A sequence listing in electronic (XML file) format is filed with this application and incorporated herein by reference. The name of the XML file is “FP220008.xml”; the file was created on Oct. 6, 2023; the size of the file is 33,371 bytes.
The present disclosure relates to a production method for a plant growth promoter which is a natural metabolite that contributes to enhancement in plant growth, a plant growth promoter, and a plant growth promoting method.
There is a need for the development of techniques for efficiently producing agricultural crops in limited cultivated lands with requirements for increased food production associated with a growing world population. The utilization of organism-derived starting materials aimed at reducing the consumption of fossil resources is increasing from the viewpoint of the prevention of global warming and reduction in environmental load. Among others, there is a demand for the exploitation of naturally derived substances with less consumption of fossil energy in a production process and with less environmental load in application.
For example, methods for inoculating plants with a microbe producing a substance involved in promoting growth of a plant (hereinafter, also referred to as a plant growth promoting substance), or a culture solution or the like of the microbe (Patent Literature (PTL) 1, PTL 2, and Non Patent Literature (NPL) 1) are disclosed as approaches of enhancing crop production that exploits naturally derived substances. For example, a method for improving the availability of metal ions by plants is also disclosed which comprises adding a natural metabolite such as an organic acid to soil so that the metal ions in the soil are chelated (PTL 3). For example, a method for applying a composition containing a natural metabolite adenosine to plants (PTL 4), and a method for applying a fertilizer containing cell extracts of algae to plants (PTL 5) are also disclosed.
PTL 1: Japanese Unexamined Patent Application Publication No. 2018-11600
PTL 2: Japanese Unexamined Patent Application Publication No. S63-501286
PTL 3: Japanese Unexamined Patent Application Publication No. 2014-073993
PTL 4: Japanese Patent No. 5943844
PTL 5: Japanese Patent No. 3143872
NPL 1: Jimenez-Gomez et al., “Probiotic activities of Rhizobium laguerreae on growth and quality of spinach”, Scientific reports, 2018, Vol. 8, 295
NPL 2: Hikaru Kowata, Studies on molecular basis of cyanobacterial outer membrane function and its evolutionary relationship with primitive chloroplasts, Thesis, [Online], 2018 Mar. 27, Internet: <URL: http://hdl.handle.net/10097/00122689>
NPL 3: Seiji Kojima, Elucidation and application of bacterial-derived membrane stabilizer mechanism and substance permeation mechanism that functions in the chloroplast membrane surfaces, KAKENHI, [online], 2018 Apr. 23, Internet: <URL: https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H02117>
However, in the conventional techniques described above, a process such as the microbial production of a plant growth promoting substance or the purification or extraction of a plant growth promoting substance is complicated and time-consuming and is also costly. Also, in the conventional techniques described above, a loss such as reduction in the yield or activity of a plant growth promoting substance occurs in purifying and extracting the plant growth promoting substance. On the other hand, in the case of inoculating plants with a microbe itself, its effects differ depending on a combination of the microbial species used, the plant species of interest, and the properties of soil. Thus, this approach is poorly versatile and has an unstable plant growth promoting effect.
In view of this, the present disclosure provides a plant growth promoter production method which can conveniently and efficiently produce a plant growth promoter having an improved plant growth promoting effect. The present disclosure also provides a plant growth promoter which can effectively promote plant growth, and a plant growth promoting method using the plant growth promoter.
A plant growth promoter production method according to an aspect of the present disclosure includes: preparing a modified cyanobacterium in which a total amount of a protein involved in binding between an outer membrane and a cell wall of cyanobacterium is suppressed to between 30 percent and 70 percent, inclusive, of a total amount of the protein in a parent strain; and causing the modified cyanobacteria to secrete a secretion involved in promoting growth of a plant.
The plant growth promoter production method of the present disclosure can conveniently and efficiently produce a plant growth promoter having an improved plant growth promoting effect. The plant growth promoter of the present disclosure can effectively promote plant growth. The plant growth promoting method of the present disclosure can effectively promote plant growth by using the plant growth promoter of the present disclosure.
These and other advantages and features will become apparent from the following description thereof taken in conjunction with the accompanying Drawings, by way of non-limiting examples of embodiments disclosed herein.
As mentioned in the Background Art, there is a need for techniques for efficiently producing agricultural crops in limited cultivated lands. In order to promote crop production, there is also a need for the exploitation of naturally derived substances with less environmental load in application. Among others, there is a demand for substances with less consumption of fossil energy at the time of production of the substances and with much less environmental load.
The following conventional techniques are disclosed as techniques of promoting crop promotion.
For example, PTL 1 discloses a method for applying a microbial strain having plant growth promoting activity or cultures of the microbial strain to a plant or the neighborhood (e.g., soil) of the plant. Use of the method reportedly permits not only promotion of plant growth and increase in yield but prevention of development of pathogenic diseases of the plant.
For example, PTL 2 discloses a method comprising mixing a bacterial culture solution with a culture solution of algae, incubating the mixed solution under predetermined conditions to produce a plant growth promoting composition, and applying the composition to a plant. The method reportedly promotes the vegetative growth of tomato when the composition is added to a nutrient solution for the hydroponic cultivation of the plant.
For example, NPL 1 discloses a method for applying one type of rhizobium as a plant probiotic bacterium having a plant growth promoting mechanism to spinach, more specifically, to the root of spinach. The method reportedly produces a growth promoting effect such as increase in the number of leaves and leaf size of spinach inoculated with the rhizobium.
For example, PTL 3 discloses a method for improving the availability of metal ions by plants, comprising adding a natural metabolite (which is a substance involved in metabolism and refers to a naturally occurring substance) such as an organic acid to soil so that the metal (e.g., iron) ions in the soil are chelated.
For example, PTL 4 discloses a method for applying a composition composed mainly of a natural metabolite adenosine to plants.
For example, PTL 5 discloses a method for applying a fertilizer containing cell extracts of algae to plants. More specifically, the cell extracts are obtained by treating cyanobacteria with an aqueous solvent (e.g., water) at 60° C. or higher.
However, in the conventional techniques described above, a process such as the microbial production of a plant growth promoting substance or the purification or extraction of a plant growth promoting substance is complicated and time-consuming and is also costly. Also, in the conventional techniques described above, a loss such as reduction in the yield or activity of a plant growth promoting substance occurs in purifying and extracting the plant growth promoting substance. On the other hand, in the case of inoculating plants with a microbe itself, its effects differ depending on a combination of the microbial species used, the plant species of interest, and the properties of soil. Thus, this approach is poorly versatile and has an unstable plant growth promoting effect. Thus, there is a demand for the development of naturally derived substances that can be produced by a convenient process using a more inexpensive starting material and have a high plant growth enhancing effect.
The present inventors have focused on cyanobacterium as a microbe for use in the production of plant growth promoting substances. Cyanobacterium (also called blue-green bacterium or blue-green alga), a group of eubacterium, produces oxygen by splitting water through photosynthesis, and fixes CO2 in air. Cyanobacterium can also fix nitrogen (N2) in air, depending on its species. Thus, cyanobacterium can obtain a large part of starting materials (i.e., nutrients) and energy necessary for bacterial cell growth from air, water, and light and can therefore be cultured by a convenient process using an inexpensive starting material.
Rapid growth and high light use efficiency are known as characteristics of cyanobacterium. In addition, its genetic manipulation is easier than that of other eukaryotic alga species. Therefore, bio-manufacturing that utilizes cyanobacterium among the photosynthetic microbes is under active research and development. For example, the production of fuels such as ethanol, isobutanol, alkanes, and fatty acids (PTL 6: Japanese Patent No. 6341676) has been reported as examples of bio-manufacturing using cyanobacterium. The production of substances serving as nutrient sources for organisms is also under research and development. For example, since protein can be synthesized only by living organisms, there is a need for the development of techniques of conveniently and efficiently producing protein. The exploitation of cyanobacterium which can utilize light energy and CO2 in the air is expected as an organism species for use in such techniques, and is under active research and development (NPL 4: Jie Zhou et al., “Discovery of a super-strong promoter enable efficient production of heterologous proteins in cyanobacteria”, Scientific Reports, Nature Research, 2014, Vol. 4, Article No. 4500).
For example, the technique described in NPL 4 described above can achieve efficient expression of a heterologous gene in cyanobacterium. Use of the technique enables a desired protein to be produced within the cell of cyanobacterium (hereinafter, also referred to as within the bacterial cell). However, the intracellularly produced protein of cyanobacterium is difficult to secrete to the outside of the cell, it is necessary to disrupt the cell of cyanobacterium and extract the intracellularly produced protein.
Although the structures of a cell wall and a cell membrane of cyanobacterium influence the permeability of protein and metabolites within the bacterial cell, it is not easy to improve the secretory productive ability of protein and metabolites within the bacterial cell by artificially modifying the cell membrane and cell wall structures. For example, NPL 2 and NPL 3 state that cyanobacterium cells lose proliferative ability by lacking slr1841 gene or slr0688 gene which participates in adhesion between an outer membrane and a cell wall of cyanobacterium and contributes to the structural stability of a cell surface.
Accordingly, the present inventors have conducted diligent studies on a structural modification method optimal for a cell membrane and a cell wall of cyanobacterium, which enhances the secretory productive ability of protein and metabolites within the bacterial cell while maintaining the proliferative ability of the cyanobacterium cell. As a result, the present inventors have found that protein produced within the bacterial cell of cyanobacterium and metabolites within the bacterial cell are easily secreted to the outside of the bacterial cell by reducing the total amount of a protein involved in binding between an outer membrane and a cell wall of cyanobacterium to 30% to 70% of the total amount of the protein in the parent strain. More specifically, the present inventors have found that protein produced within the bacterial cell of cyanobacterium and metabolites within the bacterial cell are easily secreted to the outside of the bacterial cell by partially detaching the outer membrane which surrounds the cell wall of cyanobacterium from the cell wall.
The present inventors have further found that a secretion of cyanobacterium has a plant growth promoting effect. As a result, a plant growth promoting substance secreted to the outside of the bacterial cell can be efficiently retrieved without disrupting the bacterial cell of the cyanobacterium. Furthermore, the physiological activity of the plant growth promoting substance is less likely to be impaired because operations such as extraction are unnecessary. Therefore, a plant growth promoter containing the secretion can effectively promote plant growth.
Thus, the plant growth promoter production method of the present disclosure can conveniently and efficiently produce a plant growth promoter having an improved plant growth promoting effect. The plant growth promoter of the present disclosure can effectively promote plant growth. The plant growth promoting method of the present disclosure can effectively promote plant growth by using the plant growth promoter of the present disclosure.
An outline of an aspect of the present disclosure is as described below.
A plant growth promoter production method according to an aspect of the present disclosure includes: preparing a modified cyanobacterium in which a total amount of a protein involved in binding between an outer membrane and a cell wall of cyanobacterium is suppressed to between 30 percent and 70 percent, inclusive, of a total amount of the protein in a parent strain; and causing the modified cyanobacteria to secrete a secretion involved in promoting growth of a plant.
As a result, the binding (e.g., binding level and binding force) between the cell wall and the outer membrane is partially reduced in the modified cyanobacterium, without losing the proliferative ability of the cell. This facilitates partially detaching the outer membrane from the cell wall. Hence, protein and metabolites produced within the bacterial cell (hereinafter, also referred to as intra-bacterial cell produced substances) easily leak out to the outside of the outer membrane, i.e., the outside of the bacterial cell. This facilitates secreting protein and metabolites produced within the bacterial cell of the modified cyanobacterium to the outside of the bacterial cell and therefore eliminates the need of extraction treatment of the intra-bacterial cell produced substances, for example, the disruption of the bacterial cell. Hence, a plant growth promoter containing a secretion of the modified cyanobacterium can be produced conveniently and efficiently. If the total amount of the protein involved in the binding between the outer membrane and the cell wall is suppressed to below 30% of the total amount of the protein in the parent strain the proliferative ability of the cell will be lost; if the total amount exceeds 70%, the protein produced within the bacterial cell cannot leaked out to the outside of the bacterial cell.
The intra-bacterial cell produced substances are less susceptible to reduction in physiological activity and yield because the extraction treatment of the intra-bacterial cell produced substances is unnecessary. Hence, a substance involved in promoting growth of a plant (hereinafter, also referred to as a plant growth promoting substance) among the intra-bacterial cell produced substances of the modified cyanobacterium is also less susceptible to reduction in physiological activity and yield. As a result, the secretion of the modified cyanobacterium has an improved effect involved in promoting growth of a plant (hereinafter, also referred to as a plant growth promoting effect).
The intra-bacterial cell produced substances can be produced by repeatedly using the modified cyanobacterium even after retrieval of the intra-bacterial cell produced substances secreted to the outside of the bacterial cell because the extraction treatment of the intra-bacterial cell produced substances is unnecessary. This eliminates the need of providing a fresh modified cyanobacterium for each plant growth promoter production. Thus, the plant growth promoter production method according to an aspect of the present disclosure can conveniently and efficiently produce a plant growth promoter having an improved plant growth promoting effect.
For example, in the plant growth promoter production method according to an aspect of the present disclosure, the protein involved in the binding between the outer membrane and the cell wall may be at least one of a surface layer homology (SLH) domain-containing outer membrane protein or a cell wall-pyruvic acid modifying enzyme.
As a result, in the modified cyanobacterium, for example, (i) a function of at least one of a SLH domain-containing outer membrane protein which binds to the cell wall and an enzyme that catalyzes reaction to modify a linked sugar chain on the surface of the cell wall with pyruvic acid (i.e., a cell wall-pyruvic acid modifying enzyme) is suppressed, or (ii) the expression of at least one of the SLH domain-containing outer membrane protein or the cell wall-pyruvic acid modifying enzyme is suppressed. Hence, the binding (i.e., binding level and binding force) between the SLH domain of the SLH domain-containing outer membrane protein in the outer membrane and a covalently linked sugar chain on the surface of the cell wall is reduced. Accordingly, the outer membrane is easily detached from the cell wall at a site having the weakened binding between the outer membrane and the cell wall. As a result, in the modified cyanobacterium, intra-bacterial cell produced substances such as protein and metabolites produced within the bacterial cell easily leak out to the outside of the bacterial cell, as described above, because the outer membrane is easy to partially detach from the cell wall by the weakened binding between the outer membrane and the cell wall. As a result, the modified cyanobacterium has improved secretory productivity to secrete a plant growth promoting substance produced within the bacterial cell to the outside of the bacterial cell. Thus, the plant growth promoter production method according to an aspect of the present disclosure can efficiently produce a plant growth promoter because the modified cyanobacterium can efficiently secrete the plant growth promoting substance.
For example, in the plant growth promoter production method according to an aspect of the present disclosure, the SLH domain-containing outer membrane protein may be: Slr1841 having an amino acid sequence represented by SEQ ID NO: 1; NIES970_09470 having an amino acid sequence represented by SEQ ID NO: 2; Anacy_3458 having an amino acid sequence represented by SEQ ID NO: 3; or a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of the Slr1841, the NIES970_09470, and the Anacy_3458.
As a result, in the modified cyanobacterium, for example, (i) the function of the SLH domain-containing outer membrane protein represented by any one of SEQ ID NOs: 1 to 3 or a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these SLH domain-containing outer membrane proteins is suppressed, or (ii) the expression of the SLH domain-containing outer membrane protein represented by any one of SEQ ID NOs: 1 to 3 or a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these SLH domain-containing outer membrane proteins is suppressed. Hence, in the modified cyanobacterium, (i) the function of the SLH domain-containing outer membrane protein or a protein functionally equivalent to the SLH domain-containing outer membrane protein in the outer membrane is suppressed, or (ii) the expression level of the SLH domain-containing outer membrane protein or a protein functionally equivalent to the SLH domain-containing outer membrane protein in the outer membrane is decreased. As a result, in the modified cyanobacterium, the binding level and binding force with which a binding domain (e.g., the SLH domain) for binding the outer membrane with the cell wall binds to the cell wall are reduced. This facilitates partially detaching the outer membrane from the cell wall. As a result, intra-bacterial cell produced substances easily leak out to the outside of the bacterial cell, so that a plant growth promoting substance produced within the bacterial cell also easily leaks out to the outside of the bacterial cell. Thus, the plant growth promoter production method according to an aspect of the present disclosure can efficiently produce a plant growth promoter because the plant growth promoting substance produced within the bacterial cell of the modified cyanobacterium easily leaks out to the outside of the bacterial cell.
For example, in the plant growth promoter production method according to an aspect of the present disclosure, the cell wall-pyruvic acid modifying enzyme may be: Slr0688 having an amino acid sequence represented by SEQ ID NO: 4; Synpcc7942_1529 having an amino acid sequence represented by SEQ ID NO: 5; Anacy_1623 having an amino acid sequence represented by SEQ ID NO: 6; or a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of the slr0688, the Synpcc7942_1529, and the Anacy_1623.
As a result, in the modified cyanobacterium, for example, (i) the function of the cell wall-pyruvic acid modifying enzyme represented by any one of SEQ ID NOs: 4 to 6 or a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these cell wall-pyruvic acid modifying enzymes is suppressed, or (ii) the expression of the cell wall-pyruvic acid modifying enzyme represented by any one of SEQ ID NOs: 4 to 6 or a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these cell wall-pyruvic acid modifying enzymes is suppressed. Hence, in the modified cyanobacterium, (i) the function of the cell wall-pyruvic acid modifying enzyme or a protein functionally equivalent to the enzyme is suppressed, or ii) the expression level of the cell wall-pyruvic acid modifying enzyme or a protein functionally equivalent to the enzyme is decreased. A covalently linked sugar chain on the surface of the cell wall is thereby less susceptible to modification with pyruvic acid, so that binding level and binding force of the sugar chain of the cell wall that binds to the SLH domain of the SLH domain-containing outer membrane protein in the outer membrane are reduced. As a result, in the modified cyanobacterium, a covalently linked sugar chain on the surface of the cell wall is less susceptible to modification with pyruvic acid, so that binding force between the cell wall and the outer membrane is weakened. This facilitates partially detaching the outer membrane from the cell wall. As a result, intra-bacterial cell produced substances easily leak out to the outside of the bacterial cell, so that a plant growth promoting substance produced within the bacterial cell also easily leaks out to the outside of the bacterial cell. Thus, the plant growth promoter production method according to an aspect of the present disclosure can efficiently produce a plant growth promoter because the plant growth promoting substance produced within the bacterial cell of the modified cyanobacterium easily leaks out to the outside of the bacterial cell.
For example, in the plant growth promoter production method according to an aspect of the present disclosure, a gene which causes expression of the protein involved in the binding between the outer membrane and the cell wall may be deleted or inactivated.
Accordingly, in the modified cyanobacterium, the expression of the protein involved in the binding between the cell wall and the outer membrane is suppressed, or the function of the protein is suppressed. Therefore, the binding (i.e., binding level and binding force) between the cell wall and the outer membrane is partially reduced. As a result, in the modified cyanobacterium, the outer membrane is easy to partially detach from the cell wall, so that intra-bacterial cell produced substances such as protein and metabolites produced within the bacterial cell easily leak out to the outside of the outer membrane, i.e., the outside of the bacterial cell. Hence, the modified cyanobacterium has improved secretory productivity of a plant growth promoting substance produced within the bacterial cell. This eliminates the need of extraction treatment of the intra-bacterial cell produced substances, for example, the disruption of the bacterial cell. Therefore, the intra-bacterial cell produced substances are less susceptible to reduction in physiological activity and yield. Hence, a plant growth promoting substance produced within the bacterial cell is also less susceptible to reduction in physiological activity and yield. Therefore, a plant growth promoter having an improved plant growth promoting effect can be produced. The plant growth promoting substance can be produced by repeatedly using the modified cyanobacterium even after retrieval of the intra-bacterial cell produced substances because the extraction treatment of the intra-bacterial cell produced substances is unnecessary. This eliminates the need of providing a fresh modified cyanobacterium for each plant growth promoter production. Thus, the plant growth promoter production method according to an aspect of the present disclosure can conveniently and efficiently produce a plant growth promoter having an improved plant growth promoting effect.
For example, in the plant growth promoter production method according to an aspect of the present disclosure, the gene which causes expression of the protein involved in the binding between the outer membrane and the cell wall may be at least one of a gene encoding an SLH domain-containing outer membrane protein or a gene encoding a cell wall-pyruvic acid modifying enzyme.
Accordingly, in the modified cyanobacterium, at least one of the gene encoding the SLH domain-containing outer membrane protein and the gene encoding the cell wall-pyruvic acid modifying enzyme is deleted or inactivated. Hence, in the modified cyanobacterium, for example, (i) the expression of at least one of the SLH domain-containing outer membrane protein or the cell wall-pyruvic acid modifying enzyme is suppressed, or (ii) the function of at least one of the SLH domain-containing outer membrane protein or the cell wall-pyruvic acid modifying enzyme is suppressed. Hence, the binding (i.e., binding level and binding force) between the SLH domain of the SLH domain-containing outer membrane protein in the outer membrane and a covalently linked sugar chain on the surface of the cell wall is reduced. Accordingly, the outer membrane is easily detached from the cell wall at a site having the weakened binding between the outer membrane and the cell wall. As a result, in the modified cyanobacterium, protein and metabolites produced within the bacterial cell easily leak out to the outside of the bacterial cell because the outer membrane is easy to partially detach from the cell wall due to the weakened binding between the cell wall and the outer membrane. As a result, a plant growth promoting substance produced within the bacterial cell also easily leaks out to the outside of the bacterial cell. Thus, the plant growth promoter production method according to an aspect of the present disclosure can efficiently produce a plant growth promoter because the modified cyanobacterium can easily secrete the plant growth promoting substance.
For example, in the plant growth promoter production method according to an aspect of the present disclosure, the gene encoding the SLH domain-containing outer membrane protein may be: slr1841 having a nucleotide sequence represented by SEQ ID NO: 7; nies970_09470 having a nucleotide sequence represented by SEQ ID NO: 8; anacy_3458 having a nucleotide sequence represented by SEQ ID NO: 9; or a gene having a nucleotide sequence that is at least 50 percent identical to the nucleotide sequence of any one of the slr1841, the nies970_09470, and the anacy_3458.
As a result, in the modified cyanobacterium, the gene encoding the SLH domain-containing outer membrane protein, represented by any one of SEQ ID NOs: 7 to 9 or a gene having a nucleotide sequence that is at least 50 percent identical to the nucleotide sequence of any one of these genes is deleted or inactivated. Hence, in the modified cyanobacterium, (i) the expression of any one of the SLH domain-containing outer membrane proteins described above or a protein functionally equivalent to any one of these proteins is suppressed, or (ii) the function of any one of the SLH domain-containing outer membrane proteins described above or a protein functionally equivalent to any one of these proteins is suppressed. As a result, in the modified cyanobacterium, the binding level and binding force of a binding domain (e.g., the SLH domain) of the outer membrane that binds to the cell wall are reduced. This facilitates partially detaching the outer membrane from the cell wall. As a result, protein and metabolites produced within the bacterial cell easily leak out to the outside of the bacterial cell, so that a plant growth promoting substance produced within the bacterial cell also easily leaks out to the outside of the bacterial cell. Thus, the plant growth promoter production method according to an aspect of the present disclosure can efficiently produce a plant growth promoter because the plant growth promoting substance produced within the bacterial cell of the modified cyanobacterium easily leaks out to the outside of the bacterial cell.
For example, in the plant growth promoter production method according to an aspect of the present disclosure, the gene encoding the cell wall-pyruvic acid modifying enzyme may be: slr0688 having a nucleotide sequence represented by SEQ ID NO: 10; synpcc7942_1529 having a nucleotide sequence represented by SEQ ID NO: 11; anacy_1623 having a nucleotide sequence represented by SEQ ID NO: 12; or a gene having a nucleotide sequence that is at least 50 percent identical to the nucleotide sequence of any one of the slr0688, the synpcc7942_1529, and the anacy_1623.
As a result, in the modified cyanobacterium, the gene encoding the cell wall-pyruvic acid modifying enzyme, represented by any one of SEQ ID NOs: 10 to 12 or a gene having a nucleotide sequence that is at least 50 percent identical to the nucleotide sequence of any one of these enzyme-encoding genes is deleted or inactivated. Hence, in the modified cyanobacterium, (i) the expression of any one of the cell wall-pyruvic acid modifying enzymes described above or a protein functionally equivalent to any one of these enzymes is suppressed, or (ii) the function of any one of the cell wall-pyruvic acid modifying enzymes described above or a protein functionally equivalent to any one of these enzymes is suppressed. A covalently linked sugar chain on the surface of the cell wall is thereby less susceptible to modification with pyruvic acid, so that binding level and binding force of the sugar chain of the cell wall that binds to the SLH domain of the SLH domain-containing outer membrane protein in the outer membrane are reduced. As a result, in the modified cyanobacterium, a decreased amount of a sugar chain on cell wall that binds to the outer membrane is modified with pyruvic acid, so that binding force between the cell wall and the outer membrane is weakened. This facilitates partially detaching the outer membrane from the cell wall. As a result, protein and metabolites produced within the bacterial cell easily leak out to the outside of the bacterial cell, so that a plant growth promoting substance produced within the bacterial cell also easily leaks out to the outside of the bacterial cell. Thus, the plant growth promoter production method according to an aspect of the present disclosure can efficiently produce a plant growth promoter because the plant growth promoting substance produced within the bacterial cell of the modified cyanobacterium easily leaks out to the outside of the bacterial cell.
Furthermore, a plant growth promoter according to the present disclosure includes a secretion of a modified cyanobacterium in which a total amount of a protein involved in binding between an outer membrane and a cell wall of cyanobacterium is suppressed to at least 30 percent and at most 70 percent of a total amount of the protein in a parent strain.
As a result, the binding (i.e., binding level and binding force) between the cell wall and the outer membrane is partially reduced in the modified cyanobacterium, without losing the proliferative ability of the cell. This facilitates partially detaching the outer membrane from the cell wall.
Hence, in the modified cyanobacterium, protein and metabolites produced within the bacterial cell (i.e., intra-bacterial cell produced substances) easily leak out to the outside of the outer membrane (i.e., the outside of the bacterial cell). This facilitates secreting protein and metabolites produced within the bacterial cell in the modified cyanobacterium to the outside of the bacterial cell and therefore eliminates the need of extraction treatment of the intra-bacterial cell produced substances, for example, the disruption of the bacterial cell. Hence, a plant growth promoter containing a secretion of the modified cyanobacterium can be produced conveniently and efficiently. The intra-bacterial cell produced substances are less susceptible to reduction in physiological activity and yield because the extraction treatment of the intra-bacterial cell produced substances is unnecessary. Hence, a substance involved in promoting growth of a plant (hereinafter, also referred to as a plant growth promoting substance) among the intra-bacterial cell produced substances of the modified cyanobacterium is also less susceptible to reduction in physiological activity and yield. As a result, a plant growth promoter having an improved plant growth promoting effect can be obtained. Hence, the plant growth promoter according to an aspect of the present disclosure can effectively promote the growth of plants.
Furthermore, a plant growth promoting method according to the present disclosure includes: using the above-described plant growth promoter.
The plant growth promoting method according to an aspect of the present disclosure uses a plant growth promoter having an improved plant growth promoting effect, and thus is capable of effectively promoting the growth of plants.
Hereinafter, embodiments will be described in detail with reference to the drawings.
It should be noted that each of the subsequently described embodiments shows a generic or specific example. Numerical values, materials, steps, the processing order of the steps indicated in the following embodiments are merely examples, and thus are not intended to limit the present disclosure. Furthermore, among the elements in the following embodiments, elements that are not described in the independent claims indicating the broadest concepts are described as optional elements.
Furthermore, the figures are not necessarily precise illustrations. In the figures, elements that are substantially the same are given the same reference signs, and overlapping description thereof may be omitted or simplified.
Moreover, in the following embodiments, numerical ranges include, not only the precise meanings, but also substantially equal ranges, such as, for example, a measured amount (for example, the number, the concentration, etc.) a protein or a range thereof, etc.
In the present specification, both of a bacterial cell and a cell refer to one individual of cyanobacterium.
In the present specification, the identity of a nucleotide sequence or an amino acid sequence is calculated with Basic Local Alignment Search Tool (BLAST) algorithm. Specifically, the identity is calculated by pairwise analysis with the BLAST program available in the website of the National Center for Biotechnology Information (NCBI) (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Information on cyanobacterium genes and proteins encoded by these genes are published in, for example, the NCBI database mentioned above and Cyanobase (http://genome.microbedb.jp/cyanobase/). The amino acid sequence of the protein of interest and the nucleotide sequence of a gene encoding the protein can be obtained from these databases.
First, the plant growth promoter according to the present embodiment will be described. The plant growth promoter contains a secretion involved in promoting growth of a plant, and has a plant growth promoting effect, for example, an effect of increasing the number of leaves, stems, buds, flowers, or fruits of a plant, thickening a stem or a trunk, and lengthening a height. The plant growth promoter may also have, for example, various effects related to promoting growth of a plant, for example, an effect of preventing the development of plant diseases, improving the rate of absorption of nutrients, or improving the intracellular physiological activity of a plant. Specifically, the phrase “involved in promoting growth of a plant” means having a plant growth promoting effect, and the plant growth promoting effect may include promoting growth of a plant by the various effects related to promoting growth of a plant as described above. As a result, the plant growth promoter promotes plant growth and increases plant yields.
In the present embodiment, the plant growth promoter includes a secretion of a modified cyanobacterium in which the total amount of a protein involved in binding between an outer membrane and a cell wall (hereinafter, also referred to as binding-related protein) of cyanobacterium is suppressed to at least 30% and at most 70% of the total amount of the protein in the parent strain. Here, for example, “the total amount of the binding-related protein is suppressed to 30% of the total amount of the protein in the parent strain” means a state in which 70% of the total amount of the protein in the parent strain is lost and 30% remains. As a result, the binding (e.g., binding level and binding force) between outer membrane 5 and cell wall 4 is partially reduced in the modified cyanobacterium. This facilitates partially detaching outer membrane 5 from cell wall 4. The cyanobacterium (i.e., parent strain) and the modified cyanobacterium will be mentioned later.
As mentioned above, the secretion includes a secretion involved in promoting growth of a plant. The secretion contains protein and metabolites produced within the bacterial cell of the modified cyanobacterium (i.e., intra-bacterial cell produced substances). The intra-bacterial cell produced substances include a substance involved in promoting growth of a plant (hereinafter, also referred to as a plant growth promoting substance).
The plant growth promoting substance is, for example, an organic substance degrading enzyme such as peptidase, nuclease, or phosphatase, a DNA metabolism-related substance such as adenosine or guanosine, an intracellular molecule involved in the promotion of nucleic acid (e.g., DNA or RNA) synthesis, such as p-aminobenzoic acid or spermidine, a ketone such as 3-hydroxybutyric acid, or an organic acid such as gluconic acid. The secretion of the modified cyanobacterium may be a mixture of these plant growth promoting substances.
Subsequently, the plant growth promoter production method according to the present embodiment will be described with reference to
The plant growth promoter production method according to the present embodiment includes: preparing a modified cyanobacterium in which the total amount of a protein involved in binding between an outer membrane and a cell wall of cyanobacterium is suppressed to at least 30% to at most 70% of the total amount of the protein in the parent strain (step S01); and causing the modified cyanobacteria to secrete a secretion involved in promoting growth of a plant (step S02). As mentioned above, the secretion of the modified cyanobacterium contains protein and metabolites produced within the bacterial cell of the modified cyanobacterium (i.e., intra-bacterial cell produced substances). These intra-bacterial cell produced substances include a substance involved in promoting growth of a plant (i.e., a plant growth promoting substance).
In step S01, the modified cyanobacterium described above is prepared. The preparing of a modified cyanobacterium refers to adjusting the state of the modified cyanobacterium to a state where the modified cyanobacterium can secrete a secretion. The preparing of a modified cyanobacterium may be, for example, preparing the modified cyanobacterium by genetically modifying the parent cyanobacterium (the so-called parent strain), may be reconstructing a bacterial cell from a freeze-dried form or a glycerol stock of the modified cyanobacterium, or may be retrieving the modified cyanobacterium that has finished secreting a plant growth promoting substance in step S02.
In step S02, the modified cyanobacterium is caused to secrete a secretion involved in promoting growth of a plant. In the modified cyanobacterium according to the present embodiment, the total amount of a protein involved in binding between an outer membrane and a cell wall of cyanobacterium is suppressed to at least 30% and at most 70% of the total amount of the protein in the parent strain, and thus the binding (e.g., binding level and binding force) between the outer membrane and the cell wall is partially reduced, and partial detaching of the outer membrane from the cell wall is facilitated, without losing the proliferative ability of the cell. This facilitates secreting protein and metabolites produced within the bacterial cell to the outside of the outer membrane (i.e., outside of the bacterial cell). These intra-bacterial cell produced substances also include a substance involved in promoting growth of a plant. Hence, in step S02, the modified cyanobacterium is cultured under predetermined conditions and thereby caused to secrete intra-bacterial cell produced substances involved in promoting growth of a plant to the outside of the bacterial cell.
Cyanobacterium culture can generally be carried out on the basis of liquid culture or a modified method thereof using a BG-11 medium (see Table 2). Hence, the culture of the modified cyanobacterium may be similarly carried out. The culture period of the cyanobacterium for plant growth promoter production can be a period during which protein and metabolites accumulate with a high concentration under conditions where the bacterial cell has proliferated sufficiently, and may be, for example, 1 to 3 days or may be 4 to 7 days. A culture method may be, for example, aeration and agitation culture or shake culture.
The modified cyanobacterium thus cultured under the conditions described above produces protein and metabolites (i.e., intra-bacterial cell produced substances) within the bacterial cell and secretes the intra-bacterial cell produced substances into the culture solution. The intra-bacterial cell produced substances include an intra-bacterial cell produced substance involved in promoting growth of a plant (i.e., a plant growth promoting substance). In the case of retrieving the intra-bacterial cell produced substances secreted in the culture solution, insoluble materials such as the cell (i.e., the bacterial cell) may be removed from the culture solution by the filtration or centrifugation, etc. of the culture solution to retrieve a culture supernatant. The plant growth promoter production method according to the present embodiment eliminates the need of disrupting the cell for plant growth promoting substance retrieval because a secretion containing an intra-bacterial cell produced substance involved in promoting growth of a plant (i.e., a plant growth promoting substance) is secreted to the outside of the cell of the modified cyanobacterium. Hence, the modified cyanobacterium remaining after plant growth promoting substance retrieval can be repeatedly used in plant growth promoter production.
The method for retrieving the plant growth promoting substance secreted into the culture solution is not limited to the example described above. While the modified cyanobacterium is cultured, the plant growth promoting substance in the culture solution may be retrieved. For example, a protein-permeable membrane may be used to retrieve a plant growth promoting substance that has passed through the permeable membrane. Thus, treatment to remove the bacterial cell of the modified cyanobacterium from a culture solution is unnecessary because, while the modified cyanobacterium is cultured, the plant growth promoting substance in the culture solution can be retrieved. Hence, the plant growth promoter can be produced more conveniently and efficiently.
Damage and stress on the modified cyanobacterium can be reduced because bacterial cell retrieval treatment from a culture solution and bacterial cell disruption treatment are unnecessary. Hence, the secretory productivity of a plant growth promoting substance is less likely to be reduced in the modified cyanobacterium, and the modified cyanobacterium can be used for a longer time.
Thus, use of the modified cyanobacterium according to the present embodiment enables a plant growth promoter to be obtained conveniently and efficiently.
Hereinafter, the cyanobacterium and the modified cyanobacterium will be described.
Cyanobacterium, also called blue-green alga or blue-green bacterium, is a group of prokaryote that collects light energy through chlorophyll and performs photosynthesis while generating oxygen through the splitting of water using the obtained energy. Cyanobacterium is highly diverse and includes, for example, unicellular species such as Synechocystis sp. PCC 6803 and filamentous species having multicellular filaments such as Anabaena sp. PCC 7120, in terms of cell shape. There are also thermophilic species such as Thermosynechococcus elongatus, marine species such as Synechococcus elongatus, and freshwater species such as Synechocystis, in terms of growth environment. Other examples thereof include many species having unique features, including species, such as Microcystis aeruginosa, which have a gas vesicle and produce toxin, and Gloeobacter violaceus which lacks thylakoid and has a light-harvesting antenna protein called phycobilisome in the plasma membrane.
A SLH domain-containing outer membrane protein (e.g., Slr1841 in the figure) has a C-terminal region embedded in a lipid membrane (also referred to as outer membrane 5) and N-terminal SLH domain 7 projecting from the lipid membrane, and is widely distributed in cyanobacterium and bacteria belonging to the class Negativicutes, a group of Gram-negative bacteria (NPL 5: Kojima et al., 2016, Biosci. Biotech. Biochem., 10: 1954-1959). The region embedded in the lipid membrane (i.e., outer membrane 5) forms a channel that allows hydrophilic materials to permeate the outer membrane, whereas SLH domain 7 has a function of binding to cell wall 4 (NPL 6: Kowata et al., 2017, J. Bacteriol., 199: e00371-17). The binding of SLH domain 7 to cell wall 4 requires modifying covalently linked sugar chain 3 on peptidoglycan 2 with pyruvic acid (NPL 7: Kojima et al., 2016, J. Biol. Chem., 291: 20198-20209). Examples of the gene encoding SLH domain-containing outer membrane protein 6 include slr1841 and slr1908 retained by Synechocystis sp. PCC 6803, and oprB retained by Anabaena sp. 90.
An enzyme that catalyzes the pyruvic acid modification reaction of covalently linked sugar chain 3 (hereinafter, referred to as cell wall-pyruvic acid modifying enzyme 9) in peptidoglycan 2 was identified in a Gram-positive bacterium Bacillus anthracis and designated as CsaB (NPL 8: Mesnage et al., 2000, EMBO J., 19: 4473-4484). Many species of cyanobacterium whose genomic nucleotide sequence is published retains a gene encoding a homologous protein having an amino acid sequence that has 30% or higher identity to the amino acid sequence of CsaB. Examples thereof include slr0688 retained by Synechocystis sp. PCC 6803 and syn7502_03092 retained by Synechococcus sp. 7502.
In cyanobacterium, CO2 fixed by photosynthesis is converted to various amino acids and precursors of intracellular molecules through multiple stages of enzymatic reaction. Protein and metabolites are synthesized in the cytoplasm of cyanobacterium with these amino acids as starting materials. Such protein and metabolites include protein and metabolites that function in the cytoplasm and protein and metabolites that are transported from the cytoplasm to the periplasm and functions in the periplasm. However, any case where protein and metabolites are actively secreted to the outside of the cell has not been reported on cyanobacterium so far.
Cyanobacterium has high photosynthetic ability and therefore need not necessarily to take up organic substances as nutrients from the outside. Hence, cyanobacterium has only a very small amount of a channel protein, such as organic channel protein 8 (e.g., Slr1270) of
Thus, cyanobacterium is considered to have the difficulty in actively secreting protein and metabolites produced within the bacterial cell to the outside of the bacterial cell, due to very few channels which permit permeation of organic substances such as protein in outer membrane 5. In addition, although the structures of a cell wall and a cell membrane of cyanobacterium influence the permeability of protein, it is not easy to improve the secretory productive ability of protein by artificially modifying the cell membrane and cell wall structures. For example, NPL 2 and NPL 3 state that cells lose proliferative ability by lacking slr1841 gene or slr0688 gene which participates in adhesion between an outer membrane and a cell wall and contributes to the structural stability of a cell surface.
Subsequently, the modified cyanobacterium according to the present embodiment will be described with reference to
In the modified cyanobacterium according to the present embodiment, a total amount of a protein involved in binding between outer membrane 5 and cell wall 4 (a so-called binding-related protein) of cyanobacterium is suppressed to at least 30% and at most 70% of the protein in the parent strain. Here, for example, “the total amount of the binding-related protein is suppressed to 30% of the total amount of the protein in the parent strain” means a state in which 70% of the total amount of the protein in the parent strain is lost and 30% remains. As a result, the binding (e.g., binding level and binding force) between outer membrane 5 and cell wall 4 is partially reduced in the modified cyanobacterium. This facilitates partially detaching outer membrane 5 from cell wall 4. Hence, the modified cyanobacterium has improved secretory productivity of intra-bacterial cell produced substances to secrete protein and metabolites produced within the bacterial cell to the outside of the bacterial cell. As mentioned above, the intra-bacterial cell produced substances include an intra-bacterial cell produced substance involved in promoting growth of a plant (i.e., a plant growth promoting substance). Hence, the modified cyanobacterium also has improved secretory productivity of a plant growth promoting substance that is produced within the bacterial cell and secreted to the outside of the bacterial cell. Furthermore, the modified cyanobacterium eliminates the need of retrieving a plant growth promoting substance by disrupting the bacterial cell and can therefore be repeatedly used even after plant growth promoting substance retrieval. In the present specification, to make protein and metabolites within the bacterial cell by the modified cyanobacterium is referred to as production, and to secrete the produced protein and metabolites to the outside of the bacterial cell is referred to as secretory production.
The protein involved in binding between outer membrane 5 and cell wall 4 may be at least one of SLH domain-containing outer membrane protein 6 or cell wall-pyruvic acid modifying enzyme 9. In the present embodiment, in the modified cyanobacterium, for example, the function of at least one of SLH domain-containing outer membrane protein 6 or cell wall-pyruvic acid modifying enzyme 9 is suppressed. For example, in the modified cyanobacterium, (i) the function of at least one of SLH domain-containing outer membrane protein 6 or cell wall-pyruvic acid modifying enzyme 9 may be suppressed, or (ii) at least one of the expression of SLH domain-containing outer membrane protein 6 which binds to cell wall 4 or an enzyme that catalyzes the pyruvic acid modification reaction of a linked sugar chain on the surface of cell wall 4 (i.e., cell wall-pyruvic acid modifying enzyme 9) may be suppressed. As a result, the binding (e.g., binding level and binding force) between SLH domain 7 of SLH domain-containing outer membrane protein 6 in outer membrane 5 and covalently linked sugar chain 3 on the surface of cell wall 4 is reduced. Hence, outer membrane 5 is easily detached from cell wall 4 at a site having the weakened binding therebetween. Owing to partial detachment of outer membrane 5 from cell wall 4, intra-bacterial cell produced substances such as protein and metabolites present in the cell, particularly, the periplasm, of the modified cyanobacterium easily leaks out to the outside of the cell (outside of outer membrane 5). Accordingly, the modified cyanobacterium has improved secretory productivity of a plant growth promoting substance that is produced within the bacterial cell and secreted to the outside of the bacterial cell.
Hereinafter, a cyanobacterium modified so as to partially detach outer membrane 5 from cell wall 4 by suppressing a function of at least one binding-related protein of SLH domain-containing outer membrane protein 6 and cell wall-pyruvic acid modifying enzyme 9 will be specifically described.
The type of the cyanobacterium before at least one of the expression of SLH domain-containing outer membrane protein 6 or the expression of cell wall-pyruvic acid modifying enzyme 9 is suppressed (referred to as “parent strain” or “parent cyanobacterium” in the present Description), which serves as the parent microbe of the modified cyanobacterium in the present embodiment, is not particularly limited and may be any type of cyanobacterium. The parent cyanobacterium may be, for example, the genus Synechocystis, Synechococcus, Anabaena, or Thermosynechococcus, and may be Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7942, or Thermosynechococcus elongatus BP-1 among them. It should be noted that, as long as the parent strain is a cyanobacterium before the total value of the binding-related protein is suppressed to at least 30% and at most 70%, the parent strain may be a wild strain, a modified strain, or a strain having an equivalent binding-related protein as a wild strain.
The amino acid sequences of SLH domain-containing outer membrane protein 6 and the enzyme that catalyzes the pyruvic acid modification reaction of the cell wall (i.e., cell wall-pyruvic acid modifying enzyme 9) in the parent cyanobacterium, the nucleotide sequences of genes encoding these binding-related proteins, and the positions of the genes on chromosomal DNA or a plasmid can be confirmed in the NCBI database and Cyanobase mentioned above.
SLH domain-containing outer membrane protein 6 or cell wall-pyruvic acid modifying enzyme 9, the function of which is suppressed or lost in the modified cyanobacterium according to the present embodiment may be from any parent cyanobacterium and is not limited by the location where a gene encoding it resides (e.g., on chromosomal DNA or on a plasmid) as long as the parent cyanobacterium carries it.
SLH domain-containing outer membrane protein 6 may be, for example, Slr1841, Slr1908, or Slr0042 when the parent cyanobacterium is the genus Synechocystis, may be NIES970_09470, etc. when the parent cyanobacterium is the genus Synechococcus, may be Anacy_5815 or Anacy_3458, etc. when the parent cyanobacterium is the genus Anabaena, may be A0A0F6U6F8_MICAE, etc. when the parent cyanobacterium is the genus Microcystis, may be A0A3B8XX12_9CYAN, etc. when the parent cyanobacterium is the genus Cyanothece, may be A0A1Q8ZE23_9CYAN, etc. when the parent cyanobacterium is the genus Leptolyngbya, includes A0A1Z4R6U0_9CYAN when the parent cyanobacterium is the genus Calothrix, may be A0A1C0VG86_9NOSO, etc. when the parent cyanobacterium is the genus Nostoc, may be B1WRN6_CROS5, etc. when the parent cyanobacterium is the genus Crocosphaera, and may be K9TAE4_9CYAN, etc. when the parent cyanobacterium is the genus Pleurocapsa.
More specifically, SLH domain-containing outer membrane protein 6 may be, for example, Slr1841 (SEQ ID NO: 1) of Synechocystis sp. PCC 6803, NIES970_09470 (SEQ ID NO: 2) of Synechococcus sp. NIES-970, or Anacy_3458 (SEQ ID NO: 3) of Anabaena cylindrica PCC 7122. Alternatively, a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these SLH domain-containing outer membrane proteins 6 may be used.
As a result, in the modified cyanobacterium, for example, (i) the function of SLH domain-containing outer membrane protein 6 represented by any one of SEQ ID NOs: 1 to 3 or a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these SLH domain-containing outer membrane proteins 6 may be suppressed, or (ii) the expression of SLH domain-containing outer membrane protein 6 represented by any one of SEQ ID NOs: 1 to 3 or a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these SLH domain-containing outer membrane proteins 6 may be suppressed. Hence, in the modified cyanobacterium, (i) the function of SLH domain-containing outer membrane protein 6 or a protein functionally equivalent to SLH domain-containing outer membrane protein 6 in outer membrane 5 is suppressed, or (ii) the expression level of SLH domain-containing outer membrane protein 6 or a protein functionally equivalent to SLH domain-containing outer membrane protein 6 in outer membrane 5 is decreased. As a result, in the modified cyanobacterium, the binding level and binding force with which a binding domain (e.g., SLH domain 7) for binding outer membrane 5 with cell wall 4 binds to cell wall 4 are reduced. This facilitates partially detaching outer membrane 5 from cell wall 4. As a result, in the modified cyanobacterium, intra-bacterial cell produced substances easily leak out to the outside of the bacterial cell, so that a plant growth promoting substance produced within the bacterial cell also easily leaks out to the outside of the bacterial cell.
In general, a protein having an amino acid sequence that is at least 30 percent identical to the amino acid sequence of a protein has high conformational homology to the protein and therefore, is reportedly likely to be functionally equivalent to the protein. Hence, SLH domain-containing outer membrane protein 6, the function of which is suppressed may be, for example, a protein or a polypeptide which has an amino acid sequence that has 40% or higher, preferably 50% or higher, more preferably 60% or higher, further preferably 70% or higher, still further preferably 80% or higher, even further preferably 90% or higher identity to the amino acid sequence of SLH domain-containing outer membrane protein 6 represented by any one of SEQ ID NOs: 1 to 3, and which has a function of binding to covalently linked sugar chain 3 of cell wall 4.
Cell wall-pyruvic acid modifying enzyme 9 may be, for example, Slr0688 when the parent cyanobacterium is the genus Synechocystis, may be Syn7502_03092 or Synpcc7942_1529, etc. when the parent cyanobacterium is the genus Synechococcus, may be ANA_C20348 or Anacy_1623, etc. when the parent cyanobacterium is the genus Anabaena, may be CsaB (NCBI accession ID: TRU80220), etc. when the parent cyanobacterium is the genus Microcystis, may be CsaB (NCBI accession ID: WP_107667006.1), etc. when the parent cyanobacterium is the genus Cyanothece, may be CsaB (NCBI accession ID: WP_026079530.1), etc. when the parent cyanobacterium is the genus Spirulina, may be CsaB (NCBI accession ID: WP_096658142.1), etc. when the parent cyanobacterium is the genus Calothrix, may be CsaB (NCBI accession ID: WP_099068528.1), etc. when the parent cyanobacterium is the genus Nostoc, may be CsaB (NCBI accession ID: WP_012361697.1), etc. when the parent cyanobacterium is the genus Crocosphaera, and may be CsaB (NCBI accession ID: WP_036798735), etc. when the parent cyanobacterium is the genus Pleurocapsa.
More specifically, cell wall-pyruvic acid modifying enzyme 9 may be, for example, Slr0688 (SEQ ID NO: 4) of Synechocystis sp. PCC 6803, Synpcc7942_1529 (SEQ ID NO: 5) of Synechococcus sp. PCC 7942, or Anacy_1623 (SEQ ID NO: 6) of Anabaena cylindrica PCC 7122. Alternatively, a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these cell wall-pyruvic acid modifying enzymes 9 may be used.
As a result, in the modified cyanobacterium, for example, (i) the function of cell wall-pyruvic acid modifying enzyme 9 represented by any one of SEQ ID NOs: 4 to 6 or a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these cell wall-pyruvic acid modifying enzymes 9 may be suppressed, or (ii) the expression of cell wall-pyruvic acid modifying enzyme 9 represented by any one of SEQ ID NOs: 4 to 6 or a protein having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these cell wall-pyruvic acid modifying enzymes 9 may be suppressed. Hence, in the modified cyanobacterium, (i) the function of cell wall-pyruvic acid modifying enzyme 9 or a protein functionally equivalent to the enzyme is suppressed, or (ii) the expression level of cell wall-pyruvic acid modifying enzyme 9 or a protein functionally equivalent to the enzyme is decreased. Covalently linked sugar chain 3 on the surface of cell wall 4 is thereby less susceptible to modification with pyruvic acid, so that binding level and binding force of sugar chain 3 of cell wall 4 that binds to SLH domain 7 of SLH domain-containing outer membrane protein 6 in outer membrane 5 are reduced. Therefore, in the modified cyanobacterium according to the present embodiment, covalently linked sugar chain 3 on the surface of cell wall 4 is less susceptible to modification with pyruvic acid, so that binding force between cell wall 4 and outer membrane 5 is weakened. This facilitates partially detaching outer membrane 5 from cell wall 4. As a result, in the modified cyanobacterium, intra-bacterial cell produced substances easily leak out to the outside of the bacterial cell, so that a plant growth promoting substance produced within the bacterial cell also easily leaks out to the outside of the bacterial cell.
As mentioned above, a protein having an amino acid sequence that is at least 30 percent identical to the amino acid sequence of a protein is reportedly likely to be functionally equivalent to the protein. Hence, cell wall-pyruvic acid modifying enzyme 9, the function of which is suppressed may be, for example, a protein or a polypeptide which has an amino acid sequence that has 40% or higher, preferably 50% or higher, more preferably 60% or higher, further preferably 70% or higher, still further preferably 80% or higher, even further preferably 90% or higher identity to the amino acid sequence of cell wall-pyruvic acid modifying enzyme 9 represented by any one of SEQ ID NOs: 4 to 6, and which has a function of catalyzing reaction to modify covalently linked sugar chain 3 on peptidoglycan 2 of cell wall 4 with pyruvic acid.
In the present specification, the phrase “a function of SLH domain-containing outer membrane protein 6 is suppressed” means that the ability of the protein to bind to cell wall 4 is suppressed, the transport of the protein to outer membrane 5 is suppressed, or the ability of the protein to be embedded so as to function in outer membrane 5 is suppressed.
The phrase “a function of cell wall-pyruvic acid modifying enzyme 9 is suppressed” means that the function of modifying covalently linked sugar chain 3 of cell wall 4 with pyruvic acid by the protein is suppressed.
An approach for suppressing the functions of these proteins is not particularly limited as long as the approach is usually used for suppressing protein functions. The approach may involve, for example, deleting or inactivating a gene encoding SLH domain-containing outer membrane protein 6 and a gene encoding cell wall-pyruvic acid modifying enzyme 9, inhibiting the transcription of these genes, inhibiting the translation of transcripts of these genes, or administrating inhibitors which specifically inhibit these proteins.
In the present embodiment, in the modified cyanobacterium, outer membrane 5 and cell wall 4 cause, in the modified cyanobacterium, the expression of the protein involved in the binding between cell wall 4 and outer membrane 5 is suppressed, or the function of the protein is suppressed. Therefore, the binding (i.e., binding level and binding force) between cell wall 4 and outer membrane 5 is partially reduced. As a result, in the modified cyanobacterium, outer membrane 5 is easy to partially detach from cell wall 4, so that intra-bacterial cell produced substances such as protein and metabolites produced within the bacterial cell of the modified cyanobacterium easily leak out to the outside of outer membrane 5, i.e., the outside of the bacterial cell. Hence, the modified cyanobacterium has improved secretory productivity of a plant growth promoting substance that is produced within the bacterial cell and secreted to the outside of the bacterial cell. This eliminates the need of extraction treatment of the intra-bacterial cell produced substances, such as the disruption of the bacterial cell. Therefore, the intra-bacterial cell produced substances are less susceptible to reduction in physiological activity and yield. Hence, a plant growth promoting substance produced within the bacterial cell is also less susceptible to reduction in physiological activity and yield. Therefore, a plant growth promoter having an improved plant growth promoting effect can be produced. The plant growth promoting substance can be produced by repeatedly using the modified cyanobacterium even after retrieval of the intra-bacterial cell produced substances because the extraction treatment of the intra-bacterial cell produced substances is unnecessary.
The gene which causes expression of the protein involved in binding between outer membrane 5 and cell wall 4 may be, for example, at least one of a gene encoding SLH domain-containing outer membrane protein 6 or a gene encoding cell wall-pyruvic acid modifying enzyme 9. In the modified cyanobacterium, at least one of the gene encoding SLH domain-containing outer membrane protein 6 or the gene encoding cell wall-pyruvic acid modifying enzyme 9 is deleted or inactivated. Hence, in the modified cyanobacterium, for example, (i) the expression of at least one of SLH domain-containing outer membrane protein 6 or cell wall-pyruvic acid modifying enzyme 9 is suppressed, or (ii) the function of at least one of SLH domain-containing outer membrane protein 6 or cell wall-pyruvic acid modifying enzyme 9 is suppressed. Hence, the binding (i.e., binding level and binding force) between SLH domain 7 of SLH domain-containing outer membrane protein 6 in outer membrane 5 and covalently linked sugar chain 3 on the surface of cell wall 4 is reduced. As a result, outer membrane 5 is easily detached from cell wall 4 at a site having the weakened binding between outer membrane 5 and cell wall 4. As a result, in the modified cyanobacterium, protein produced within the bacterial cell easily leaks out to the outside of the bacterial cell because outer membrane 5 is easy to partially detach from cell wall 4 by the weakened binding between outer membrane 5 and cell wall 4. As a result, a plant growth promoting substance produced within the bacterial cell of the modified cyanobacterium also easily leaks out to the outside of the bacterial cell.
In the present embodiment, for example, the transcription of at least one of the gene encoding SLH domain-containing outer membrane protein 6 or the gene encoding cell wall-pyruvic acid modifying enzyme 9 may be suppressed in order to suppress the function of at least one of SLH domain-containing outer membrane protein 6 or cell wall-pyruvic acid modifying enzyme 9 in cyanobacterium.
The gene encoding SLH domain-containing outer membrane protein 6 may be, for example, slr1841, slr1908, or slr0042 when the parent cyanobacterium is the genus Synechocystis, may be nies970_09470, etc. in the case of the genus Synechococcus, may be anacy_5815 or anacy_3458, etc. when the parent cyanobacterium is the genus Anabaena, may be A0A0F6U6F8_MICAE, etc. when the parent cyanobacterium is the genus Microcystis, may be A0A3B8XX12_9CYAN, etc. when the parent cyanobacterium is the genus Cyanothece, may be A0A1Q8ZE23_9CYAN, etc. when the parent cyanobacterium is the genus Leptolyngbya, may be A0A1Z4R6U0_9CYAN, etc. when the parent cyanobacterium is the genus Calothrix, may be A0A1C0VG86_9NOSO, etc. when the parent cyanobacterium is the genus Nostoc, may be B1WRN6_CROSS, etc. when the parent cyanobacterium is the genus Crocosphaera, and may be K9TAE4_9CYAN, etc. when the parent cyanobacterium is the genus Pleurocapsa. The nucleotide sequences of these genes can be obtained from the NCBI database or Cyanobase mentioned above.
More specifically, the gene encoding SLH domain-containing outer membrane protein 6 may be slr1841 (SEQ ID NO: 7) of Synechocystis sp. PCC 6803, nies970_09470 (SEQ ID NO: 8) of Synechococcus sp. NIES-970, anacy_3458 (SEQ ID NO: 9) of Anabaena cylindrica PCC 7122, or a gene having an amino acid sequence that is at least 50 percent identical to the amino acid sequence of any one of these genes.
As a result, in the modified cyanobacterium, the gene encoding SLH domain-containing outer membrane protein 6, represented by any one of SEQ ID NOs: 7 to 9 or a gene having a nucleotide sequence that is at least 50 percent identical to the nucleotide sequence of any one of these genes is deleted or inactivated. Hence, in the modified cyanobacterium, (i) the expression of any one of SLH domain-containing outer membrane proteins 6 described above or a protein functionally equivalent to any one of these proteins is suppressed, or (ii) the function of any one of SLH domain-containing outer membrane proteins 6 described above or a protein functionally equivalent to any one of these proteins is suppressed. As a result, in the modified cyanobacterium, the binding level and binding force of a cell wall 4 binding domain (e.g., SLH domain 7) of outer membrane 5 that binds to cell wall 4 are reduced. This facilitates partially detaching outer membrane 5 from cell wall 4. As a result, protein and metabolites produced within the bacterial cell easily leak out to the outside of the bacterial cell, so that a plant growth promoting substance produced within the bacterial cell also easily leaks out to the outside of the bacterial cell.
As mentioned above, a protein having an amino acid sequence that is at least 30 percent identical to the amino acid sequence of a protein is reportedly likely to be functionally equivalent to the protein. Hence, a gene having a nucleotide sequence that is at least 30 percent identical to the nucleotide sequence of a gene encoding a protein is considered likely to cause expression of a protein functionally equivalent to the protein. Hence, the gene encoding SLH domain-containing outer membrane protein 6, the function of which is suppressed may be, for example, a gene which has a nucleotide sequence that has 40% or higher, preferably 50% or higher, more preferably 60% or higher, further preferably 70% or higher, still further preferably 80% or higher, even further preferably 90% or higher identity to the nucleotide sequence of the gene encoding SLH domain-containing outer membrane protein 6 represented by any one of SEQ ID NOs: 7 to 9, and which encodes a protein or a polypeptide having a function of binding to covalently linked sugar chain 3 of cell wall 4.
The gene encoding cell wall-pyruvic acid modifying enzyme 9 may be, for example, slr0688 when the parent cyanobacterium is the genus Synechocystis, may be syn7502_03092 or synpcc7942_1529, etc. when the parent cyanobacterium is the genus Synechococcus, may be ana_C20348 or anacy_1623, etc. when the parent cyanobacterium is the genus Anabaena, may be csaB (NCBI accession ID: TRU80220), etc. when the parent cyanobacterium is the genus Microcystis, may be csaB (NCBI accession ID: WP_107667006.1), etc. when the parent cyanobacterium is the genus Cyanothece, may be csaB (NCBI accession ID:WP_026079530.1), etc. when the parent cyanobacterium is the genus Spirulina, may be csaB (NCBI accession ID:WP_096658142.1), etc. when the parent cyanobacterium is the genus Calothrix, may be csaB (NCBI accession ID:WP_099068528.1), etc. when the parent cyanobacterium is the genus Nostoc, may be csaB (NCBI accession ID: WP_012361697.1), etc. when the parent cyanobacterium is the genus Crocosphaera, and may be csaB (NCBI accession ID: WP_036798735), etc. when the parent cyanobacterium is the genus Pleurocapsa. The nucleotide sequences of these genes can be obtained from the NCBI database or Cyanobase mentioned above.
More specifically, the gene encoding cell wall-pyruvic acid modifying enzyme 9 may be slr0688 (SEQ ID NO: 10) of Synechocystis sp. PCC 6803, synpcc7942_1529 (SEQ ID NO: 11) of Synechococcus sp. PCC 7942, or anacy_1623 (SEQ ID NO: 12) of Anabaena cylindrica PCC 7122. Alternatively, a gene having a nucleotide sequence that is at least 50 percent identical to the nucleotide sequence of any one of these genes may be used.
As a result, in the modified cyanobacterium, the gene encoding cell wall-pyruvic acid modifying enzyme 9, represented by any one of SEQ ID NOs: 10 to 12 or a gene having a nucleotide sequence that is at least 50 percent identical to the nucleotide sequence of any one of these enzyme-encoding genes is deleted or inactivated. Hence, in the modified cyanobacterium, (i) the expression of any one of cell wall-pyruvic acid modifying enzymes 9 described above or a protein functionally equivalent to any one of these enzymes is suppressed, or (ii) the function of any one of cell wall-pyruvic acid modifying enzymes 9 described above or a protein functionally equivalent to any one of these enzymes is suppressed. Covalently linked sugar chain 3 on the surface of cell wall 4 is thereby less susceptible to modification with pyruvic acid, so that binding level and binding force of sugar chain 3 of cell wall 4 that binds to SLH domain 7 of SLH domain-containing outer membrane protein 6 in outer membrane 5 are reduced. Thus, in the modified cyanobacterium according to the present embodiment, a decreased amount of sugar chain 3 on cell wall 4 that binds to outer membrane 5 is modified with pyruvic acid, so that binding force between cell wall 4 and outer membrane 5 is weakened. This facilitates partially detaching outer membrane 5 from cell wall 4. As a result, protein and metabolites produced within the bacterial cell easily leak out to the outside of the bacterial cell, so that a plant growth promoting substance produced within the bacterial cell also easily leaks out to the outside of the bacterial cell.
As mentioned above, a gene having a nucleotide sequence that is at least 30 percent identical to the nucleotide sequence of a gene encoding a protein is considered likely to cause expression of a protein functionally equivalent to the protein. Hence, the gene encoding cell wall-pyruvic acid modifying enzyme 9, the function of which is suppressed may be, for example, a gene which has a nucleotide sequence that has 40% or higher, preferably 50% or higher, more preferably 60% or higher, further preferably 70% or higher, still further preferably 80% or higher, even further preferably 90% or higher identity to the nucleotide sequence of the gene encoding cell wall-pyruvic acid modifying enzyme 9 represented by any one of SEQ ID NOs: 10 to 12, and which encodes a protein or a polypeptide having a function of catalyzing reaction to modify covalently linked sugar chain 3 on peptidoglycan 2 of cell wall 4 with pyruvic acid.
Subsequently, the modified cyanobacterium production method according to the present embodiment will be described. The modified cyanobacterium production method includes causing a total amount of a protein involved in binding between outer membrane 5 and cell wall 4 of cyanobacterium to be suppressed to at least 30% and at most 70% of the total amount of the protein in the parent strain.
In the present embodiment, the protein involved in binding between outer membrane 5 and cell wall 4 may be, for example, at least one of SLH domain-containing outer membrane protein 6 or cell wall-pyruvic acid modifying enzyme 9.
An approach for suppressing the function of the protein is not particularly limited and may involve, for example, deleting or inactivating a gene encoding SLH domain-containing outer membrane protein 6 and a gene encoding cell wall-pyruvic acid modifying enzyme 9, inhibiting the transcription of these genes, inhibiting the translation of transcripts of these genes, or administrating inhibitors which specifically inhibit these proteins.
An approach for deleting or inactivating the gene may be, for example, the mutagenesis of one or more bases on the nucleotide sequence of the gene, the substitution of the nucleotide sequence by another nucleotide sequence, the insertion of another nucleotide sequence thereto, or the partial or complete deletion of the nucleotide sequence of the gene.
An approach for inhibiting the transcription of the gene may be, for example, the mutagenesis of a promoter region of the gene, the inactivation of the promoter by substitution by another nucleotide sequence or insertion of another nucleotide sequence, or CRISPR interference (NPL 9: Yao et al., ACS Synth. Biol., 2016, 5: 207-212). A specific approach for the mutagenesis or the substitution by or insertion of a nucleotide sequence may be, for example, ultraviolet irradiation, site-directed mutagenesis, or homologous recombination.
An approach for inhibiting the translation of a transcript of the gene may be, for example, RNA (ribonucleic acid) interference.
The function of the protein involved in binding between outer membrane 5 and cell wall 4 of cyanobacterium may be suppressed to produce the modified cyanobacterium by use of any one of the above approaches.
As a result, the binding (e.g., binding level and binding force) between cell wall 4 and outer membrane 5 is partially reduced in the modified cyanobacterium produced by the production method described above. This facilitates partially detaching outer membrane 5 from cell wall 4. As a result, in the modified cyanobacterium, intra-bacterial cell produced substances such as protein and metabolites produced within the bacterial cell easily leak out to the outside of outer membrane 5 (i.e., the outside of the bacterial cell), so that a substance involved in promoting growth of a plant (i.e., a plant growth promoting substance) also easily leaks out to the outside of the bacterial cell. Thus, the modified cyanobacterium production method according to the present embodiment can provide a modified cyanobacterium having improved secretory productivity of a plant growth promoting substance.
The modified cyanobacterium produced by the production method in the present embodiment eliminates the need of disrupting the bacterial cell for plant growth promoting substance retrieval because plant growth promoting substance produced within the bacterial cell easily leaks out to the outside of the bacterial cell. For example, the modified cyanobacterium can be cultured under appropriate conditions, and subsequently, plant growth promoting substance secreted into the culture solution can be retrieved. Therefore, while the modified cyanobacterium is cultured, the plant growth promoting substance in the culture solution may be retrieved. Hence, use of the modified cyanobacterium obtained by this production method enables efficient microbiological plant growth promoting substance production to be carried out. Thus, the modified cyanobacterium production method in the present embodiment can provide a modified cyanobacterium with high use efficiency that can be repeatedly used even after plant growth promoting substance retrieval.
The plant growth promoting method according to the present embodiment comprises using the plant growth promoter described above. As mentioned above, use of the plant growth promoter can effectively promote plant growth because the plant growth promoter according to the present embodiment is a plant growth promoter having an improved plant growth promoting effect.
The plant growth promoter described above may be used as it is, as a matter of course, or may be used after being concentrated or diluted. For the application of the plant growth promoter to a plant, the concentration and application method of the plant growth promoter may be appropriately determined according to the type of the plant, the properties of soil, and purpose, etc. The plant growth promoter may be, for example, a culture solution itself of the modified cyanobacterium, may be a solution obtained by removing the bacterial cell of the modified cyanobacterium from the culture solution, or may be extracts obtained by extracting a desired substance from the culture solution by a membrane technique or the like. The desired substance may be an enzyme that degrades nutrients in soil, may be a substance (e.g., a substance having a chelating effect) that solubilizes an insoluble substance (e.g., a metal such as iron) in soil, or may be a substance that improves the intracellular physiological activity of a plant. The method for applying the plant growth promoter to a plant may be, for example, spraying, irrigation, or mixing to the plant or soil. More specifically, several mL per plant individual may be added to the base of the plant approximately once a week.
Hereinafter, the modified cyanobacterium, the modified cyanobacterium production method, and the plant growth promoter production method of the present disclosure will be specifically described with reference to working examples. However, the present disclosure is not limited by the following working examples by any means.
In the following working examples, two types of modified cyanobacteria were produced by suppressing the expression of slr1841 gene encoding a SLH domain-containing outer membrane protein (Example 1) and suppressing the expression of slr0688 gene encoding a cell wall-pyruvic acid modifying enzyme (Example 2) as methods for partially detaching the outer membrane of cyanobacterium from the cell wall. Then, the measurement of secretory productivity of protein and the identification of the secreted intra-bacterial cell produced substances (here, protein and intracellular metabolites) were performed as to these modified cyanobacteria. The cyanobacterium species used in the present working examples is Synechocystis sp. PCC 6803 (hereinafter, simply referred to as “cyanobacterium”).
In Example 1, a modified cyanobacterium was produced in which the expression of slr1841 gene encoding a SLH domain-containing outer membrane protein was suppressed.
The gene expression suppression method used was CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) interference. In this method, the expression of the slr1841 gene can be suppressed by introducing a gene encoding dCas9 protein (hereinafter, referred to as dCas9 gene) and slr1841_sgRNA (single-guide ribonucleic acid) gene to the chromosomal DNA of cyanobacterium. Furthermore, the degree of suppression of the slr1841 gene can be controlled by controlling the transcriptional activity of slr1841_sgRNA.
The mechanism of the suppression of gene expression by this method is as follows.
First, nuclease activity-deficient Cas9 protein (dCas9) and sgRNA (slr1841_sgRNA) complementarily binding to the nucleotide sequence of the slr1841 gene forms a complex.
Next, this complex recognizes the slr1841 gene on the chromosomal DNA of cyanobacterium and specifically binds to the slr1841 gene. This binding, which serves as steric hindrance, inhibits the transcription of the slr1841 gene. As a result, the expression of the slr1841 gene in the cyanobacterium is suppressed. Furthermore, the degree of suppression of the slr1841 gene can be controlled by controlling the transcriptional activity of slr1841_sgRNA.
Hereinafter, a method for introducing each of the two genes described above to the chromosomal DNA of cyanobacterium will be specifically described.
The dCas9 gene, operator gene for the expression control of the dCas9 gene, and spectinomycin resistance marker gene serving as an indicator for gene introduction were amplified by PCR (polymerase chain reaction) with the chromosomal DNA of a Synechocystis LY07 strain (hereinafter, also referred to as an LY07 strain) (see NPL 9) as a template using the primers psbA1-Fw (SEQ ID NO: 13) and psbA1-Rv (SEQ ID NO: 14) described in Table 1. In the LY07 strain, these three genes are inserted in a linked state in psbA1 gene on the chromosomal DNA and can therefore be amplified as one DNA fragment by PCR. Here, the obtained DNA fragment is referred to as a “psbA1::dCas9 cassette”. The psbA1::dCas9 cassette was inserted to a pUC19 plasmid by use of In-Fusion PCR Cloning® to obtain a pUC19-dCas9 plasmid.
1 μg of the obtained pUC19-dCas9 plasmid and a cyanobacterium culture solution (bacterial cell concentration OD730=approximately 0.5) were mixed, and the pUC19-dCas9 plasmid was introduced into the cyanobacterium cells by spontaneous transformation. The transformed cells were selected by growth on a BG-11 agar medium containing 20 μg/mL spectinomycin. In the selected cells, homologous recombination occurred between the psbA1 gene on the chromosomal DNA and the upstream and downstream fragment regions of psbA1 on the pUC19-dCas9 plasmid. In this way, a Synechocystis dCas9 strain having the insert of the dCas9 cassette in the psbA1 gene region was obtained. The composition of the BG-11 medium used is as described in Table 2.
In the CRISPR interference, sgRNA specifically binds to a target gene by introducing a sequence of approximately 20 bases complementary to the target sequence to a region called protospacer on the sgRNA gene. The protospacer sequence used in the present working examples is described in Table 3.
In the Synechocystis LY04 strain, LY05 strain, or LY07 strain, the sgRNA gene (except for the protospacer region) and kanamycin resistance marker gene are inserted in a linked state in slr2030-slr2031 genes on the chromosomal DNA (see NPL 9). Thus, sgRNA that specifically recognizes slr1841 (sIr1841_sgRNA) can be easily obtained by adding a protospacer sequence (SEQ ID NO: 21) complementary to the slr1841 gene (SEQ ID NO: 7) to primers for use in amplifying the sgRNA gene by PCR. Furthermore, the degree of suppression of the slr1841 gene can be controlled by controlling the transcriptional activity of slr1841_sgRNA.
First, two DNA fragments were amplified by PCR with the chromosomal DNA of the LY07 strain as a template using a set of the primers slr2030-Fw (SEQ ID NO: 15) and sgRNA_slr1841-Ry (SEQ ID NO: 16) and a set of the primers sgRNA_slr1841-Fw (SEQ ID NO: 17) and slr2031-Rv (SEQ ID NO: 18) descried in Table 1.
Subsequently, a DNA fragment (slr2030-2031::slr1841_sgRNA) having (i) the slr2030 gene fragment, (ii) slr1841_sgRNA, (iii) kanamycin resistance marker gene, and (iv) the slr2031 gene fragment linked in order was obtained by PCR amplification with a mixed solution of the DNA fragments described above as a template using the primers slr2030-Fw (SEQ ID NO: 15) and slr2031-Rv (SEQ ID NO: 18) described in Table 1. The slr2030-2031::slr1841_sgRNA was inserted to a pUC19 plasmid by use of In-Fusion PCR Cloning® to obtain a pUC19- slr1841_sgRNA plasmid.
The pUC19-slr1841_sgRNA plasmid was introduced to the Synechocystis dCas9 strain in the same manner as in the (1-1), and the transformed cells were selected on a BG-11 agar medium containing 30 μg/mL kanamycin. In this way, a transformant Synechocystis dCas9 slr1841_sgRNA strain having the insert of slr1841_sgRNA in the slr2030-slr2031 gene on the chromosomal DNA (hereinafter, also referred to as a slr1841-suppressed strain) was obtained.
The promoter sequences of the dCas9 gene and the slr1841_sgRNA gene were designed such that expression was induced in the presence of anhydrotetracycline (aTc). In the present working examples, the expression of the slr1841 gene was suppressed by adding aTc (final concentration: 1 μg/mL) into the medium.
In this way, in Example 1, modified cyanobacterium Synechocystis dCas9 slr1841_sgRNA strain (the so-called slr1841-suppressed strain) in which the total amount of a protein involved in binding between the outer membrane and the cell wall of cyanobacterium is suppressed to about 30% compared to the amount of the protein in the parent strain (Synechocystis dCas9 strain; Comparative Example 1 described later), without losing the proliferative ability of the cell, was obtained. Here, proteins involved in binding between the outer membrane and the cell wall are slr1841, slr1908, and slr0042. The measurement result of the amount of the protein involved in the binding between the outer membrane and the cell wall will be described in (8-1) described later.
In Example 2, a modified cyanobacterium in which the expression of slr0688 gene encoding a cell wall-pyruvic acid modifying enzyme was suppressed was obtained by the following procedures.
sgRNA gene containing a protospacer sequence (SEQ ID NO: 22) complementary to the slr0688 gene (SEQ ID NO: 4) was introduced to the Synechocystis dCas9 strain by the same procedures as in the (1-2) to obtain a Synechocystis dCas9 slr0688_sgRNA strain. The same conditions as in the (1-2) were used except that a set of the primers slr2030-Fw (SEQ ID NO: 15) and sgRNA_slr0688-Rv (SEQ ID NO: 19) and a set of the primers sgRNA_slr0688-Fw (SEQ ID NO: 20) and slr2031-Rv (SEQ ID NO: 18) described in Table 1 were used; and a DNA fragment (slr2030-2031::slr0688_sgRNA) having (i) the slr2030 gene fragment, (ii) slr0688_sgRNA, (iii) kanamycin resistance marker gene, and (iv) the slr2031 gene fragment linked in order was inserted to a pUC19 plasmid by use of In-Fusion PCR Cloning® to obtain a pUC19-slr0688_sgRNA plasmid. Furthermore, the degree of suppression of the slr0688 gene can be controlled by controlling the transcriptional activity of slr0688_sgRNA.
Further, the expression of the slr0688 gene was suppressed by the same procedures as in the (1-3).
In this way, in Example 2, modified cyanobacterium Synechocystis dCas9 slr0688_sgRNA strain (hereinafter, also referred to as a slr0688-suppressed strain) in which the amount of a protein involved in binding between the outer membrane and the cell wall of cyanobacterium is suppressed to about 50% compared to the amount of the protein in the parent strain (Synechocystis dCas9 strain; Comparative Example 1 described later), without losing the proliferative ability of the cell, was obtained. Here, the protein involved in binding between the outer membrane and the cell wall is slr0688. The measurement result of the amount of pyruvic acid related to the amount of the protein involved in the binding between the outer membrane and the cell wall will be described in (8-4) described later.
In Comparative Example 1, the Synechocystis dCas9 strain was obtained by the same procedures as in (1-1) of Example 1.
Subsequently, the state of cell surface was observed and a protein secretory productivity test was performed as to each of the bacterial strains obtained in Example 1, Example 2 and Comparative Example 1. Hereinafter, the details will be described.
The respective ultrathin sections of the modified cyanobacterium Synechocystis dCas9 slr1841_sgRNA strain (i.e., a slr1841-suppressed strain) obtained in Example 1, the modified cyanobacterium Synechocystis dCas9 slr0688_sgRNA strain (the so-called slr0688-suppressed strain) obtained in Example 2, and the modified cyanobacterium Synechocystis dCas9 strain (hereinafter, referred to as a control strain) obtained in Comparative Example 1 were prepared, and the state of cell surface (in other words, an outer membrane structure) was observed under an electron microscope.
The slr1841-suppressed strain of Example 1 was inoculated at initial bacterial cell concentration OD730=0.05 to a BG-11 medium containing 1 μg/mL aTc and shake-cultured for 5 days under conditions of a light quantity of 100 μmol/m2/s and 30° C. The slr0688-suppressed strain of Example 2 and the control strain of Comparative Example 1 were also cultured under the same conditions as in Example 1.
The culture solution obtained in the (3-1) was centrifuged at 2,500 g at room temperature for 10 minutes to retrieve the cells of the slr1841-suppressed strain of Example 1. Subsequently, the cells were rapidly frozen with liquid propane of −175° C. and then fixed at −80° C. for 2 days using an ethanol solution containing 2% glutaraldehyde and 1% tannic acid. The cells thus fixed were dehydrated with ethanol, and the dehydrated cells were impregnated with propylene oxide and then immersed in a resin (Quetol-651) solution. Then, the resin was cured by still standing at 60° C. for 48 hours to embed the cells in the resin. The cells in the resin were sliced into a thickness of 70 nm using an ultramicrotome (Ultracut) to prepare an ultrathin section. This ultrathin section was stained using 2% uranium acetate and 1% lead citrate solutions to provide a transmission electron microscopy sample of the slr1841-suppressed strain of Example 1. The slr0688-suppressed strain of Example 2 and the control strain of Comparative Example 1 were also each subjected to the same operation as above to provide transmission electron microscopy samples.
The ultrathin sections obtained in the (3-2) were observed under an accelerating voltage of 100 kV using a transmission electron microscope (JEOL JEM-1400Plus). The observation results are shown in
First, the slr1841-suppressed strain of Example 1 will be described.
As illustrated in
In order to confirm the more detailed state of cell surface, broken line region A was subjected to magnifying observation. As a result, as illustrated in (a) and (b) of
Subsequently, the slr0688-suppressed strain of Example 2 will be described.
As illustrated in
In order to confirm the more detailed state of cell surface, broken line region B was subjected to magnifying observation. As a result, as illustrated in (a) and (b) in
Subsequently, the control strain of Comparative Example 1 will be described.
As illustrated in
The slr1841-suppressed strain of Example 1, the slr0688-suppressed strain of Example 2, and the control strain of Comparative Example 1 were each cultured, and the amount of protein secreted to the outside of the cells (hereinafter, also referred to as the amount of secretory protein) was measured. Each of the bacterial strains described above was evaluated for the secretory productivity of protein from the amount of protein in the culture solution. The secretory productivity of protein refers to the ability to produce protein by secreting intracellularly produced protein to the outside of the cells. Hereinafter, a specific method will be described.
The slr1841-suppressed strain of Example 1 was cultured in the same manner as in the (3-1). The culture was performed three independent times. The bacterial strains of Example 2 and Comparative Example 1 were also cultured under the same conditions as in the bacterial strain of Example 1.
Each culture solution obtained in the (4-1) was centrifuged at 2,500 g at room temperature for 10 minutes to obtain a culture supernatant. The obtained culture supernatant was filtered through a membrane filter having a pore size of 0.22 μm to completely remove the cells of the slr1841-suppressed strain of Example 1. The amount of total protein contained in the culture supernatant thus filtered was quantified by the BCA (bicinchoninic acid) method. This series of operations was performed as to each of the three culture solutions obtained by culture performed three independent times to determine a mean and standard deviation of the amounts of protein secreted to the outside of the cells of the slr1841-suppressed strain of Example 1. The protein in the three culture solutions were also quantified under the same conditions as above as to each of the bacterial strains of Example 2 and Comparative Example 1, and a mean and standard deviation of the amounts of protein in the three culture solutions was determined.
The results are shown in
As illustrated in
Although the description of data is omitted, the absorbance (730 nm) of the culture solution was measured and the amount of secretory protein per g of bacterial cell dry weight (mg protein/g cell dry weight) was calculated. As a result, the amount of secretory protein per g of bacterial cell dry weight (mg protein/g cell dry weight) was improved by approximately 36 times in all the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2 compared with the control strain of Comparative Example 1.
Furthermore, as illustrated in
From these results, it was able to be confirmed that a function of a protein related to binding between an outer membrane and a cell wall is suppressed, whereby the binding between the outer membrane and the cell wall of cyanobacterium is partially weakened so that the outer membrane is partially detached from the cell wall. It was also able to be confirmed that the weakened binding between the outer membrane and the cell wall facilitates leaking intracellularly produced protein of cyanobacterium to the outside of the cell. Thus, the modified cyanobacterium and the production method thereof according to the present embodiment was found to largely improve the secretory productivity of protein.
Subsequently, the secreted protein contained in the culture supernatant obtained in the (4-2) was identified by LC-MS/MS. A method will be described below.
Cold acetone was added in an amount of 8 times the fluid volume of the culture supernatant, and the mixture was left standing at 20° C. for 2 hours and then centrifuged at 20,000 g for 15 minutes to obtain a precipitate of the protein. To this precipitate, 100 mM Tris pH 8.5 and 0.5% sodium dodecanoate (SDoD) were added, and the protein was lysed with a closed sonicator. After adjustment of the protein concentration to 1 μg/mL, dithiothreitol (DTT) (final concentration: 10 mM) was added thereto, and the mixture was left standing at 50° C. for 30 minutes. Subsequently, iodoacetamide (IAA) (final concentration: 30 mM) was added thereto, and the mixture was left standing at room temperature (in the dark) for 30 minutes. In order to terminate the reaction of IAA, cysteine (final concentration: 60 mM) was added thereto, and the mixture was left standing at room temperature for 10 minutes. 400 ng of trypsin was added thereto, and the mixture was left standing overnight at 37° C. to convert the protein to peptide fragments. After addition of 5% TFA (trifluoroacetic acid), the mixture was centrifuged at 15,000 g at room temperature for 10 minutes to obtain a supernatant. By this operation, SDoD was removed. The sample was desalted using a C18 spin column and then dried with a centrifugal evaporator. Then, 3% acetonitrile and 0.1% formic acid were added thereto, and the sample was lysed using a closed sonicator. The peptide concentration was adjusted to 200 ng/μL.
The sample obtained in the (5-1) was analyzed using an LC-MS/MS apparatus (UltiMate 3000 RSLCnano LC System) under the following conditions.
Gradient program: 8% solvent B 4 minutes after sample injection, 44% solvent B 27 minutes later, 80% solvent B 28 minutes later, and completion of measurement 34 minutes later.
The obtained data was analyzed under the following conditions to perform protein and peptide identification and the calculation of quantification values.
Among the identified proteins, proteins predicted to have evident enzymatic activity among 30 types of proteins having the largest relative quantification values are described in Table 4.
All these 6 types of proteins were contained in each of the culture supernatants of the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2. All of these proteins retained a periplasm (which refers to the space between the outer membrane and the inner membrane) localization signal. From these results, it was able to be confirmed that in the modified strains of Example 1 and Example 2, the outer membrane is partially detached from the cell wall, whereby protein in the periplasm easily leaks out to the outside of the outer membrane (i.e., to the outside of the bacterial cell). Thus, the modified cyanobacterium according to the present embodiment was found to have drastically improved secretory productivity of protein.
20 μl of an aqueous solution containing an internal standard with a concentration adjusted to 1,000 μM was added to 80 μl of the culture supernatant of the modified cyanobacterium, and the mixture was stirred, ultrafiltered, and then subjected to measurement.
In this test, measurement in cationic and anionic modes was performed under the following conditions.
Peaks with a signal/noise ratio of 3 or more were automatically detected as peaks detected in CE-TOFMS, using automatic integration software MasterHands® ver. 2.17.1.11. The detected peaks were checked against the values of all substances registered in the metabolite library of HMT (Human Metabolome Technologies Inc.), on the basis of the values of a mass-charge ratio (m/z) and a migration time inherent in each metabolite to search for metabolites contained in the culture supernatant of the modified cyanobacterium. Acceptable errors for search were +/−0.5 min in the migration time and +/−10 ppm in m/z. The concentration of each identified metabolite was calculated by single-point calibration of 100 μM. The identified major metabolites are described in Table 5.
All of these 12 types of intracellular metabolites were contained in each of the culture supernatants of the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2. None of these metabolites were contained in the culture supernatant of the control strain of Comparative Example 1, though data is not described herein. From these results, it was able to be confirmed that in the modified strains of Example 1 and Example 2, the outer membrane is partially detached from the cell wall, whereby intracellular metabolites easily leak out to the outside of the outer membrane (i.e., to the outside of the bacterial cell).
Subsequently, in order to evaluate the plant growth promoting effect of the secretion of the modified cyanobacterium (here, the culture supernatant of the modified cyanobacterium), the following plant cultivation tests were carried out. Specifically, a spinach cultivation test was carried out to evaluate its effect on vegetative growth. Also, a petunia cultivation test was carried out to evaluate its effect on reproductive growth. Further, tomato, strawberry, and lettuce cultivation tests were conducted to evaluate its effect on the growth of fruiting plants and hydroponically cultivated plants. Hereinafter, each of these cultivation tests will be described.
In the spinach cultivation test, the plant growth promoting effect of the modified cyanobacterium secretion on vegetative growth by which plants formed only vegetative organs such as stems, leaves, and roots was evaluated by Example 3 and Comparative Examples 2 to 7 given below.
First, commercially available culture soil was placed in pots for cultivation (12 cm×10 cm), and three seeds of spinach were sowed per pot. Cultivation was performed at a temperature of 23° C. inside the room for 40 days under 10-hour light and 14-hour dark conditions using a white light source with a photon flux density of 100 μmol/m2/s. During this period, each pot was fed with 50 mL of distilled water every alternate day. Approximately 1 week after the start of cultivation, seedlings were thinned out at the cotyledonary stage to equalize individual sizes among the pots.
After equalization of individual sizes among the pots as described above, the culture supernatant of the modified cyanobacterium (hereinafter, referred to as the secretion of the modified cyanobacterium) was added at 5 mL per plant to the base of spinach once a week. After cultivation for 40 days, spinach was harvested, and the total leaf length and the dry weight of shoot were measured. The total leaf length is the total value of lengths including blade and petiole lengths in all the leaves. The dry weight of shoot is the dry weight of a leaf stem part exposed above the ground. The modified cyanobacterium was the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2, and the culture supernatant of the modified cyanobacterium of each of Example 1 and Example 2 was used in Example 3. The total leaf length and the dry weight of shoot were measured as to the spinach in each of 13 pots thus cultivated for 40 days, and a mean and standard deviation (SD) thereof were determined.
The operation was performed in the same manner as in Example 3 except that water was used instead of the secretion of the modified cyanobacterium. The total leaf length and the dry weight of shoot were measured as to the spinach in each of 13 pots thus cultivated for 40 days, and a mean and standard deviation (SD) thereof were determined.
The operation was performed in the same manner as in Example 3 except that medium BG-11 for cyanobacterium was used instead of the secretion of the modified cyanobacterium. The total leaf length and the dry weight of shoot were measured as to the spinach in each of 6 pots thus cultivated for 40 days, and a mean and standard deviation (SD) thereof were determined.
The operation was performed in the same manner as in Example 3 except that the culture supernatant of the parent cyanobacterium (Synechocystis sp. PCC 6803) was used instead of the secretion of the modified cyanobacterium. The total leaf length and the dry weight of shoot were measured as to the spinach in each of 4 pots thus cultivated for 40 days, and a mean and standard deviation (SD) thereof were determined.
The operation was performed in the same manner as in Example 3 except that an aquation solution containing 100 ppm of cell extracts (hot water extraction) of the parent cyanobacterium (Synechocystis sp. PCC 6803) prepared according to the disclosure of PTL 5 (hereinafter, referred to as the hot water extracts of the parent cyanobacterium) was used instead of the secretion of the modified cyanobacterium. The total leaf length and the dry weight of shoot were measured as to the spinach in each of 5 pots thus cultivated for 40 days, and a mean and standard deviation (SD) thereof were determined.
The operation was performed in the same manner as in Example 3 except that a chemical fertilizer (500-fold dilution of a stock solution containing 6% of total nitrogen, 10% of water-soluble phosphoric acid, 5% of water-soluble potassium, 0.05% of water-soluble magnesium, 0.001% of water-soluble manganese, and 0.005% of water-soluble boron) was used instead of the secretion of the modified cyanobacterium. The total leaf length and the dry weight of shoot were measured as to the spinach in each of 6 pots thus cultivated for 40 days, and a mean and standard deviation (SD) thereof were determined.
The operation was performed in the same manner as in Example 3 except that an organic fertilizer (animal waste manure; 500-fold dilution of a stock solution containing a plant fermentation product) was used instead of the secretion of the modified cyanobacterium. The total leaf length and the dry weight of shoot were measured as to the spinach in each of 6 pots thus cultivated for 40 days, and a mean and standard deviation (SD) thereof were determined.
The results of Example 3 and Comparative Examples 2 to 7 are illustrated in
The total leaf length and the dry weight of shoot illustrated in
(1) First, the results about the total leaf length will be described.
Individuals having the total leaf length equivalent to that of Comparative Example 2 (water) were the individuals of Comparative Example 3 (medium for cyanobacterium) and Comparative Example 6 (chemical fertilizer).
Individuals having the total leaf length that fell below that of Comparative Example 2 (water) were the individuals of Comparative Example 4 (culture solution of the parent cyanobacterium) and Comparative Example 7 (organic fertilizer).
Individuals having the total leaf length that exceeded that of Comparative Example 2 (water) were the individuals of Comparative Example 5 (hot water extracts of the parent cyanobacterium) and Example 3 (secretion of the modified cyanobacterium). More specifically, Comparative Example 5 (hot water extracts of the parent cyanobacterium) had approximately 1.1 times the total leaf length of Comparative Example 2 (water), whereas Example 3 (secretion of the modified cyanobacterium) had approximately 1.3 times the total leaf length of Comparative Example 2 (water). In short, the individuals of Example 3 given the modified cyanobacterium secretion exhibited a marked growing effect as compared with the individuals of Comparative Example 5 given the hot water extracts of the parent cyanobacterium.
(2) Subsequently, the results about the dry weight of shoot will be described.
Individuals having the dry weight of shoot equivalent to that of Comparative Example 2 (water) were the individuals of Comparative Example 7 (organic fertilizer).
Individuals having the dry weight of shoot that fell below that of Comparative Example 2 (water) were the individuals of Comparative Example 3 (medium for cyanobacterium), Comparative Example 4 (culture solution of the parent cyanobacterium), and Comparative Example 5 (hot water extracts of the parent cyanobacterium).
Individuals having the dry weight of shoot that exceeded that of Comparative Example 2 (water) were the individuals of Comparative Example 6 (chemical fertilizer) and Example 3 (secretion of the modified cyanobacterium). More specifically, Comparative Example 6 (chemical fertilizer) had approximately 1.1 times the dry weight of shoot of Comparative Example 2 (water), whereas Example 3 (secretion of the modified cyanobacterium) had approximately 1.5 times the dry weight of shoot of Comparative Example 2 (water). In short, the individuals of Example 3 given the modified cyanobacterium secretion exhibited a marked weight gaining effect as compared with the individuals of Comparative Example 6 given the chemical fertilizer.
Subsequently, the results of comparing the growth states of the individuals will be described.
The individuals of Comparative Example 4 given the culture solution of the parent cyanobacterium had a poorer growth state than that of the individuals of Comparative Example 3 given the medium for cyanobacterium. When the photographs of their typical individuals were compared, the individual of Comparative Example 4 had thinner stems and poorer firmness in its stems and leaves as a whole than those of the individual of Comparative Example 3.
The individuals of Comparative Example 5 given the hot water extracts of the parent cyanobacterium had a better growth state than that of the individuals of Comparative Example 4 given the culture solution of the parent cyanobacterium. When the photographs of their typical individuals were compared, the individual of Comparative Example 5 had thicker stems, thicker leaves, and better firmness in its stems and leaves as a whole than those of the individual of Comparative Example 4. These results suggest that a substance related to promoting growth of a plant was produced within the bacterial cell of the parent cyanobacterium and the substance leaked out to the outside of the bacterial cell by the treatment of the bacterial cell of the parent cyanobacterium with hot water and participated in promoting growth of spinach.
The individuals of Example 3 given the modified cyanobacterium secretion had a better growth state than that of the individuals of Comparative Example 5 given the hot water extracts of the parent cyanobacterium. When the photographs of their typical individuals were compared, the individual of Comparative Example 5 had thicker stems, thicker leaves, a larger number of leaves, and better firmness in its stems and leaves as a whole than those of the individual of Comparative Example 3. More specifically, the individuals of Example 3 had approximately 1.2 times the total leaf length and approximately 1.6 times the dry weight of shoot of the individuals of Comparative Example 5. These results suggest that substances produced within the bacterial cells of both the parent cyanobacterium and the modified cyanobacterium included substances, for example, protein, which are denatured by heat so as to easily lose their functions.
The individuals of Example 3 given the modified cyanobacterium secretion had a better growth state than that of the individuals of Comparative Example 6 given the chemical fertilizer (6% of total nitrogen, 10% of water-soluble phosphoric acid, 5% of water-soluble potassium). When the photographs of their typical individuals were compared, the individual of Example 3 had thicker stems, thicker leaves, a larger number of leaves, and better firmness in its stems and leaves as a whole than those of the individual of Comparative Example 6. These results suggest that a substance contained in the modified cyanobacterium secretion was involved in promoting growth of spinach.
The individuals of Example 3 given the modified cyanobacterium secretion had a better growth state than that of the individuals of Comparative Example 7 given the organic fertilizer (animal waste manure containing a plant fermentation product). When the photographs of their typical individuals were compared, the individual of Example 3 had thicker stems, thicker leaves, a larger number of leaves, and better firmness in its stems and leaves as a whole than those of the individual of Comparative Example 7. These results suggest that a substance contained in the modified cyanobacterium secretion was involved in promoting growth of spinach.
These results demonstrated that the secretion of the modified cyanobacterium contains a plurality of substances involved in promoting growth of a plant (here, spinach) and these substances include a substance that is deactivated by heat. The culture supernatant of the modified cyanobacterium exhibited a plant growth promoting effect, whereas the culture solution of the parent cyanobacterium did not exhibit this effect, demonstrating that the substances involved in promoting growth of a plant are secreted to the outside of the bacterial cell and thereby act on promoting growth of a plant. Thus, for promoting growth of a plant, it is presumably necessary for the secretion to come into contact with soil or the plant itself and exert some physiological activity. In fact, the plant growth promoting effect was largely impaired in the extracts of the parent cyanobacterium if an approach that caused denaturation of biogenic substances, such as hot water extraction, was used in the process, also suggesting that some physiological activity is necessary for the plant growth promoting effect.
In the petunia cultivation test, the plant growth promoting effect of the modified cyanobacterium secretion on reproductive growth by which plants formed flower buds, flowered, fruited, and produced seeds was evaluated by Example 4 and Comparative Example 8 given below.
First, commercially available culture soil was placed in pots for cultivation (12 cm×10 cm), and three seeds of petunia were sowed per pot. Cultivation was performed at a temperature of 23° C. inside the room for 60 days under 16-hour light and 8-hour dark conditions using a white light source with a photon flux density of 200 μmol/m2/s. During this period, each pot was fed with 50 mL of distilled water every alternate day. Approximately 1 week after the start of cultivation, seedlings were thinned out at the cotyledonary stage to equalize individual sizes among the pots.
After equalization of individual sizes among the pots as described above, the modified cyanobacterium secretion was added at 5 mL per plant to the base of petunia once a week. The modified cyanobacterium secretion was the culture supernatant of the slr0688-suppressed strain of Example 2. The numbers of flowers and buds were counted as to the petunia in each of 3 pots thus cultivated for 40 days and 60 days, and a mean and standard deviation (SD) thereof were determined.
The chemical fertilizer (diluted 500-fold) used in Comparative Example 6 described above was added at 50 mL per plant to the base of petunia once two weeks. The numbers of flowers and buds were counted as to the petunia in each of 3 pots thus cultivated for 40 days and 60 days, and a mean and standard deviation (SD) thereof were determined.
The results of Example 4 and Comparative Example 8 are illustrated in
(1) First, results of comparing growth states after cultivation for 40 days in Example 4 and Comparative Example 8 will be described.
The number of flowers after cultivation for 40 days was 6.3+/−2.5 (n=3) in the individuals of Example 4, whereas the number of flowers was 0 (n=3) in the individuals of Comparative Example 8. The number of buds was 8.7+/−3.1 (n=3) in the individuals of Example 4, whereas the number of buds was 2.7+/−3.8 (n=3) in the individuals of Comparative Example 8. In short, the individuals of Example 4 cultivated for 40 days had approximately 3 times the number of buds in the individuals of Comparative Example 8. When the photographs of their typical individuals were compared, it can be confirmed that the growth of the individual of Example 4 was more promoted than that of the individual of Comparative Example 8. More specifically, 12 flowers and 4 buds can be confirmed in the individual of Example 4, whereas 0 flowers and only one bud can be confirmed in the individual of Comparative Example 8. These results suggest that a substance contained in the modified cyanobacterium secretion is involved in promoting growth of petunia.
(2) Subsequently, results of comparing growth states after cultivation for 60 days in Example 4 and Comparative Example 8 will be described.
The number of flowers after cultivation for 60 days was 17.3+/−3.1 (n=3) in the individuals of Example 4, whereas the number of flowers was 5.7+/−5.1 (n=3) in the individuals of Comparative Example 8. In short, the individuals of Example 4 cultivated for 60 days had approximately 3 times the number of flowers in the individuals of Comparative Example 8. The number of buds was 17.6+/−3.8 (n=3) in the individuals of Example 4, whereas the number of buds was 11.7+/−3.1 (n=3) in the individuals of Comparative Example 8. In short, the individuals of Example 4 cultivated for 60 days had approximately 1.5 times the number of buds in the individuals of Comparative Example 8. When the photographs of their typical individuals were compared, it can be confirmed that the growth of the individual of Example 4 was more promoted than that of the individual of Comparative Example 8. More specifically, 24 flowers and 18 buds can be confirmed in the individual of Example 4, whereas only 6 flowers and 11 buds can be confirmed in the individual of Comparative Example 8. These results suggest that a substance contained in the modified cyanobacterium secretion is involved in promoting growth of petunia.
(3) Subsequently, changes in the respective growth states of Example 4 and Comparative Example 8 will be described.
In the individuals of Example 4, the number of flowers after cultivation for 60 days was increased to approximately 3 times the number of flowers after cultivation for 40 days, and the number of buds after cultivation for 60 days was increased to approximately 2 times the number of buds after cultivation for 40 days.
On the other hand, in the individuals of Comparative Example 8, the number of flowers after cultivation 60 days was increased to 5.7+/−5.1 (n=3) from 0 flowers after cultivation for 40 days, and the number of buds after cultivation for 60 days was increased to approximately 4 times the number of buds after cultivation for 40 days.
The individuals of Comparative Example 8 took a longer time to form flower buds than that of the individuals of Example 3. In short, the individuals of Comparative Example 8 took a long time for vegetative growth, and their reproductive growth started at a late timing, presumably because the growth of the individuals of Comparative Example 8 was not promoted as much as the growth of the individuals of Example 3 was promoted.
The individuals of Example 4 given the modified cyanobacterium secretion exhibited markedly promoted flowering as compared with the individuals of Comparative Example 8 given the chemical fertilizer. It was therefore able to be confirmed that the secretion contained a substance involved in promoting growth of a plant
First, commercially available culture soil was placed in planters for cultivation (22 cm×16 cm), and three seeds of tomato were sowed per planter. Cultivation was performed at a temperature of 23° C. inside the room for 150 days under 16-hour light and 10-hour dark conditions using a white light source with a photon flux density of 250 μmol/m2/s. During this period, each planter was fed with 500 mL of distilled water every three days. Approximately 1 week after the start of cultivation, seedlings were thinned out at the cotyledonary stage to equalize individual sizes among the planters. Also, a commercially available chemical fertilizer (500-fold dilution of a stock solution containing 6% of total nitrogen, 10% of water-soluble phosphoric acid, 5% of water-soluble potassium, 0.05% of water-soluble magnesium, 0.001% of water-soluble manganese, and 0.005% of water-soluble boron) was applied at 500 mL per planter once 50 days.
After equalization of individual sizes among the planters as described above, the secretion of the modified cyanobacterium was added at 5 mL per plant to the base of the plant once a week. During cultivation for 150 days, tomato whose fruit ripened and turned red was harvested in order, and the cumulative total number of harvests (also referred to as the number of fruits) up to the harvest date was recorded. The weights of the harvested fruits were measured, and a mean and standard deviation (SD) were determined. The modified cyanobacterium was the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2.
The operation was performed in the same manner as in Example 5 except that water was used instead of the secretion of the modified cyanobacterium.
The results of Example 5 and Comparative Example 9 are illustrated in
As illustrated in
As illustrated in
Approximately 7 cm long strawberry seedlings having approximately 9 leaves were settled-planted in pots for cultivation (12 cm×10 cm) containing commercially available culture soil. Cultivation was performed at temperatures of 20° C. for the light period and 15° C. for the dark period for 150 days under 14-hour light and 10-hour dark conditions using a white light source with a photon flux density of 200 μmol/m2/s. During this period, each pot was fed with 50 mL of distilled water every alternate day. Also, a commercially available chemical fertilizer (500-fold dilution of a stock solution containing 6% of total nitrogen, 10% of water-soluble phosphoric acid, 5% of water-soluble potassium, 0.05% of water-soluble magnesium, 0.001% of water-soluble manganese, and 0.005% of water-soluble boron) was applied at 100 mL per pot once 50 days.
During the cultivation period described above, the secretion of the modified cyanobacterium was added at 5 mL per plant to the base of the plant once a week. Strawberry whose fruit ripened and turned red was harvested in order, and the cumulative total number of harvests (i.e., the number of fruits) up to the harvest date was recorded. The weights of the harvested fruits were measured, and a mean and standard deviation (SD) were determined. The modified cyanobacterium was the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2.
The operation was performed in the same manner as in Example 6 except that water was used instead of the secretion of the modified cyanobacterium.
The results of Example 6 and Comparative Example 10 are illustrated in
As illustrated in
As illustrated in
As illustrated in
The hydroponic culture solution used was a 500-fold dilution of a stock solution of a commercially available culture solution containing 6% of total nitrogen, 10% of water-soluble phosphoric acid, 5% of water-soluble potassium, 0.05% of water-soluble magnesium, 0.001% of water-soluble manganese, and 0.005% of water-soluble boron. Cultivation was performed at room temperature (22° C.) for 35 days under 16-hour light and 8-hour dark conditions using a white light source with a photon flux density of 200 μmol/m2/s as a light condition.
During the cultivation period described above, the secretion of the modified cyanobacterium was added in a quantity of 5 mL per plant to the hydroponic culture solution once a week. After harvesting, plant weights were measured, and a mean and standard deviation (SD) were determined. The modified cyanobacterium was the slr1841-suppressed strain of Example 1 and the slr0688-suppressed strain of Example 2.
The operation was performed in the same manner as in Example 7 except that water was used instead of the secretion of the modified cyanobacterium.
The results of Example 7 and Comparative Example 11 are illustrated in
As illustrated in
As illustrated in
From the results of the spinach cultivation test and the petunia cultivation test, the plant growth promoter according to the present embodiment was able to be confirmed to have a higher plant growth promoting effect than that of conventional plant growth promoters (e.g., chemical fertilizers, organic fertilizers, and hot water extracts of parent cyanobacterium).
From the results of the tomato cultivation test and the strawberry cultivation test, the addition of the plant growth promoter according to the present embodiment in addition to a conventional plant growth promoter (e.g., a chemical fertilizer) to fruiting plants was able to be confirmed to produce a high plant growth promoting effect.
From the results of the hydroponic lettuce cultivation test, the plant growth promoter according to the present embodiment was able to be confirmed to have a high plant growth promoting effect not only on plants cultivated in soil but on hydroponically cultivated plants.
Hereinafter, results of comparing Comparative Example 12 and Comparative Example 13 which are conventional examples described in NPL 2 and NPL 3 with Example 1 and Example 2 according to the present embodiment will be described.
In Comparative Example 12, a modified cyanobacterium deficient in slr1908 (hereinafter, also referred to as a slr1908-deficient strain) was obtained on the basis of the description of NPL 2.
In Comparative Example 13, a modified cyanobacterium deficient in slr0042 (hereinafter, also referred to as a slr0042-deficient strain) was obtained on the basis of the description of NPL 3.
The slr1841-suppressed strain of Example 1, the slr0688-suppressed strain of Example 2, the slr1908-deficient strain of Comparative Example 12, and the slr0042-deficient strain of Comparative Example 13 were each cultured by the same procedures as in the (3-1). Then, each culture solution was centrifuged at 5,000×g for 10 minutes to obtain bacterial cell pellets. The bacterial cells were disrupted in a sonicator and centrifuged at 5,000×g for 10 minutes to precipitate and remove undisrupted bacterial cells. Then, a centrifugation supernatant was further centrifuged at 20,000×g for 30 minutes to obtain bacterial cell-derived membrane fraction pellets. The membrane fraction pellets were incubated in 2% SDS at 37° C. for 15 minutes to solubilize components other than an outer membrane. Next, outer membrane fraction pellets were obtained by centrifugation at 20,000×g for 30 minutes. The amount of protein contained in the outer membrane fraction pellets was quantified by the BCA method described in the (4-2). Then, 5 μg of a protein equivalent was subjected to electrophoresis (SDS-PAGE) to analyze the protein component contained in the outer membrane pellet fraction.
As seen from the comparison of the band intensity, the total amount of the proteins involved in binding between an outer membrane and a cell wall (slr1841, slr1908, and slr0042) in the slr1841-suppressed strain of Example 1 was decreased to approximately 30% as compared with the control strain of Comparative Example 1 as a parent strain, by suppressing the expression of the slr1841 protein.
On the other hand, the total amount of the proteins involved in binding between an outer membrane and a cell wall (slr1841, slr1908, and slr0042) in the slr0042-deficient strain of Comparative Example 13 which even lacked the slr0042 gene of the parent strain was decreased only by several % as compared with the control strain of Comparative Example 1 as a parent strain, because the amount of the slr0042 protein contained in the parent strain (i.e., the control strain of Comparative Example 1) was originally very small, as shown in (b) in
On the other hand, the total amount of the proteins involved in binding between an outer membrane and a cell wall (slr1841, slr1908, and slr0042) in the slr1908-deficient strain of Comparative Example 12 was increased by approximately 10% as compared with the control strain of Comparative Example 1 as a parent strain, because the amount of the slr1841 protein was increased instead of deficiency in the slr1908 protein. A phenomenon in which deficiency in a certain outer membrane protein causes increase in the amount of another similar outer membrane protein is a common phenomenon in other bacteria.
The states of the outer membranes of the modified cyanobacteria of Comparative Example 12 and Comparative Example 13 were observed using a transmission electron microscope under the same conditions as in the (3). The observation results are shown in
First, the slr1908-deficient strain of Comparative Example 12 will be described.
Subsequently, the slr0042-deficient strain of Comparative Example 13 will be described.
The amount of protein secretory produced into a culture supernatant was measured in the same manner as in the (4-2) when the modified cyanobacteria of Example 1, Example 2, Comparative Example 1, Comparative Example 12, and Comparative Example 13 were cultured. The results are shown in
Bacterial cell-derived membrane fraction pellets were obtained from each of the modified cyanobacterium of Example 2 (i.e., the slr0688-suppressed strain) and the modified cyanobacterium of Comparative Example 1 (i.e., the control strain) in the same manner as in the (8-1). The pellets were boiled in 2% SDS for 1 hour and then centrifuged at 40,000×g for 60 minutes to precipitate a cell wall fraction. The cell wall fraction was suspended in 0.5 M HCl and hydrolyzed at 100° C. for 30 minutes. The pH was adjusted to 7.0 by the addition of NaOH. Then, the amount of pyruvic acid contained in this hydrolysate was quantified using a commercially available pyruvic acid quantification kit. The pyruvic acid quantification results are shown in
The present disclosure can provide a modified cyanobacterium having improved secretory productivity of a plant growth promoting substance. The substance can be efficiently produced by culturing the modified cyanobacterium of the present disclosure. For example, the addition of the substance to soil can promote plant growth and can be expected to increase the amount of crops harvested.
Number | Date | Country | Kind |
---|---|---|---|
2021-034236 | Mar 2021 | JP | national |
This is a continuation application of PCT International Application No. PCT/JP2022/008659 filed on Mar. 1, 2022, designating the United States of America, which is based on and claims priority of Japanese Patent Application No. 2021-034236 filed on Mar. 4, 2021. The entire disclosures of the above-identified applications, including the specifications, drawings and claims are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP22/08659 | Mar 2022 | US |
Child | 18458443 | US |