Pivot point arm for robotic system used to perform a surgical procedure

Information

  • Patent Grant
  • 8641698
  • Patent Number
    8,641,698
  • Date Filed
    Friday, February 17, 2006
    18 years ago
  • Date Issued
    Tuesday, February 4, 2014
    10 years ago
Abstract
A pivot port that can provide a pivot point for a surgical instrument. The pivot port may be held in a stationary position by a support arm assembly that is attached to a table. The pivot port may include either an adapter or a ball joint that can support the surgical instrument. The pivot port allows the instrument to pivot relative to a patient.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a pivot arm that can support a surgical instrument during a medical procedure.


2. Background Information


There have been developed surgical robots that assist surgeons in performing medical procedures. By way of example, the assignee of the present invention, Computer Motion, Inc. of Goleta, Calif. sells a medical robotic arm under the trademark AESOP and a medical robotic system under the trademark ZEUS. The AESOP product includes a robotic arm that can be controlled through a foot pedal or voice commands from the surgeon. The AESOP arm is typically used to move an endoscope that is inserted into a patient during a laparoscopic procedure. The ZEUS system includes multiple robotic arms that can control surgical instrument used to perform minimally invasive procedures. The ZEUS robotic arms are controlled by handles that are manipulated by the surgeon.


Coronary artery bypass graft (CABG) procedures can be performed minimally invasively using the ZEUS and AESOP products. The surgical instruments and endoscope are inserted through small incisions created in the chest of the patient. The robotic arms include both active and passive joints that move the instruments and endoscope about corresponding pivot points. The pivot points are created by the incisions formed in the patient.


Some surgeons are uncomfortable performing minimally invasive CABG procedures and will only perform the procedure with an opened chest cavity. There may still be a desire to utilize robotic arms to control the instruments even during an open chest procedure. For example, the ZEUS system will filter the natural hand tremor of the surgeon.


There are no incisions or corresponding pivot points in an open chest procedure. Unfortunately, the ZEUS and AESOP systems will not function properly without the pivot points created by the incisions. It is therefore desirable to create a pivot point for the robotic arms to function during a non-minimally invasive procedure.


Computer motion has provided a support arm that could support an instrument during a non-minimally invasive procedure. The instrument could be inserted through a diaphragm located at the distal end of the arm. The diaphragm provided some flexibility to pivot the instrument but not enough to allow sufficient movement by a robotic arm to perform most medical procedures.


BRIEF SUMMARY OF THE INVENTION

One embodiment of the present invention includes a pivot port that has an adapter coupled to a pivot arm by a joint. Another embodiment includes a ball joint that is coupled to a pivot arm.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of an embodiment of a medical system of the present invention;



FIG. 2 is a perspective view of a pivot port of the medical system;



FIG. 3 is a perspective view of an alternate embodiment of the pivot port.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In general the present invention includes a pivot port that can provide a pivot point for a surgical instrument moved by a robotic arm. The pivot port may be held in a stationary position by a support arm assembly that is attached to a table. The pivot port may include either an adapter or a ball joint that can support the surgical instrument. The pivot port allows the instrument to pivot relative to a patient. The pivot arm allows the robotically controlled surgical instrument to be used in a non-minimally invasive procedure such as an open chest coronary artery bypass graft (CABG) procedure. Although use of the pivot arm in open chest CABG procedures is described, it is to be understood that the pivot arm can be used in other surgical procedures including minimally invasive procedures. For example, the pivot arm can be used to hold an instrument for a minimally invasive CABG procedure. Additionally, the pivot arm can hold instruments that are not robotically controlled.


Referring to the drawings more particularly by reference numbers, FIG. 1 shows an embodiment of a medical system 10 of the present invention. The system 10 may include a pivot port 12 that is held in a stationary position by a support arm assembly 14. The support arm assembly 14 may be attached to a surgical table (not shown).


A surgical instrument 16 can be coupled to the pivot port 12. The surgical instrument 16 can be coupled to a robotic arm 18. The pivot port 12 is constructed so that the instrument 16 can pivot relative to the arm 12 with a sufficient range of motion so that medical procedures can be performed with the robotic arm 18.


The robotic arm 18 may include a linear actuator 20, a first rotary actuator 22 and a second rotary actuator 24 that are controlled by a computer (not shown) to move the surgical instrument 16. The robotic arm 18 may also have an end effector (not shown) to spin and/or actuate the instrument 16. The arm 18 may also have passive joints (not shown) that allow the instrument 16 to pivot about the pivot port 12. The robotic arm 18 may be a product sold by Computer Motion, Inc. of Goleta, Calif. under the trademark AESOP or a Computer Motion product sold under the trademark ZEUS, which are hereby incorporated by reference.



FIG. 2 shows an embodiment of the pivot port 12. The pivot port 12 includes a first link 26 that is configured as a single connecting piece having pivotal ends, wherein a proximal end of the first link 26 is bent at an approximately 45 degree angle relative to a middle segment of the first link 26 and a distal end of the first link 26 is bent at an approximately 135 degree angle relative to the middle segment of the first link 26. The proximal end of the first link 26 is directly connected to a pivot arm 28 by a first joint 30 that defines a first axis of rotation which is approximately coincident with a longitudinal axis of the pivot arm 28. The distal end of the first link 26 is directly connected to only one outer side of a ring 32 by a second joint 34 that defines a second axis of rotation which is approximately orthogonal to the first axis of rotation and which is approximately coincident with a diameter of the ring 32.


The pivot port 12 may include an adapter 36 that can be coupled to the ring 32. The surgical instrument 16 can extend through an aperture 38 of the adapter 36. The aperture 38 should have a diameter that allows the instrument 16 to spin and translate relative to the pivot port 12. The first 30 and second 34 joints allow the ring 32 and corresponding instrument to pivot about the arm 28 to provide yaw and pitch rotation.


The adapter 36 may have an outer annular flange 40 that rests on an inner annular lip 42 of the ring 32. The adapter 36 may be constructed to be readily attached and detached from the ring 32. This allows adapters having different aperture diameters to be inserted into the pivot port 10 to accommodate different instrument sizes.



FIG. 3 shows an alternate embodiment of a pivot port 43 that includes a ball joint 44 that can pivot relative to a ring 45. The ring 45 is attached to a pivot arm 46. The ball joint 44 may have a plurality of apertures 48 that can receive a surgical instrument 16. The ball joint 42 allows the instrument 16 to pivot relative to the arm 46. Opposing pairs of apertures 48 can be constructed to have different diameters to receive instruments of different sizes. The ball joint 44 thus provides a joint that can accommodate different instrument sizes without having to replace the joint as may be required in the embodiment shown in FIG. 2.


Referring again to FIG. 1, support arm assembly 14 includes a support arm 50 that is coupled to a table mount 52. The table mount 52 is adapted to be secured to a surgical table (not shown). The support arm assembly 14 further includes an end effector 54 that is coupled to the arm 50. The end effector 54 is adapted to hold the pivot arm 28 or 46 of the pivot port 12, or 43, respectively.


The arm 50 may include a first linkage 56 that is coupled to the table mount 52 and a second linkage 58 coupled to the first linkage 56. The arm 50 may further have a third linkage 60 coupled to the second linkage 58.


The first linkage 56 may extend through a clearance hole (not shown) in a base 62 of the table mount 52. The table mount 52 may have an arm clamp 64 that can be rotated to engage the first linkage 56 and secure the position of the end effector 54 in a vertical direction. The arm clamp 64 can be rotated in an opposite direction to disengage the clamp 64 and allow an end user to move the first linkage 56 and adjust the height of the end effector 54 and pivot port.


The table mount base 24 may include a jaw section 66 that can clasp onto the rail of an operating table (not shown). The jaw section 66 can be secured to the table rail by a table clamp 68.


The second linkage 58 may be coupled to the first linkage 56 by a first ball joint 70. Likewise, the end effector 54 may be coupled to the third linkage 60 by a second ball joint 72. The third linkage 60 may be coupled to the second linkage 20 by a pivot joint 74. The ball joints 70 and 72, and pivot joint 74 provide the support arm six degrees of freedom. The position of the arm 50 and end effector 54 can be secured and locked in place by rotating a locking knob 76. The locking knob 76 clamps the pivot joint 74 to prevent relative movement between the third 60 and second 58 linkages. Rotation of the locking knob 76 also moves corresponding wedges (not shown) into the ball joints 70 and 72 to secure and lock the second linkage 58 and the end effector 54, respectively. The arm 50 and table mount 52 can be purchased from KARL STORZ under part number 28172H. The end effector 54 may have a spring biased retractable jaw 78 that can capture the pivot port 12. The retractable jaw 78 allows an operator to readily attach and detach the pivot port 12 to the support arm assembly 14. The joints 70, 72 and 74 allow the operator to adjust the pivot port 12 location and the instrument 16.


The following medical procedure can be performed with the pivot point 12 of the present invention. A patient's chest cavity may be opened and the pivot port 12 may be attached to the support arm assembly 14 adjacent to the open chest cavity. A surgical instrument 16 may then be inserted through the pivot port 12 and attached to the robotic arm 18. The robotic arm 18 may then be actuated to move the instrument 16 and perform a procedure. The pivot port 12 allows the instrument to pivot about the port 12. When the procedure is completed, the instrument 16 may be decoupled from the robotic arm 18 and pulled out of the pivot port 12. The pivot port 12 may then be detached from the support arm assembly 14.


While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art. For example, although an open chest procedure is described, the pivot port can provide a pivot point for any type of medical procedure.

Claims
  • 1. A pivot port that can support a surgical instrument controlled by a robotic arm, comprising: a pivot arm;a ring having an inner annular ring lip;a first link configured as a single connecting piece having pivotal ends;an adapter that has an aperture and an outer annular flange, wherein the aperture is adapted to receive the surgical instrument, and wherein the outer annular flange rests on the inner annular ring lip of the ring so that the ring supports the adapter; and,first and second joints, wherein a proximal end of the first link is directly connected to the pivot arm by the first joint so that the proximal end of the first link is constrained to only be rotatable at the first joint about a first axis of rotation that is parallel with a longitudinal axis of the pivot arm and a distal end of the first link is directly connected to only one outer side of the ring by the second joint so that the ring and the adapter are rotatable at the second joint about a second axis of rotation that is maintained by a shape of the first link to be approximately orthogonal to the first axis of rotation so as to allow the surgical instrument to pivot about said aperture when the pivot arm is locked in place and the instrument is received in the aperture.
  • 2. The pivot port of claim 1, wherein the first axis of rotation is coincident with the longitudinal axis of the pivot arm.
  • 3. The pivot port of claim 1, wherein the second axis of rotation is coincident with the diameter of the ring.
  • 4. The pivot port of claim 1, wherein the first link is freely rotatable at the first joint and the adapter is freely rotatable at the second joint while the surgical instrument is being controlled by the robotic arm.
  • 5. The pivot port of claim 1, wherein the adapter is constrained to only be rotatable at the second joint about the second axis of rotation.
  • 6. The pivot port of claim 1, wherein the first and second axes of rotation intersect within the aperture of the adapter so that the intersection serves as a pivot point for the surgical instrument.
  • 7. The pivot port of claim 1, wherein the proximal end of the first link is bent at an approximately 45 degree angle relative to a middle segment of the first link and the distal end of the first link is bent at an approximately 135 degree angle relative to the middle segment of the first link.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 10/411,651, filed Apr. 10, 2003, which is a divisional of application Ser. No. 09/847,736 filed May 1, 2001, now abandoned.

US Referenced Citations (225)
Number Name Date Kind
977825 Murphy Dec 1910 A
3171549 Orloff Mar 1965 A
3280991 Melton et al. Oct 1966 A
4058001 Waxman Nov 1977 A
4128880 Cray, Jr. Dec 1978 A
4221997 Flemming Sep 1980 A
4367998 Causer Jan 1983 A
4401852 Noso et al. Aug 1983 A
4456961 Price et al. Jun 1984 A
4460302 Moreau et al. Jul 1984 A
4474174 Petruzzi Oct 1984 A
4491135 Klein Jan 1985 A
4503854 Jako Mar 1985 A
4517963 Michel May 1985 A
4523884 Clement et al. Jun 1985 A
4586398 Yindra May 1986 A
4604016 Joyce Aug 1986 A
4616637 Caspari et al. Oct 1986 A
4624011 Watanabe et al. Nov 1986 A
4633389 Tanaka et al. Dec 1986 A
4635292 Mori et al. Jan 1987 A
4635479 Salisbury, Jr. et al. Jan 1987 A
4638799 Moore Jan 1987 A
4641292 Tunnel et al. Feb 1987 A
4655257 Iwashita Apr 1987 A
4672963 Barken Jun 1987 A
4676243 Clayman Jun 1987 A
4728974 Nio et al. Mar 1988 A
4762455 Coughlan et al. Aug 1988 A
4791934 Brunnett Dec 1988 A
4791940 Hirschfeld et al. Dec 1988 A
4794912 Lia Jan 1989 A
4815006 Andersson et al. Mar 1989 A
4815450 Patel Mar 1989 A
4837734 Ichikawa et al. Jun 1989 A
4852083 Niehaus et al. Jul 1989 A
4853874 Iwamoto et al. Aug 1989 A
4854301 Nakajima Aug 1989 A
4860215 Seraji Aug 1989 A
4863133 Bonnell Sep 1989 A
4883400 Kuban et al. Nov 1989 A
4930494 Takehana et al. Jun 1990 A
4945479 Rusterholz et al. Jul 1990 A
4949717 Shaw Aug 1990 A
4954952 Ubhayakar et al. Sep 1990 A
4965417 Massie Oct 1990 A
4969709 Sogawa et al. Nov 1990 A
4969890 Sugita et al. Nov 1990 A
4979933 Runge Dec 1990 A
4979949 Matsen, III et al. Dec 1990 A
4980626 Hess et al. Dec 1990 A
4989253 Liang et al. Jan 1991 A
4996975 Nakamura Mar 1991 A
5019968 Wang et al. May 1991 A
5020001 Yamamoto et al. May 1991 A
5046375 Salisbury, Jr. et al. Sep 1991 A
5065741 Uchiyama et al. Nov 1991 A
5078140 Kwoh Jan 1992 A
5086401 Glassman et al. Feb 1992 A
5091656 Gahn Feb 1992 A
5097829 Quisenberry Mar 1992 A
5097839 Allen Mar 1992 A
5098426 Sklar et al. Mar 1992 A
5105367 Tsuchihashi et al. Apr 1992 A
5109499 Inagami et al. Apr 1992 A
5123095 Papadopoulos et al. Jun 1992 A
5131105 Harrawood et al. Jul 1992 A
5142930 Allen et al. Sep 1992 A
5145227 Monford, Jr. Sep 1992 A
5166513 Keenan et al. Nov 1992 A
5175694 Amato Dec 1992 A
5182641 Diner et al. Jan 1993 A
5184601 Putman Feb 1993 A
5187574 Kosemura et al. Feb 1993 A
5196688 Hesse et al. Mar 1993 A
5201325 McEwen et al. Apr 1993 A
5201743 Haber et al. Apr 1993 A
5217003 Wilk Jun 1993 A
5221283 Chang Jun 1993 A
5228429 Hatano Jul 1993 A
5230623 Guthrie et al. Jul 1993 A
5236432 Matsen, III et al. Aug 1993 A
5251127 Raab Oct 1993 A
5257999 Slanetz, Jr. Nov 1993 A
5271384 McEwen et al. Dec 1993 A
5279309 Taylor et al. Jan 1994 A
5282806 Haber Feb 1994 A
5289273 Lang Feb 1994 A
5289365 Caldwell et al. Feb 1994 A
5299288 Glassman et al. Mar 1994 A
5300926 Stoeckl Apr 1994 A
5303148 Mattson et al. Apr 1994 A
5304185 Taylor Apr 1994 A
5305203 Raab Apr 1994 A
5305427 Nagata Apr 1994 A
5309717 Minch May 1994 A
5313306 Kuban et al. May 1994 A
5320630 Ahmed Jun 1994 A
5337732 Grundfest et al. Aug 1994 A
5339799 Kami et al. Aug 1994 A
5343385 Joskowicz et al. Aug 1994 A
5343391 Mushabac Aug 1994 A
5345538 Narayannan et al. Sep 1994 A
5357962 Green Oct 1994 A
5368015 Wilk Nov 1994 A
5368428 Hussey et al. Nov 1994 A
5371536 Yamaguchi Dec 1994 A
5375588 Yoon Dec 1994 A
5382885 Salcudean et al. Jan 1995 A
5388987 Badoz et al. Feb 1995 A
5395369 McBrayer et al. Mar 1995 A
5397323 Taylor et al. Mar 1995 A
5402801 Taylor Apr 1995 A
5403319 Matsen, III et al. Apr 1995 A
5408409 Glassman et al. Apr 1995 A
5410638 Colgate et al. Apr 1995 A
5417210 Funda et al. May 1995 A
5417701 Holmes May 1995 A
5422521 Neer et al. Jun 1995 A
5431645 Smith et al. Jul 1995 A
5434457 Josephs et al. Jul 1995 A
5441042 Putman Aug 1995 A
5442728 Kaufman et al. Aug 1995 A
5443484 Kirsch et al. Aug 1995 A
5445166 Taylor Aug 1995 A
5451924 Massimino et al. Sep 1995 A
5455766 Schaller et al. Oct 1995 A
5458547 Teraoka et al. Oct 1995 A
5458574 Machold et al. Oct 1995 A
5476010 Fleming et al. Dec 1995 A
5490117 Oda et al. Feb 1996 A
5490843 Hildwein et al. Feb 1996 A
5494034 Schlondorff et al. Feb 1996 A
5506912 Nagasaki et al. Apr 1996 A
5512919 Araki Apr 1996 A
5515478 Wang May 1996 A
5544654 Murphy et al. Aug 1996 A
5553198 Wang et al. Sep 1996 A
5562503 Ellman et al. Oct 1996 A
5571072 Kronner Nov 1996 A
5571110 Matsen, III et al. Nov 1996 A
5572999 Funda et al. Nov 1996 A
5609560 Ichikawa et al. Mar 1997 A
5626595 Sklar et al. May 1997 A
5629594 Jacobus et al. May 1997 A
5630431 Taylor May 1997 A
5631973 Green May 1997 A
5636259 Khutoryansky et al. Jun 1997 A
5649956 Jensen et al. Jul 1997 A
5657429 Wang et al. Aug 1997 A
5658250 Blomquist et al. Aug 1997 A
5676673 Ferre et al. Oct 1997 A
5695500 Taylor et al. Dec 1997 A
5696574 Schwaegerle Dec 1997 A
5696837 Green Dec 1997 A
5718038 Takiar et al. Feb 1998 A
5727569 Benetti et al. Mar 1998 A
5735290 Sterman et al. Apr 1998 A
5737711 Abe Apr 1998 A
5749362 Funda et al. May 1998 A
5754741 Wang et al. May 1998 A
5762458 Wang et al. Jun 1998 A
5766126 Anderson Jun 1998 A
5776126 Wilk et al. Jul 1998 A
5779623 Bonnell Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792178 Welch et al. Aug 1998 A
5797900 Madhani et al. Aug 1998 A
5800423 Jensen Sep 1998 A
5807284 Foxlin Sep 1998 A
5807377 Madhani et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5808665 Green Sep 1998 A
5810712 Dunn Sep 1998 A
5810880 Jensen et al. Sep 1998 A
5813813 Daum et al. Sep 1998 A
5814038 Jensen et al. Sep 1998 A
5817084 Jensen Oct 1998 A
5825982 Wright et al. Oct 1998 A
5827319 Carlson et al. Oct 1998 A
5836869 Kudo et al. Nov 1998 A
5844824 Newman et al. Dec 1998 A
5855583 Wang et al. Jan 1999 A
5859934 Green Jan 1999 A
5860995 Berkelaar Jan 1999 A
5876325 Mizuno et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5882206 Gillio Mar 1999 A
5887121 Funda et al. Mar 1999 A
5898599 Massie et al. Apr 1999 A
5904702 Ek et al. May 1999 A
5906630 Anderhub et al. May 1999 A
5907664 Wang et al. May 1999 A
5911036 Wright et al. Jun 1999 A
5920395 Schultz Jul 1999 A
5931832 Jensen Aug 1999 A
5950629 Taylor et al. Sep 1999 A
5951475 Gueziec et al. Sep 1999 A
5951587 Qureshi et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5957902 Teves Sep 1999 A
5980782 Hershkowitz et al. Nov 1999 A
5984932 Yoon Nov 1999 A
6006127 Van Der Brug et al. Dec 1999 A
6024695 Taylor et al. Feb 2000 A
6079681 Stern et al. Jun 2000 A
6080181 Jensen et al. Jun 2000 A
6106511 Jensen Aug 2000 A
6110182 Mowlai-Ashtiani Aug 2000 A
6120433 Mizuno et al. Sep 2000 A
6201984 Funda et al. Mar 2001 B1
6206903 Ramans Mar 2001 B1
6223100 Green Apr 2001 B1
6226566 Funda et al. May 2001 B1
6231526 Taylor et al. May 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
6259806 Green et al. Jul 2001 B1
6306146 Dinkler Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6331181 Tierney et al. Dec 2001 B1
6346072 Cooper Feb 2002 B1
6364888 Nieneyer et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6722842 Sawdon et al. Apr 2004 B1
Foreign Referenced Citations (14)
Number Date Country
9204118.3 Jul 1992 DE
4310842 Jan 1995 DE
0239409 Sep 1987 EP
0424687 May 1991 EP
0776738 Jun 1997 EP
0904741 Mar 1999 EP
WO 9104711 Apr 1991 WO
WO 9220295 Nov 1992 WO
WO 9313916 Jul 1993 WO
WO 9418881 Sep 1994 WO
WO 9426167 Nov 1994 WO
WO 9700649 Jan 1997 WO
WO 9715240 May 1997 WO
WO 9825666 Jun 1998 WO
Non-Patent Literature Citations (41)
Entry
Abstract of a presentation “3-D Vision Technology Applied to Advanced Minimally Invasive Surgery Systems” given at the 3rd World Congress of Endoscopic Surgery in Bordeaux, Jun. 18-20, 1992 (1 page total).
Abstract of a presentation “A Pneumatic Controlled Sewing Device for Endoscopic Application the MIS Sewing Instrument MSI” given at the 3rd World Congress of Endoscopic Surgery in Bordeaux, Jun. 18-20, 1992 (1 page total).
Abstract of a presentation “Concept and Experimental Application of a Surgical Robotic System the Steerable MIS Instrument SMI” given at the 3rd World Congress of Endoscopic Surgery in Bordeaux, Jun. 18-20, 1992 (2 pages total).
Abstract of a presentation given at the 3rd World Congress of Endoscopic Surgery in Bordeaux (Jun. 18-20, 1992), entitled “Session 15/2” (1 page total).
Abstract of a presentation given at the 3rd World Congress of Endoscopic Surgery in Bordeaux (Jun. 18-20, 1992), entitled “Session 15/4” (1 page total).
Abstract of a presentation given at the 3rd World Congress of Endoscopic Surgery in Bordeaux (Jun. 18-20, 1992), entitled “Session 15/5” (1 page total).
Abstract of a presentation given at the 3rd World Congress of Endoscopic Surgery in Bordeaux, Jun. 18-20, 1992, entitled “Session 15/1” (1 page total).
Alexander, III, “A Survey Study of Teleoperators, Robotics, and Remote Systems Technology,” Remotely Manned Systems—Exploration and Operation in Space, California Institute of Technology 1973, pp. 449-458.
Alexander, III, “Impacts of Telemation on Modern Society,” On the Theory and Practice of Robots and Manipulators vol. II, 1974, pp. 121-136.
Bejczy, “Controlling Remote Manipulators through Kinesthetic Coupling,” Computers in Mechanical Engineering 1983, pp. 48-60.
Besant et al., Abstract of a presentation “Camera Control for Laparoscopic Surgery by Speech-Recognizing Robot: Constant Attention and Better Use of Personnel,” given at the 3rd World Congress of Endoscopic Surgery in Bordeaux, Jun. 18-20, 1992 (1 page total).
Charles et al., “Design of a Surgeon-Machine Interface for Teleoperated Microsurgery,” IEEE 1989 (3 pages total).
Colgate, “Power and Impedance Scaling in Bilateral Manipulation,” IEEE, 1991, pp. 2292-2297.
Corcoran, “Robots for the Operating Room,” The New York Times, Sunday Jul. 19, 1992, Section 3, p. 9, col. 1 (2 pages total).
Das et al., “Kinematic Control and Visual Display of Redundant Teleoperators,” IEEE 1989 pp. 1072-1077.
Dolan et al., “A Robot in an Operating Room: A Bull in a China Shop,” IEEE, 1987, pp. 1096-1097.
Gayed et al., “An Advanced Control Micromanipulator for Surgical Applications,” Systems Science vol. 13, 1987, pp. 23-34.
Green et al., Abstract of a presentation “Telepresence: Advanced Teleoperator Technology for Minimally Invasive Surgery,” given at the 3rd World Congress of Endoscopic Surgery in Bordeaux, Jun. 18-20, 1992 (2 pages total).
Green et al., Abstract of a presentation “Telepresence: Advanced Teleoperator Technology for Minimally Invasive Surgery,” given at “Medicine meets virtual reality” symposium in San Diego, Jun. 4-7, 1992 (20 pages total).
Guerrouad et al., “S.M.O.S.: Stereotaxical Microtelemanipulator for Ocular Surgery,” IEEE, 1989, pp. 879-880.
Inque et al., “Six-axis Bilateral Control of an Articulated Slave Manipulator Using a Cartesian Master Manipulator,” Advanced Robotics, 4, No. 2, 1990, pp. 139-150.
Kazerooni, “Human/Robot Interaction via the Transfer of Power and Information Signals—Part I: Dynamics and Control Analysis,” IEEE, 1989, pp. 1632-1640.
Kazerooni, “Human/Robot Interaction via the Transfer of Power and Information Signals—Part II: An Experimental Analysis,” IEEE, 1989, pp. 1641-1647.
Krishnan et al., Abstract of a presentation “Design Considerations of a New Generation Endoscope Using Robotics and Computer Vision Technology,” given at the 3rd World Congress of Endoscopic Surgery in Bordeaux, Jun. 18-20, 1992 (1 page total).
Lavallee, “A New System for Computer Assisted Neurosurgery,” IEEE, 1989, vol. 11, pp. 926-927.
Mair, Industrial Robotics, Prentice Hall, 1988, pp. 41-43, 49-50, 54, 203-209.
Majima et al., “On a Micro-Manipulator for Medical Application—Stability Consideration of its Bilateral Controller,” Mechatronics, 1991, pp. 293-309.
NASA, “Anthropomorphic Remote Manipulator”, NASA Tech Briefs, 1991 (1 page total).
Preising et al., “A Literature Review Robots in Medicine,” IEEE, Jun. 1991, pp. 13-22 & 71.
Rasor et al., “Endocorporeal Surgery Using Remote Manipulators,” Remotely Manned Systems—Exploration and Operation in Space, California Institute of Technology 1973, pp. 483-492.
Sabatini et al., “Force Feedback-Based Telemicromanipulation for Robot Surgery on Soft Tissues,” IEEE, 1989, pp. 890-891.
Taubes, “Surgery in Cyberspace,” Discover Magazine, Dec. 1994, 85-92.
Taylor et al., “Taming the Bull: Safety in a Precise Surgical Robot,” IEEE, 1991, pp. 865-871.
Tejima, “A New Microsurgical Robot System for Corneal Transplantation,” Precision Machinery, 1988 vol. 2, pp. 1-9.
Tendick et al., “Analysis of the Surgeon's Grasp for Telerobotic Surgical Manipulation,” IEEE, 1989, pp. 914-915.
Thring, “Robots and Telechirs: Manipulator with Memory: Remote Manipulators: Machine Limbs for the Handicapped,” Wiley & Sons, 1983.
Transcript of a video presented by SRI at the 3rd World Congress of Endoscopic Surgery in Bordeaux on Jun. 18-20, 1992, in Washington on Apr. 9, 1992, and in San Diego, CA on Jun. 4-7, 1992 entitled “Telepresence Surgery—The Future of Minimally Invasive Medicine” (3 pages total).
Trevelyan et al., “Motion Control for a Sheep Shearing Robot,” Proceedings of the 1st International Symposium on Robotics Research, MIT, Cambridge, Massachusetts, USA, 1983, pp. 175.
Vibet, “Properties of Master-Slave Robots,” Motor-con, 1987, pp. 309-314.
Wolf et al., “Student Reference Manual for Electronic Instrumentation Laboratories,” Prentice Hall, New Jersey 1990, pp. 498 and 499.
Vertut, Jean and Coeffet, Philippe Coiffet; “Robot Technology; vol. 3A Teleoperation and Robotics Evolution and Development”; 1986; Prentice-Hall, Inc; Englewood Cliffs, N.J.
Related Publications (1)
Number Date Country
20060259019 A1 Nov 2006 US
Divisions (1)
Number Date Country
Parent 09847736 May 2001 US
Child 10411651 US
Continuations (1)
Number Date Country
Parent 10411651 Apr 2003 US
Child 11357392 US