must be filled with a fluid, such as air or other fluid, when the volume increases, and the fluid must subsequently be exhausted from the volume when the volume is decreased.
Conventional pumps have provided one or more vent lines, which may also be characterized as an exhaust port, which couple a volume of the piston chamber with the atmosphere surrounding the pump. One example of such a configuration is illustrated in FIGS. 1 and 2 in U.S. Pat. No. 7,458,309. As a shift piston displaces in a direction reducing the volume coupled to the vent line, a central body portion of the shift piston having substantially the same diameter as the interior of the piston chamber forces air through the vent line and into the surrounding atmosphere. Likewise, as the shift piston displaces in a direction increasing the volume coupled to the vent line, the central body portion of the shift piston pulls air into the piston chamber from the surrounding atmosphere.
Such piston systems are generally adequate for use in certain relatively benign environments. However, in some very abrasive environments, abrasive materials may enter into the exhaust ports and into the volume of the piston chamber, causing the piston and the piston chamber to wear at an increased rate. In other environments, chemicals or other materials in the surrounding atmosphere may enter into the exhaust ports and subsequently interfere with the motion of the pistons by causing the pistons to bind with and stick to the walls of their associated piston chamber or even to seize within the piston chamber.
Various embodiments of the present invention comprise piston systems including a closed-loop flow path to keep materials within the environment from entering into a piston chamber. In one or more embodiments, the piston system may include a housing comprising a first piston chamber and a second piston chamber therein. As used herein, the term “housing” does not denote a single component. The first piston chamber may comprise an aperture in a sidewall thereof and the second piston chamber may also comprise an aperture in a sidewall thereof. A first piston may be movably disposed within the first piston chamber and a second piston may be movably disposed within the second piston chamber. A flow path may extend between the aperture in the first piston chamber to the aperture in the second piston chamber to couple the first and second piston chambers.
Other embodiments comprise reciprocating pumps. In one or more embodiments, reciprocating pumps may comprise a housing comprising a first pressure chamber and a second pressure chamber therein. The first pressure chamber may be at least partially defined by a first flexible member. The second pressure chamber may be positioned within the housing opposing the first pressure chamber and may be at least partially defined by a second flexible member. A first shift piston may be disposed in a first shift piston chamber in the housing, and may be positioned proximate to the first flexible member. A second shift piston may be disposed in a second shift piston chamber in the housing, and may be positioned proximate to the second flexible member. A flow path may extend between the first piston chamber and the second piston chamber to couple a volume of the first piston chamber to a volume of the second piston chamber.
In one or more additional embodiments, reciprocating pumps may comprise a first shift piston chamber disposed in a housing and comprising a first longitudinal axis. A second shift piston chamber comprising a second longitudinal axis may be disposed in the housing and positioned with the second longitudinal axis laterally offset from the first longitudinal axis. A first shift piston may be movably positioned in the first shift piston chamber and proximate to a first flexible member at least partially defining a first pressure chamber. A second shift piston may be movably positioned in the second shift piston chamber and proximate to a second flexible member at least partially defining a second pressure chamber.
Still further embodiments comprise methods of driving a reciprocating pump. One or more embodiments of such methods may comprise filling a first pressure chamber within a housing with a control fluid to increase a volume of the first pressure chamber. The first pressure chamber may be at least partially defined by a first flexible member. The second pressure chamber may be at least partially defined by a second flexible member, and a volume thereof may be decreased as the volume of the first pressure chamber is increased. A first shift piston at least partially housed within a first shift piston chamber and positioned proximate the first flexible member may be displaced, decreasing a first volume of the first shift piston chamber. A second shift piston at least partially housed within a second shift piston chamber and positioned proximate the second flexible member may be displaced, increasing a second volume of the second shift piston chamber. At least a portion of a fluid from the first volume may be displaced into the second volume.
One or more additional embodiments of methods of driving reciprocating pumps may comprise filling a first pressure chamber within a housing with a control fluid to increase a volume of the first pressure chamber. The first pressure chamber may be at least partially defined by a first flexible member. The second pressure chamber may be at least partially defined by a second flexible member, and a volume thereof may be decreased as the volume of the first pressure chamber is increased. A first shift piston at least partially housed within a first piston chamber and positioned proximate the first flexible member may be displaced. A volume of a second shift piston chamber may be at least partially filled with the control fluid. A second shift piston at least partially housed within the second shift piston chamber and positioned proximate the second flexible member may be displaced.
The illustrations presented herein are, in some instances, not actual views of any particular piston system or pump assembly, but are merely idealized representations which are employed to describe the present invention. Additionally, elements common between figures may retain the same numerical designation.
Various embodiments of the present invention comprise piston systems comprising a closed-loop flow path. Referring to
As stated above, the first piston 110 and second piston 130 are configured to move in relation to each other. For example, the first piston 110 and second piston 130 may be fixed relative to each other. In some embodiments, a shaft 185, as depicted in broken lines, may be positioned between the first piston 110 and second piston 130 in some embodiments. In other embodiments, the first piston 110 and second piston 130 may be coupled to one or more structures outside the illustrated housing 105, which one or more structures may be configured or fixed relative to the first piston 110 and second piston 130 to move the first piston 110 and second piston 130 in relation to each other.
In operation, the first piston 110 may be displaced from left to right, as shown in
Piston systems according to various embodiments of the present invention may be employed in a plurality of applications. By way of example and not limitation, various embodiments of pump assemblies may employ embodiments of a piston system of the present invention.
The volume in the first fluid chamber 320 may be controlled by a first flexible member 330. The first flexible member 330 in
A flow of a control fluid, for example pressurized air, into the first pressure chamber 335 may cause the first pressure chamber 335 to expand, and the first flexible member 330 to move leftward, reducing the volume of the first fluid chamber 320 and forcing the fluid out the fluid outlet port 315. Likewise, a second flexible member 340 forming a second pressure chamber 345 may control the volume of a second fluid chamber 325. The first flexible member 330 and the second flexible member 340 may be fixed relative to one another with a shaft 350. As the first flexible member 330 is forced leftward by the flow of control fluid into the first pressure chamber 335, the second flexible member 340 may be pulled leftward by the shaft 350. As a consequence, the volume of the second fluid chamber 325 may increase, and the volume of the second pressure chamber 345 may decrease. Thus, fluid may be drawn into the second fluid chamber 325 through the fluid inlet port 310.
The pump 300 is depicted as configured with the fluid chambers 320, 325 positioned outward and the pressure chambers 335, 345 positioned relatively inward of the fluid chambers 320, 325. However, other configurations are also contemplated, including having the fluid chambers 320, 325 positioned inward and the pressure chambers 335, 345 positioned relatively outward, such as the pump disclosed in U.S. Pat. No. 7,458,309, the disclosure of which is incorporated herein in its entirety by this reference.
The first flexible member 330 and the second flexible member 340 may be attached to the shaft 350, such that both a pushing and a pulling force on either flexible member 330, 340 may be translated through the shaft 350. In other embodiments, the first flexible member 330 and the second flexible member 340 may merely abut the ends of the shaft 350, such that a pushing force may be translated from one flexible member to the other via the shaft 350. Such a configuration, in which the first flexible member 330 and the second flexible member 340 abut the ends of the shaft 350, is more suitable to pumps having the fluid chambers positioned inward and the pressure chambers positioned relatively outward, as referred to above. Although the shaft 350 is depicted in
A first supply and exhaust line 360 may be coupled to the first pressure chamber 335 and configured to provide a control fluid to the first pressure chamber 335 to fill the first pressure chamber 335 with control fluid and increase the volume thereof, as well as to provide means for the exhaust of a control fluid therein when the volume thereof is decreased. Likewise, a second supply and exhaust line 365 is coupled to the second pressure chamber 345. Although the supply and exhaust lines 360, 365 are depicted as the same line for both control fluid supply and exhaust, in other embodiments the control fluid supply line may be separate and distinct from the control fluid exhaust line.
At the end of a stroke, the control fluid must feed into the pressure chamber of the other side of the pump in order to initiate the next stroke. In some embodiments, a spool valve 355 may be used to shift the supply of control fluid between the first supply and exhaust line 360 and the second supply and exhaust line 365. The spool valve 355 may include a shuttle spool 357 therein as are known to those of ordinary skill in the art. The position of the shuttle spool 357, and thus the supply of control fluid, may be shifted by a pulse of control fluid through conduits 363, 367 or other methods such as electronic actuation. The spool valve 355 is configured such that when the control fluid is supplied through the first supply and exhaust line 360 to fill the first pressure chamber 335, air may be exhausted simultaneously from the second pressure chamber 345 through the second supply and exhaust line 365.
The shuttle spool 357 of the spool valve 355 may be shifted by a pulse of control fluid provided at a longitudinal end of the shuttle spool 357, which may displace the shuttle spool 357 in a longitudinal direction. A plurality of shift pistons may control the delivery of the pulse of control fluid to the longitudinal ends of the shuttle spool. U.S. Pat. No. 7,458,309, which was referenced above and the disclosure thereof incorporated herein, discloses an embodiment and operation of a suitable example for a spool valve 355 and a plurality of shift pistons suitable for use in implementation of some embodiments of the present invention. The plurality of shift pistons may be configured as a piston system according to embodiments of the present invention.
Generally, a first shift piston 370 may be positioned within a first shift piston chamber 375 disposed at least partially within the housing 305. The first shift piston 370 is positioned with one longitudinal end proximate to the first flexible member 330 and an opposing longitudinal end in communication with the first supply and exhaust line 360. When the first pressure chamber 335 is filled with control fluid, the control fluid may also enter a portion of the first shift piston chamber 375, displacing the first shift piston 370 adjacent the first flexible member 330. Likewise, a second shift piston 380 may be positioned within a second shift piston chamber 385 with one longitudinal end proximate to the second flexible member 340 and an opposing longitudinal end in communication with the second supply and exhaust line 365.
When the first shift piston 370 is displaced sufficiently leftward (as oriented in
When the first shift piston 370 is displaced respectively rightward or leftward (as oriented in
In operation, the volume of the first pressure chamber 335 may be increased by filling the first pressure chamber 335 with the control fluid entering from the first supply and exhaust line 360. Control fluid from the first supply and exhaust line 360 may also enter the first shift piston chamber 375. The control fluid within the first shift piston chamber 375 may force a first shift piston 370 against a surface of the first flexible member 330 facing the first pressure chamber 335. Control fluid entering the first pressure chamber 335 and the first shift piston chamber 375 forces the first shift piston 370 and the first flexible member 330 to displace to the left (in the embodiment shown in
As the first flexible member 330 is forced leftward by the control fluid, the shaft 350 is displaced leftward, and the second flexible member 340 is pulled leftward by the shaft 350 and the second shift piston 380 is pushed leftward by a surface of the second flexible member 340 against which the second shift piston 380 abuts. The volume of both the second fluid chamber 325 and the second volume 395 increases, and the volume of the second pressure chamber 345 decreases. Control fluid within the second pressure chamber 345 is forced out of a second supply and exhaust line 365 as a fluid is forced into the second fluid chamber 325 through the fluid inlet port 310. The second volume 395 fills with at least a portion of the fluid forced out to the flow path 397 from the first volume 390.
With reference to
The volume in the first fluid chamber 320 may be controlled by a first flexible member 330. The first flexible member 330 of pump 300′ comprises a bellows, which forms a first pressure chamber 335. A flow of a control fluid, for example pressurized air, into the first pressure chamber 335 may cause the first pressure chamber 335 to expand, and the first flexible member 330 to move leftward, reducing the volume of the first fluid chamber 320 and forcing the fluid out the fluid outlet port 315. Likewise, a second flexible member 340 forming a second pressure chamber 345 may control the volume of a second fluid chamber 325. The first flexible member 330 and the second flexible member 340 may be fixed relative to one another with a shaft 350. As the first flexible member 330 is forced leftward by the flow of control fluid into the first pressure chamber 335, the second flexible member 340 may be pulled leftward by the shaft 50. As a consequence, the volume of the second fluid chamber 325 may increase, and the volume of the second pressure chamber 345 may decrease. Thus, fluid may be drawn into the second fluid chamber 325 through the fluid inlet port 310.
The pump 300′ is configured with the fluid chambers 320, 325 positioned outward and the pressure chambers 335, 345 positioned relatively inward of the fluid pressure chambers 320, 325. However, similar to the embodiment shown in
The first flexible member 330 and the second flexible member 340 may be attached to the shaft 350, such that both a pushing and a pulling force on either flexible member 330, 340 may be translated through the shaft 350. In other embodiments, the first flexible member 330 and the second flexible member 340 may merely abut the ends of the shaft 350, such that a pushing force may be translated from one flexible member to the other via the shaft 350. Such a configuration, in which the first flexible member 330 and the second flexible member 340 abut the ends of the shaft 350, is more suitable to pumps having the fluid chambers positioned inward and the pressure chambers positioned relatively outward, as referred to above.
A first supply and exhaust line 360 may be coupled to the first pressure chamber 335 and configured to provide a control fluid to the first pressure chamber 335 to fill the first pressure chamber 335 with control fluid and increase the volume thereof, as well as to provide means for the exhaust of a control fluid therein when the volume thereof is decreased. Likewise, a second supply and exhaust line 365 is coupled to the second pressure chamber 345. Although the supply and exhaust lines 360, 365 are depicted as the same line for both control fluid supply and exhaust, in other embodiments the control fluid supply line may be separate and distinct from the control fluid exhaust line.
At the end of a stroke, the control fluid must feed into the pressure chamber of the other side of the pump in order to initiate the next stroke. In some embodiments, a spool valve 355 may be used to shift the supply of control fluid between the first supply and exhaust line 360 and the second supply and exhaust line 365. The spool valve 355 may include a shuttle spool 357 therein as is known to those of ordinary skill in the art. The position of the shuttle spool 357, and thus the supply of control fluid, may be shifted by a pulse of control fluid through conduits 363, 367 or other methods such as electronic actuation. The spool valve 355 is configured such that when the control fluid is supplied through the first supply and exhaust line 360 to fill the first pressure chamber 335, air may be exhausted simultaneously from the second pressure chamber 345 through the second supply and exhaust line 365.
The shuttle spool 357 of the spool valve 355 may be shifted by a pulse of control fluid provided at a longitudinal end of the shuttle spool 357, which may displace the shuttle spool 357 in a longitudinal direction. A plurality of shift pistons may control the delivery of the pulse of control fluid to the longitudinal ends of the shuttle spool 357. The plurality of shift pistons may be configured as a piston system according to embodiments of the present invention.
When the first shift piston 370 is displaced sufficiently leftward (as oriented in
Generally, a first shift piston 370 may be positioned within a first shift piston chamber 375 disposed at least partially within the housing 305. The first shift piston 370 is positioned with one longitudinal end proximate to the first flexible member 330 and an opposing longitudinal end in communication with the first supply and exhaust line 360. When the first pressure chamber 335 is filled with control fluid, the control fluid may also enter a portion of the first shift piston chamber 375, displacing the first shift piston 370 adjacent the first flexible member 330. Likewise, a second shift piston 380 may be positioned within a second shift piston chamber 385 with one longitudinal end proximate to the second flexible member 340 and an opposing longitudinal end in communication with the second supply and exhaust line 365.
When the first shift piston 370 is displaced respectively rightward or leftward (as oriented in
In operation, the volume of the first pressure chamber 335 may be increased by filling the first pressure chamber 335 with the control fluid entering from the first supply and exhaust line 360. Control fluid from the first supply and exhaust line 360 may also enter the first shift piston chamber 375. The control fluid within the first shift piston chamber 375 may force the first shift piston 370 against a surface of the first flexible member 330 facing the first pressure chamber 335. Control fluid entering the first pressure chamber 335 and the first shift piston chamber 375 forces the first shift piston 370 and the first flexible member 330 to displace to the left (in the embodiment shown in
As the first flexible member 330 is forced leftward by the control fluid, the shaft 350 is displaced leftward, and the second flexible member 340 is pulled leftward by the shaft 350 and the second shift piston 380 is pushed leftward by a surface of the second flexible member 340 against which the second shift piston 380 abuts. The volume of both the second fluid chamber 325 and the second volume 395 increases, and the volume of the second pressure chamber 345 decreases. Control fluid within the second pressure chamber 345 is forced out of a second supply and exhaust line 365 as a fluid is forced into the second fluid chamber 325 through the fluid inlet port 310. The second volume 395 fills with at least a portion of the fluid forced out to the flow path 397 from the first volume 390.
By coupling the first volume 390 and second volume 395 with the flow path 397, the shift pistons 370, 380 and shift piston chambers 375, 385 are substantially closed to the surrounding environment. Thus, contaminants and corrosive materials are unable to fill any portion of the first volume 390 or the second volume 395. In addition, by coupling the first volume 390 and second volume 395, the movement of the two shift pistons 370, 380 may be more stable since the fluid being forced out from one volume to the other also aids in displacing the shift piston located adjacent the volume receiving the fluid.
As set forth herein, various embodiments of the pumps 300, 300′ may be configured with the fluid chambers 320, 325 positioned outward and the pressure chambers 335, 345 positioned relatively inward as well as the opposite, in which the fluid chambers 320, 325 are positioned inward and the pressure chambers 335, 345 are positioned relatively outward. In addition, various embodiments of the pumps 300, 300′ may be configured with the shift pistons 370, 380 positioned relatively inward from the flexible members 330, 340, as shown in
In the pumps 300, 300′, the shift piston chambers 375, 385 are configured to be axially aligned within the housing 305. In other embodiments, the shift piston chambers 375, 385 may be laterally offset, as well as partially overlapping.
In at least some embodiments, a second longitudinal end 515 of the first shift piston chamber 375 may be positioned to overlap the second longitudinal end 530 of the second shift piston chamber 385. In other words, the second longitudinal end 515 of the first shift piston chamber 375 may be located closer to the second flexible member 340 than the second longitudinal end 530 of the second shift piston chamber 385. Likewise, the second longitudinal end 530 of the second shift piston chamber 385 may be located closer to the first flexible member 330 than the second longitudinal end 515 of the first shift piston chamber 375. In at least some embodiments, the second longitudinal end 515 of the first shift piston chamber 375 may be located proximate the second pressure chamber 345, and the second longitudinal end 530 of the second shift piston chamber 385 may be located proximate the first pressure chamber 335.
In such embodiments, the overall size of the housing 305 may be reduced while the capacity of the pump remains unchanged. For example, with the shift piston chambers 375, 385 configured as described with relation to
The pumps 300 and 300′ illustrate embodiments configured so that when control fluid is provided to a pressure chamber 335, 345, control fluid is also provided to the associated shift piston chamber 375, 385. For example, in the embodiment of
In the embodiment shown in
In operation, the volume of the first pressure chamber 335 may be increased by filling the first pressure chamber 335 with the control fluid entering from the first supply and exhaust line 360. Control fluid from the first supply and exhaust line 360 may also enter the second shift piston chamber 385. The control fluid within the second shift piston chamber 385 may force a second shift piston 380 against a surface of the second flexible member 340 facing the second pressure chamber 345, or, in some embodiments, against a surface of the second piston chamber 385. Control fluid entering the first pressure chamber 335 and the second shift piston chamber 385 forces the first flexible member 330 to displace to the left and the second shift piston 380 to displace to the right (in the embodiment shown in
As the first flexible member 330 is forced leftward by the control fluid, the shaft 350 is displaced leftward, and the second flexible member 340 is pulled leftward by the shaft 350. As the second flexible member 340 is displaced leftward, the second shift piston 380 may be pushed leftward by a portion of a surface of the second flexible member 340 against which the second shift piston 380 may abut. The volume of both the second fluid chamber 325 and the first chamber volume 620 increases, and the volume of the second pressure chamber 345 decreases. Control fluid within the second pressure chamber 345 is forced out of a second supply and exhaust line 365 as a fluid is forced into the second fluid chamber 325 through the fluid inlet port 310. The first chamber volume 620 fills with control fluid flowing through the flow path 610 from the second chamber volume 630, which is in communication with the first supply and exhaust line 360.
When the second shift piston 380 is displaced a sufficient distance leftward, a portion of the first conduit 363 in communication with the second chamber volume 630 is exposed. The control fluid may then flow from the first pressure chamber 335 and the second chamber volume 630 through the flow path 610, into the first chamber volume 620 and out through the first conduit 363. The control fluid flowing through the first conduit 363 may flow to the longitudinal end of the shuttle spool 357, displacing the shuttle spool 357 in a longitudinal direction and shifting the flow of the control fluid from the first supply and exhaust line 360 to the second supply and exhaust line 365.
The flow of control fluid through the second supply and exhaust line 365 fills the second pressure chamber 345 and increases the volume thereof by forcing the second flexible member 340 to displace to the right. Control fluid from the second supply and exhaust line 365 may also enter the first shift piston chamber 375, displacing the first shift piston 370 to the left, against a surface of the first flexible member 330 or against a surface of the first shift piston chamber 375. The control fluid may enter the first shift piston chamber 375 either directly from the second supply and exhaust line 365, or by means of the second pressure chamber 345.
As the second flexible member 340 is forced rightward by the control fluid, the shaft 350 is displaced rightward, and the first flexible member 330 is pulled rightward by the shaft 350. The first shift piston 370 may be pushed rightward by a portion of a surface of the first flexible member 330 against which the first shift piston 370 may abut. The volume of the first fluid chamber 320 increases, and the volume of the first pressure chamber 335 decreases. Control fluid within the first pressure chamber 335 is forced out of the first supply and exhaust line 360 as a fluid is forced into the first fluid chamber 320 through the fluid inlet port 310. The first chamber volume 620 of the first shift piston chamber 375 fills with control fluid flowing through the flow path 610 from the second chamber volume 630 of the first shift piston chamber 375, which is in communication with the second supply and exhaust line 365. The first chamber volume 620 of the first shift piston chamber 375 is not shown in
When the first shift piston 370 is displaced a sufficient distance rightward, the portion of the second conduit 367 in communication with the first chamber volume 620 is exposed. The control fluid may then flow from the second pressure chamber 345 and the second chamber volume 630 through the flow path 610, into the first chamber volume 620 and out through the second conduit 367. The control fluid flowing through the second conduit 367 may flow to the longitudinal end of the shuttle spool 357, displacing the shuttle spool 357 in a longitudinal direction and shifting the flow of the control fluid from the second supply and exhaust line 365 to the first supply and exhaust line 360.
In at least some embodiments, a spring 640 may be positioned in a portion of a shift piston chamber and located to displace, or aid in displacing a shift piston longitudinally within the shift piston chamber. In at least some embodiments, the spring 640 may displace the shift piston toward the flexible member with which the shift piston is associated. For example,
While certain embodiments have been described and shown in the accompanying drawings, such embodiments are merely illustrative and not restrictive of the scope of the invention, and this invention is not limited to the specific constructions and arrangements shown and described, since various other additions and modifications to, and deletions from, the described embodiments will be apparent to one of ordinary skill in the art. Thus, the scope of the invention is only limited by the literal language, and legal equivalents, of the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
4386888 | Verley | Jun 1983 | A |
6210131 | Whitehead | Apr 2001 | B1 |
6874997 | Watanabe et al. | Apr 2005 | B2 |
7458309 | Simmons et al. | Dec 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20100247334 A1 | Sep 2010 | US |