The present invention generally relates to a planar inductor on a semiconductor device.
A conventional planar inductor on a semiconductor chip is described.
As shown in the figure, a planar inductor 100 includes a substrate 102, a dummy metal fill 104, an input 106, a crossover 108, a crossover 110, a cross-under 112, a cross-under 114, an output 116, a trace portion 118, a trace portion 120, a trace portion 122, a trace portion 124 and a trace portion 126.
Input 106 provides a connection to Grace portion 118. Trace portion 118 is disposed between input 106 and crossover 108. Trace portion 120 is disposed between crossover 108 to cross-under 112. Trace portion 122 is disposed between cross-under 112 and crossover 110. Trace portion 124 is disposed between crossover 110 and cross-under 114. Trace portion 126 is disposed between cross-under 114 and output 116.
In operation, a current is transmitted through planar inductor 100 causing a magnetic field to form perpendicular to planar inductor 100. Current enters at input 106, flows through trace portions of planar inductor 100, and exits at output 116. Trace portions of planar inductor 100 in conjunction with crossover 108, crossover 110, cross-under 112, and cross-under 114 allow multiple levels of trace portions to function as a coiled wire.
As current flows through the trace portions of planar inductor 100, the associated magnetic field generates additional electromagnetic fields, which will be described in greater detail with reference to
As shown in the figure, conventional planar inductor 200 includes a semiconducting substrate 202 and a trace 204. Trace 204 includes a trace portion 206, a trace portion 208 and a trace portion 210. Input and output ports (not shown) are parallel to trace portion 206 and trace portion 210 and are perpendicular to trace portion 208. A positive charge 212, a negative charge 214, an image current 216, an electric field 218, an electric field 220, a current 222 and a magnetic flux 223 are additionally included in the figure.
In operation, current 222 enters at input (not shown) at proximal end of trace portion 206, travels from trace portion 206 to trace portion 208 and exits at output (not shown) at proximal end of trace portion 210. Current 222, flowing through trace 204, will generate a magnetic flux 223 between trace portion 206 and trace portion 210, which flows in au inward direction toward substrate 202. According to Lenz's law magnetic flux 223 causes circular eddy currents in substrate 202 that generate a magnetic flux (not shown) in a direction opposite to that of magnetic flux 223. Since the substrate is not extremely conductive and has a relatively small resistivity, the eddy current losses are small.
Positive charge 212 and negative charge 210 are illustrated as a current differential at a time t0 in order to show a direction of current 222. Positive charge 212 generates a spherically radiating electric field. The portion of the spherically radiating electric field, which is of interest, is that which is directed toward substrate 202, and is indicated as electric field 218. Electric field 218 then induces a negative charge on substrate 202.
Similarly, negative charge 214 additionally generates a spherically radiating electric field in the opposite direction of the spherically radiating electric field associated with positive charge 212. The portion of the spherically radiating electric field of negative charge 214, which is of interest, is that which is directed from substrate 202, and is indicated as electric field 220. Electric field 220 then induces a positive charge on substrate 202.
In this manner, the positive charge induced by electric field 220 and the negative charge induced by electric field 218 create image current 216, flowing in an opposite direction to current 222 within substrate 202. Image current 216 is smaller in magnitude than current 222 and rotates in a direction opposite to that of current 222 within trace 204.
For purposes of discussion, consider the example where the resistance of substrate 202 is around 12.5 Ωcm. This is not too high or too low. Since substrate 202 is not extremely conductive, the eddy current losses will be negligible as described earlier. Image current 216, when flowing in substrate 202, leads to resistive dissipation losses (I2R loss). Since Q is a function of the ratio of energy stored in magnetic flux to the energy dissipated, the resistive loss from substrate 202 leads to Q degradation. In order to minimize the substrate loss due to image currents, substrate 200 needs to be made highly conductive or highly resistive.
The quality factor (or Q factor) of an inductor is the ratio of its inductive reactance to its resistance at a given frequency, and is a measure of its efficiency. The higher the Q factor of the inductor, the closer it approaches the behavior of an ideal, lossless, inductor. The inductive reactance of an inductor is based on the overall generated magnetic flux. In the case of planar inductor 200, the overall magnetic flux is a combination of-magnetic flux 223 generated by current 222 and the magnetic flux (not shown) generated by image current 216 in substrate 202. For example, a conventional planar inductor similar to planar inductor 200 may provide a Q factor in the range of 10 to 16.
In order to make the substrate highly conductive one conventional method uses a blanket metal shield, and will now be explained with reference to
As shown in the figure, conventional planar inductor 300 includes a blanket metal shield 302, a trace 304, and a substrate (not shown). Trace 304 includes a trace portion 306, a trace portion 308, a trace portion 310, a trace portion 312, a trace portion 314, a trace portion 316, and a trace portion 318.
Blanket metal shield 302 is disposed between trace 304 and the substrate (not shown). Trace portions 306 is parallel to trace portion 318, whereas trace portion 310 is parallel to trace portion 314. Trace portions 308 and 316 are parallel to trace portion 312. Trace portions 310 and 314 are perpendicular to trace portions 308, 312, and 316.
In operation, current flows through trace portions of planar inductor 304. Trace portion 314 and trace portion 316 serve as input and output. Blanket metal shield 302 forms a conductive layer disposed between substrate (not shown) and trace 304. In
As shown in
Additionally shown in the figure are positive charge 320, negative charge 322, electric field 324, electric field 326, current 328, eddy currents 330 and a magnetic flux 332.
In operation, current 328 enters through input (not shown) at proximal end of trace portion 310, travels through trace portion 310 to trace portion 312 and exits at output (not shown) at proximal end of trace portion 314. Current 328, traveling in a circular manner, will generate magnetic flux 332 that is between trace portion 310 and trace portion 314, which flows in an inward direction toward substrate 202.
Similarly to planar inductor 200 of
However, magnetic flux 332 generates eddy currents 330 within blanket metal shield 302. Since blanket metal shield 302 is highly conductive the eddy currents 330 are large and comparable to current 328. These eddy currents 330 generate associated magnetic flux that are opposite in direction and comparable in magnitude, and which counter magnetic flux 332. In the case of planar inductor 300, the overall magnetic flux is a sum of magnetic flux 332 generated by current 328 and a large opposite magnetic flux (not shown) induced by eddy currents in blanket metal shield 302. Accordingly, the Q factor is severely attenuated by the presence of eddy currents within blanket shield.
In planar inductor 200 of
A metal shield disposed between trace and substrate eliminates image currents within substrate but induces eddy currents due to charges generated within conductive shield material. Eddy currents exist more readily within a conductive material where charges can move more freely than in a semiconductor or insulator material. Conventional efforts attempt to reduce losses in Q factor of planar inductor by using a patterned metal ground shield to minimize eddy currents in the conductive shield and minimize image currents in the lossy silicon substrate. This conventional slotted planar inductor will now be explained with reference to
As shown in the figure, conventional planar inductor 400 includes a substrate (not shown), trace 304 and a randomly-traced metal shield 402. Metal shield 402 includes a shield portion 404, a shield portion 406, a shield portion 408, and a shield portion 410. Metal shield 402 is disposed between a substrate (not shown) and trace 304.
Shield portion 404 includes a plurality of parallel traces arranged to resemble stripes. The traces are very closely spaced and have different lengths, a sample of which is indicated as a trace 412. Shield portion 406 includes a plurality of parallel traces arranged to resemble stripes. The traces are very closely spaced and have different lengths, a sample of which is indicated as a trace 414. Shield portion 408 includes a plurality of parallel traces arranged to resemble stripes. The traces are very closely spaced and have different lengths, a sample of which is indicated as a trace 416. Shield portion 410 includes a plurality of parallel traces arranged, to resemble stripes. The traces are very closely spaced and have different lengths, a sample of which is indicated as a trace 418.
The parallel traces of shield portion 404 are arranged such that the length of each trace is parallel with the length of each of parallel traces of shield portion 408. The parallel traces of shield portion 404 are additionally arranged such that the length of each trace is perpendicular with the length of each of parallel traces of shield portion 418. The parallel traces of shield portion 404 are additionally arranged, such that the length of each trace is perpendicular with the length of each of parallel traces of shield portion 406.
Metal shield 402 is disposed between trace 304 and substrate (not shown).
A portion, indicated by dotted trapezoid 420, of the plurality of parallel traces of shield portion 408 are perpendicular to trace portion 314. A portion, indicated by dotted five-sided object 422, of the plurality of parallel traces of shield portion 406 are parallel to trace portion 314. Further, a portion, indicated by dotted five-sided object 424, of the plurality of parallel traces of shield portion 410 are parallel to trace portion 314.
A portion, indicated by dotted trapezoid 426, of the plurality of parallel traces of shield portion 404 are perpendicular to trace portion 310. A portion, indicated by dotted five-sided object 430, of the plurality of parallel traces of shield portion 406 are parallel to trace portion 310. Further, a portion, indicated by dotted five-sided object 428, of the plurality of parallel traces of shield portion 410 are parallel to trace portion 310.
In operation, trace 304 in
Importantly, metal shield 402 in
As the traces in metal shield are randomly spaced and randomly placed, there are portions within planar inductor 400 in which there is no blanket shield disposed between trace and substrate such as location 434, portions in which a metal shield is disposed between trace and substrate such as trace 404, and portions in which a metal shield is partially disposed between trace and substrate such as trace 414.
Portions without metal shield disposed between trace and substrate behave similarly to planar inductor 200 of
Portions of inductor 400 in which metal traces are disposed between trace and substrate behave similarly to
In operation, planar inductor 400 contains aspects of planar inductor 200 of
As shown in the figure, conventional planar inductor 400 includes a cross sectional portion of trace 304 indicated as a trace portion 502, a cross sectional portion of metal shield 402 indicated as a metal shield portion 506 and substrate 202. Trace portion 502 includes a portion 502A with surface 502B, and a portion 504A with surface 504B. Metal shield portion 506 includes portion 506A with surface 506B and surface 506C and portion 508A with surface 508B and surface 508C.
Additionally shown in the figure are a positive charge 510, an electric field 512, a negative charge 514, a positive charge 516, an electric field 518, a negative charge 520, a negative charge 526, an electric field 528, a positive charge 530, a negative charge 532, an electric field 534 and a positive charge 536. Metal shield portion 506 is disposed between trace portion 502 and substrate 202.
Similarly, as the (opposite) current is applied to trace portion 502, negative charge 526 accumulates on surface 504B causing electric field 528 to flow from shield portion 508A. Electric field 528 induces positive charge 530 to accumulate on surface 508B. An opposing negative charge 532 is induced on bottom surface 508C causing electric field 534 to flow from surface 538, which induces positive charge 536 on substrate surface 538.
As mentioned above, current flows through trace portion 502 such that it travels normal and into
As shown in the figure, this portion of conventional planar inductor 400 includes a cross sectional portion of trace 304 indicated as trace portion 550, a cross sectional portion of metal shield 402 indicated as a shield portion 566A, and substrate 202. Trace portion 550 includes portion 552A and portion 554A. Portion 552A includes a surface 552B and portion 554A includes a surface 554B. Shield portion 566A includes a surface 556B, a surface 556C, a surface 556D and a surface 556E.
Additionally shown in the figure are a positive charge 558, an electric field 560, a negative charge 562, a positive charge 564, an electric field 566, a negative charge 568, a negative charge 572, an electric field 574, a positive charge 576, a positive charge 578, an electric field 580, and a positive charge 582.
Shield portion 566A is disposed between substrate 202 and trace portion 550 in an unbalanced distance between portions 552A and 552B.
This portion of conventional planar inductor 400 behaves similarly to conventional planar inductor 400 of
Negative charge 572 accumulates on surface 554B of portion 554A causing a portion of electric field 574 to flow from a surface 584 of substrate 202 and a portion of electric field 574 to flow from a surface 556D of shield portion 556A. The portion of electric field 574 from shield portion 556A induces positive charge 576 on surface 556B. Positive charge 576 effectively cancels a induced negative charge from electric field 560 from portion 552A. It is this cancellation that results in the illustrated two positive charges on surface 556C. The remaining charges induced on surface 584 that are not under shield portion 556A do not affect charges on surface 556C. The portion of electric field 574 from surface 584 induces positive charges 578 and 582.
Since shield portion 556A extends from under portion 552A to portion 554A, electric field 560 and electric field 574 partially cancel, as shown in
In the places of planar inductor 400 where there is no shield located between trace 304 and substrate 202, the electric fields generated by trace 304 induce charges on the surface of substrate 202. In the places of planar inductor 400 where there is a balanced shield but not extending from a positive side to a negative side of planar inductor 400, located between trace 304 and substrate 202, for example as discussed above with reference to
What is needed is an inductor with a higher Q factor and a variable frequency modulation.
The present invention provides a system and method for a planar inductor having a higher Q factor and a variable self-resonance frequency.
An aspect of the present invention provides an inductive device, which includes a substrate, a layer having a plurality of conductive metal traces and a conductive trace. The conductive trace has an input port, a first portion, a second portion, a third portion and an output port. The metal shield layer is disposed between the substrate and the conductive trace. Each of the plurality of conductive metal traces has a respective length and a respective width. Each of the plurality of conductive metal traces is separated from one another. Each of the plurality of conductive metal traces are disposed perpendicularly and symmetrically with respect to the first portion and third portion and are disposed continuously from below the first portion to below the third portion.
Additional advantages and novel features of the invention are set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate an exemplary embodiment of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
A first aspect of the present invention is drawn to a slotted metal shield in a planar inductor, wherein the slotted shield is arranged such that shield portions are arranged continuously, perpendicularly and symmetrically across two parallel portions of the trace. The shield portions reduce image currents in substrate, whereas the non-shield portions reduce the eddy currents in the shield portions. The arrangement of the alternating shield/non-shield portions of the slotted metal shield prevents image currents in the shield, while concurrently minimizing eddy currents in the shield. In example embodiments, the shield portions include metal strips disposed orthogonally to the direction of current flow in the main trace. Further, the metal strips extend continuously from the positive side of the main trace to the negative side of the main trace so as to balance the electrical fields, and ensuring that the electrical fields are confined between the shield and the main trace of the inductor. Such a structure provides an overall increased Q factor in the planar inductor.
A second aspect of the present invention is drawn to an additional switchable slotted metal shield in a planar inductor, wherein the additional switchable slotted metal shield is able to tune the resonant frequency of the planar inductor.
A first aspect of the present invention will now be described in greater detail with reference to
As shown in the figure, planar inductor 600 includes a substrate (not shown), trace 304, and a slotted metal shield 610. Slotted metal shield 610 is disposed between trace 304 and the substrate.
Trace 304 contains a dimension 638 which is the length of trace portion 308. Trace portions 306, 310, 314, and 318 are parallel. Trace portions 308, 312 and 316 are parallel. Trace portions 306, 310, 314, and 318 are perpendicular to trace portions 308, 312, and 316.
Slotted metal shield 610 includes a center shield portion 612, a side shield portion 614 and a side shield portion 616. Center shield portion 612 contains a plurality of shield traces, an example of which is indicated as a shield trace 618 with trace-to-trace spacing 620. Side shield portion 614 contains a plurality of shield traces, an example of which is indicated as a shield trace 622 with trace-to-trace spacing 624. Side shield portion 616 contains a plurality of shield traces, an example of which is indicated as a shield trace 626 with trace-to-trace spacing 628.
Each shield trace is separated from its neighboring trace by a spacing 630 and has a width 632.
As shown in the figure, vertical portions of traces of slotted metal shield 610 are perpendicular to horizontal portions of trace 304, whereas and vertical portions of traces of slotted metal shield 610 are parallel to each other. Similarly, horizontal portions of traces of slotted metal shield 610 are perpendicular to vertical portions of trace 304, whereas and horizontal portions of traces of slotted metal shield 610 are parallel to each other. In this manner, portions of traces of slotted metal shield 610 are each perpendicular to the respective portion of trace 304 below which they are disposed.
In operation, current through trace 304 causes a magnetic field to form perpendicular to the surface of planar inductor 600. In planar inductor 660 of the present invention, a key difference is the use of slotted metal shield 610 for a higher Q factor.
Each of a plurality of shield traces in center shield portion 612 is perpendicular to trace portion 310 and trace portion 314. Each of another plurality of shield traces in shield portion 614 is non-linear and is perpendicular to trace portions 310, 312 and 314. An example of such a shield trace is shield trace 615. Each of another plurality of shield traces in shield portion 616 is perpendicular to trace portions 306, 308, 316, and 318. In addition, traces of slotted metal shield 610 are continuous across facing trace portions of trace 304, eliminating imbalance as discussed above with reference to
A Q factor may be modified by changing shield trace spacing and shield trace width. In an example embodiment, width and spacing are defined as dimension 630, the spacing between adjacent shield traces, to be 0.88 μm and dimension 632, the width of a shield slot, to be 0.88 μm.
Returning to
The present invention is drawn to a planar inductor including a slotted metal shield of metal strips placed continuously, symmetrically and orthogonally to the positive and negative sides of the main inductor trace. With this construction, the differential nature of the inductor and shield balances the electric field terminating on the positive side and the negative side of the shield of the inductor. Due to this, most of the electric field gets confined in the space between the slotted metal shield and the main trace, thus significantly reducing the flow of image current in the lossy substrate. The metal strips width and spacing are optimized in such a way that the most of the electric field gets properly terminated on the shield and there are no significant eddy currents due to capacitive coupling between shield strips. All these effects improve the Q by greater than 50% over that of conventional planar inductors, when techniques in accordance with the present invention are applied to conventional planar inductors. The electrical and magnetic behavior of a slotted shield in accordance with aspects of the present invention will now be described in greater detail with reference to
As shown in the figure, planar inductor 700 includes substrate 202, trace 304, and a slotted metal shield 702.
As shown in the figure, slotted metal shield 702 includes a plurality of traces, an example of which is indicated as a shield trace 704. Each trace within slotted metal shield 702 has a width 706 and is separated from a neighboring trace by a spacing 708. Slotted metal shield 702 is disposed between substrate 202 and trace 304.
Additionally shown in the figure are positive charge 320, negative charge 322, current 216, electric field 324, electric field 326, current 328 and magnetic flux 332.
In operation, current 328 flows from trace portion 310 through trace portion 312 toward trace portion 314. In the figure, consider current 328 at an instant, such that positive charge 320 accumulates within trace portion 310 causing electric field 324 between trace portion 310 and shield 702. Negative charge 322 accumulates within trace portion 314 causing electric field 326 between trace portion 314 and shield 702.
Since the metal shield strips are slotted and orthogonal to direction of the current flow, there is negligible image current in the shield. A metal shield strip is disposed such that a positive electric field, under the portion of the trace having a positive electric field in the direction toward the substrate, balances the negative electric field, under the portion of the trace having a negative electric field in the direction from the substrate. Since the metal shield is slotted, and is not a blanket metal shield, the eddy currents in the shield are negligible. Still further, the metal strips width and spacing may be optimized in such a way that the most of the electric field gets properly terminated on the shield and there are no significant eddy currents due to capacitive coupling between shield strips. For example, as the width of a metal strip decreases, there is an increased resistance to displacement current. On the other hand, as the width of the metal strip increases, there is an increase of eddy current loops in the shield strip, which degrades the Q. Further, as the spacing between the metal strips decreases, the capacitance between shield strips increases, which may provide shorts for eddy currents, which degrades the Q. On the other hand, as the spacing between the metal strips increases, there is less shielding such that more electric fields reach the substrate, generating heat and decreasing the Q.
The slotted metal shield confines most the E field between the shield and the inductor trace such that the image currents in the substrate are mitigated and the metal shield strips width and spacing are optimized in such a way that the eddy currents in the shield are mitigated. As a result, the Q factor of planar inductor 700 is higher than planar inductor 300 of
As shown in the figure, planar inductor 800 includes a substrate (not shown), a trace 804, and a slotted metal shield 802. In this example, the input and output portions of trace 804 are not shown. Slotted metal shield 802 is disposed between trace 804 and the substrate. Slotted metal shield 802 includes a portion 802 of parallel metal shield strips, a portion 808 of metal shield strips and a portion 810 of metal shield strips. In this example, portion 808 and portion 810 have end structures that are shorted to preserve symmetry. As such, the electric fields associated with the vertical portion of trace 804 and the electric fields associated with the input and output portions (not shown) of trace 804 are more easily balanced.
As shown in the figure, planar inductor 900 includes a substrate (not shown), a trace 904, and a slotted metal shield 902. In this example, the input and output portions of trace 904 are not shown. Slotted metal shield 902 is disposed between trace 904 and the substrate. Slotted metal shield 902 includes a portion 906 of groups of parallel metal shield strips, a portion 908 of metal shield strips and a portion 910 of metal shield strips. In this example, similar to planar inductor 800 discussed above, portion 908 and portion 910 have end structures that are shorted while preserving the properties of symmetry, orthogonality and continuity from positive side of the main trace to the negative side of the main trace. This modified shield structure enables a reduced area while implementing the inductor on silicon. Further, in this example, portion 906 in the center of planar inductor 900 have been grouped into subgroups, examples of which are indicated as 912 and 914. Each subgroup is connected to an opposing subgroup via a single metal strip portion, an example of which is indicated as 916. Grouping the metal strips reduces the capacitive coupling between the metal strips in the shield and hence further improves the Q factor. This is an important benefit of bunching the metal strips while preserving the properties of symmetry, orthogonality and continuity from the positive side of the main trace to the negative side of the main trace.
As shown in the figure, planar inductor 1000 includes a substrate (not shown), a trace 1004, and a slotted metal shield 1002. In this example, the input and output portions of trace 1004 are not shown. Slotted metal shield 1002 is disposed between trace 1004 and the substrate. Slotted metal shield 1002 includes a portion 1006 and a portion 1008 of metal shield strips. Portion 1006 includes a group 1010 of parallel metal strips, a group 1012 of parallel metal strips and a shorting portion 1014. Portion 1008 includes a group 1016 of parallel metal strips, a group 1018 of parallel metal strips and a shorting portion 1020.
Shorting portion 1014 ensures that the electric fields are balanced between group 1010 and group 1012. Shorting portion 1020 ensures that the electric fields are balanced between group 1016 and group 1018.
Changing the dimensions of the width of each trace, spacing between traces or the geometric layout of a slotted metal shield in accordance with aspects of the present invention may modify the resulting image currents within a substrate and the resulting eddy currents within the traces to achieve different Q factor.
As shown in the figure, graph 1100 includes a function 1102, a function 1104, a function 1106, a y-axis 1108, and an x-axis 1110.
As shown in the figure: function 1102 corresponds to a Q factor of a planar inductor having a blanket metal shield similar to that of planar inductor 300 of
As shown by function 1102, the Q factor of the planar inductor having no metal shield has a maximum value of approximately 27.
The planar inductor corresponding to function 1104 is similar to planar inductor 600 of
The planar inductor corresponding to function 1106 is additionally similar to planar inductor 600 of
As shown in the figure, graph 1150 includes an x-axis 1152 and a y-axis 1154, a function 1156, a function 1158, and a function 1160. Additionally, graph 1150 includes a data point 1162 and a data point 1164.
Function 1156 represents a resonance frequency of a planar inductor having a blanket metal shield similar to that of planar inductor 300 of
A crossover occurs at a resonance frequency, where the inductance value changes from a positive value to a negative value, i.e., the function has an x-axis intercept. Resonance occurs during operation of an inductor because magnetic field stored in the inductor gets exchanged as electric field in the capacitance across the inductor. Energy moves between electric and magnetic fields and creates an oscillation frequency called resonance frequency.
A function with values on the positive y-axis indicates that the inductor acts as an inductor. A function with values on the negative y-axis indicates that the inductor acts as a capacitor. Function 1156 performs as an inductor since it has positive values only. Functions 1158 and 1160 can perform as both inductors (positive) and capacitors (negative) since they contain positive and negative values.
The frequency curve for an inductor without shield, function 1156, does not result in a crossover but maintains a positive value only. Function 1158 has a crossover at point 1162 which corresponds to a resonance frequency of 24 GHz. As such, a planar inductor corresponding to function 1162 will act as an inductor up to 24 GHz, but will act as a capacitor at frequencies higher than 24 GHz. Function 1160 has a crossover frequency at point 1164 which corresponds to a resonance frequency of 18 GHz. As such, a planar inductor corresponding to function 1164 will act as an inductor up to 18 GHz, but will act as a capacitor at frequencies higher than 18 GHz.
The aspect discussed above deals with a slotted shield wherein shield traces perpendicular to current in the current trace reduce, if not eliminate eddy and image currents, and increase the Q factor of the planar inductor. However, shown in
For example, the planar inductor associated with function 1106 in
In general, all circuits that use inductors and capacitors in resonant tanks would require tuning of the resonant frequency to make the circuit performance robust across process variations. Also, in some circuits, the resonant frequency of LC tanks needs to be changed based on a low frequency modulating signal, this mechanism being called frequency modulation.
In accordance with another aspect of the present invention, the resonant frequency of a planar inductor may be shifted. For example, using the example situation discussed above, the resonant frequency of the planar inductor associated with function 1106 in
As shown in the figure, a frequency tunable planar inductor 1200 includes a substrate (not shown), trace 304, a first slotted metal shield 1202, and a slotted metal shield 1204.
Slotted metal shield 1202 includes shield trace dimension 630 for the spacing between adjacent traces and shield trace dimension 632 for the width of each slot. Slotted metal shield 1202 includes a shield portion 1206, a shield portion 1208, a shield portion 1210, a shield portion 1212, a shield portion 1214, a shield portion 1216, a shield portion 1218, a shield portion 1220, a shield portion 1222, a shield portion 1224, and a shield portion 1226.
Shield portion 1206 is connected to shield portion 1212 via shield portion 1218. Shield portion 1208 is connected to shield portion 1214 via shield portion 1220. Shield portion 1210 is connected to shield portion 1216 via shield portion 1222.
Slotted metal shield 1204 includes a shield portion 1252, a shield portion 1254, a shield portion 1256, a shield portion 1258, a shield portion 1260, a shield portion 1262, a shield switch portion 1264, a shield switch portion 1266 and a shield switch portion 1268.
Shield portion 1252 is connectible to shield portion 1258 via shield switch portion 1264. Shield portion 1254 is connectible to shield portion 1260 via shield switch portion 1266. Shield portion 1256 is connectible to shield portion 1260 via shield portion 1220.
Each trace within slotted metal shield 1204 is separated from a neighboring trace by a spacing 630. Further, each trace has a width 632.
It should be noted that slotted metal shield 1204 is shown next to slotted metal shield 1202 and trace 304 merely to provide a better view of slotted metal shield 1204. In actuality, slotted metal shield 1202 is disposed between slotted metal shield 1204 and substrate (not shown), whereas slotted metal shield 1204 is disposed between trace 304 and slotted metal shield 1202.
As shown in the figure, slotted planar inductor 1200 includes inductor trace 304. Planar inductor 1202 includes traces that are perpendicular to image current during operation, for the largest Q factor. Planar inductor 1202 additionally includes shield portions 1218, 1220, and 1222, which connect portion 1206 to portion 1212, portion 1208 to portion 1214, and portion 1210 to portion 1216. Portions 1218, 1220, and 1222 maintain continuity of trace portions 1206 to 1212, 1208 to 1214, and 1210 to 1216. Shield 1204 also includes traces that are perpendicular to image current during operation, for an increased Q factor, similar to shield 1202. Shield 1204 also includes switches 1264, 1266, and 1268. When switches 1264, 1266, and 1268 are closed, contact is made between shield portions 1252 and 1258, 1254 and 1260, and 1256 and 1262.
When switches 1264, 1266, and 1268 are open, shield 1204 acts in a manner similar to the shield discussed above in
When switches 1264, 1266, and 1268 are closed, the electric field from trace 304 terminates on shield 1206, in a manner similar to planar inductor 700 of
The Q factor of planar inductor 1200 may be changed by varying switching configuration, i.e., providing different combinations of opening/closing of switches 1264, 1266 and 1268. Each change in the Q factor may shift the overall resonant frequency of the planar inductor.
In other words, shield 1204 provides a mechanism for changing the resonant frequency by opening and closing switches 1264, 1266, and 1268. Closing switches isolates substrate from electric fields reduces image currents within the lossy substrate. Closing switches also changes inductor resistance and capacitance which changes resonant frequency. The concept of using multiple switches is expanded further in the following example.
As shown in the figure, a frequency-tunable planar inductor 1300 includes trace 304, a slotted metal shield 1302, and a slotted metal shield 1304.
As shown in the figure, a switch array shield portion 1310 is disposed within slotted metal shield 1302. Slotted metal shield 1302 includes a shield portion 1306 connected to a shield portion 1308 by switch array shield portion 1310. Slotted metal shield 1304 includes a shield portion 1320 connected to a shield portion 1322 by a switch array shield portion 1324. Slotted metal shield 1302 and slotted metal shield 1304 include a dimension 630 for spacing between adjacent traces and a shield dimension 632 for trace width.
Slotted metal shield 1304 is disposed between slotted metal shield 1302 and trace 304. Slotted metal shield 1302 is disposed between shield 1304 and substrate (not shown).
In operation, switch arrays 1310 and 1324 are closed allowing electrical contact (not shown) across slotted metal shield 1302 and slotted metal shield 1304. Individual switches within switch arrays 1310 and 1324 can be turned on and off to allow changes to modulation frequency. Opening and closing switching arrays 1310 and 1324 changes the strength of the electric field terminating on the respective shields and hence changes the capacitance associated with the inductor. By varying the strength of the electric field terminating in the metal shield by closing or opening the switches as in
As shown in the figure, tunable-frequency planar inductor 1400 includes a trace 1402, a slotted metal shield 1404, a slotted metal shield 1406 and a substrate 202.
Trace 1402 includes a trace portion 1408A and trace portion 1410A. Trace portion 1408A includes a surface 1408B and trace portion 1410A includes a surface 1410B.
Slotted metal shield 1404 includes a switch 1412. Slotted metal shield 1406 includes a portion 1406A, a portion 1406B and a switch 1414. In this example, switch 1412 and 1414 are closed.
Additionally shown are a positive charge 1416, an electric field 1418, a negative charge 1420, a negative charge 1422, an electric field 1424 and a positive charge 1426.
Slotted metal shield 1404 is disposed between slotted metal shield 1406 and substrate 202, whereas and slotted metal shield 1406 is disposed between trace 1402 and slotted metal shield 1404.
In operation, a current through trace 1402 creates a positive charge 1416 surface 1408B, which generates electric field 1418 in a direction toward surface 1406A. Electric field 1418 induces negative charge 1420 on surface 1406A. The current through trace 1402 additionally creates negative charge 1422 on surface 1410B, which generates electric field 1424 in a direction from surface 1406B. Electric field 1424 induces positive charge 1426 on surface 1406B. In this manner, slotted metal shield 1406 acts in a manner similar to metal shield 702 discussed above with reference to
A further enhancement of the Q factor can be realized for two turn (2-T) planar inductors. An example 2-T planar inductor may include a conductive trace having an input port, a first portion, a first crossover, a second portion, a third portion and an output port.
As shown to the figure, a 2-T planar inductor 1500 includes a trace 1504 and a slotted metal shield 1506. Trace 1504 includes an input port 1507, a trace portion 1508, a trace portion 1510, a trace portion 1512, a crossover 1514, a cross-under 1516 and an output port 1509. Slotted metal shield 1506 includes a shield portion 1518, a shield portion 1520, and a shield portion 1522. Slotted metal shield 1506 is disposed between trace 1504 and substrate (not shown). Trace portion 1512 forms a loop connected to trace portion 1510 by crossover 1514 which is also connected to trace portion 1508 by cross-under 1516.
In this example, a first portion may be trace portion 1508, the first crossover may be the combination of crossover 1514 and cross-under 1516, the second portion may be trace portion 1512 and the third portion may be trace portion 1510.
In operation, current flows between trace 1504 and trace portions 1510, 1512, 1514, and 1516. A magnetic field (not shown) is generated perpendicular to planar inductor 1500. Trace portions 1508 and 1510 form a single turn inductor and trace loop portion 1512 forms another single turn inductor.
Planar inductor with traced shield only slightly improves the Q factor. Because electric field in random traced shield still terminates on portions of substrate because of unbalanced traces, residual image current degrades the Q factor. By balancing slotted shield across inductor trace and substrate, balanced slotted shield confines electric field between shield and inductor and image current in substrate is reduced, if not eliminated. Maintaining orthogonality between direction of image current and balanced traces, reduces, if not eliminates, image current within shield. The Q factor is maximized without loss due to image current loss.
Multiple shield planar inductors use switches to connect shield portions to vary the length of a shield portion and switching arrays to connect shield traces to vary the length of an individual shield slot. By varying shield portion length, a shield can be used to tune resonant and center frequency. By varying shield trace length, a shield can be used to modulate frequency.
In addition, the present invention allows the ability to vary resonance frequency by tuning operating frequency and with increased Q maximum.
The foregoing description of various preferred embodiments of the invention have been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The exemplary embodiments, as described above, were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.
The present application claims priority from: U.S. Provisional Application No. 61/735,188 filed Dec. 10, 2012, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61735188 | Dec 2012 | US |