The present invention relates to a planar circuit to waveguide transition.
For a structure of a conventional planar circuit to waveguide transition, the following one is proposed: a differential line constituted of a pair of signal line conductors provided on a dielectric substrate of a single layer is connected to a rectangular patch conductor to transit a signal to a waveguide disposed above the substrate by utilizing resonance of the patch conductor (for example, Non-Patent Document 1).
On the other hand, there is disclosed a transition including a coaxial mode to waveguide mode transition in an inner layer of a multilayer substrate to transit a differential mode to a waveguide mode (for example, Patent Document 1).
Patent Document 1: Japanese Patent Application Laid-open No. 2010-206390
Non-Patent Document 1: Ziqiang Tong and, Andreas Stelzer, “A Millimeter-wave Transition from Microstrip to Waveguide Using A Differential Microstrip Antenna” European Microwave Conference 2010 pp. 660-663.
However, while it can be configured simply with the dielectric substrate of the single layer in Non-Patent Document 1 that is a conventional technique, it is difficult to secure a wide specific (fractional) bandwidth that can be transited because of the use of the resonance of the patch conductor.
Additionally, in Non-Patent Document 1, a structure using two patch conductors for measures of a wider bandwidth is proposed to thereby achieve a wider bandwidth as compared to the one using a single patch conductor, but there is a limitation to the wider bandwidth such that a specific bandwidth of −15 dB or less in reflection characteristics is in the order of 8%.
On the other hand, in the structure shown in Patent Document 1, the specific bandwidth of the transition is determined by the specific bandwidth of the coaxial mode to waveguide mode transition provided in the inner layer of the multilayer substrate, and thus the specific bandwidth can be generally secured more widely as compared to that of the aforementioned structure that uses the patch conductors. However, the structure is complicated because of the use of a plurality of layers in a dielectric substrate to be thus easily affected by variations in manufacturing.
As mentioned above, there is a problem such that a wider bandwidth cannot be achieved with a simple layer structure like a surface layer part in the conventional planar circuit to waveguide transition.
An object of the present invention is to provide a planar circuit to waveguide transition that can achieve a wider bandwidth with a simple layer structure like a surface layer part.
A planar circuit to waveguide transition of the present invention includes: a conductor pattern provided on one side of a dielectric substrate; a first opening in which part of the conductor pattern is removed to be hollowed out; a second opening in which the conductor pattern is removed such that one end of the first opening is extended outward; a third opening and a fourth opening which are separated from the second opening, and in which the conductor pattern is removed to be parallel to an extending direction of the second opening at opposite positions across (on both sides of) the second opening; a first signal line conductor formed by the conductor pattern remaining in a region between the second opening and the third opening; a second signal line conductor formed by the conductor pattern remaining in a region between the second opening and the fourth opening to constitute a balanced line together with the first signal line conductor; and a metal member having a cavity and arranged to cover the first opening to constitute a waveguide together with the conductor pattern.
According to the present invention, a wider bandwidth can be achieved as compared to the transition using the resonance in the conventional technique. In addition, there is an advantageous effect that makes possible both of an achievement of a simple layer structure like a single-layer substrate or a surface layer part of a multi-layer substrate, and wide bandwidth characteristics.
a) to 1(d) are configuration diagrams illustrating a structure of a planar circuit to waveguide transition according to Embodiment 1 of the present invention.
a) to 3(d) are configuration diagrams illustrating a structure of a planar circuit to waveguide transition according to Embodiment 2 of the invention.
a) to 4(d) are configuration diagrams illustrating a structure of a planar circuit to waveguide transition according to Embodiment 3 of the invention.
a) to 6(d) are configuration diagrams illustrating a structure of a planar circuit to waveguide transition according to Embodiment 4 of the invention.
a) to 7(d) are configuration diagrams illustrating a structure of a planar circuit to waveguide transition according to Embodiment 5 of the invention.
In the following, in order to describe the present invention in more detail, embodiments for carrying out the invention will be described with reference to the accompanying drawings.
As shown in
In this case, the ground conductor 12 has an opening 20 in which part of a conductor is removed to be hollowed out in a rectangular shape, and one short side of the opening 20 is connected to an opening 21 in which the conductor is removed to extend in one direction of
An opening 22 formed by removing the conductor to extend to a direction that is substantially the same as the extending direction of the opening 21 is provided on one side of the opening 21, and an opening 23 formed by removing the conductor to extend a direction that is substantially the same as the extending direction of the opening 21 is provided on the other side of the opening 21.
Signal line conductors 31 and 32 are formed by these openings 21, 22, and 23, and a differential signal line (balanced line) 70 is constituted of these signal line conductors 31 and 32.
The ground conductors 12 and 11 are conducted to each other via a columnar conductor (connection conductor) 41 that penetrates the dielectric substrate 10 around the opening 20, and as shown in
A metal block (metal member) 50 is mounted on top of the dielectric substrate 10 so as to cover the opening 20. The metal block 50 has a cavity 51 inside, and a waveguide 60 using the metal block 50 and ground conductor 12 as wall surfaces is configured.
The waveguide 60 is extended in an x-axis negative direction shown in
As shown in
With respect to a conduction between the metal block 50 and the ground conductor 12, a structure to be conducted through another conductive material may be employed, or an electrical short circuit may be implemented at a particular frequency when a gap between the metal block 50 and ground conductor 12 is allowed.
In this connection, a y-z cross-sectional shape of the cavity 51 and waveguide 60, as shown in
Therefore, the lowest order mode (basic mode) of the waveguide 60 is the TE10 mode in which the electric field is oriented in the y-axis direction and has an intensity distribution of the field in the z-axis direction.
When a differential line constituted of the signal line conductors 31 and 32 is transmitted in a differential mode, signals of the signal line conductors 31 and 32 are put in an opposite-phase relation, and perfect electric conductor boundary conditions are applied in the C-C′ plane in
Therefore, most of an electric field distribution in a differential mode is generated between the signal line conductors 31 and 32, and the direction of the electric field becomes dominant in the y-axis direction.
The opening 20 located at a position that intermediates the TE10 mode and the differential mode can configure a slot line capable of transmitting a slot mode in which the electric field in the y-axis direction is dominant.
Therefore, the direction of the electric field of the opening 20 can be designed to the y-axis direction that is the same as the direction of the electric field in the TE10 mode, and the dominant direction of the electric field in the differential mode.
In the conventional technique, the differential line is connected to the rectangular patch conductors, and the conversion with the waveguide mode is achieved by utilizing a resonance mode of the patch conductors, so that a resonance bandwidth of the patch conductors receive restriction; thus, there is a problem such that the specific bandwidth is limited.
In the structure shown in
The differential signal line-waveguide transition shown in
In
The used dielectric substrate 10 had a relative permittivity of 4.2 and a thickness of 0.36.
In the calculation, a 3D electromagnetic field simulation by a finite element technique was used.
Note that a horizontal axis in
From
While there is described the case where the cross section of the waveguide 60 is rectangular in the configuration shown in
In addition, the same applies to the shape of the opening 20; it may be any shape excluding a regular polygon and a circle, or it is available as long as a long side direction and a short side direction thereof is distinguishable from each other.
Since one of the end portions in the long side direction of the opening 20 is a short circuit point, a midpoint position in the long side direction of the opening 20 is a position away from the short circuit point, and intense in the electric field. In addition, a direction of the electric field corresponds to the short side direction of the opening 20 in the midpoint position in the long side direction of the opening 20.
In
While in the configuration shown in
Additionally, while the description is given of the structure where the cavity 51 is hollow, part or all of the cavity 51 may be filled with an insulating material having a relative permittivity more than 1. In this case, reduction in waveguide dimension can be achieved in the same frequency.
While the waveguide 60 is configured with the metal block 50 in
Additionally, while the description is given of the example where the wall surface parallel to an x-y plane of the waveguide 60 is configured with the ground conductor 12, the corresponding surface may also be configured with the metal block 50.
While in
In this case, the slot mode can be coupled to the z-axis negative direction in addition to the positive direction of the z-axis in which the waveguide 60 is located, and thus a structure newly provided with an waveguide in the backside direction (z-axis negative direction) of the dielectric substrate 10 may be employed.
In
As described above, the planar circuit to waveguide transition according to Embodiment 1 can achieve the traveling wave conversions from the waveguide mode to the slot mode, and from the slot mode to the differential mode without utilizing resonance, which makes it possible to align the dominant direction of the electric field by the three ones, and thus a wider bandwidth can be expected as compared to the conventional technique that utilizes the resonance phenomenon.
Therefore, both of an achievement with a simple layer structure and wide bandwidth characteristics which are the problems in the conventional techniques become possible.
As shown in
An opening 27 formed by removing the conductor to extend to substantially the same direction as the extending direction of the opening 26 is provided on one side of the opening 26.
Both of the openings 26 and 27 are formed in a rectangular shape, and arranged at substantially symmetrical positions about the C-C′ plane in
A signal line conductor 35 is formed by these openings 26 and 27 to constitute an unbalanced line 80.
In
In
As shown in
The other structure is the same as that of the aforementioned Embodiment 1, and an explanation thereof will be omitted.
Basic effects by the configuration shown in
In the structure shown in
For this reason, it becomes possible to align a direction of the electric field in a slot mode of the opening 25 and a direction of the electric field in a TE10 mode of a waveguide 60 in the same direction, which makes it possible to secure wide bandwidth characteristics even in the unbalanced line, as with Embodiment 1.
While the structure of the unbalanced line 80 is symmetrical about a z-x plane in the structure of
While the opening 25 is structured asymmetrical about the z-x plane in the structure of
From the above, the planar circuit to waveguide transition according to Embodiment 2 can provide the same effects as those described in Embodiment 1 even in the transition of the unbalanced line and the waveguide.
As shown in
The other structure is the same as that of the aforementioned Embodiment 1, and an explanation thereof will be omitted.
Basic effects by a configuration shown in
In the structure of
While in this example, an extracting direction of the waveguide 62 is described about an extraction in a direction at 90 degrees (right angles) with the x-y plane, namely in the z-axis direction, the extracting direction is not limited to this, but may be selected arbitrarily; according to the configuration of
While in
From the above, the planar circuit to waveguide transition according to Embodiment 3 makes it possible to select a waveguide extraction opening in an arbitrary direction, in addition to the effects described in Embodiment 1.
As shown in
The other structure is the same as that of the aforementioned Embodiment 1, and an explanation thereof will be omitted.
Basic effects by a configuration shown in
In the structure shown in
According to the structure shown in
In
Therefore, the lowest-order mode (basic mode) of the waveguide 63 is the TE10 mode such that an electric field is oriented in the y-axis direction, and thus it is possible to maintain the same direction as that of the electric field of the waveguide 60 shown in Embodiment 1.
While in this example, the description is given about the example that an extracting direction of the waveguide 63 is set in the z-axis direction, the extracting direction of the waveguide 63 may be set to a direction having an arbitrary angle with the x-y plane, as with Embodiment 2.
From the above, the planar circuit to waveguide transition according to Embodiment 4 makes it possible to achieve the simplification of the metal block structure, in addition to the effects described in Embodiment 3.
As shown in
The other structure is the same as that of the aforementioned Embodiment 1, and an explanation thereof will be omitted.
Basic effects by a configuration shown in
As shown in
Therefore, the lowest-order mode (basic mode) of the waveguide 63 is the TE10 mode such that an electric field is oriented in the z-axis direction, and has an intensity distribution in the x-axis direction.
In the structure shown in
According to the structure shown in
In other words, a conversion to a waveguide mode in which the direction of the electric field is oriented in a vertical direction of the dielectric substrate 10 becomes possible.
While in this example, the extracting direction of the waveguide 64 is described about the example that is set in the y-axis direction, the extracting direction of the waveguide 64 may be set to a direction having an arbitrary angle with the z-x plane, as with Embodiment 3.
From the above, the planar circuit to waveguide transition according to Embodiment 5 enables a conversion to the waveguide mode in which the direction of the electric field is oriented in the vertical direction of the dielectric substrate 10, in addition to the effects described in Embodiment 1.
It is noted that in the present invention, a free combination in the embodiments, a modification of arbitrary components in the embodiments, or an omission of arbitrary components in the embodiments is possible within a range of the invention.
The planar circuit to waveguide transition according to the present invention includes: the plurality of openings formed by removing part of the conductor pattern on the dielectric substrate; the signal line conductor formed by part of the conductor pattern remaining in the region between the openings; and the metal member disposed so as to cover the openings to constitute the waveguide together with the conductor pattern, whereby both of achievement of the simple layer structure and wide bandwidth characteristics are possible. Thus, it is suitable for use in a planar circuit to waveguide transition coping with a wide bandwidth.
10: dielectric substrate
11: ground conductor
12: ground conductor (conductor pattern)
20 to 23, 25 to 27: openings
31, 32, 35: signal line conductors
41: columnar conductor (connection conductor)
50, 53, 55, 56: metal blocks (metal members)
51: cavity
52: hole
54: corner cut portion
60, 62 to 64: waveguides
61: bend
70: differential line (balanced line)
80: unbalanced line.
Number | Date | Country | Kind |
---|---|---|---|
2012-062194 | Mar 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/050801 | 1/17/2013 | WO | 00 |