Plants expressing cell wall degrading enzymes and expression vectors

Abstract
Vectors for expression of proteins in plants are described. The proteins may be enzymes and the enzymes can be but are not limited to cell wall degrading enzymes. A number of plants designed to express specific cell wall degrading enzymes are provided. The plants may have industrial and/or agricultural applications. Methods and materials for making the expression vectors and for making the plants are provided. Processes for which the plants could be used in industrial and agricultural applications are also provided.
Description
FIELD OF INVENTION

The disclosure herein relates to plants expressing cell wall degrading enzymes, vectors, nucleic acids, proteins, related methods, and applications thereof.


BACKGROUND

Hydrolytic enzymes have important industrial and agricultural applications, but their expression and production may be associated with adverse phenotypic effects, depending upon the expression host. In particular, expression of cell wall degrading enzymes, such as cellulases, xylanases, ligninases, esterases, peroxidases, and other hydrolytic enzymes are often associated with detrimental effects on growth, physiological, and agronomic performance when expressed in plants. Some of these enzymes may also be poorly expressed in microbial hosts, due to their hydrolytic activity.


SUMMARY

In an aspect, the invention relates to a transgenic plant including a nucleic acid encoding an amino acid sequence with at least 90% identity to a sequence selected from SEQ ID NOS: 44-115.


In an aspect, the invention relates to a transgenic plant including a first nucleic acid that is capable of hybridizing under conditions of moderate stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 116-187 or the complement thereof.


In an aspect, the invention relates to a vector including a first nucleic acid capable of hybridizing under conditions of one of low, moderate or high stringency to a second nucleic acid consisting of the sequence of one of SEQ ID NOS: 116-187.


In an aspect, the invention relates to a vector including a nucleic acid having a sequence with at least 90% identity to a reference sequence selected from SEQ ID NOS: 188-283.


In an aspect, the invention relates to a method of processing plant biomass. The method includes pretreating a plant or part thereof through mixing the plant or part thereof with liquid to form a mixture having a liquid to solid ratio of less than or equal to 15. Pretreating also includes providing conditions to maintain the mixture at a temperature less than or equal to 100° C. The method also includes providing one or more enzyme for modification of at least one component of the plant or part thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.


The following detailed description of the preferred embodiment of the present invention will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It is understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:



FIG. 1 illustrates a vector map of pSB11.



FIG. 2A illustrates a vector map of AG1000.



FIG. 2B illustrates a vector map of pAG1001.



FIG. 2C illustrates a vector map of pAG1002.



FIG. 3A illustrates a vector map of pAG1003.



FIG. 3B illustrates a vector map of pAG2000.



FIG. 3C illustrates a vector map of pAG2004.



FIG. 4 illustrates a vector map of pAG2014.



FIG. 5 illustrates a vector map of pBSK:OsUbi3P:XmaI:AvrII:NosT.



FIG. 6 illustrates a vector map of pBSK:OsUbi3P:XmaI:AvrII:NosT:L1.



FIG. 7 illustrates the specific activity of three xylanases with accession numbers P40942, P77853 and O30700.



FIG. 8 illustrates the activity of various transgenic plant samples expressing Xylanase P77853.



FIG. 9 illustrates thermal stability assays for O30700, P77853 and P40942.



FIG. 10 illustrates a process flow diagram for a macro-scale process.



FIG. 11 illustrates a process flow diagram for a micro-scale process.



FIG. 12 illustrates glucose and xylose yields (percentage on biomass weight) from enzymatic hydrolysis of pretreated corn stover (2015.05 and 2004.8.4).



FIG. 13 illustrates glucose and xylose yields (percentage on biomass weight) from enzymatic hydrolysis of pretreated corn stover (2004.8.4, 2063.13, and 2063.17).



FIG. 14 illustrates glucose and xylose yields (percentage on biomass weight) from enzymatic hydrolysis of pretreated corn stover (2015.05 and 2004.8.4).



FIG. 15 illustrates glucose and xylose yields (percentage on biomass weight) from enzymatic hydrolysis of pretreated corn stover (2064.17 and 2004.8.4).



FIG. 16 illustrates glucose yield (percentage on biomass weight) from enzymatic hydrolysis of pretreated corn stover (2042.02, 2042.03, 2042.06 and 2004.8.4).



FIG. 17A illustrates a transgenic plant made with pAG3000.



FIG. 17B illustrates a transgenic plant made with pAG3001.



FIG. 18A illustrates a transgenic plant made with pAG2004.



FIG. 18B illustrates a cob from a transgenic plant made with pAG2004.



FIG. 18C illustrates a cob from a transgenic plant made with pAG2004.



FIG. 19A illustrates a transgenic plant made with pAG2005.



FIG. 19B illustrates a transgenic plant made with pAG2005.



FIG. 20 illustrates measurement of reducing sugars from transgenic plant event #15 transformed with pAG2004.



FIG. 21A illustrates a transgenic plant made with pAG2016.



FIG. 21B illustrates a cob from a transgenic plant made with pAG2016.



FIG. 22 illustrates reducing sugar measurements from transgenic plants.



FIG. 23 illustrates enzyme activity measurements from dried, senescent corn stover samples.



FIG. 24 illustrates enzyme activity measurements from leaf tissue samples of transgenic plants made with pAG2015, pAG2014, or pAG2004.



FIG. 25A illustrates a transgenic plant made with pAG2014.



FIG. 25B illustrates a transgenic plant made with pAG2014.



FIG. 25C illustrates a cob from a transgenic plant made with pAG2014.



FIG. 26A illustrates a transgenic plant made with pAG2015.



FIG. 26B illustrates a transgenic plant made with pAG2015.



FIG. 26C illustrates a cob from a transgenic plant made with pAG2015.



FIG. 26D illustrates a cob from a transgenic plant made with pAG2015.



FIG. 27A illustrates a transgenic plant made with pAG2020.



FIG. 27B illustrates a transgenic plant made with pAG2020.



FIG. 27C illustrates a cob from a transgenic plant made with pAG2020.



FIG. 28A illustrates a transgenic plant made with pAG2025.



FIG. 28B illustrates a transgenic plant made with pAG2025.



FIG. 28C illustrates a transgenic plant made with pAG2025.



FIG. 29A illustrates a transgenic plant made with pAG2017.



FIG. 29B illustrates a transgenic plant made with pAG2017.



FIG. 29C illustrates a cob from a transgenic plant made with pAG2017.



FIG. 29D illustrates a cob from a transgenic plant made with pAG2017.



FIG. 30A illustrates a transgenic plant made with pAG2019.



FIG. 30B illustrates a transgenic plant made with pAG2019 in comparison to a wild type plant.



FIG. 31 illustrates a transgenic plants made with pAG2019 or pAG2027 in comparison to a wild type plant. The left three plants were made with pAG2019. The right three plants were made with pAG2027.



FIG. 32A illustrates two transgenic plants made with pAG2018 on the left and two non-hydrolase expressing plants on the right.



FIG. 32B illustrates a transgenic plant made with pAG2018.



FIG. 32C illustrates a transgenic plant made with pAG2018.



FIG. 33A illustrates a transgenic plant made with pAG2026.



FIG. 33B illustrates a transgenic plant made with pAG2026.



FIG. 33C illustrates a transgenic plant made with pAG2026.



FIG. 34A illustrates a transgenic plant made with pAG2021.



FIG. 34B illustrates a transgenic plant made with pAG2021.



FIG. 34C illustrates a cob from a transgenic plant made with pAG2021.



FIG. 34D illustrates a cob from a transgenic plant made with pAG2021.



FIG. 35A illustrates a transgenic plant made with pAG2022.



FIG. 35B illustrates a transgenic plant made with pAG2022.



FIG. 35C illustrates a cob from a transgenic plant made with pAG2022.



FIG. 36A illustrates a transgenic plant made with pAG2023.



FIG. 36B illustrates a transgenic plant made with pAG2023.



FIG. 36C illustrates a transgenic plant made with pAG2023.



FIG. 37A illustrates a transgenic plant made with pAG2024.



FIG. 37B illustrates a transgenic plant made with pAG2024.



FIG. 37C illustrates a transgenic plant made with pAG2024.



FIG. 38 illustrates activity data from some of the pAG2021 events, along with measurements from pAG2004 events (negative controls for xylanase activity) and a pAG20014 event (positive control for xylanase activity).





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Certain terminology is used in the following description for convenience only and is not limiting. The words “right,” “left,” “top” and “bottom” designate directions in the drawings or specific examples to which reference is made.


The words “a” and “one,” as used in the claims and in the corresponding portions of the specification, are defined as including one or more of the referenced item unless specifically stated otherwise. The phrase “at least one” followed by a list of two or more items, such as “A, B or C,” means any individual one of A, B or C as well as any combination thereof.


Despite potential detrimental effects of enzymes on the expression host, producing enzymes in plants, microbes, and other organisms can create large economic benefits in the production of fuels, fiber, chemicals, sugars, textiles, pulp, paper, and animal feed. In some cases there are economic benefits to producing enzymes in plants, despite an agronomic or phenotypic effect. In addition, some phenotypic effects may be overcome using a variety of strategies that protect the plant from the enzyme activity. The embodiments herein include but are not limited to these strategies.


Strategies for plant-expressed enzymes may be crop dependent. A specific enzyme may have little or no value or benefits when expressed in one crop, but significant value or benefits when expressed in another crop. That is, the properties of the engineered plant may depend not only on the specific enzyme, but also on the specific plant that expresses the enzyme. For example, the expression of xylanase enzymes in plants can facilitate the hydrolysis of plant cell wall hemicellulose, and plant fiber, into fermentable sugars (for the production of fuels and chemicals) or digestible sugars (for animal feed and meat production). However, specific xylanase enzymes also decrease grain yield and may cause infertility when expressed in corn, preventing the use of that crop as a host for enzyme expression. Despite the negative effects on grain yield and fertility in corn, which may decrease the net economic value of the engineered plant versus the non-engineered plant, expression of the identical xylanases in another crop, such as switchgrass, miscanthus, sugarcane or sorghum, may actually be beneficial because infertility in these crops would prevent the outcrossing of the xylanase gene and commercially relevant amounts of plant propagules could be produced using tissue culture or vegetative propagation. While a decrease in fertility, grain yield, or dry matter biomass in corn might prevent, or decrease the value of, expression of specific xylanase enzymes that would otherwise be valuable in the chemical processing and animal feed industries, expression of the identical enzymes in switchgrass, miscanthus, sorghum, or sugarcane may not only provide the economic value created by the enzyme, but could be beneficial from a regulatory and safety perspective.


Likewise, the value of an enzyme expressed in one tissue of a crop may be different when expressed in a different tissue, or when expressed in the same tissue in a different crop. Different benefits result because specific crop tissues (such as grain, seed, leaves, stalks, roots, flowers, pollen, etc.) may have different values depending upon the crop and the new properties imparted by the expressed enzyme. Specific xylanase and cellulase enzymes have dramatic agronomic and phenotypic effects when expressed constitutively in corn. Constitutive expression of these enzymes, individually or in combination, often results in stunted plants, infertile plants, or plants with lower yields and agronomic performance. However, seed specific expression of specific xylanase and cellulase enzymes may decrease or eliminate any detrimental agronomic effect or yield decrease, while still providing high levels of enzyme. This may be a benefit in corn grain. Producing the same enzymes in switchgrass, miscanthus, forage or sweet sorghum, or sugarcane, where grain yields may be considerably lower on a per acre basis when compared to corn, may lead to a different profile for seed specific expression of a xylanase or cellulase. Embodiments include expression of a CWDE seed specifically in any kind of transgenic plant. Depending upon the application, such as animal feed production, meat or dairy production, poultry production, paper production, or the production of fermentable sugars, where the enzyme containing grain could be mixed with other harvested feedstock (pretreated or unpretreated), this may be a very effective way of providing beneficial doses of enzyme in corn grain or other grains and seeds.


The net economic value of a plant-expressed enzyme may differ, depending upon where the enzyme is designed to localize and accumulate, and where it is targeted. For example, specific xylanase and cellulase enzymes may have dramatic phenotypic and agronomic effects when targeted to the plant cell wall, but little or no effect when maintained intracellularly or targeted to the vacuole. This may create economic benefits by providing an intracellularly contained source of enzyme for applications where it is desired to mix the enzyme with a substrate. In contrast, while the same enzymes could provide value in an admix application such as in animal feed or the processing of pretreated biomass, these enzymes may provide little or no value in a self-processing application where plant cell wall targeting is preferred to generate fermentable or digestible sugars, but problematic because of the resulting phenotypic or agronomic effects.


As described above, an exogenous enzyme can be expressed in a particular plant, plant organ, plant tissue, plant cell, or plant sub-cellular region or compartment. Embodiments herein include expressing an exogenous enzyme in a plant, a region of a plant, a plant organ, a plant tissue, or a sub-cellular plant region or compartment. Embodiments also include a plant including an exogenous enzyme where the exogenous enzyme can be in the whole plant or localized in a region of the plant, in a plant organ, in plant tissues, or in a plant sub-cellular region or compartment. Transgenic plants adapted to or having cytoplasmic accumulation of an exogenous CWDE may be provided. The design of where in the plant and in what plant the exogenous enzyme is expressed can be but is not limited to a design that takes into account the phenotypic, safety, economic, or regulatory issues set forth above.


Vectors for expression of proteins in plants are provided in embodiments herein. The proteins may be enzymes and the enzymes can be but are not limited to cell wall degrading enzymes. A number of plants designed to express specific cell wall degrading enzymes are provided. The plants may have industrial and/or agricultural applications. Methods and materials for making the expression vectors and for making the plants are provided. Processes for which the plants could be used in industrial and agricultural applications are also provided.


Vectors for expressing in planta either a cell wall degrading enzyme (or CWDE) or a intein-modified CWDE variant are provided. In an embodiment, the vector is suitable for transformation of a dicotyledonous plant. In an embodiment, the vector is suitable for transformation of a monocotyledonous plant. The CWDEs from which the CWDE in a vector or plant may be selected from but are not limited to xylanases, cellulases, cellobiohydrolases, glucosidases, xylosidases, arabinofuranosidases, and ferulic acid esterases. In an embodiment, the CWDE encoding sequence is disrupted by the insertion of an intein sequence. The inserted intein sequence may inactivate the function of the corresponding CWDE. In an embodiment, the vector design permits insertion of at least three to four gene expression and/or gene silencing cassettes. Each cassette could include a CWDE or intein-modified CWDE.


In an embodiment, the genetic elements used in a vector herein or in the construction thereof can provide at least one of the following attributes: the ability to select transgenic events after plant transformation, the ability to affect an optimal level of the gene expression in cells or affect desired sub-cellular enzyme targeting. The vectors may contain a selectable marker, which can be but is not limited to a E. coli phosphomannose isomerase (PMI) gene. Other selectable markers that can be included, in addition to or in place of the PMI marker, are those known in the art (such as but not limited to EPSPS, BAR, npt-II, GUS, etc). The vectors may also include one or more promoters. The promoters may be constitutive or global, tissue specific, seed specific, leaf specific, organ specific, sub-cellular region or compartment specific, or developmental stage specific promoters. Preferred promoters include the rice Ubiquitin 3 gene promoter (OsUbi3P) with the first intron (Accession No. AY954394, SEQ ID NO: 1) or rice Actin 1 gene promoter (Accession No. 544221, SEQ ID NO: 2. Other constitutive promoters, such as but not limited to the maize ubiquitin promoter (SEQ ID NO: 3), could also be used and substituted for OsUbi3P or the rice Actin 1 promoter. The Ubiquitin 3 and rice Actin 1 gene promoters are constitutive and global promoters that can be used to provide gene expression in transgenic plants. The glutelin promoter from the rice GluB-4 gene (Accession No. AY427571, SEQ ID NO: 4) with its own signal sequence may also be provided in the vectors. The glutelin promoter is a seed-specific promoter. Other seed specific promoters (such as but not limited to the maize zein Zc2promoter SEQ ID NO: 5) could be provided in the vectors. In order to deliver the enzymes to their corresponding substrates or to places for high level of enzyme accumulation such as vacuoles, various targeting signal sequences can be provided in the vector. Targeting signal sequences that can be provided in a CWDE or vector encoding a CWDE include but are not limited to PR1a (SEQ ID NO: 6, encoded by the nucleic acid sequence of SEQ ID NO: 7), BAASS (SEQ ID NO: 8, encoded by the nucleic acid sequence of SEQ ID NO: 9), and barley aleurain (SEQ ID NO: 10, encoded by the nucleic acid of SEQ ID NO: 11). Other targeting sequences that can be included include but are not limited to the endoplasmic reticulum (ER) retention sequence SEKDEL (SEQ ID NO: 12, encoded by the nucleic acid of SEQ ID NO: 13), and the abridged sequence KDEL (SEQ ID NO: 10, encoded by the nucleic acid of SEQ ID NO: 16). The enzymes may be provided without a targeting sequence. The enzymes may be provided such that they accumulate in the cytoplasm. A transcription terminator may be provided. The efficient transcription terminator sequence from the nopaline synthase gene of Agrobacterium tumefaciens is used in gene expression cassette examples herein.


In an embodiment, a transgenic plant including a nucleic acid encoding a CWDE or a CWDE modified with at least one of a signal sequence or an intein is provided. The nucleic acid sequence encoding the CWDE may encode any CWDE amino acid sequence. The nucleic acid sequence encoding the CWDE modified with at least one of a signal sequence or an intein may encode any CWDE amino acid sequence and at least one of any signal sequence or any intein. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 44-115. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 44-45, 49-54, 57-59, 85-86, 94-96, 104-109 and 113-115. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 47 and 55. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 46, 48 and 56. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 60-67, 70 and 75. The nucleic acid may encode a protein at having least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 68-69, 71-74, 76-77 and 112. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 78-84. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 97-103. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 87-93 and 110-111. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 44, 45, 49 and 54. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 45, 87, 104-106 and 113. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 50-53, 57-59, 94-96, 104-109 and 113-115. The nucleic acid may encode a protein having at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 54-56 and 60-65. Any of the nucleic acids set for the above that encode a protein having less than 100% identity to the cited reference sequence may encode a protein having the same or substantially the same activity as a protein having 100% identity to the cited reference sequence. Activity may be assessed by assays known in the art for any particular protein. Activity may be assessed by a method set forth in an example or portion thereof herein. Substantially the same activity would be known in the art. In an embodiment, substantially the same activity is within 20% of the activity of a protein having 100% identity to the cited reference sequence. In an embodiment, substantially the same activity is within 15% of the activity of a protein having 100% identity to the cited reference sequence. In an embodiment, substantially the same activity is within 10% of the activity of a protein having 100% identity to the cited reference sequence. In an embodiment, substantially the same activity is within 5% of the activity of a protein having 100% identity to the cited reference sequence. In an embodiment, substantially the same activity is within 1% of the activity of a protein having 100% identity to the cited reference sequence. The above mentioned nucleic acids may be provided in embodiments herein alone, as part of another nucleic acid, as part of a vector or as stated above as part of a transgenic plant. Identity can be measured by the Smith-Waterman algorithm (Smith T F, Waterman M S (1981), “Identification of Common Molecular Subsequences,” Journal of Molecular Biology 147: 195-197, which is incorporated by reference in its entirety as if fully set forth). In an embodiment, the transgenic plant may be derived from one of corn, switchgrass, miscanthus, sugarcane or sorghum. The transgenic plant may be made by agrobacterium mediated transformation using a plasmid having a nucleotide sequence as set forth above. The plasmid have a sequence with at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 188-283. The plasmid consist essentially of a sequence with at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 188-283. The plasmid consist of a sequence with at least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 188-283.


In an embodiment, a transgenic plant including a nucleic acid hybridizing to a reference nucleic acid encoding a CWDE or a CWDE modified with at least one of a signal sequence or an intein is provided. The reference nucleic acid sequence encoding the CWDE may encode any CWDE amino acid sequence. The reference nucleic acid sequence encoding the CWDE modified with at least one of a signal sequence or an intein may encode any CWDE amino acid sequence and at least one of any signal sequence or any intein. The nucleic acid included in the transgenic plant may be referred to as a first nucleic acid. The first nucleic acid may be capable of hybridizing under conditions of low stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 116-187 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of moderate stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 116-187 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 116-187 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 116-117, 121-126, 129-131, 157-158, 166-168, 176-181 and 185-187 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 119 and 127 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 118, 120 and 128 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 132-139, 142 and 147 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 140-141, 143-146, 148-149 and 184 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 150-156 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 169-175 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 159-165 and 182-183 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 116, 117, 121 and 126 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 117, 159, 176-178 and 185 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 122-125, 129-131, 166-168, 176-181 and 185-187 or the complement thereof. The first nucleic acid may be capable of hybridizing under conditions of low, moderate or high stringency to a second nucleic acid consisting of a nucleotide sequence selected from SEQ ID NOS: 126-128 and 132-137 or the complement thereof. Examples of hybridization protocols and methods for optimization of hybridization protocols are described in the following books: Molecular Cloning, T. Maniatis, E. F. Fritsch, and J. Sambrook, Cold Spring Harbor Laboratory, 1982; and, Current Protocols in Molecular Biology, F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl, Volume 1, John Wiley & Sons, 2000, which are incorporated herein by reference as if fully set forth. By way of example, but not limitation, procedures for hybridization conditions of moderate stringency are as follows: filters containing DNA are pretreated for 2-4 h at 68° C. in a solution containing 6×SSC (Amresco, Inc., Solon, Ohio), 0.5% SDS (Amersco, Inc., Solon, Ohio), 5×Denhardt's solution (Amersco, Inc., Solon, Ohio), and 100 μg/mL denatured, salmon sperm DNA (Invitrogen Life Technologies, Inc., Carlsbad, Calif.). Approximately 0.2 mL of pretreatment solution are used per square centimeter of membrane used. Hybridizations are carried out in the same solution with the following modifications: 0.01 M EDTA (Amersco, Inc., Solon, Ohio), 100 μg/ml salmon sperm DNA, and 5-20×106 cpm 32P-labeled or fluorescently labeled probes can be used. Filters are incubated in hybridization mixture for 16-20 h at 68° C. and then washed for 15 minutes at room temperature (within five degrees of 25° C.) in a solution containing 2×SSC and 0.1% SDS, with gentle agitation. The wash solution is replaced with a solution containing 0.1×SSC and 0.5% SDS, and incubated an additional 2 h at 68° C., with gentle agitation. Filters are blotted dry and exposed for development in an imager or by autoradiography. If necessary, filters are washed for a third time and re-exposed for development. By way of example, but not limitation, low stringency refers to hybridizing conditions that employ low temperature for hybridization, for example, temperatures between 37° C. and 60° C. By way of example, but not limitation, high stringency refers to hybridizing conditions as set forth above but with modification to employ high temperatures, for example, hybridization temperatures over 68° C. Any of the nucleic acids set for the above that have less than 100% identity to the cited reference sequence may encode a protein having the same or substantially the same activity as a protein encoded by a nucleic acid sequence having 100% identity to the cited reference sequence. Activity may be assessed by assays known in the art for any particular protein. Activity may be assessed by a method set forth in an example or portion thereof herein. Substantially the same activity would be known in the art. In an embodiment, substantially the same activity is within 20% of the activity of a protein encoded by a nucleic acid sequence having 100% identity to the cited reference sequence. In an embodiment, substantially the same activity is within 15% of the activity of a protein encoded by a nucleic acid sequence having 100% identity to the cited reference sequence. In an embodiment, substantially the same activity is within 10% of the activity of a protein encoded by a nucleic acid sequence having 100% identity to the cited reference sequence. In an embodiment, substantially the same activity is within 5% of the activity of a protein encoded by a nucleic acid sequence having 100% identity to the cited reference sequence. In an embodiment, substantially the same activity is within 1% of the activity of a protein encoded by a nucleic acid sequence having 100% identity to the cited reference sequence. The transgenic plant may be derived from one of corn, switchgrass, miscanthus, sugarcane or sorghum. The transgenic plant may be made by Agrobacterium mediated transformation using a plasmid including any of the above nucleic acids.


In an embodiment, a vector including a nucleic acid encoding a CWDE or a CWDE modified with at least one of a signal sequence or an intein is provided. The nucleic acid sequence encoding the CWDE may encode any CWDE amino acid sequence. The nucleic acid sequence encoding the CWDE modified with at least one of a signal sequence or an intein may encode any CWDE amino acid sequence and at least one of any signal sequence or any intein. The nucleic acid may encode a protein having least 70, 72, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 44-115. The nucleic acid sequence may hybridize under conditions of low stringency to a reference nucleic acid consisting of the sequence of one of SEQ ID NOS: 116-187 or the complement thereof. The nucleic acid sequence may hybridize under conditions of moderate stringency to a reference nucleic acid consisting of the sequence of one of SEQ ID NOS: 116-187 or the complement thereof. The nucleic acid sequence may hybridize under conditions of high stringency to a reference nucleic acid consisting of the sequence of one of SEQ ID NOS: 116-187 or the complement thereof. The vector may include a sequence having 70, 72, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 188-283. The vector may consist essentially of a sequence having 70, 72, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 188-283. The vector may consist of a sequence having 70, 72, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% identity to a sequence selected from SEQ ID NOS: 188-283.


In an embodiment, an isolated nucleic acid, polynucleotide, or oligonucleotide encoding at least a portion of any of the amino acid sequences of SEQ ID NOS: 44-115 can be used as a hybridization probe or primer. In an embodiment, the complement of said isolated nucleic acid, polynucleotide or oligonucleotide may be used as a hybridization probe or primer. In an embodiment, an isolated nucleic acid having a sequence that hybridizes under conditions of low, moderate or high stringency to at least a portion of a nucleic acid having the sequence of any one of SEQ ID NOS: 116-187 and 188-283 or the complement thereof may be used as a hybridization probe or primer. These isolated nucleic acids, polynucleotides, or oligonucleotides are not limited to but may have a length in the range from 10 to 100, 10 to 90, 10 to 80, 10 to 70, 10 to 60, 10 to 50, 10 to 40, 10 to 35, 10 to 30, 10 to 25, 10 to 20 or 10 to 15 nucleotides, or from 20 to 30 nucleotides, or be 25 nucleotides in length. A range of nucleotide sequence lengths recited herein includes every length of nucleotide sequence within the range, endopoints inclusive. The recited length of nucleotides may start at any single position within a reference sequence where enough nucleotides follow the single position to accommodate the recited length. In an embodiment, a hybridization probe or primer is 85 to 100%, 90 to 100%, 91 to 100%, 92 to 100%, 93 to 100%, 94 to 100%, 95 to 100%, 96 to 100%, 97 to 100%, 98 to 100%, 99 to 100%, or 100% complementary to a nucleic acid with the same length as the probe or primer and having a sequence chosen from a length of nucleotides corresponding to the probe or primer length within a nucleic acid encoding one of the proteins of SEQ ID NOS: 44-115 or the complement of said nucleic acid. In an embodiment, a hybridization probe or primer is 85 to 100%, 90 to 100%, 91 to 100%, 92 to 100%, 93 to 100%, 94 to 100%, 95 to 100%, 96 to 100%, 97 to 100%, 98 to 100%, 99 to 100%, or 100% complementary to a nucleic acid with the same length as the probe or primer and having a sequence chosen from a length of nucleotides corresponding to the probe or primer length within a nucleic acid with the sequence of one of SEQ ID NOS: 116-283. In an embodiment, a hybridization probe or primer hybridizes along its length to a corresponding length of a nucleic acid encoding the sequence of one of SEQ ID NOS: 44-115 or the complement said nucleic acid. In an embodiment, a hybridization probe or primer hybridizes along its length to a corresponding length of a nucleic acid having the sequence of one of SEQ ID NOS: 116-187 or the complement thereof. In an embodiment, hybridization can occur under conditions of low stringency. In an embodiment, hybridization can occur under conditions of moderate stringency. In an embodiment, hybridization can occur under conditions of high stringency.


The isolated nucleic acids, polynucleotides, or oligonucleotides of embodiments herein may include natural nucleotides, natural nucleotide analogues, or synthetic nucleotide analogues. Nucleic acids, polynucleotides, or oligonucleotides of embodiments herein may be any kind of nucleic acid including deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or peptide nucleic acid (PNA). The nucleic acid sequences listed herein are listed as DNA sequences but other nucleic acids are contemplated as embodiments herein, including RNA sequences where U replaces T.


Although non-labeled hybridization probes or primers can be used in the embodiments herein, the hybridization probes or primers may be detectably labeled and could be used to detect, sequence, or synthesize nucleic acids. Exemplary labels include, but are not limited to, radionuclides, light-absorbing chemical moieties, dyes, and fluorescent moieties. The label may be a fluorescent moiety, such as 6-carboxyfluorescein (FAM), 6-carboxy-4,7,2′,7′-tetrachlorofluoroscein (TET), rhodamine, JOE (2,7-dimethoxy-4,5-dichloro-6-carboxyfluorescein), HEX (hexachloro-6-carboxyfluorescein), or VIC.


In an embodiment, a method of processing plant biomass is provided. The method may include pretreating a plant or part thereof through mixing the plant or part thereof with liquid to form a mixture having a liquid to solid ratio of less than or equal to 15. Pretreating may include providing conditions to maintain the mixture at a temperature less than or equal to 100° C. The method may include providing one or more enzyme. The plant biomass may be or be derived from any plant or part thereof. The plant biomass may be or be derived from any transgenic plant or part thereof described, illustrated or claimed herein. The method may include a plant or part thereof other than any transgenic plant or part thereof described, illustrated or claimed herein, and combining it with any transgenic plant or part thereof described, illustrated or claimed herein. The liquid to solid ratio in the mixture may be a value less than or equal to 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1. The liquid to solid ratio may be 8 or less. The liquid to solid ratio may be 8. The step of pretreating may include maintaining the temperature of less than or equal to 100° C. for at least four hours. The step of pretreating may include maintaining the temperature of 40° C. to 90° C. The liquid provided to make the mixture may be any liquid. In an embodiment, the liquid is water. In an embodiment, the liquid includes water, ammonium bisulfite and ammonium carbonate. The ammonium bisulfite may be at any suitable concentration. In an embodiment, the ammonium bisulfite concentration is a value within 8% to 38% (endpoints inclusive) on a wt./wt. basis with the plant or part thereof. The ammonium carbonate may be at any suitable pH. In an embodiment, the ammonium carbonate pH is a pH in the range of 7.6 to 8.5, enpoints inclusive. The ammonium carbonate concentration may be any suitable concentration. In an embodiment, the ammonium carbonate concentration is a value within 4% to 19% (endpoints inclusive) on a wt./wt. basis with the plant or part thereof. The step of providing one or more enzyme may include providing any enzyme suitable for processing plant biomass. In an embodiment, the one or more enzyme includes at least one enzyme capable hydrolyzing lignocellulosic material. In an embodiment, the one or more enzymes include at least one of an endoglucanase, a β-glucosidase, a cellobiohydrolase or a xylanase. In an embodiment, the one or more enzymes include at least one of a xylanase, a cellulase, a cellobiohydrolase, a glucosidase, a xylosidase, an arabinofuronosidase or a ferulic acid esterase. In an embodiment, the method includes a step of providing one or more enzyme where the one or more enzyme is not a xylanase, and then adding a xylanase as an additional step.


Any single embodiment herein may be supplemented with one or more element from any one or more other embodiment herein.


EXAMPLES

The following non-limiting examples are provided to illustrate particular embodiments. The embodiments throughout may be supplemented with one or more detail from any one or more example below.


Example 1—pSB11

Referring to FIG. 1, a vector of an embodiment herein may be based on the pSB11 intermediate plasmid (a derivative of pBR322). pSB11 is available from Japan Tobacco. The pSB11 plasmid is suitable for cloning and can be easily maintained in E. coli. The pSB11 conjugates with the pSB1 “super-binary” acceptor vector (a disarmed Ti plasmid), which can be maintained in the LB4404 strain of Agrobacterium tumefaciens, through homologous recombination using cos and on sites present in both vectors. The integration product represents a hybrid vector that can be subsequently used for plant transformation. pSB1 contains virulence genes such as virB, virC and virG required for T-DNA processing and delivering to the plant cell. pSB11 has a multiple cloning site containing unique restriction enzyme recognition sites for cloning expression cassettes with the target gene sequences.


Example 2—pAG1000

Referring to FIG. 2A, pAG1000 was created by modification of pSB11 in order to enable it to accept several gene expression cassettes. Initially, the original expression cassette containing a positive selectable marker gene manA encoding phosphomannose isomerase (PMI) driven by the Cestrum Yellow Leaf Curling Virus promoter (CMPS) was cloned from pNOV2819 plasmid (Syngenta Biotechnology) into pSB11 as HindIII-KpnI fragment to generate pAG1000.


Example 3—pAG1001, pAG1002 and pAG1003

pAG1000 was further modified by removal of EcoRI site (nucleotide position #7) to generate pAG1001 (FIG. 2B) and then KpnI site (nt position #1) to produce pAG1002 (FIG. 2C). These modifications made the EcoRI and KpnI sites available for subsequent cloning expression cassettes with the genes of interest (GOI). Referring to FIG. 3A, a new multiple cloning site (MCS) sequence, below, containing PacI, XhoI, SnaBI, NcoI, KpnI, XmaI, AvrII, EcoRI sites, was PCR synthesized as a 249 bp PmeI-HindIII fragment and cloned into PmeI-HindIII sites of pAG1002 to provide the pAG1003 vector.









>MCS







(SEQ ID NO: 17)







GTTTAAACTGAAGGCGGGAAACGACAACCTGATCATGAGCGGAGAATTAA





GGGAGTCACGTTATGACCCCCGCCGATGACGCGGGACAAGCCGTTTTACG





TTTGGAACTGACAGAACCGCAACGTTGAAGGAGCCACTCAGCTTAATTAA





GTCTAACTCGAGTTACTGGTACGTACCAAATCCATGGAATCAAGGTACCA





TCAATCCCGGGTATTCATCCTAGGTATCCAAGAATTCATACTAAAGCTT






Example 4—pAG2000

Referring to FIG. 3B, higher expression levels may be provided by replacing the viral CMPS promoter in pAG1003 by the rice Ubiquitin 3 promoter (SEQ ID NO: 1), which is an extensively studied promoter with demonstrated efficacy for gene expression in monocots. The OsUbi3P has been cloned from the pRESQ101 plasmid. pRESQ101 was described by E. Sivamani, J. D. Starmer, R. Qu, “Sequence analysis of rice rubi3 promoter gene expression cassettes for improved transgene expression,” Plant Science, 177(6): 549-556, 2009, which is incorporated herein by reference as if fully set forth. The following modifications were made to the OsUbi3P for the cloning purposes: 1) An EcoRI site was introduced at the 5′ end via a PCR approach; 2) an XmaI site was removed, while a BamHI site was added to the 3′ end. A partial sequence of OsUbi3P was assembled as an ApaI-BamHI fragment in pBluescript and then cloned as the HindIII-BamHI entire promoter region including the first Ubiquitin intron fused to PMI in pAG1003 digested with HindIII-SpeI. The latter cloning produced the pAG2000 vector.


Example 5—pAG2004 and pAG2005

The pAG2000 vector was further modified in order to develop a cloning vector amenable of accepting GOI expression cassettes while providing enhanced expression of the PMI selectable marker for plant transformation. The optimization of PMI expression included replacement of original junction sequence connecting the OsUbi3 intron with the start PMI gene codon in pAG2000 (shown in SEQ ID NO: 18, below) by a new 9 nt sequence. The original junction sequence is underlined and the start codon is in bold in the version of SEQ ID NO: 18 presented below. The new 9 nt sequence is shown as boxed in the version of SEQ ID NO: 19 presented below. The boxed sequence was validated as the efficacious sequence in providing a high level of transient GUS expression in pRESQ48 by E. Sivamani and R. Qu (2006), which is incorporated herein by reference as if fully set forth. This 9 nt sequence represents the three initial codons of the rice Ubiquitin 3 gene, where the start codon ATG has been modified to ATC in order to eliminate an additional translation initiation site. To achieve this modification, the BglII-XcmI fragment of pAG2000 (nucleotide positions 9726-105) was replaced by the PCR synthesized fragment, which contained the required 9 nt junction sequence and was generated in successive reactions using primers P64/P68, P64/P66, and P64/P67.










>BglII-XcmI (9726-105) of pAG2000



(SEQ ID NO: 18)



Agatctgttgtcctgtagttacttatgtcagttttgttattatctgaagatatttttggttgttgcttgttgatgtggtgtgagctgtgagca






gcgctcttatgattaatgatgctgtccaattgtagtgtagtatgatgtgattgatatgttcatctattttgagctgacagtaccgatatcgt





aggatctggtgccaacttattctccagctgcttttttttacctatgttaattccaatcctttcttgcctcttccagGGATCCCCGATC






ATGCAAAAACTCATTAACTCAGTGCAAAACTATGCCTGGGGCAGCAAAACGGCGTTGACT






GAACTTTATGGTATGGAAAATCCGTCCAGCCAGCCGATGG





>BglII-XcmI PCR synthesized fragment for pAG2004 construction


(SEQ ID NO: 19)



Agatctgttgtcctgtagttacttatgtcagttttgttattatctgaagatatttttggttgttgcttgttgatgtggtgtgagctgtgagca






gcgctcttatgattaatgatgctgtccaattgtagtgtagtatgatgtgattgatatgttcatctattttgagctgacagtaccgatatcgt







embedded image




CAGAAACTCATTAACTCAGTGCAAAACTATGCCTGGGGCAGCAAAACGGCGTTGACTGAA





CTTTATGGTATGGAAAATCCGTCCAGCCAGCCGATGG

















Primer
Sequence







P64
AGATCTGTTGTCCTGTAGTTACTTATGTCA



(SEQ ID NO: 20)





P66
CCATCGGCTGGCTGGACGGATTTTCCATACCATAAAGTTCAGTC



AACGCCGTTTTGCTGCCCCAGGCATA (SEQ ID NO: 21)





P67
CCATCGGCTGGCTGGACGGATTTTC (SEQ ID NO: 22)





P68
CGTTTTGCTGCCCCAGGCATAGTTTTGCACTGAGTTAATGAGTT



TCTGCATTATCTGGATCTGGAAGAGGCAAGAAAGGATTGGA



(SEQ ID NO: 23)









Referring to FIG. 3C, the modifications above lead the pAG2004 vector, which is an embodiment herein. The pAG2004 vector was subsequently used to conjugate with pSB1 in LBA4404 strain of Agrobacterium tumefaciens and to transform immature maize embryos using Japan Tobacco transformation procedure (Japan Tobacco Operating Manual for plasmid pSB1, Version 3.1, Jun. 5, 2006; Komari, T., et. al., “Binary Vectors and Super-binary Vectors”, Methods in Molecular Biology, Volume 343: Agrobacterium Protocols, pages 15-41, Humana Press, which is incorporated herein by reference as if fully set forth). The maize transformation efficiencies of the pAG2004 and its derivative pAG2005, which contain OsUbi3 promoter cloned as KpnI-XmaI into pAG2004 MCS, may be in the range of 20-60%, while the pAG1003 with the original PMI expression cassette from pNOV2819, where manA expression is driven by the CMPS viral promoter, may provide up to 15% transformation efficiency.


The sequence of pAG2005 is given in SEQ ID NO: 24, which is set forth below:









(SEQ ID NO: 24)







aattcatactaaagcttgcatgcctgcaggtcgactctagtaacggccgc





cagtgtgctggaattaattcggcttgtcgaccacccaaccccatatcgac





agaggatgtgaagaacaggtaaatcacgcagaagaacccatctctgatag





cagctatcgattagaacaacgaatccatattgggtccgtgggaaatactt





actgcacaggaagggggcgatctgacgaggccccgccaccggcctcgacc





cgaggccgaggccgacgaagcgccggcgagtacggcgccgcggcggcctc





tgcccgtgccctctgcgcgtgggagggagaggccgcggtggtgggggcgc





gcgcgcgcgcgcgcgcagctggtgcggcggcgcgggggtcagccgccgag





ccggcggcgacggaggagcagggcggcgtggacgcgaacttccgatcggt





tggtcagagtgcgcgagttgggcttagccaattaggtctcaacaatctat





tgggccgtaaaattcatgggccctggtttgtctaggcccaatatcccgtt





catttcagcccacaaatatttccccagaggattattaaggcccacacgca





gcttatagcagatcaagtacgatgtttcctgatcgttggatcggaaacgt





acggtcttgatcaggcatgccgacttcgtcaaagagaggcggcatgacct





gacgcggagttggttccgggcaccgtctggatggtcgtaccgggaccgga





cacgtgtcgcgcctccaactacatggacacgtgtggtgctgccattgggc





cgtacgcgtggcggtgaccgcaccggatgctgcctcgcaccgccttgccc





acgctttatatagagaggttttctctccattaatcgcatagcgagtcgaa





tcgaccgaaggggagggggagcgaagctttgcgttctctaatcgcctcgt





caaggtaactaatcaatcacctcgtcctaatcctcgaatctctcgtggtg





cccgtctaatctcgcgattttgatgctcgtggtggaaagcgtaggaggat





cccgtgcgagttagtctcaatctctcagggtttcgtgcgattttagggtg





atccacctcttaatcgagttacggtttcgtgcgattttagggtaatcctc





ttaatctctcattgatttagggtttcgtgagaatcgaggtagggatctgt





gttatttatatcgatctaatagatggattggttttgagattgttctgtca





gatggggattgtttcgatatattaccctaatgatgtgtcagatggggatt





gtttcgatatattaccctaatgatgtgtcagatggggattgtttcgatat





attaccctaatgatggataataagagtagttcacagttatgttttgatcc





tgccacatagtttgagttttgtgatcagatttagttttacttatttgtgc





ttagttcggatgggattgttctgatattgttccaatagatgaatagctcg





ttaggttaaaatctttaggttgagttaggcgacacatagtttatttcctc





tggatttggattggaattgtgttcttagtttttttcccctggatttggat





tggaattgtgtggagctgggttagagaattacatctgtatcgtgtacacc





tacttgaactgtagagcttgggttctaaggtcaatttaatctgtattgta





tctggctctttgcctagttgaactgtagtgctgatgttgtactgtgtttt





tttacccgttttatttgctttactcgtgcaaatcaaatctgtcagatgct





agaactaggtggctttattctgtgttcttacatagatctgttgtcctgta





gttacttatgtcagttttgttattatctgaagatatttttggttgttgct





tgttgatgtggtgtgagctgtgagcagcgctcttatgattaatgatgctg





tccaattgtagtgtagtatgatgtgattgatatgttcatctattttgagc





tgacagtaccgatatcgtaggatctggtgccaacttattctccagctgct





tttttttacctatgttaattccaatcctttcttgcctctccagatccaga





taatgcagaaactcattaactcagtgcaaaactatgcctggggcagcaaa





acggcgttgactgaactttatggtatggaaaatccgtccagccagccgat





ggccgagctgtggatgggcgcacatccgaaaagcagttcacgagtgcaga





atgccgccggagatatcgtttcactgcgtgatgtgattgagagtgataaa





tcgactctgctcggagaggccgttgccaaacgctttggcgaactgccttt





cctgttcaaagtattatgcgcagcacagccactctccattcaggttcatc





caaacaaacacaattctgaaatcggttttgccaaagaaaatgccgcaggt





atcccgatggatgccgccgagcgtaactataaagatcctaaccacaagcc





ggagctggtttttgcgctgacgcctttccttgcgatgaacgcgtttcgtg





aattttccgagattgtctccctactccagccggtcgcaggtgcacatccg





gcgattgctcactttttacaacagcctgatgccgaacgtttaagcgaact





gttcgccagcctgttgaatatgcagggtgaagaaaaatcccgcgcgctgg





cgattttaaaatcggccctcgatagccagcagggtgaaccgtggcaaacg





attcgtttaatttctgaattttacccggaagacagcggtctgttctcccc





gctattgctgaatgtggtgaaattgaaccctggcgaagcgatgttcctgt





tcgctgaaacaccgcacgcttacctgcaaggcgtggcgctggaagtgatg





gcaaactccgataacgtgctgcgtgcgggtctgacgcctaaatacattga





tattccggaactggttgccaatgtgaaattcgaagccaaaccggctaacc





agttgttgacccagccggtgaaacaaggtgcagaactggacttcccgatt





ccagtggatgattttgccttctcgctgcatgaccttagtgataaagaaac





caccattagccagcagagtgccgccattttgttctgcgtcgaaggcgatg





caacgttgtggaaaggttctcagcagttacagcttaaaccgggtgaatca





gcgtttattgccgccaacgaatcaccggtgactgtcaaaggccacggccg





tttagcgcgtgtttacaacaagctgtaagagcttactgaaaaaattaaca





tctcttgctaagctgggagctctagatccccgaatttccccgatcgttca





aacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgc





gatgattatcatataatttctgttgaattacgttaagcatgtaataatta





acatgtaatgcatgacgttatttatgagatgggtttttatgattagagtc





ccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaa





ctaggataaattatcgcgcgcggtgtcatctatgttactagatcgggaat





tggcgagctcgaattaattcagtacattaaaaacgtccgcaatgtgttat





taagttgtctaagcgtcaatttgtttacaccacaatatatcctgccacca





gccagccaacagctccccgaccggcagctcggcacaaaatcaccactcga





tacaggcagcccatcagtccgggacggcgtcagcgggagagccgttgtaa





ggcggcagactttgctcatgttaccgatgctattcggaagaacggcaact





aagctgccgggtttgaaacacggatgatctcgcggagggtagcatgttga





ttgtaacgatgacagagcgttgctgcctgtgatcaaatatcatctccctc





gcagagatccgaattatcagccttcttattcatttctcgcttaaccgtga





caggctgtcgatcttgagaactatgccgacataataggaaatcgctggat





aaagccgctgaggaagctgagtggcgctatttctttagaagtgaacgttg





acgatcgtcgaccgtaccccgatgaattaattcggacgtacgttctgaac





acagctggatacttacttgggcgattgtcatacatgacatcaacaatgta





cccgtttgtgtaaccgtctcttggaggttcgtatgacactagtggttccc





ctcagcttgcgactagatgttgaggcctaacattttattagagagcaggc





tagttgcttagatacatgatcttcaggccgttatctgtcagggcaagcga





aaattggccatttatgacgaccaatgccccgcagaagctcccatctttgc





cgccatagacgccgcgccccccttttggggtgtagaacatccttttgcca





gatgtggaaaagaagttcgttgtcccattgttggcaatgacgtagtagcc





ggcgaaagtgcgagacccatttgcgctatatataagcctacgatttccgt





tgcgactattgtcgtaattggatgaactattatcgtagttgctctcagag





ttgtcgtaatttgatggactattgtcgtaattgcttatggagttgtcgta





gttgcttggagaaatgtcgtagttggatggggagtagtcatagggaagac





gagcttcatccactaaaacaattggcaggtcagcaagtgcctgccccgat





gccatcgcaagtacgaggcttagaaccaccttcaacagatcgcgcatagt





cttccccagctctctaacgcttgagttaagccgcgccgcgaagcggcgtc





ggcttgaacgaattgttagacattatttgccgactaccttggtgatctcg





cctttcacgtagtgaacaaattcttccaactgatctgcgcgcgaggccaa





gcgatcttcttgtccaagataagcctgcctagcttcaagtatgacgggct





gatactgggccggcaggcgctccattgcccagtcggcagcgacatccttc





ggcgcgattttgccggttactgcgctgtaccaaatgcgggacaacgtaag





cactacatttcgctcatcgccagcccagtcgggcggcgagttccatagcg





ttaaggtttcatttagcgcctcaaatagatcctgttcaggaaccggatca





aagagttcctccgccgctggacctaccaaggcaacgctatgttctcttgc





ttttgtcagcaagatagccagatcaatgtcgatcgtggctggctcgaaga





tacctgcaagaatgtcattgcgctgccattctccaaattgcagttcgcgc





ttagctggataacgccacggaatgatgtcgtcgtgcacaacaatggtgac





ttctacagcgcggagaatctcgctctctccaggggaagccgaagtttcca





aaaggtcgttgatcaaagctcgccgcgttgtttcatcaagccttacggtc





accgtaaccagcaaatcaatatcactgtgtggcttcaggccgccatccac





tgcggagccgtacaaatgtacggccagcaacgtcggttcgagatggcgct





cgatgacgccaactacctctgatagttgagtcgatacttcggcgatcacc





gcttccctcatgatgtttaactcctgaattaagccgcgccgcgaagcggt





gtcggcttgaatgaattgttaggcgtcatcctgtgctcccgagaaccagt





accagtacatcgctgtttcgttcgagacttgaggtctagttttatacgtg





aacaggtcaatgccgccgagagtaaagccacattttgcgtacaaattgca





ggcaggtacattgttcgtttgtgtctctaatcgtatgccaaggagctgtc





tgcttagtgcccactttttcgcaaattcgatgagactgtgcgcgactcct





ttgcctcggtgcgtgtgcgacacaacaatgtgttcgatagaggctagatc





gttccatgttgagttgagttcaatcttcccgacaagctcttggtcgatga





atgcgccatagcaagcagagtcttcatcagagtcatcatccgagatgtaa





tccttccggtaggggctcacacttctggtagatagttcaaagccttggtc





ggataggtgcacatcgaacacttcacgaacaatgaaatggttctcagcat





ccaatgtttccgccacctgctcagggatcaccgaaatcttcatatgacgc





ctaacgcctggcacagcggatcgcaaacctggcgcggcttttggcacaaa





aggcgtgacaggtttgcgaatccgttgctgccacttgttaacccttttgc





cagatttggtaactataatttatgttagaggcgaagtcttgggtaaaaac





tggcctaaaattgctggggatttcaggaaagtaaacatcaccttccggct





cgatgtctattgtagatatatgtagtgtatctacttgatcgggggatctg





ctgcctcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagc





tcccggagacggtcacagcttgtctgtaagcggatgccgggagcagacaa





gcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggcgcagccat





gacccagtcacgtagcgatagcggagtgtatactggcttaactatgcggc





atcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgc





acagatgcgtaaggagaaaataccgcatcaggcgctcttccgcttcctcg





ctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagc





tcactcaaaggcggtaatacggttatccacagaatcaggggataacgcag





gaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaag





gccgcgttgctggcgtttttccataggctccgcccccctgacgagcatca





caaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaa





gataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccg





accctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgt





ggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcg





ttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgc





tgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacga





cttatcgccactggcagcagccactggtaacaggattagcagagcgaggt





atgtaggcggtgctacagagttcttgaagtggtggcctaactacggctac





actagaaggacagtatttggtatctgcgctctgctgaagccagttacctt





cggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggta





gcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaagga





tctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaa





cgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatct





tcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagt





atatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggc





acctatctcagcgatctgtctatttcgttcatccatagttgcctgactcc





ccgtcgtgtagataactacgatacgggagggcttaccatctggccccagt





gctgcaatgataccgcgagacccacgctcaccggctccagatttatcagc





aataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactt





tatccgcctccatccagtctattaattgttgccgggaagctagagtaagt





agttcgccagttaatagtttgcgcaacgttgttgccattgctgcaggggg





gggggggggggggttccattgttcattccacggacaaaaacagagaaagg





aaacgacagaggccaaaaagctcgctttcagcacctgtcgtttcctttct





tttcagagggtattttaaataaaaacattaagttatgacgaagaagaacg





gaaacgccttaaaccggaaaattttcataaatagcgaaaacccgcgaggt





cgccgccccgtaacctgtcggatcaccggaaaggacccgtaaagtgataa





tgattatcatctacatatcacaacgtgcgtggaggccatcaaaccacgtc





aaataatcaattatgacgcaggtatcgtattaattgatctgcatcaactt





aacgtaaaaacaacttcagacaatacaaatcagcgacactgaatacgggg





caacctcatgtccccccccccccccccctgcaggcatcgtggtgtcacgc





tcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcg





agttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtc





ctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggtt





atggcagcactgcataattctcttactgtcatgccatccgtaagatgctt





ttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgc





ggcgaccgagttgctcttgcccggcgtcaacacgggataataccgcgcca





catagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcg





aaaactctcaaggatcttaccgctgttgagatccagttcgatgtaaccca





ctcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttct





gggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggc





gacacggaaatgttgaatactcatactcttcctttttcaatattattgaa





gcatttatcagggttattgtctcatgagcggatacatatttgaatgtatt





tagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgcc





acctgacgtctaagaaaccattattatcatgacattaacctataaaaata





ggcgtatcacgaggccctttcgtcttcaagaattggtcgacgatcttgct





gcgttcggatattttcgtggagttcccgccacagacccggattgaaggcg





agatccagcaactcgcgccagatcatcctgtgacggaactttggcgcgtg





atgactggccaggacgtcggccgaaagagcgacaagcagatcacgctttt





cgacagcgtcggatttgcgatcgaggatttttcggcgctgcgctacgtcc





gcgaccgcgttgagggatcaagccacagcagcccactcgaccttctagcc





gacccagacgagccaagggatctttttggaatgctgctccgtcgtcaggc





tttccgacgtttgggtggttgaacagaagtcattatcgcacggaatgcca





agcactcccgaggggaaccctgtggttggcatgcacatacaaatggacga





acggataaaccttttcacgcccttttaaatatccgattattctaataaac





gctctttctcttaggtttacccgccaatatatcctgtcaaacactgatag





tttaaactgaaggcgggaaacgacaacctgatcatgagcggagaattaag





ggagtcacgttatgacccccgccgatgacgcgggacaagccgttttacgt





ttggaactgacagaaccgcaacgttgaaggagccactcagcttaattaag





tctaactcgagttactggtacgtaccaaatccatggaatcaaggtaccgt





cgactctagtaacggccgccagtgtgctggaattaattcggcttgtcgac





cacccaaccccatatcgacagaggatgtgaagaacaggtaaatcacgcag





aagaacccatctctgatagcagctatcgattagaacaacgaatccatatt





gggtccgtgggaaatacttactgcacaggaagggggcgatctgacgaggc





cccgccaccggcctcgacccgaggccgaggccgacgaagcgccggcgagt





acggcgccgcggcggcctctgcccgtgccctctgcgcgtgggagggagag





gccgcggtggtgggggcgcgcgcgcgcgcgcgcgcagctggtgcggcggc





gcgggggtcagccgccgagccggcggcgacggaggagcagggcggcgtgg





acgcgaacttccgatcggttggtcagagtgcgcgagttgggcttagccaa





ttaggtctcaacaatctattgggccgtaaaattcatgggccctggtttgt





ctaggcccaatatcccgttcatttcagcccacaaatatttccccagagga





ttattaaggcccacacgcagcttatagcagatcaagtacgatgtttcctg





atcgttggatcggaaacgtacggtcttgatcaggcatgccgacttcgtca





aagagaggcggcatgacctgacgcggagttggttccgggcaccgtctgga





tggtcgtaccgggaccggacacgtgtcgcgcctccaactacatggacacg





tgtggtgctgccattgggccgtacgcgtggcggtgaccgcaccggatgct





gcctcgcaccgccttgcccacgctttatatagagaggttttctctccatt





aatcgcatagcgagtcgaatcgaccgaaggggagggggagcgaagctttg





cgttctctaatcgcctcgtcaaggtaactaatcaatcacctcgtcctaat





cctcgaatctctcgtggtgcccgtctaatctcgcgattttgatgctcgtg





gtggaaagcgtaggaggatcccgtgcgagttagtctcaatctctcagggt





ttcgtgcgattttagggtgatccacctcttaatcgagttacggtttcgtg





cgattttagggtaatcctcttaatctctcattgatttagggtttcgtgag





aatcgaggtagggatctgtgttatttatatcgatctaatagatggattgg





ttttgagattgttctgtcagatggggattgtttcgatatattaccctaat





gatgtgtcagatggggattgtttcgatatattaccctaatgatgtgtcag





atggggattgtttcgatatattaccctaatgatggataataagagtagtt





cacagttatgttttgatcctgccacatagtttgagttttgtgatcagatt





tagttttacttatttgtgcttagttcggatgggattgttctgatattgtt





ccaatagatgaatagctcgttaggttaaaatctttaggttgagttaggcg





acacatagtttatttcctctggatttggattggaattgtgttcttagttt





ttttcccctggatttggattggaattgtgtggagctgggttagagaatta





catctgtatcgtgtacacctacttgaactgtagagcttgggttctaaggt





caatttaatctgtattgtatctggctctttgcctagttgaactgtagtgc





tgatgttgtactgtgtttttttacccgttttatttgcttactcgtgcaaa





tcaaatctgtcagatgctagaactaggtggctttattctgtgttcttaca





tagatctgttgtcctgtagttacttatgtcagttttgttattatctgaag





atatttttggttgttgcttgttgatgtggtgtgagctgtgagcagcgctc





ttatgattaatgatgctgtccaattgtagtgtagtatgatgtgattgata





tgttcatctattttgagctgacagtaccgatatcgtaggatctggtgcca





acttattctccagctgcttttttttacctatgttaattccaatcctttct





tgcctctccagcccgggtattcatcctaggtccccgaatttccccgatcg





ttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtc





ttgcgatgattatcatataatttctgttgaattacgttaagcatgtaata





attaacatgtaatgcatgacgttatttatgagatgggtttttatgattag





agtcccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcg





caaactaggataaattatcgcgcgcggtgtcatctatgttactagatcgg





gaattgg






Example 5—Genetic Elements Used in Vector Development

Promoters


Vectors were made to include a 2014 bp sequence of rice Ubiquitin 3 gene promoter with the first intron (OsUbi3P, Accession # AY954394, SEQ ID NO: 1, shown below) for constitutive or “global” gene expression. The first intron sequence of OsUbi3P is shown as lower case letters in the presentation of SEQ ID NO: 1 below. Vectors herein can include different or additional promoters. Vectors were made including the rice Actin1 gene promoter with the first gene intron (OsAct1P, Accession No. 544221, SEQ ID NO: 2), which is a constitutive promoter. The rice Actin1 gene promoter may be utilized for PMI gene expression in vectors herein. For example, vectors pAG3000-pAG3003 include the rice Actin1 gene promoter with the first gene intron. Some vectors were made to include the 1474 bp rice Glutelin B-4 gene promoter (OsGluB4P, Accession # AY427571, SEQ ID NO: 4), which may be used for the seed specific gene expression and has been used to express enzymes and intein-modified enzymes.









>OsUbi3P







(SEQ ID NO: 1)







CCACCCAACCCCATATCGACAGAGGATGTGAAGAACAGGTAAATCACGCA





GAAGAACCCATCTCTGATAGCAGCTATCGATTAGAACAACGAATCCATAT





TGGGTCCGTGGGAAATACTTACTGCACAGGAAGGGGGCGATCTGACGAGG





CCCCGCCACCGGCCTCGACCCGAGGCCGAGGCCGACGAAGCGCCGGCGAG





TACGGCGCCGCGGCGGCCTCTGCCCGTGCCCTCTGCGCGTGGGAGGGAGA





GGCCGCGGTGGTGGGGGCGCGCGCGCGCGCGCGCGCAGCTGGTGCGGCGG





CGCGGGGGTCAGCCGCCGAGCCGGCGGCGACGGAGGAGCAGGGCGGCGTG





GACGCGAACTTCCGATCGGTTGGTCAGAGTGCGCGAGTTGGGCTTAGCCA





ATTAGGTCTCAACAATCTATTGGGCCGTAAAATTCATGGGCCCTGGTTTG





TCTAGGCCCAATATCCCGTTCATTTCAGCCCACAAATATTTCCCCAGAGG





ATTATTAAGGCCCACACGCAGCTTATAGCAGATCAAGTACGATGTTTCCT





GATCGTTGGATCGGAAACGTACGGTCTTGATCAGGCATGCCGACTTCGTC





AAAGAGAGGCGGCATGACCTGACGCGGAGTTGGTTCCGGGCACCGTCTGG





ATGGTCGTACCGGGACCGGACACGTGTCGCGCCTCCAACTACATGGACAC





GTGTGGTGCTGCCATTGGGCCGTACGCGTGGCGGTGACCGCACCGGATGC





TGCCTCGCACCGCCTTGCCCACGCTTTATATAGAGAGGTTTTCTCTCCAT





TAATCGCATAGCGAGTCGAATCGACCGAAGGGGAGGGGGAGCGAAGCTTT





GCGTTCTCTAATCGCCTCGTCAAGgtaactaatcaatcacctcgtcctaa





tcctcgaatctctcgtggtgcccgtctaatctcgcgattttgatgctcgt





ggtggaaagcgtaggaggatcccgtgcgagttagtctcaatctctcaggg





tttcgtgcgattttagggtgatccacctcttaatcgagttacggtttcgt





gcgattttagggtaatcctcttaatctctcattgatttagggtttcgtga





gaatcgaggtagggatctgtgttatttatatcgatctaatagatggattg





gttttgagattgttctgtcagatggggattgtttcgatatattaccctaa





tgatgtgtcagatggggattgtttcgatatattaccctaatgatgtgtca





gatggggattgtttcgatatattaccctaatgatggataataagagtagt





tcacagttatgttttgatcctgccacatagtttgagttttgtgatcagat





ttagttttacttatttgtgcttagttcggatgggattgttctgatattgt





tccaatagatgaatagctcgttaggttaaaatctttaggttgagttaggc





gacacatagtttatttcctctggatttggattggaattgtgttcttagtt





atttcccctggatttggattggaattgtgtggagctgggttagagaatta





catctgtatcgtgtacacctacttgaactgtagagcttgggttctaaggt





caatttaatctgtattgtatctggctctttgcctagttgaactgtagtgc





tgatgttgtactgtgtttttttacccgttttatttgctttactcgtgcaa





atcaaatctgtcagatgctagaactaggtggctttattctgtgttcttac





atagatctgttgtcctgtagttacttatgtcagttttgttattatctgaa





gatatttttggttgttgcttgttgatgtggtgtgagctgtgagcagcgct





cttatgattaatgatgctgtccaattgtagtgtagtatgatgtgattgat





atgttcatctattttgagctgacagtaccgatatcgtaggatctggtgcc





aacttattctccagctgcttttttttacctatgttaattccaatcctttc





ttgcctcttccag,


promoter sequence in upper case letters


(SEQ ID NO: 25), first intron in lower case


letters (SEQ ID NO: 26)





>OsAct1P







(SEQ ID NO: 2)







TAGCTAGCATATTCGAGGTCATTCATATGCTTGAGAAGAGAGTCGGGATA





GTCCAAAATAAAACAAAGGTAAGATTACCTGGTCAAAAGTGAAAACATCA





GTTAAAAGGTGGTATAAGTAAAATATCGGTAATAAAAGGTGGCCCAAAGT





GAAATTTACTCTTTTCTACTATTATAAAAATTGAGGATGTTTTGTCGGTA





CTTTGATACGTCATTTTTGTATGAATTGGTTTTTAAGTTTATTCGCGATT





TGGAAATGCATATCTGTATTTGAGTCGGTTTTTAAGTTCGTTGCTTTTGT





AAATACAGAGGGATTTGTATAAGAAATATCTTTAAAAAACCCATATGCTA





ATTTGACATAATTTTTGAGAAAAATATATATTCAGGCCAATTCCACAATG





AACAATAATAAGATTAAAATAGCTTGCCCCCGTTGCAGCGATGGGTATTT





TTTCTAGTAAAATAAAAGATAAACTTAGACTCAAAACATTTACAAAAACA





ACCCCTAAAGTCCTAAAGCCCAAAGTGCTATGCACGATCCATAGCAAGCC





CAGCCCAACCCAACCCAACCCAACCCACCCCAGTGCAGCCAACTGGCAAA





TAGTCTCCACCCCCGGCACTATCACCGTGAGTTGTCCGCACCACCGCACG





TCTCGCAGCCAAAAAAAAAAAAAGAAAGAAAAAAAAGAAAAAGAAAAACA





GCAGGTGGGTCCGGGTCGTGGGGGCCGGAAAAGCGAGGAGGATCGCGAGC





AGCGACGAGGCCCGGCCCTCCCTCCGCTTCCAAAGAAACGCCCCCCATCG





CCACTATATACATACCCCCCCCTCTCCTCCCATCCCCCCAACCCTACCAC





CACCACCACCACCACCTCCTCCCCCCTCGCTGCCGGACGACGAGCTCCTC





CCCCCTCCCCCTCCGCCGCCGCCGGTAACCACCCCGCCCCTCTCCTCTTT





CTTTCTCCGTTTTTTTTTTCGTCTCGGTCTCGATCTTTGGCCTTGGTAGT





TTGGGTGGGCGAGAGCGGCTTCGTCGCCCAGATCGGTGCGCGGGAGGGGC





GGGATCTCGCGGCTGGCGTCTCCGGGCGTGAGTCGGCCCGCATCCTCGCG





GGGAATGGGGCTCTCGGATGTAGATCTTCTTTCTTTCTTCTTTTTGTGGT





AGAATTTGAATCCCTCAGCATTGTTCATCGGTAGTTTTTCTTTTCATGAT





TTGTGACAAATGCAGCCTCGTGCGGAGCTTTTTTGTAG





>OsGluB4P







(SEQ ID NO: 4)







TACAGGGTTCCTTGCGTGAAGAAGGGTGGCCTGCGGTTCACCATTAACGG





TCACGACTACTTCCAGCTAGTACTGGTGACCAACGTCGCGGCGGCAGGGT





CAATCAAGTCCATGGAGGTTATGGGTTCCAACACAGCGGATTGGATGCCG





ATGGCACGTAACTGGGGCGCCCAATGGCACTCACTGGCCTACCTCACCGG





TCAAGGTCTATCCTTTAGGGTCACCAACACAGATGACCAAACGCTCGTCT





TCACCAACGTCGTGCCACCAGGATGGAAGTTTGGCCAGACATTTGCAAGC





AAGCTGCAGTTCAAGTGAGAGGAGAAGCCTGAATTGATACCGGAGCGTTT





CTTTTGGGAGTAACATCTCTGGTTGCCTAGCAAACATATGATTGTATATA





AGTTTCGTTGTGCGTTTATTCTTTCGGTGTGTAAAATAACATACATGCTT





TCCTGATATTTTCTTGTATATATGTACACACACACGACAAATCCTTCCAT





TTCTATTATTATTGAACAATTTAATTGCGAGGGCGAGTACTTGTCTGTTT





ACCTTTTTTTTTTCAGATGGCATTTTATAGTTTAACCTTTCATGGACCGG





CAGTAGTTCTAACCATGAATGAAAAGAAATCATAGTCCACACCACGCAGG





GACATTGTGGTCATTTTAGACAAGACGATTTGATTAATGTCTTGTATGAT





ATGGTCGACAGTGAGGACTAACAAACATATGGCATATTTTATTACCGGCG





AGTTAAATAAATTTATGTCACAGTAATAAACTGCCTAATAAATGCACGCC





AGAAAATATAATGATAAAAAAAAGAAAAGATACATAAGTCCATTGCTTCT





ACTTTTTTAAAAATTAAATCCAACATTTTCTATTTTTTGGTATAAACTTG





GAAGTACTAGTTGGATATGCAAAATCATCTAACCTCCATATATTTCATCA





ATTTGTTTACTTTACATATGGGAGAGGATAGTATGTCAAAGAAAATGACA





ACAAGCTTACAAGTTTCTTATTTTAAAAGTTCCGCTAACTTATCAAGCAT





AGTGTGCCACGCAAAACTGACAACAAACCAACAAATTTAAGGAGCGCCTA





ACTTATCATCTATGACATACCGCACAAAATGATAACATACTAGAGAAACT





TTATTGCACAAAAGGAAATTTATCCATAAGGCAAAGGAACATCTTAAGGC





TTTGGATATACATTTACCAACAAGCATTGTTTGTATTACCCCTAAAGCGC





AAGACATGTCATCCATGAGTCATAGTGTGTATATCTCAACATTGCAAAGC





TACCTTTTTTCTATTATACTTTTCGCATTATAGGCTAGATATTATCTATA





CATGTCAACAAACTCTATCCCTACGTCATATCTGAAGATTCTTTTCTTCA





CTATATAAGTTGGCTTCCCTGTCATTGAACTCACATCAACCAGCCCAAGT





TTCCAATAACATCCTCAAATAGCT






The rice Ubiquitin 3 gene promoter was cloned from the pRESQ101, as it is described above, while the rice Act1 and GluB-4 gene promoters were synthesized. With rice Act1 gene promoter is fused to PMI selectable marker, up to 23% transformation efficiency was observed in stable transformation of maize using mannose selection medium during plant tissue culture.


Signal Sequences


Signal sequences can be included with a CWDE sequence (with or without further modification; e.g., with an intein) or in a vector to direct enzymes expressed in planta to specific locations within, or external to, the plant cell. In some examples, described below, the tobacco PR1a (amyloplast targeting) and barley alpha amylase BAASS [SEQ ID NO: 8] (cell wall targeting) signal sequences were included in CWDEs or vectors herein. These signal sequences can direct enzymes to their respective targeting locations. In some examples, described below, the barley aleurain HvAleSP (vacuole targeting), rice GluB4 (seed expression) and ER retaining (SEKDEL) signal sequences were included, and these sequences can localize protein to the respective cellular compartments or specific tissues. A goal of such targeting may be achieving high levels of protein accumulation while avoiding potential detrimental effects on plant growth and development. Signal sequences used in examples herein and their corresponding encoding nucleotide sequences are presented below:









PR1a protein sequence







(SEQ ID NO: 6)







M G F V L F S Q L P S F L L V S T L L L F L V I S





H S C R A





PR1a nucleotide sequence







(SEQ ID NO: 7)







ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCTCCAC





CCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCC





BAASS protein sequence







(SEQ ID NO: 8)







M A N K H L S L S L F L V L L G L S A S L A S G Q V





BAASS nucleotide sequence







(SEQ ID NO: 9)







ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTGGCCT





GTCGGCCAGCTTGGCCTCCGGGCAAGTC





HvAle protein sequence







(SEQ ID NO: 10)







M A H A R V L L L A L A V L A T A A V A V A S S S





S F A D S N P I R P V T D R A A S T





HvAle nucleotide sequence







(SEQ ID NO: 11)







ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCACCGC





CGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAACCCGATCC





GCCCGGTGACCGACCGCGCCGCCTCCACC










(SEQ ID NO: 12)







SEKDEL










(SEQ ID NO: 13)







AGCGAGAAGGACGAGCTG










(SEQ ID NO: 14)







KDEL










(SEQ ID NO: 15)







AAGGACGAGCTG





GluB4SP protein sequence







(SEQ ID NO: 27)







M A T I A F S R L S I Y F C V L L L C H G S M A





GluB4SP nucleotide sequence







(SEQ ID NO: 28)







ATGGCCACCATCGCTTTCTCCCGCTTGTCCATCTACTTCTGCGTGCTTCT





CCTGTGCCACGGCTCCATGGCC






Targeting sequences can be modified from their original versions to reflect the codon usage frequencies for optimal gene expression in monocot plants. In an embodiment, the host codon usage frequencies are from maize. Each signal sequence can be synthesized by PCR using specific primers and connected to the 3′ ends of a sequence; for example, either the OsUbi3 or OsGluB4 promoter, using a fusion PCR approach.


Transcription Terminator


A transcription terminator can be included in the vectors herein. In an embodiment, the efficient transcription terminator sequence (NosT) from the nopaline synthase gene of Agrobacterium tumefaciens is used in gene expression cassettes cloned in plant transformation vectors. The sequence is presented below:









NosT







(SEQ ID NO: 29)







TCCCCGAATTTCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTT





AAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCT





GTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTT





ATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAA





TACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTAT





CGCGCGCGGTGTCATCTATGTTACTAGATCGGGAATTG







This sequence appears twice in pAG2005 (SEQ ID NO: 24). The second appearance at positions 12034 to 12288 follows the second OsUbi3 promoter plus intron sequence and XmaI site, and is followed with an EcoRI restriction site (GAATTC, positions 12310 to 5 of SEQ ID NO: 24). The Nos terminator sequence can be PCR amplified from pNOV2819 as 276 bp fragment. Other transcription terminators known in the art could be substituted and used in place of the Nos terminator. One other terminator that could be used in place of the Nos terminator is the 35S terminator.


Example 6—Vector Development for Overexpression of Wild Type P77853 Xylanase

Referring to FIG. 4, vector pAG2014 construction provides and example of a representative approach to clone genes encoding CWDEs such as xylanases, cellulases and any other genes of specific interest for development of transgenic monocotyledonous plants including, but not limited to maize, switchgrass, sorghum, miscanthus and sugarcane.


Connection of Signal Sequence to a Coding Region of Mature Enzyme


A signal sequence protein of interest junction can be determined experimentally or through models. For this example, the SignalP 3.0 server publically available through the Center for Biological Sequence Analysis of the Technical University of Denmark was used to predict the best junction between the signal peptide and the wild type P77853 xylanase enzyme. The method utilized in SignalP 3.0 incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide prediction based on a combination of several artificial neural networks and hidden Markov models. The program output provides a confidence score for the cleavage of signal peptide from the mature protein. Three variant junctions were evaluated; a first with a direct connection between BAASS [SEQ ID NO: 8] and P77853 ( . . . GQV QTS . . . ), a second with removal of one amino acid from the carboxy terminus of BAASS ( . . . GQ QTS . . . ), and a third with the removal of one amino acid from the carboxy terminus of BAASS [SEQ ID NO: 8] and removal of one amino acid from the amino terminus of P77853 ( . . . GQ TS . . . ). The variant with the highest score was advanced to molecular cloning. The sequences of BASS, P77853, and the first, second and third junctions are below with the junction underlined:


BAASS from barley alpha amylase (Ace. #X15226) 78 bp









(SEQ ID NO: 8)







M A N K H L S L S L F L V L L G L S A S L A S G





Q V










(SEQ ID NO: 9)







ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTGG





CCTGTCGGCCAGCTTGGCCTCCGGGCAAGTC//













(SEQ ID NO: 30)


QTSITLTSNASGTFDGYYYELWKDTGNTTMTVYTQGRFSCQWSNINNALF





RTGKKYNQNWQSLGTIRITYSATYNPNGNSYLCIYGWSTNPLVEFYIVES





WGNWRPPGATSLGQVTIDGGTYDIYRTTRVNQPSIVGTATFDQYWSVRTS





KRTSGTVTVTDHFRAWANRGLNLGTIDQITLCVEGYQSSGSANITQNTFS





QGSSSGSSGGSSGSTTTTRIECENMSLSGPYVSRITNPFNGIALYANGDT





ARATVNFPASRNYNFRLRGCGNNNNLARVDLRIDGRTVGTFYYQGTYPWE





APIDNVYVSAGSHTVEITVTADNGTWDVYADYLVIQ







BAASS:P77853 1st connection variant









(SEQ ID NO: 31)


MANKHLSLSLFLVLLGLSASLASGQVQTSITLTSNASGTFDGYYYELWKD





TGNTTMTVYTQGRFSCQWSNINNALFRTGKKYNQNWQSLGTIRITYSATY





NPNGNSYLCIYGWSTNPLVEFYIVESWGNWRPPGATSLGQVTIDGGTYDI





YRTTRVNQPSIVGTATFDQYWSVRTSKRTSGTVTVTDHFRAWANRGLNLG





TIDQITLCVEGYQSSGSANITQNTFSQGSSSGSSGGSSGSTTTTRIECEN





MSLSGPYVSRITNPFNGIALYANGDTARATVNFPASRNYNFRLRGCGNNN





NLARVDLRIDGRTVGTFYYQGTYPWEAPIDNVYVSAGSHTVEITVTADNG





TWDVYADYLVIQ







SignalP3.0 Server Prediction: Signal peptide


Most likely cleavage site between pos. 24 and 25: ASG-QV


Signal peptide probability: 1.000


Max cleavage site probability: 0.740 between pos. 24 and 25


BAASS:P77853 2nd connection variant









(SEQ ID NO: 32)







MANKHLSLSLFLVLLGLSASLASGQQTSITLTSNASGTFDGYYYELWKDT





GNTTMTVYTQGRFSCQWSNINNALFRTGKKYNQNWQSLGTIRITYSATYN





PNGNSYLCIYGWSTNPLVEFYIVESWGNWRPPGATSLGQVTIDGGTYDIY





RTTRVNQPSIVGTATFDQYWSVRTSKRTSGTVTVTDHFRAWANRGLNLGT





IDQITLCVEGYQSSGSANITQNTFSQGSSSGSSGGSSGSTTTTRIECENM





SLSGPYVSRITNPFNGIALYANGDTARATVNFPASRNYNFRLRGCGNNNN





LARVDLRIDGRTVGTFYYQGTYPWEAPIDNVYVSAGSHTVEITVTADNGT





WDVYADYLVIQ







SignalP3.0 Server Prediction: Signal peptide


Most likely cleavage site between pos. 24 and 25: ASG-QQ


Signal peptide probability: 1.000


Max cleavage site probability: 0.768 between pos. 24 and 25


BAASS:P77853 3rd connection variant









(SEQ ID NO: 33)







MANKHLSLSLFLVLLGLSASLASGQTSITLTSNASGTFDGYYYELWKDTG





NTTMTVYTQGRFSCQWSNINNALFRTGKKYNQNWQSLGTIRITYSATYNP





NGNSYLCIYGWSTNPLVEFYIVESWGNWRPPGATSLGQVTIDGGTYDIYR





TTRVNQPSIVGTATFDQYWSVRTSKRTSGTVTVTDHFRAWANRGLNLGTI





DQITLCVEGYQSSGSANITQNTFSQGSSSGSSGGSSGSTTTTRIECENMS





LSGPYVSRITNPFNGIALYANGDTARATVNFPASRNYNFRLRGCGNNNNL





ARVDLRIDGRTVGTFYYQGTYPWEAPIDNVYVSAGSHTVEITVTADNGTW





DVYADYLVIQ







SignalP3.0 Server Prediction: Signal peptide


Most likely cleavage site between pos. 24 and 25: ASG-QT


Signal peptide probability: 1.000


Max cleavage site probability: 0.582 between pos. 24 and 25


In this example, the 2nd variant of connection between BAASS [SEQ ID NO:8] and P77853 ( . . . GQ QTS . . . ), was selected for pAG2014 vector development based on the maximum cleavage site probability output results from the ServerP 3.0.


The individual genetic elements for pAG2014 construction were assembled in primary PCR reactions as depicted below. The first PCR reaction (PCR-1) was used to amplify 372 bp of the 3′ end of the rice Ubiquitin 3 gene first intron (shown in low case letters) starting from its own BglII site (underlined). The fragment was linked to the 9nt sequence (presented as Italics capital letters) representing modified three initial codons of the rice Ubiquitin 3 gene (detailed description is provided above), BAASS (shown in capital letters) and 27 nt sequence (boxed) of the 5′ end of the coding region of P77853 mature protein. The second PCR reaction (PCR-2) was performed to amplify the entire coding region of P77853 mature protein fused to the TAG stop codon followed by the AvrII restriction site (underlined).

    • 1. PCR-1 to amplify 372 bp 3′ end of the rice Ubiquitin 3 gene first intron, 9 bp junction sequence, BAASS and 5′ end of P77853:


PCR-1 Product










(SEQ ID NO: 34)




Agatctgttgtcctgtagttacttatgtcagttttgttattatctgaagatatttttggttgttgcttgttgatgtggtgtgagct







gtgagcagcgctcttatgattaatgatgctgtccaattgtagtgtagtatgatgtgattgatatgttcatctattttgagctga





cagtaccgatatcgtaggatctggtgccaacttattctccagctgcttttttttacctatgttaattccaatcctttcttgcctcttc





cagATCCAGATAATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTT







embedded image






embedded image








Primers









ovb79:







(SEQ ID NO: 35)








agatctgttgtcctgtagttacttatgtc






ovb86:







(SEQ ID NO: 36)







CCGACAGGCCAAGGAGGACGAGGAAGAGGGAGAGGGACAAATGTTTGTTC





GCCATTATCTGGATctggaagaggcaagaaaggattggaa






ovb101:









(SEQ ID NO: 37)







GTTGGATGTCAGAGTAATGCTTGTTTGTTGCCCGGAGGCCAAGCTGGCCG





ACAGGCCAAGGAGGAC








    • 2. PCR-2 to amplify 1017 bp coding region of mature P77853 protein:





PCR-2 Product









(SEQ ID NO: 38)







CAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTGACGGTTA





CTATTACGAACTCTGGAAGGATACTGGCAATACAACAATGACGGTCTACA





CTCAAGGTCGCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTT





AGGACCGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCG





GATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGTGTA





TCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGTTGAGTCC





TGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGCCAAGTGACAAT





CGATGGCGGGACCTACGACATCTATAGGACGACACGCGTCAACCAGCCTT





CCATTGTGGGGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCT





AAGCGGACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCTGGGC





GAACCGGGGCCTGAACCTCGGCACAATAGACCAAATTACATTGTGCGTGG





AGGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAGAACACCTTCTCT





CAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCATCCGGCTCCACAACGAC





TACTCGCATCGAGTGTGAGAACATGTCCTTGTCCGGACCCTACGTTAGCA





GGATCACCAATCCCTTTAATGGTATTGCGCTGTACGCCAACGGAGACACA





GCCCGCGCTACCGTTAACTTCCCCGCAAGTCGCAACTACAATTTCCGCCT





GCGGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACCTGAGGATCG





ACGGACGGACCGTCGGGACCTTTTATTACCAGGGCACATACCCCTGGGAG





GCCCCAATTGACAATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAAT





CACTGTTACTGCGGATAACGGCACATGGGACGTGTATGCCGACTACCTGG





TGATACAGTGACCTAGG






Primers











ovb93:







(SEQ ID NO: 39)









CAAACAAGCATTACTCTGACATCCAAC







ovb95:







(SEQ ID NO: 40)










CCTAGGTCACTGTATCACCAGGTAGTCGGCAT







The subsequent “fusion PCR” approach (Yon and Fried, 1989) was utilized to “stitch” together genetic elements prepared in PCR-1 and PCR-2. This approach generated the expected 1362 bp BglII-AvrII sequence consisting of 261 bp of the 3′ end of rice Ubiquitin 3 gene first intron with its native 3′ end BglII site, 9 nt connecting sequence between the intron and the ATG codon of the 75 bp BAASS signal sequence, and 1011 bp mature P77853 xylanase coding region terminating in TGA stop codon that is flanked by the AvrII restriction site:


3′OsUbi3Pint:BAASS:P77853 as BglII-AvrII










(SEQ ID NO: 41)




agatctgttgtcctgtagttacttatgtcagttttgttattatctgaagatatttttggttgttgcttgttgatgtggtgtgagctg







tgagcagcgctcttatgattaatgatgctgtccaattgtagtgtagtatgatgtgattgatatgttcatctattttgagctgac





agtaccgatatcgtaggatctggtgccaacttattctccagctgcttttttttacctatgttaattccaatcctttcttgcctcttcc





agATCCAGATAATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTT







embedded image






embedded image




TACAACAATGACGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCGAACATC





AATAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTGGCAGTCTCTTG





GCACAATCCGGATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTT





GTGTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGTTGAGTCC





TGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGCCAAGTGACAATCGAT





GGCGGGACCTACGACATCTATAGGACGACACGCGTCAACCAGCCTTCCATTGTGG





GGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCTAAGCGGACTTCAG





GAACAGTGACCGTGACCGATCACTTCCGCGCCTGGGCGAACCGGGGCCTGAACC





TCGGCACAATAGACCAAATTACATTGTGCGTGGAGGGTTACCAAAGCTCTGGATC





AGCCAACATCACCCAGAACACCTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGT





GGCTCATCCGGCTCCACAACGACTACTCGCATCGAGTGTGAGAACATGTCCTTGT





CCGGACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGTATTGCGCTGTACGC





CAACGGAGACACAGCCCGCGCTACCGTTAACTTCCCCGCAAGTCGCAACTACAAT





TTCCGCCTGCGGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACCTGAGGA





TCGACGGACGGACCGTCGGGACCTTTTATTACCAGGGCACATACCCCTGGGAGG





CCCCAATTGACAATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGT





TACTGCGGATAACGGCACATGGGACGTGTATGCCGACTACCTGGTGATACAGTGA






CCTAGG







The fusion PCR product was subsequently excised from the gel, gel purified using QIAquick Gel Extraction Kit (Cat. #28706) and ligated to the pPCR-Blunt II TOPO vector. The fusion PCR product was completely sequenced using vector specific and gene specific primers. The sequence verified fusion PCR fragment was released from the pPCR-Blunt II TOPO vector with BglII-AvrII digestion and cloned into pBluescript that was prepared in the following manipulations:

    • 1. Referring to FIG. 5, the 2362 bp KpnI-EcoRI fragment of pAG2005, which includes OsUbi3 promoter fused to the sequence CCCGGGTATTCATcustom character (SEQ ID NO: 42) with XmaI (underlined) and AvrII (boxed) sites and a Nos terminator, was initially cloned into pBluescript to give the pBSK:OsUbi3P:XmaI:AvrII:NosT vector.
    • 2. Referring to FIG. 6, cloning of the L1 linker GAATTCTTACATTAGCACTAGAGCTC (SEQ ID NO: 43) into EcoRI-SacI sites of pBSK:OsUbi3P:XmaI:AvrII:NosT removed an extra XmaI site and produced the “shuttle” vector pBSK:OsUbi3P:XmaI:AvrII:NosT:L1:


pBSK:OsUbi3P:XmaI:AvrII:NosT:L1 readily accepts BglII-AvrII digested DNA fragments. In this manner, cloning fusion PCR products similar to that described in the above example, would lead to reconstruction of the entire expression cassette for the gene of interest. For example, the 1362 bp BglII-AvrII digested fusion PCR product described above for P77853 was inserted in the BglII-AvrII digested pBSK:OsUbi3P:XmaI:AvrII:NosT:L1 to create the OsUbi3P:BAASS:P77853:NosT expression cassette.


The entire expression cassette OsUbi3P:BAASS:P77853:NosT was further excised as a KpnI-EcoRI fragment using restriction enzymes and cloned into pAG2005 to generate the pAG2014. The pAG2014 vector can be used for expressing the wild type P77853 xylanase in transgenic plants from the rice Ubiquitin 3 gene promoter, and targeting expressed enzyme to the plant cell wall by the barley alpha amylase signal sequence (BAASS). Using the same process, vectors in the following list were generated. The list below also includes pAG1000, 1002, 1003, 1004, 1005, 2000, 2004. The vectors below may be utilized for plant transformation and expression of the transgenes.

    • 1. pAG1000-pAG1002 (SEQ ID NOS: 188-190, respectively) are CMPSP:PMI in pSB11 with various restriction sites removed.
    • 2. pAG1003 (SEQ ID NO: 191) is pAG1002 with an MCS.
    • 3. pAG1004 is pAG1003 with GUS-int in the MCS.
    • 4. pAG1005 (SEQ ID NO: 192) is pAG1003 with CPMSP:PMI, where PMI is codon and expression optimized for maize.
    • 5. pAG2000 (SEQ ID NO: 193) is pAG1003 with one connection of the rice Ubi3 promoter and PMI in HindIII-SpeI replacing CMPSP:PMI.
    • 6. pAG2001 (SEQ ID NO: 194) is pAG2000 with the rice Ubi3 promoter in the MCS.
    • 7. pAG2002 (SEQ ID NO: 195) is pAG2001 with the rice Ubi3 promoter and the Nos terminator in the MCS.
    • 8. pAG2003 (SEQ ID NO: 196) is pAG2000 with second connection between the rice Ubi3 promoter and PMI.
    • 9. pAG2004 (SEQ ID NO: 197) is pAG2000 with third connection between rice Ubi3 promoter and PMI.
    • 10. pAG2005 (SEQ ID NO: 198) is pAG2004 with the added rice Ubi3 promoter and Nos terminator from pAG2002 in the MCS.
    • 11. pAG2006 (SEQ ID NO: 199) is pAG2005 with GUS between the rice Ubi3 promoter and the Nos terminator, using one connection between the OsUbi3P and GUS.
    • 12. pAG2007 (SEQ ID NO: 200) is pAG2005 with GUS between the rice Ubi3 promoter and the Nos terminator, using a second connection between OsUbi3P and GUS.
    • 13. pAG2009 (SEQ ID NO: 201) is pAG2005 with GUS fused to the PR1a intracellular space localization signal sequence (using one connection) and between the rice Ubi3 promoter and the Nos terminator.
    • 14. pAG2010 (SEQ ID NO: 202) is pAG2005 with GUS fused to the PR1a intracellular space localization signal sequence (using second connection) and between the rice Ubi3 promoter and the Nos terminator.
    • 15. pAG2011 (SEQ ID NO: 203) is pAG2005 with GUS fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 16. pAG2012 (SEQ ID NO: 204) is pAG2007 with GUS between the rice glutelin GluB-4 promoter and the Nos terminator.
    • 17. pAG2013 (SEQ ID NO: 205) is pAG2005 with GUS fused to the HvExoI cell wall targeting signal sequence and between the rice the Ubi3 promoter and the Nos terminator.
    • 18. pAG2014 (SEQ ID NO: 206) is pAG2005 with WT P77853 fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 19. pAG2015 (SEQ ID NO: 207) is pAG2005 with WT P77853 between rice Ubi3 promoter and Nos terminator.
    • 20. pAG2016 (SEQ ID NO: 208) is pAG2005 with GUS fused to the PR1a (maize expression optimized) intracellular space localization signal and between the rice Ubi3 promoter sequence and the Nos terminator.
    • 21. pAG2017 (SEQ ID NO: 209) is pAG2005 with WT P40942 fused to the PR1a (maize expression optimized) intracellular space localization signal and between the rice Ubi3 promoter sequence and the Nos terminator.
    • 22. pAG2018 (SEQ ID NO: 210) is pAG2005 with WT O30700 fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator
    • 23. pAG2019 (SEQ ID NO: 211) is pAG2005 with WT P40942 fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator
    • 24. pAG2020 (SEQ ID NO: 212) is pAG2005 with WT P77853 fused to the PR1a (maize expression optimized) intracellular space localization signal and between the rice Ubi3 promoter sequence and the Nos terminator.
    • 25. pAG2021 (SEQ ID NO: 213) is pAG2005 with P77853m3 fused to the PR1a (maize expression optimized) intracellular space localization signal and between the rice Ubi3 promoter sequence and the Nos terminator.
    • 26. pAG2022 (SEQ ID NO: 214) is pAG2005 with P77853m3:SEKDEL fused to the PR1a (maize expression optimized) intracellular space localization signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 27. pAG2023 (SEQ ID NO: 215) is pAG2005 with P77853m3 fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 28. pAG2024 (SEQ ID NO: 216) is pAG2005 with P77853m3:SEKDEL fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 29. pAG2025 (SEQ ID NO: 217) is pAG2012 with WT P77853 fused to GluB-4 signal sequence and between the rice glutelin GluB-4 promoter and the Nos terminator.
    • 30. pAG2026 (SEQ ID NO: 218) is pAG2012 with WT O30700 fused to GluB-4 signal sequence and between the rice glutelin GluB-4 promoter and the Nos terminator.
    • 31. pAG2027 (SEQ ID NO: 219) is pAG2012 with WT P40942 fused to GluB-4 signal sequence and between the rice glutelin GluB-4 promoter and the Nos terminator.
    • 32. pAG2028 (SEQ ID NO: 220) is pAG2005 with P77853T134-195 fused to the PR1a (maize expression optimized) intracellular space localization signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 33. pAG2029 (SEQ ID NO: 221) is pAG2005 with P77853T134-195 fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 34. pAG2030 (SEQ ID NO: 222) is pAG2005 with P77853m3 between the rice Ubi3 promoter and the Nos terminator.
    • 35. pAG2031 (SEQ ID NO: 223) is pAG2012 with WT P54583 fused to GluB-4 signal sequence and between the rice glutelin GluB-4 promoter and the Nos terminator.
    • 36. pAG2032 (SEQ ID NO: 224) is pAG2012 with WT P54583:SEKDEL fused to GluB-4 signal sequence and between the rice glutelin GluB-4 promoter and the Nos terminator.
    • 37. pAG2033 (SEQ ID NO: 225) is pAG2005 with WT P54583 between the rice Ubi3 promoter and the Nos terminator.
    • 38. pAG2034 (SEQ ID NO: 226) is pAG2005 with WT P54583:SEKDEL between the rice Ubi3 promoter and the Nos terminator.
    • 39. pAG2035 (SEQ ID NO: 227) is pAG2005 with WT P54583 fused to PR1a (maize expression optimized) intracellular space localization signal and between the rice Ubi3 promoter sequence and the Nos terminator.
    • 40. pAG2036 (SEQ ID NO: 228) is pAG2005 with WT P54583:SEKDEL fused to the PR1a (maize expression optimized) intracellular space localization signal sequence between the rice Ubi3 promoter and the Nos terminator.
    • 41. pAG2037 (SEQ ID NO: 229) is pAG2005 with WT P54583 fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 42. pAG2038 (SEQ ID NO: 230) is pAG2005 with WT P54583:SEKDEL fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 43. pAG2039 (SEQ ID NO: 231) is pAG2005 with GUS fused to HvAleSP and between the rice Ubi3 promoter and the Nos terminator.
    • 44. pAG2040 (SEQ ID NO: 232) is pAG2005 with WT NtEGm fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 45. pAG2042 (SEQ ID NO: 234) is pAG2005 with WT P54583 fused to the HvAleSP vacuole targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 46. pAG2043 (SEQ ID NO: 235) is pAG2005 with WT NtEGm between the rice Ubi3 promoter and the Nos terminator.
    • 47. pAG2044 (SEQ ID NO: 236) is pAG2005 with WT NtEGm fused to the PR1a (maize expression optimized) intracellular space localization signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 48. pAG2045 (SEQ ID NO: 237) is pAG2005 with WT NtEGm:SEKDEL fused to the PR1a (maize expression optimized) intracellular space localization signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 49. pAG2046 (SEQ ID NO: 238) is pAG2005 with WT NtEGm:SEKDEL fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 50. pAG2047 (SEQ ID NO: 239) is pAG2005 with WT P54583:SEKDEL fused to the HvAleSP vacuole targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 51. pAG2048 (SEQ ID NO: 240) is pAG2005 with WT NtEGm between the rice Ubi3 promoter fused to HvAleSP vacuole targeting signal sequence and the Nos terminator.
    • 52. pAG2049 (SEQ ID NO: 241) is pAG2005 with WT NtEGm:SEKDEL fused to the HvAleSP vacuole targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 53. pAG2050 (SEQ ID NO: 242) is pAG2005 with WT P26222 between the rice Ubi3 promoter and the Nos terminator.
    • 54. pAG2051 (SEQ ID NO: 243) is pAG2005 with WT P26222 fused to the PR1a (maize expression optimized) intracellular space localization signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 55. pAG2052 (SEQ ID NO: 244) is pAG2005 with WT P26222:SEKDEL fused to the PR1a (maize expression optimized) intracellular space localization signal sequence and between rice Ubi3 promoter and Nos terminator.
    • 56. pAG2053 (SEQ ID NO: 245) is pAG2005 with WT P26222 fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 57. pAG2054 (SEQ ID NO: 246) is pAG2005 with WT P26222:SEKDEL fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 58. pAG2055 (SEQ ID NO: 247) is pAG2005 with WT P26222 fused to the HvAleSP vacuole targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 59. pAG2056 (SEQ ID NO: 248) is pAG2005 with WT P26222:SEKDEL fused to the HvAleSP vacuole targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 60. pAG2057 (SEQ ID NO: 249) is pAG2005 with WT P77853:SEKDEL fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 61. pAG2058 (SEQ ID NO: 250) is pAG2005 with WT P77853:SEKDEL fused to the PR1a (maize expression optimized) intracellular space localization signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 62. pAG2059 (SEQ ID NO: 251) is pAG2005 with WT 043097 between the rice Ubi3 promoter and the Nos terminator.
    • 63. pAG2060 (SEQ ID NO: 252) is pAG2005 with WT 043097 fused to the PR1a (maize expression optimized) intracellular space localization signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 64. pAG2061 (SEQ ID NO: 253) is pAG2005 with WT 043097:SEKDEL fused to the PR1a (maize expression optimized) intracellular space localization signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 65. pAG2062 (SEQ ID NO: 254) is pAG2005 with WT 043097 fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 66. pAG2063 (SEQ ID NO: 255) is pAG2005 with WT 043097:SEKDEL fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 67. pAG2064 (SEQ ID NO: 256) is pAG2005 with WT 043097 fused to the HvAleSP vacuole targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 68. pAG2065 (SEQ ID NO: 257) is pAG2005 with WT 043097:SEKDEL fused to the HvAleSP vacuole targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 69. pAG2066 (SEQ ID NO: 258) is pAG2005 with P77853-S158-2 intein modified xylanase fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 70. pAG2067 (SEQ ID NO: 259) is pAG2005 with P77853-S158-19 intein modified xylanase fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 71. pAG2068 (SEQ ID NO: 260) is pAG2005 with P77853-T134-1 intein modified xylanase fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 72. pAG2069 (SEQ ID NO: 261) is pAG2005 with WT 068438 between the rice Ubi3 promoter and the Nos terminator.
    • 73. pAG2070 (SEQ ID NO: 262) is pAG2005 with WT 068438 fused to the PR1a (maize expression optimized) intracellular space localization signal and between the rice Ubi3 promoter sequence and the Nos terminator.
    • 74. pAG2071 (SEQ ID NO: 263) is pAG2005 with WT 068438:SEKDEL fused to the PR1a (maize expression optimized) intracellular space localization signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 75. pAG2072 (SEQ ID NO: 264) is pAG2005 with WT 068438 fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 76. pAG2073 (SEQ ID NO: 265) is pAG2005 with WT 068438:SEKDEL fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 77. pAG2074 (SEQ ID NO: 266) is pAG2005 with WT 068438 fused to the HvAleSP vacuole targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 78. pAG2075 (SEQ ID NO: 267) is pAG2005 with WT 068438:SEKDEL fused to the HvAleSP vacuole targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 79. pAG2076 (SEQ ID NO: 268) is pAG2005 with P77853-S158-2 intein modified xylanase between the rice Ubi3 promoter and the Nos terminator.
    • 80. pAG2077 (SEQ ID NO: 269) is pAG2005 with P77853-S158-19 intein modified xylanase between the rice Ubi3 promoter and the Nos terminator.
    • 81. pAG2078 (SEQ ID NO: 270) is pAG2005 with P77853-T134-1 intein modified xylanase between the rice Ubi3 promoter and the Nos terminator.
    • 82. pAG2079 (SEQ ID NO: 271) is pAG2005 with P77853-5158-2:SEKDEL intein modified xylanase fused to BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 83. pAG2080 (SEQ ID NO: 272) is pAG2005 with P77853-5158-19:SEKDEL intein modified xylanase fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 84. pAG2081 (SEQ ID NO: 273) is pAG2005 with P77853-T134-1:SEKDEL intein modified xylanase fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 85. pAG3000 (SEQ ID NO: 280) is pAG1003 with rice Act1 promoter driving PMI in place of CMPSP:PMI using one connection between OsAct1P and PMI (partial eukaryotic translation initiation site consensus sequence).
    • 86. pAG3001 (SEQ ID NO: 281) is pAG1003 with rice Act1 promoter driving PMI in place of CMPS-PMI using second connection between OsAct1P and PMI (complete eukaryotic translation initiation site consensus sequence).
    • 87. pAG3002 (SEQ ID NO: 282) is pAG3000 with GUS between the rice Ubi3 promoter fused to BAASS cell wall targeting signal sequence and the Nos terminator.
    • 88. pAG3003 (SEQ ID NO: 283) is pAG3001 with GUS fused to the BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.
    • 89. pAG2041 (SEQ ID NO: 233) is pAG2004 with NosT cloned into the AvrII-EcoRI sites.
    • 90. pAG2082 (SEQ ID NO: 274) is pAG2005 with WT 043097 fused to Glutelin B-4 signal peptide and between rice the Glutelin B-4 promoter and the Nos terminator.
    • 91. pAG2083 (SEQ ID NO: 275) is pAG2005 with WT 043097:SEKDEL fused to Glutelin B-4 signal peptide and between the rice Glutelin B-4 promoter and the Nos terminator.
    • 92. pAG2084 (SEQ ID NO: 276) is pAG2005 with WT NtEGm fused to Glutelin B-4 signal peptide and between the rice Glutelin B-4 promoter and the Nos terminator.
    • 93. pAG2085 (SEQ ID NO: 275) is pAG2005 with P77853-T145-307 intein modified xylanase between the rice Ubi3 promoter and the Nos terminator.
    • 94. pAG2086 (SEQ ID NO: 278) is pAG2005 with P77853-T145-307 intein modified xylanase fused to BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and Nos terminator.
    • 95. pAG2087 (SEQ ID NO: 279) is pAG2005 with P77853-T145-307:SEKDEL intein modified xylanase fused to BAASS cell wall targeting signal sequence and between the rice Ubi3 promoter and the Nos terminator.


      The amino acid sequence of the protein encoded in each of the above listed vectors 18-19, 21-84 and 89-95 and the nucleic acid encoding the protein is provided in Table 1, below.


Embodiments herein include but are not limited to the gene sequences under the heading “Nucleotide sequence” in Table 1, below, the amino acid sequences under the heading “Protein sequence” in Table 1, plants including the gene sequences in Table 1, vectors including the gene sequences in Table 1, the vectors under the heading “pAG vector” in Table 1, plants including the vectors in Table 1, plants including proteins encoded by the Nucleotide sequences in Table 1 and plants including the Protein sequences in Table 1. For the vectors in Table 1, each entry under the “pAG vector” heading includes a number. The number is added to “pAG” to complete the vector name. For example, the listing “2014” is for the vector pAG2014.









TABLE 1







Sequences of CWDEs and their fusions in vectors










pAG
Sequence




vector
annotation
Protein sequence
Nucleotide sequence





2014
BAASS:P77853
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGATSLGQVTIDG
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGC




GTYDIYRTTRVNQPSI
CAAGTGACAATCGATGGCGGGACCTACGACATCTATAGGACGACAC




VGTATFDQYWSVRTSK
GCGTCAACCAGCCTTCCATTGTGGGGACAGCCACGTTCGATCAGTA




RTSGTVTVTDHFRAWA
CTGGAGCGTGCGCACCTCTAAGCGGACTTCAGGAACAGTGACCGTG




NRGLNLGTIDQITLCV
ACCGATCACTTCCGCGCCTGGGCGAACCGGGGCCTGAACCTCGGCA




EGYQSSGSANITQNTF
CAATAGACCAAATTACATTGTGCGTGGAGGGTTACCAAAGCTCTGG




SQGSSSGSSGGSSGST
ATCAGCCAACATCACCCAGAACACCTTCTCTCAGGGCTCTTCTTCC




TTTRIECENMSLSGPY
GGCAGTTCGGGTGGCTCATCCGGCTCCACAACGACTACTCGCATCG




VSRITNPFNGIALYAN
AGTGTGAGAACATGTCCTTGTCCGGACCCTACGTTAGCAGGATCAC




GDTARATVNFPASRNY
CAATCCCTTTAATGGTATTGCGCTGTACGCCAACGGAGACACAGCC




NFRLRGCGNNNNLARV
CGCGCTACCGTTAACTTCCCCGCAAGTCGCAACTACAATTTCCGCC




DLRIDGRTVGTFYYQG
TGCGGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACCTGAG




TYPWEAPIDNVYVSAG
GATCGACGGACGGACCGTCGGGACCTTTTATTACCAGGGCACATAC




SHTVEITVTADNGTWD
CCCTGGGAGGCCCCAATTGACAATGTTTATGTCAGTGCGGGGAGTC




VYADYLVIQ* (SEQ
ATACAGTCGAAATCACTGTTACTGCGGATAACGGCACATGGGACGT




ID NO: 44)
GTATGCCGACTACCTGGTGATACAGTGA (SEQ ID NO:





116)





2015
P77853
MQTSITLTSNASGTFD
ATGCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTG




GYYYELWKDTGNTTMT
ACGGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAAT




VYTQGRFSCQWSNINN
GACGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCGAACATC




ALFRTGKKYNQNWQSL
AATAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTGGC




GTIRITYSATYNPNGN
AGTCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACAACCC




SYLCIYGWSTNPLVEF
AAACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAACCCA




YIVESWGNWRPPGATS
TTGGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGACCGC




LGQVTIDGGTYDIYRT
CTGGTGCCACGTCCCTGGGCCAAGTGACAATCGATGGCGGGACCTA




TRVNQPSIVGTATFDQ
CGACATCTATAGGACGACACGCGTCAACCAGCCTTCCATTGTGGGG




YWSVRTSKRTSGTVTV
ACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCTAAGCGGA




TDHFRAWANRGLNLGT
CTTCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCTGGGCGAA




IDQITLCVEGYQSSGS
CCGGGGCCTGAACCTCGGCACAATAGACCAAATTACATTGTGCGTG




ANITQNTFSQGSSSGS
GAGGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAGAACACCT




SGGSSGSTTTTRIECE
TCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCATCCGGCTC




NMSLSGPYVSRITNPF
CACAACGACTACTCGCATCGAGTGTGAGAACATGTCCTTGTCCGGA




NGIALYANGDTARATV
CCCTACGTTAGCAGGATCACCAATCCCTTTAATGGTATTGCGCTGT




NFPASRNYNFRLRGCG
ACGCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCCCCGCAAG




NNNNLARVDLRIDGRT
TCGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAACAATAAT




VGTFYYQGTYPWEAPI
CTTGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTCGGGACCT




DNVYVSAGSHTVEITV
TTTATTACCAGGGCACATACCCCTGGGAGGCCCCAATTGACAATGT




TADNGTWDVYADYLVI
TTATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGTTACTGCG




Q* (SEQ ID NO:
GATAACGGCACATGGGACGTGTATGCCGACTACCTGGTGATACAGT




45)
GA (SEQ ID NO: 117)





2017
PR1a:O40942
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAFN
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCTT




DQTSAEDIPSLAEAFR
CAACGACCAGACAAGTGCAGAGGATATTCCGTCACTTGCCGAAGCG




DYFPIGAAIEPGYTTG
TTCAGGGACTATTTCCCTATCGGAGCTGCCATTGAGCCGGGCTATA




QIAELYKKHVNMLVAE
CCACGGGTCAGATTGCCGAATTGTACAAGAAACACGTGAATATGCT




NAMKPASLQPTEGNFQ
GGTCGCGGAGAACGCTATGAAGCCCGCCTCGCTCCAGCCGACGGAG




WADADRIVQFAKENGM
GGTAATTTTCAGTGGGCCGACGCGGACCGCATTGTTCAGTTCGCTA




ELRFHTLVWHNQTPTG
AGGAAAACGGAATGGAGCTTCGGTTTCACACGTTGGTGTGGCACAA




FSLDKEGKPMVEETDP
TCAAACCCCAACTGGCTTCAGCCTGGATAAGGAAGGGAAACCTATG




QKREENRKLLLQRLEN
GTCGAGGAAACGGACCCTCAAAAGAGAGAAGAGAACAGGAAACTCC




YIRAVVLRYKDDIKSW
TTTTGCAGCGCCTCGAAAACTATATCCGGGCCGTTGTGTTGAGATA




DVVNEVIEPNDPGGMR
CAAGGATGACATCAAGTCCTGGGATGTTGTCAATGAGGTTATAGAA




NSPWYQITGTEYIEVA
CCAAACGACCCAGGGGGTATGCGTAATTCTCCCTGGTATCAAATCA




FRATREAGGSDIKLYI
CAGGAACCGAATATATTGAGGTCGCATTTCGCGCGACACGTGAAGC




NDYNTDDPVKRDILYE
TGGCGGGTCAGATATAAAGCTGTATATTAATGATTACAATACGGAC




LVKNLLEKGVPIDGVG
GATCCTGTTAAACGGGATATACTCTACGAGCTTGTGAAGAACTTGC




HQTHIDIYNPPVERII
TGGAGAAAGGTGTCCCGATTGATGGCGTGGGACATCAGACACATAT




ESIKKFAGLGLDNIIT
CGACATCTACAACCCACCCGTTGAAAGGATTATCGAGTCGATTAAG




ELDMSIYSWNDRSDYG
AAGTTCGCCGGACTCGGGCTTGATAATATCATTACCGAACTGGACA




DSIPDYILTLQAKRYQ
TGAGCATCTATTCCTGGAATGATCGCTCTGACTACGGTGATTCAAT




ELFDALKENKDIVSAV
CCCTGACTATATTCTCACCTTGCAGGCCAAAAGATACCAGGAGCTT




VFWGISDKYSWLNGFP
TTCGATGCGCTGAAGGAGAATAAGGATATAGTCTCGGCTGTGGTCT




VKRTNAPLLFDRNFMP
TTTGGGGAATTAGCGACAAATACTCCTGGCTGAATGGCTTCCCGGT




KPAFWAIVDPSRLRE*
CAAGAGGACTAATGCCCCATTGCTGTTTGATCGCAACTTTATGCCT




(SEQ ID NO: 46)
AAACCAGCATTTTGGGCAATCGTGGACCCGAGTAGACTCAGGGAAT





AA (SEQ ID NO: 118)





2018
BAASS:O30700
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQVQPFAWQ
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAGTTCAGCCGTTCGCATG




VASLADRYEESFDIGA
GCAGGTGGCATCCCTGGCTGACCGCTACGAAGAGAGCTTCGATATT




AVEPHQLNGRQGKVLK
GGAGCGGCGGTGGAACCTCACCAATTGAACGGTCGCCAGGGGAAGG




HHYNSIVAENAMKPIS
TCCTGAAGCATCACTATAACTCAATCGTGGCCGAGAATGCTATGAA




LQPEEGVFTWDGADAI
GCCGATCTCCCTCCAACCGGAAGAAGGAGTTTTCACGTGGGATGGA




VEFARKNNMNLRFHTL
GCTGATGCAATAGTGGAGTTCGCGCGGAAAAATAACATGAACCTGC




VWHNQVPDWFFLDEEG
GCTTTCACACGCTCGTGTGGCATAACCAAGTGCCCGACTGGTTCTT




NPMVEETNEAKRQANK
CCTGGACGAAGAGGGTAACCCTATGGTCGAGGAGACTAACGAAGCG




ELLLERLETHIKTVVE
AAAAGGCAAGCGAATAAAGAGCTTTTGCTTGAGAGACTTGAGACTC




RYKDDVTAWDVVNEVV
ATATCAAAACTGTGGTCGAAAGGTACAAGGATGACGTTACGGCCTG




DDGTPNERGLRESVWY
GGATGTGGTGAATGAGGTTGTGGACGATGGCACCCCAAATGAAAGG




QITGDEYIRVAFETAR
GGACTGCGCGAGAGCGTTTGGTATCAGATTACAGGCGATGAATACA




KYAGEDAKLFINDYNT
TTAGAGTGGCATTCGAGACTGCGCGCAAGTACGCTGGCGAAGACGC




EVTPKRDHLYNLVQDL
TAAGCTGTTCATCAACGACTACAACACGGAGGTGACACCCAAGCGC




LADGVPIDGVGHQAHI
GATCACCTCTACAACTTGGTTCAAGACCTGCTCGCGGACGGGGTCC




QIDWPTIDEIRTSMEM
CGATCGATGGAGTGGGACATCAAGCCCATATCCAGATCGATTGGCC




FAGLGLDNQVTELDVS
CACCATCGATGAGATCAGGACCTCGATGGAGATGTTTGCCGGCCTT




LYGWPPRPAFPTYDAI
GGGCTCGACAACCAAGTTACCGAACTCGATGTTTCCTTGTACGGTT




PQERFQAQADRYNQLF
GGCCGCCTCGCCCGGCATTCCCGACCTACGATGCAATCCCTCAAGA




ELYEELDADLSSVTFW
GAGGTTTCAGGCGCAGGCGGATAGATACAATCAGCTCTTCGAGCTT




GIADNHTWLDDRAREY
TACGAGGAACTCGACGCTGACCTCTCAAGCGTGACCTTCTGGGGGA




NDGVGKDAPFVFDPNY
TCGCGGACAACCATACCTGGCTCGACGACAGGGCCAGAGAATACAA




RVKPAFWRIID*
TGACGGGGTCGGCAAAGATGCCCCGTTCGTCTTCGATCCGAACTAC




(SEQ ID NO: 47)
AGGGTTAAACCTGCCTTCTGGCGCATCATTGACTGA (SEQ ID





NO: 119)





2019
BAASS:P40942
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQVFNDQTS
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAGTCTTCAACGACCAGAC




AEDIPSLAEAFRDYFP
AAGTGCAGAGGATATTCCGTCACTTGCCGAAGCGTTCAGGGACTAT




IGAAIEPGYTTGQIAE
TTCCCTATCGGAGCTGCCATTGAGCCGGGCTATACCACGGGTCAGA




LYKKHVNMLVAENAMK
TTGCCGAATTGTACAAGAAACACGTGAATATGCTGGTCGCGGAGAA




PASLQPTEGNFQWADA
CGCTATGAAGCCCGCCTCGCTCCAGCCGACGGAGGGTAATTTTCAG




DRIVQFAKENGMELRF
TGGGCCGACGCGGACCGCATTGTTCAGTTCGCTAAGGAAAACGGAA




HTLVWHNQTPTGFSLD
TGGAGCTTCGGTTTCACACGTTGGTGTGGCACAATCAAACCCCAAC




KEGKPMVEETDPQKRE
TGGCTTCAGCCTGGATAAGGAAGGGAAACCTATGGTCGAGGAAACG




ENRKLLLQRLENYIRA
GACCCTCAAAAGAGAGAAGAGAACAGGAAACTCCTTTTGCAGCGCC




VVLRYKDDIKSWDVVN
TCGAAAACTATATCCGGGCCGTTGTGTTGAGATACAAGGATGACAT




EVIEPNDPGGMRNSPW
CAAGTCCTGGGATGTTGTCAATGAGGTTATAGAACCAAACGACCCA




YQITGTEYIEVAFRAT
GGGGGTATGCGTAATTCTCCCTGGTATCAAATCACAGGAACCGAAT




REAGGSDIKLYINDYN
ATATTGAGGTCGCATTTCGCGCGACACGTGAAGCTGGCGGGTCAGA




TDDPVKRDILYELVKN
TATAAAGCTGTATATTAATGATTACAATACGGACGATCCTGTTAAA




LLEKGVPIDGVGHQTH
CGGGATATACTCTACGAGCTTGTGAAGAACTTGCTGGAGAAAGGTG




IDIYNPPVERIIESIK
TCCCGATTGATGGCGTGGGACATCAGACACATATCGACATCTACAA




KFAGLGLDNIITELDM
CCCACCCGTTGAAAGGATTATCGAGTCGATTAAGAAGTTCGCCGGA




SIYSWNDRSDYGDSIP
CTCGGGCTTGATAATATCATTACCGAACTGGACATGAGCATCTATT




DYILTLQAKRYQELFD
CCTGGAATGATCGCTCTGACTACGGTGATTCAATCCCTGACTATAT




ALKENKDIVSAVVFWG
TCTCACCTTGCAGGCCAAAAGATACCAGGAGCTTTTCGATGCGCTG




ISDKYSWLNGFPVKRT
AAGGAGAATAAGGATATAGTCTCGGCTGTGGTCTTTTGGGGAATTA




NAPLLFDRNFMPKPAF
GCGACAAATACTCCTGGCTGAATGGCTTCCCGGTCAAGAGGACTAA




WAIVDPSRLRE* (SEQ
TGCCCCATTGCTGTTTGATCGCAACTTTATGCCTAAACCAGCATTT




ID NO: 48)
TGGGCAATCGTGGACCCGAGTAGACTCAGGGAATAA (SEQ ID





NO: 120)





2020
PR1a:P77853
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAQQ
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCCA




TSITLTSNASGTFDGY
GCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTGAC




YYELWKDTGNTTMTVY
GGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAATGA




TQGRFSCQWSNINNAL
CGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCGAACATCAA




FRTGKKYNQNWQSLGT
TAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTGGCAG




IRITYSATYNPNGNSY
TCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACAACCCAA




LCIYGWSTNPLVEFYI
ACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAACCCATT




VESWGNWRPPGATSLG
GGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGACCGCCT




QVTIDGGTYDIYRTTR
GGTGCCACGTCCCTGGGCCAAGTGACAATCGATGGCGGGACCTACG




VNQPSIVGTATFDQYW
ACATCTATAGGACGACACGCGTCAACCAGCCTTCCATTGTGGGGAC




SVRTSKRTSGTVTVTD
AGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCTAAGCGGACT




HFRAWANRGLNLGTID
TCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCTGGGCGAACC




QITLCVEGYQSSGSAN
GGGGCCTGAACCTCGGCACAATAGACCAAATTACATTGTGCGTGGA




ITQNTFSQGSSSGSSG
GGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAGAACACCTTC




GSSGSTTTTRIECENM
TCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCATCCGGCTCCA




SLSGPYVSRITNPFNG
CAACGACTACTCGCATCGAGTGTGAGAACATGTCCTTGTCCGGACC




IALYANGDTARATVNF
CTACGTTAGCAGGATCACCAATCCCTTTAATGGTATTGCGCTGTAC




PASRNYNFRLRGCGNN
GCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCCCCGCAAGTC




NNLARVDLRIDGRTVG
GCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAACAATAATCT




TFYYQGTYPWEAPIDN
TGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTCGGGACCTTT




VYVSAGSHTVEITVTA
TATTACCAGGGCACATACCCCTGGGAGGCCCCAATTGACAATGTTT




DNGTWDVYADYLVIQ*
ATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGTTACTGCGGA




(SEQ ID NO: 49)
TAACGGCACATGGGACGTGTATGCCGACTACCTGGTGATACAGTGA





(SEQ ID NO: 121)





2021
PR1a:P77853m3
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAQQ
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCCA




TSITLTSNASGTFDGY
GCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTGAC




YYELWKDTGNTTMTVY
GGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAATGA




TQGRFSCQWSNLPEEW
CGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCTAATTTGCC




VPLTKNGKSKTFRIGG
AGAAGAGTGGGTTCCTTTAACTAAGAATGGTAAGTCAAAGACCTTT




FVDGLMKANQGKVKKT
AGAATTGGAGGCTTCGTAGACGGTTTGATGAAGGCTAACCAAGGAA




GDTEVLEVAGIHANSF
AGGTCAAGAAGACCGGTGACACCGAAGTATTAGAGGTTGCAGGTAT




DRKSKKSRTMAVKAVI
CCATGCCAATTCCTTTGACAGAAAGTCAAAGAAGTCCAGAACCATG




RHRYSGNVYRIVLNSG
GCTGTAAAAGCAGTCATTAGACACAGATATTCCGGAAACGTGTACA




RKITITEGHSLFVYRN
GAATAGTTTTGAACTCCGGAAGAAAGATCACCATTACTGAGGGACA




GDLVEATGEDVKIGDN
TTCCTTATTCGTCTATAGAAACGGTGACTTGGTGGAAGCCACAGGT




LAVPRSDGSGDITEDR
GAGGATGTAAAGATAGGTGATAACTTAGCTGTTCCAAGAAGCGACG




VVEIKREYYDGYVYDL
GATCCGGAGACATTACTGAGGATAGAGTTGTAGAAATTAAGAGAGA




SLDEDENFLAGHGYLM
GTACTACGACGGTTATGTCTATGACTTGTCATTGGATGAAGATGAA




AHNSNINNALFRTGKK
AATTTCTTGGCAGGACACGGTTACTTGATGGCCCATAACTCGAACA




YNQNWQSLGTIRITYS
TCAATAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTG




ATYNPNGNSYLCIYGW
GCAGTCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACAAC




STNPLVEFYIVESWGN
CCAAACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAACC




WRPPGATSLGQVTIDG
CATTGGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGACC




GTYDIYRTTRVNQPSI
GCCTGGTGCCACGTCCCTGGGCCAAGTGACAATCGATGGCGGGACC




VGTATFDQYWSVRTSK
TACGACATCTATAGGACGACACGCGTCAACCAGCCTTCCATTGTGG




RTSGTVTVTDHFRAWA
GGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCTAAGCG




NRGLNLGTIDQITLCV
GACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCTGGGCG




EGYQSSGSANITQNTF
AACCGGGGCCTGAACCTCGGCACAATAGACCAAATTACATTGTGCG




SQGSSSGSSGGSSGST
TGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAGAACAC




TTTRIECENMSLSGPY
CTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCATCCGGC




VSRITNPFNGIALYAN
TCCACAACGACTACTCGCATCGAGTGTGAGAACATGTCCTTGTCCG




GDTARATVNFPASCNY
GACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGTATTGCGCT




NFRLRGCGNNNNLARV
GTACGCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCCCCGCA




DLRIDGRTVGTFYYQG
AGTTGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAACAATA




TYPWEAPIDNVYVSAG
ATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTCGGGAC




SHTVEITVTADNGTWD
CTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCAATTGACAAT




VYADYLVIQ* (SEQ
GTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGTTACTG




ID NO: 50)
CGGATAACGGCACATGGGACGTGTATGCCGACTACCTGGTGATACA





GTGA (SEQ ID NO: 122)





2022
PR1a:P77853m3:
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT



SEKDEL
TLLLFLVISHSCRAQQ
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCCA




TSITLTSNASGTFDGY
GCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTGAC




YYELWKDTGNTTMTVY
GGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAATGA




TQGRFSCQWSNLPEEW
CGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCTAATTTGCC




VPLTKNGKSKTFRIGG
AGAAGAGTGGGTTCCTTTAACTAAGAATGGTAAGTCAAAGACCTTT




FVDGLMKANQGKVKKT
AGAATTGGAGGCTTCGTAGACGGTTTGATGAAGGCTAACCAAGGAA




GDTEVLEVAGIHANSF
AGGTCAAGAAGACCGGTGACACCGAAGTATTAGAGGTTGCAGGTAT




DRKSKKSRTMAVKAVI
CCATGCCAATTCCTTTGACAGAAAGTCAAAGAAGTCCAGAACCATG




RHRYSGNVYRIVLNSG
GCTGTAAAAGCAGTCATTAGACACAGATATTCCGGAAACGTGTACA




RKITITEGHSLFVYRN
GAATAGTTTTGAACTCCGGAAGAAAGATCACCATTACTGAGGGACA




GDLVEATGEDVKIGDN
TTCCTTATTCGTCTATAGAAACGGTGACTTGGTGGAAGCCACAGGT




LAVPRSDGSGDITEDR
GAGGATGTAAAGATAGGTGATAACTTAGCTGTTCCAAGAAGCGACG




VVEIKREYYDGYVYDL
GATCCGGAGACATTACTGAGGATAGAGTTGTAGAAATTAAGAGAGA




SLDEDENFLAGHGYLM
GTACTACGACGGTTATGTCTATGACTTGTCATTGGATGAAGATGAA




AHNSNINNALFRTGKK
AATTTCTTGGCAGGACACGGTTACTTGATGGCCCATAACTCGAACA




YNQNWQSLGTIRITYS
TCAATAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTG




ATYNPNGNSYLCIYGW
GCAGTCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACAAC




STNPLVEFYIVESWGN
CCAAACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAACC




WRPPGATSLGQVTIDG
CATTGGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGACC




GTYDIYRTTRVNQPSI
GCCTGGTGCCACGTCCCTGGGCCAAGTGACAATCGATGGCGGGACC




VGTATFDQYWSVRTSK
TACGACATCTATAGGACGACACGCGTCAACCAGCCTTCCATTGTGG




RTSGTVTVTDHFRAWA
GGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCTAAGCG




NRGLNLGTIDQITLCV
GACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCTGGGCG




EGYQSSGSANITQNTF
AACCGGGGCCTGAACCTCGGCACAATAGACCAAATTACATTGTGCG




SQGSSSGSSGGSSGST
TGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAGAACAC




TTTRIECENMSLSGPY
CTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCATCCGGC




VSRITNPFNGIALYAN
TCCACAACGACTACTCGCATCGAGTGTGAGAACATGTCCTTGTCCG




GDTARATVNFPASCNY
GACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGTATTGCGCT




NFRLRGCGNNNNLARV
GTACGCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCCCCGCA




DLRIDGRTVGTFYYQG
AGTTGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAACAATA




TYPWEAPIDNVYVSAG
ATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTCGGGAC




SHTVEITVTADNGTWD
CTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCAATTGACAAT




VYADYLVIQSEKDEL*
GTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGTTACTG




(SEQ ID NO: 51)
CGGATAACGGCACATGGGACGTGTATGCCGACTACCTGGTGATACA





GAGCGAGAAGGACGAGCTGTGA (SEQ ID NO: 123)





2023
BAASS:P77853m3
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNLPEEWVPLTKN
GCTTTTCCTGCCAGTGGTCTAATTTGCCAGAAGAGTGGGTTCCTTT




GKSKTFRIGGFVDGLM
AACTAAGAATGGTAAGTCAAAGACCTTTAGAATTGGAGGCTTCGTA




KANQGKVKKTGDTEVL
GACGGTTTGATGAAGGCTAACCAAGGAAAGGTCAAGAAGACCGGTG




EVAGIHANSFDRKSKK
ACACCGAAGTATTAGAGGTTGCAGGTATCCATGCCAATTCCTTTGA




SRTMAVKAVIRHRYSG
CAGAAAGTCAAAGAAGTCCAGAACCATGGCTGTAAAAGCAGTCATT




NVYRIVLNSGRKITIT
AGACACAGATATTCCGGAAACGTGTACAGAATAGTTTTGAACTCCG




EGHSLFVYRNGDLVEA
GAAGAAAGATCACCATTACTGAGGGACATTCCTTATTCGTCTATAG




TGEDVKIGDNLAVPRS
AAACGGTGACTTGGTGGAAGCCACAGGTGAGGATGTAAAGATAGGT




DGSGDITEDRVVEIKR
GATAACTTAGCTGTTCCAAGAAGCGACGGATCCGGAGACATTACTG




EYYDGYVYDLSLDEDE
AGGATAGAGTTGTAGAAATTAAGAGAGAGTACTACGACGGTTATGT




NFLAGHGYLMAHNSNI
CTATGACTTGTCATTGGATGAAGATGAAAATTTCTTGGCAGGACAC




NNALFRTGKKYNQNWQ
GGTTACTTGATGGCCCATAACTCGAACATCAATAACGCGTTGTTTA




SLGTIRITYSATYNPN
GGACCGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAAT




GNSYLCIYGWSTNPLV
CCGGATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTAC




EFYIVESWGNWRPPGA
TTGTGTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACA




TSLGQVTIDGGTYDIY
TCGTTGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCT




RTTRVNQPSIVGTATF
GGGCCAAGTGACAATCGATGGCGGGACCTACGACATCTATAGGACG




DQYWSVRTSKRTSGTV
ACACGCGTCAACCAGCCTTCCATTGTGGGGACAGCCACGTTCGATC




TVTDHFRAWANRGLNL
AGTACTGGAGCGTGCGCACCTCTAAGCGGACTTCAGGAACAGTGAC




GTIDQITLCVEGYQSS
CGTGACCGATCACTTCCGCGCCTGGGCGAACCGGGGCCTGAACCTC




GSANITQNTFSQGSSS
GGCACAATAGACCAAATTACATTGTGCGTGGAGGGTTACCAAAGCT




GSSGGSSGSTTTTRIE
CTGGATCAGCCAACATCACCCAGAACACCTTCTCTCAGGGCTCTTC




CENMSLSGPYVSRITN
TTCCGGCAGTTCGGGTGGCTCATCCGGCTCCACAACGACTACTCGC




PFNGIALYANGDTARA
ATCGAGTGTGAGAACATGTCCTTGTCCGGACCCTACGTTAGCAGGA




TVNFPASCNYNFRLRG
TCACCAATCCCTTTAATGGTATTGCGCTGTACGCCAACGGAGACAC




CGNNNNLARVDLRIDG
AGCCCGCGCTACCGTTAACTTCCCCGCAAGTTGCAACTACAATTTC




RTVGTFYYQGTYPWEA
CGCCTGCGGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACC




PIDNVYVSAGSHTVEI
TGAGGATCGACGGACGGACCGTCGGGACCTTTTATTACCAGGGCAC




TVTADNGTWDVYADYL
ATACCCCTGGGAGGCCCCAATTGACAATGTTTATGTCAGTGCGGGG




VIQ* (SEQ ID NO:
AGTCATACAGTCGAAATCACTGTTACTGCGGATAACGGCACATGGG




52)
ACGTGTATGCCGACTACCTGGTGATACAGTGA (SEQ ID NO:





124)





2024
BAASS:P77853m3:
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG



SEKDEL
LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNLPEEWVPLTKN
GCTTTTCCTGCCAGTGGTCTAATTTGCCAGAAGAGTGGGTTCCTTT




GKSKTFRIGGFVDGLM
AACTAAGAATGGTAAGTCAAAGACCTTTAGAATTGGAGGCTTCGTA




KANQGKVKKTGDTEVL
GACGGTTTGATGAAGGCTAACCAAGGAAAGGTCAAGAAGACCGGTG




EVAGIHANSFDRKSKK
ACACCGAAGTATTAGAGGTTGCAGGTATCCATGCCAATTCCTTTGA




SRTMAVKAVIRHRYSG
CAGAAAGTCAAAGAAGTCCAGAACCATGGCTGTAAAAGCAGTCATT




NVYRIVLNSGRKITIT
AGACACAGATATTCCGGAAACGTGTACAGAATAGTTTTGAACTCCG




EGHSLFVYRNGDLVEA
GAAGAAAGATCACCATTACTGAGGGACATTCCTTATTCGTCTATAG




TGEDVKIGDNLAVPRS
AAACGGTGACTTGGTGGAAGCCACAGGTGAGGATGTAAAGATAGGT




DGSGDITEDRVVEIKR
GATAACTTAGCTGTTCCAAGAAGCGACGGATCCGGAGACATTACTG




EYYDGYVYDLSLDEDE
AGGATAGAGTTGTAGAAATTAAGAGAGAGTACTACGACGGTTATGT




NFLAGHGYLMAHNSNI
CTATGACTTGTCATTGGATGAAGATGAAAATTTCTTGGCAGGACAC




NNALFRTGKKYNQNWQ
GGTTACTTGATGGCCCATAACTCGAACATCAATAACGCGTTGTTTA




SLGTIRITYSATYNPN
GGACCGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAAT




GNSYLCIYGWSTNPLV
CCGGATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTAC




EFYIVESWGNWRPPGA
TTGTGTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACA




TSLGQVTIDGGTYDIY
TCGTTGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCT




RTTRVNQPSIVGTATF
GGGCCAAGTGACAATCGATGGCGGGACCTACGACATCTATAGGACG




DQYWSVRTSKRTSGTV
ACACGCGTCAACCAGCCTTCCATTGTGGGGACAGCCACGTTCGATC




TVTDHFRAWANRGLNL
AGTACTGGAGCGTGCGCACCTCTAAGCGGACTTCAGGAACAGTGAC




GTIDQITLCVEGYQSS
CGTGACCGATCACTTCCGCGCCTGGGCGAACCGGGGCCTGAACCTC




GSANITQNTFSQGSSS
GGCACAATAGACCAAATTACATTGTGCGTGGAGGGTTACCAAAGCT




GSSGGSSGSTTTTRIE
CTGGATCAGCCAACATCACCCAGAACACCTTCTCTCAGGGCTCTTC




CENMSLSGPYVSRITN
TTCCGGCAGTTCGGGTGGCTCATCCGGCTCCACAACGACTACTCGC




PFNGIALYANGDTARA
ATCGAGTGTGAGAACATGTCCTTGTCCGGACCCTACGTTAGCAGGA




TVNFPASCNYNFRLRG
TCACCAATCCCTTTAATGGTATTGCGCTGTACGCCAACGGAGACAC




CGNNNNLARVDLRIDG
AGCCCGCGCTACCGTTAACTTCCCCGCAAGTTGCAACTACAATTTC




RTVGTFYYQGTYPWEA
CGCCTGCGGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACC




PIDNVYVSAGSHTVEI
TGAGGATCGACGGACGGACCGTCGGGACCTTTTATTACCAGGGCAC




TVTADNGTWDVYADYL
ATACCCCTGGGAGGCCCCAATTGACAATGTTTATGTCAGTGCGGGG




VIQSEKDEL* (SEQ
AGTCATACAGTCGAAATCACTGTTACTGCGGATAACGGCACATGGG




ID NO: 53)
ACGTGTATGCCGACTACCTGGTGATACAGAGCGAGAAGGACGAGCT





GTGA (SEQ ID NO: 125)





2025
GluB4SP:P77853
MATIAFSRLSIYFCVL
ATGGCCACCATCGCTTTCTCCCGCTTGTCCATCTACTTCTGCGTGC




LLCHGSMAQTSITLTS
TTCTCCTGTGCCACGGCTCCATGGCCCAAACAAGCATTACTCTGAC




NASGTFDGYYYELWKD
ATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTCTGG




TGNTTMTVYTQGRFSC
AAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTCGCT




QWSNINNALFRTGKKY
TTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGACCGG




NQNWQSLGTIRITYSA
GAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGGATC




TYNPNGNSYLCIYGWS
ACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGTGTA




TNPLVEFYIVESWGNW
TCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGTTGA




RPPGATSLGQVTIDGG
GTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGCCAA




TYDIYRTTRVNQPSIV
GTGACAATCGATGGCGGGACCTACGACATCTATAGGACGACACGCG




GTATFDQYWSVRTSKR
TCAACCAGCCTTCCATTGTGGGGACAGCCACGTTCGATCAGTACTG




TSGTVTVTDHFRAWAN
GAGCGTGCGCACCTCTAAGCGGACTTCAGGAACAGTGACCGTGACC




RGLNLGTIDQITLCVE
GATCACTTCCGCGCCTGGGCGAACCGGGGCCTGAACCTCGGCACAA




GYQSSGSANITQNTFS
TAGACCAAATTACATTGTGCGTGGAGGGTTACCAAAGCTCTGGATC




QGSSSGSSGGSSGSTT
AGCCAACATCACCCAGAACACCTTCTCTCAGGGCTCTTCTTCCGGC




TTRIECENMSLSGPYV
AGTTCGGGTGGCTCATCCGGCTCCACAACGACTACTCGCATCGAGT




SRITNPFNGIALYANG
GTGAGAACATGTCCTTGTCCGGACCCTACGTTAGCAGGATCACCAA




DTARATVNFPASRNYN
TCCCTTTAATGGTATTGCGCTGTACGCCAACGGAGACACAGCCCGC




FRLRGCGNNNNLARVD
GCTACCGTTAACTTCCCCGCAAGTCGCAACTACAATTTCCGCCTGC




LRIDGRTVGTFYYQGT
GGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACCTGAGGAT




YPWEAPIDNVYVSAGS
CGACGGACGGACCGTCGGGACCTTTTATTACCAGGGCACATACCCC




HTVEITVTADNGTWDV
TGGGAGGCCCCAATTGACAATGTTTATGTCAGTGCGGGGAGTCATA




YADYLVIQ* (SEQ
CAGTCGAAATCACTGTTACTGCGGATAACGGCACATGGGACGTGTA




ID NO: 54)
TGCCGACTACCTGGTGATACAGTGA (SEQ ID NO: 126)





2026
GluB4SP:O30700
MATIAFSRLSIYFCVL
ATGGCCACCATCGCTTTCTCCCGCTTGTCCATCTACTTCTGCGTGC




LLCHGSMAVQPFAWQV
TTCTCCTGTGCCACGGCTCCATGGCCGTTCAGCCGTTCGCATGGCA




ASLADRYEESFDIGAA
GGTGGCATCCCTGGCTGACCGCTACGAAGAGAGCTTCGATATTGGA




VEPHQLNGRQGKVLKH
GCGGCGGTGGAACCTCACCAATTGAACGGTCGCCAGGGGAAGGTCC




HYNSIVAENAMKPISL
TGAAGCATCACTATAACTCAATCGTGGCCGAGAATGCTATGAAGCC




QPEEGVFTWDGADAIV
GATCTCCCTCCAACCGGAAGAAGGAGTTTTCACGTGGGATGGAGCT




EFARKNNMNLRFHTLV
GATGCAATAGTGGAGTTCGCGCGGAAAAATAACATGAACCTGCGCT




WHNQVPDWFFLDEEGN
TTCACACGCTCGTGTGGCATAACCAAGTGCCCGACTGGTTCTTCCT




PMVEETNEAKRQANKE
GGACGAAGAGGGTAACCCTATGGTCGAGGAGACTAACGAAGCGAAA




LLLERLETHIKTVVER
AGGCAAGCGAATAAAGAGCTTTTGCTTGAGAGACTTGAGACTCATA




YKDDVTAWDVVNEVVD
TCAAAACTGTGGTCGAAAGGTACAAGGATGACGTTACGGCCTGGGA




DGTPNERGLRESVWYQ
TGTGGTGAATGAGGTTGTGGACGATGGCACCCCAAATGAAAGGGGA




ITGDEYIRVAFETARK
CTGCGCGAGAGCGTTTGGTATCAGATTACAGGCGATGAATACATTA




YAGEDAKLFINDYNTE
GAGTGGCATTCGAGACTGCGCGCAAGTACGCTGGCGAAGACGCTAA




VTPKRDHLYNLVQDLL
GCTGTTCATCAACGACTACAACACGGAGGTGACACCCAAGCGCGAT




ADGVPIDGVGHQAHIQ
CACCTCTACAACTTGGTTCAAGACCTGCTCGCGGACGGGGTCCCGA




IDWPTIDEIRTSMEMF
TCGATGGAGTGGGACATCAAGCCCATATCCAGATCGATTGGCCCAC




AGLGLDNQVTELDVSL
CATCGATGAGATCAGGACCTCGATGGAGATGTTTGCCGGCCTTGGG




YGWPPRPAFPTYDAIP
CTCGACAACCAAGTTACCGAACTCGATGTTTCCTTGTACGGTTGGC




QERFQAQADRYNQLFE
CGCCTCGCCCGGCATTCCCGACCTACGATGCAATCCCTCAAGAGAG




LYEELDADLSSVTFWG
GTTTCAGGCGCAGGCGGATAGATACAATCAGCTCTTCGAGCTTTAC




IADNHTWLDDRAREYN
GAGGAACTCGACGCTGACCTCTCAAGCGTGACCTTCTGGGGGATCG




DGVGKDAPFVFDPNYR
CGGACAACCATACCTGGCTCGACGACAGGGCCAGAGAATACAATGA




VKPAFWRIID* (SEQ
CGGGGTCGGCAAAGATGCCCCGTTCGTCTTCGATCCGAACTACAGG




ID NO: 55)
GTTAAACCTGCCTTCTGGCGCATCATTGACTGA (SEQ ID





NO: 127)





2027
GluB4SP:P40942
MATIAFSRLSIYFCVL
ATGGCCACCATCGCTTTCTCCCGCTTGTCCATCTACTTCTGCGTGC




LLCHGSMAFNDQTSAE
TTCTCCTGTGCCACGGCTCCATGGCCTTCAACGACCAGACAAGTGC




DIPSLAEAFRDYFPIG
AGAGGATATTCCGTCACTTGCCGAAGCGTTCAGGGACTATTTCCCT




AAIEPGYTTGQIAELY
ATCGGAGCTGCCATTGAGCCGGGCTATACCACGGGTCAGATTGCCG




KKHVNMLVAENAMKPA
AATTGTACAAGAAACACGTGAATATGCTGGTCGCGGAGAACGCTAT




SLQPTEGNFQWADADR
GAAGCCCGCCTCGCTCCAGCCGACGGAGGGTAATTTTCAGTGGGCC




IVQFAKENGMELRFHT
GACGCGGACCGCATTGTTCAGTTCGCTAAGGAAAACGGAATGGAGC




LVWHNQTPTGFSLDKE
TTCGGTTTCACACGTTGGTGTGGCACAATCAAACCCCAACTGGCTT




GKPMVEETDPQKREEN
CAGCCTGGATAAGGAAGGGAAACCTATGGTCGAGGAAACGGACCCT




RKLLLQRLENYIRAVV
CAAAAGAGAGAAGAGAACAGGAAACTCCTTTTGCAGCGCCTCGAAA




LRYKDDIKSWDVVNEV
ACTATATCCGGGCCGTTGTGTTGAGATACAAGGATGACATCAAGTC




IEPNDPGGMRNSPWYQ
CTGGGATGTTGTCAATGAGGTTATAGAACCAAACGACCCAGGGGGT




ITGTEYIEVAFRATRE
ATGCGTAATTCTCCCTGGTATCAAATCACAGGAACCGAATATATTG




AGGSDIKLYINDYNTD
AGGTCGCATTTCGCGCGACACGTGAAGCTGGCGGGTCAGATATAAA




DPVKRDILYELVKNLL
GCTGTATATTAATGATTACAATACGGACGATCCTGTTAAACGGGAT




EKGVPIDGVGHQTHID
ATACTCTACGAGCTTGTGAAGAACTTGCTGGAGAAAGGTGTCCCGA




IYNPPVERIIESIKKF
TTGATGGCGTGGGACATCAGACACATATCGACATCTACAACCCACC




AGLGLDNIITELDMSI
CGTTGAAAGGATTATCGAGTCGATTAAGAAGTTCGCCGGACTCGGG




YSWNDRSDYGDSIPDY
CTTGATAATATCATTACCGAACTGGACATGAGCATCTATTCCTGGA




ILTLQAKRYQELFDAL
ATGATCGCTCTGACTACGGTGATTCAATCCCTGACTATATTCTCAC




KENKDIVSAVVFWGIS
CTTGCAGGCCAAAAGATACCAGGAGCTTTTCGATGCGCTGAAGGAG




DKYSWLNGFPVKRTNA
AATAAGGATATAGTCTCGGCTGTGGTCTTTTGGGGAATTAGCGACA




PLLFDRNFMPKPAFWA
AATACTCCTGGCTGAATGGCTTCCCGGTCAAGAGGACTAATGCCCC




IVDPSRLRE* (SEQ
ATTGCTGTTTGATCGCAACTTTATGCCTAAACCAGCATTTTGGGCA




ID NO: 56)
ATCGTGGACCCGAGTAGACTCAGGGAATAA (SEQ ID NO:





128)





2028
PR1a:P77853T134-
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT



195
TLLLFLVISHSCRAQQ
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCCA




TSITLTSNASGTFDGY
GCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTGAC




YYELWKDTGNTTMTVY
GGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAATGA




TQGRFSCQWSNINNAL
CGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCGAACATCAA




FRTGKKYNQNWQSLGT
TAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTGGCAG




IRITYSATYNPNGNSY
TCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACAACCCAA




LCIYGWSTNPLVEFYI
ACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAACCCATT




VESWGNWRPPGACLAE
GGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGACCGCCT




GSLVLDAATGQRVPIE
GGTGCCTGCCTGGCCGAGGGCTCGCTCGTCTTGGACGCGGCTACCG




KVRPGMEVFSLGPDYR
GGCAGAGGGTCCCTATCGAAAAGGTGCGTCCGGGGATGGAAGTTTT




LYRVPVLEVLESGVRE
CTCCTTGGGACCTGATTACAGACTGTATCGGGTGCCCGTTTTGGAG




VVRLRTRSGRTLVLTP
GTCCTTGAGAGCGGGGTTAGGGAAGTTGTGCGCCTCAGAACTCGGT




DHPLLTPEGWKPLCDL
CAGGGAGAACGCTGGTGTTGACACCAGATCACCCGCTTTTGACCCC




PLGTPIAVPAELPVAG
CGAAGGTTGGAAACCTCTTTGTGACCTCCCGCTTGGAACTCCAATT




HLAPPEERVTLLALLL
GCAGTCCCCGCAGAACTGCCTGTGGCGGGCCACTTGGCCCCACCTG




GDGNTKLSGRRGTRPN
AAGAACGTGTTACGCTCCTGGCTCTTCTGTTGGGGGATGGGAACAC




ASFYSKDPELLAAYRR
AAAGCTGTCGGGTCGGAGAGGTACACGTCCTAATGCCTCCTTCTAC




CAEALGAKVKAYVHPT
AGCAAAGACCCCGAATTGCTCGCGGCTTATCGCCGGTGTGCAGAAG




TGVVTLATLAPRPGAQ
CCTTGGGTGCAAAGGTGAAAGCATACGTCCACCCGACTACGGGGGT




DPVKRLVVEAGMVAKA
GGTTACACTCGCAACCCTCGCTCCACGTCCTGGAGCTCAAGATCCT




EEKRVPEEVFRYRREA
GTCAAACGCCTCGTTGTCGAGGCGGGAATGGTTGCTAAAGCCGAAG




LALFLGRLFSTDGSVE
AGAAGAGGGTCCCGGAGGAGGTGTTTCGTTACCGGCGTGAGGCGTT




KKRISYSSASLGLAQD
GGCCCTTTTCTTGGGCCGTTTGTTCTCGACAGACGGCTCTGTTGAA




VAHLLLRLGIRSQLRS
AAGAAGAGGATCTCTTATTCAAGTGCCAGTTTGGGACTGGCCCAGG




RGPRAHEVLISGREDI
ATGTCGCACATCTCTTGCTGCGCCTTGGAATTAGATCTCAACTCCG




LRFAELIGPYLLGAKR
TTCGAGAGGGCCACGGGCTCACGAGGTTCTTATATCGGGCCGCGAG




ERLAALEAEARRRLPG
GATATTTTGCGATTTGCTGAACTTATCGGACCCTACCTCTTGGGGG




QGWHLRLVLPAVAYRV
CCAAGAGGGAGAGACTTGCAGCGCTGGAAGCTGAGGCCCGCAGGCG




SEAKRRSGFSWSEAGR
TTTGCCTGGACAGGGATGGCACTTGCGGCTTGTTCTTCCTGCCGTG




RVAVAGSCLSSGLNLK
GCGTACAGAGTGAGCGAGGCTAAAAGGCGCTCGGGATTTTCGTGGA




LPRRYLSRHRLSLLGE
GTGAAGCCGGTCGGCGCGTCGCAGTTGCGGGATCGTGTTTGTCATC




AFADPGLEALAEGQVL
TGGACTCAACCTCAAATTGCCCAGACGCTACCTTTCTCGGCACCGG




WDPIVAVEPAGKARTF
TTGTCGCTGCTCGGTGAGGCTTTTGCCGACCCTGGGCTGGAAGCGC




DLRVPPFANFVSEDLV
TCGCGGAAGGCCAAGTGCTCTGGGACCCTATTGTTGCTGTCGAACC




VHNTSLGQVTIDGGTY
GGCCGGTAAGGCGAGAACATTCGACTTGCGCGTTCCACCCTTTGCA




DIYRTTRVNQPSIVGT
AACTTCGTGAGCGAGGACCTGGTGGTGCATAACACGTCCCTGGGCC




ATFDQYWSVRTSKRTS
AAGTGACAATCGATGGCGGGACCTACGACATCTATAGGACGACACG




GTVTVTDHFRAWANRG
CGTCAACCAGCCTTCCATTGTGGGGACAGCCACGTTCGATCAGTAC




LNLGTIDQITLCVEGY
TGGAGCGTGCGCACCTCTAAGCGGACTTCAGGAACAGTGACCGTGA




QSSGSANITQNTFSQG
CCGATCACTTCCGCGCCTGGGCGAACCGGGGCCTGAACCTCGGCAC




SSSGSSGGSSGSTTTT
AATAGACCAAATTACATTGTGCGTGGAGGGTTACCAAAGCTCTGGA




RIECENMSLSGPYVSR
TCAGCCAACATCACCCAGAACACCTTCTCTCAGGGCTCTTCTTCCG




ITNPFNGIALYANGDT
GCAGTTCGGGTGGCTCATCCGGCTCCACAACGACTACTCGCATCGA




ARATVNFPASRNYNFR
GTGTGAGAACATGTCCTTGTCCGGACCCTACGTTAGCAGGATCACC




LRGCGNNNNLARVDLR
AATCCCTTTAATGGTATTGCGCTGTACGCCAACGGAGACACAGCCC




IDGRTVGTFYYQGTYP
GCGCTACCGTTAACTTCCCCGCAAGTCGCAACTACAATTTCCGCCT




WEAPIDNVYVSAGSHT
GCGGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACCTGAGG




VEITVTADNGTWDVYA
ATCGACGGACGGACCGTCGGGACCTTTTATTACCAGGGCACATACC




DYLVIQ* (SEQ ID
CCTGGGAGGCCCCAATTGACAATGTTTATGTCAGTGCGGGGAGTCA




NO: 57)
TACAGTCGAAATCACTGTTACTGCGGATAACGGCACATGGGACGTG





TATGCCGACTACCTGGTGATACAGTGA (SEQ ID NO: 129)





2029
BAASS:P77853T134-
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG



195
LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGACLAEGSLVLD
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCTGCCTGGCCGAG




AATGQRVPIEKVRPGM
GGCTCGCTCGTCTTGGACGCGGCTACCGGGCAGAGGGTCCCTATCG




EVFSLGPDYRLYRVPV
AAAAGGTGCGTCCGGGGATGGAAGTTTTCTCCTTGGGACCTGATTA




LEVLESGVREVVRLRT
CAGACTGTATCGGGTGCCCGTTTTGGAGGTCCTTGAGAGCGGGGTT




RSGRTLVLTPDHPLLT
AGGGAAGTTGTGCGCCTCAGAACTCGGTCAGGGAGAACGCTGGTGT




PEGWKPLCDLPLGTPI
TGACACCAGATCACCCGCTTTTGACCCCCGAAGGTTGGAAACCTCT




AVPAELPVAGHLAPPE
TTGTGACCTCCCGCTTGGAACTCCAATTGCAGTCCCCGCAGAACTG




ERVTLLALLLGDGNTK
CCTGTGGCGGGCCACTTGGCCCCACCTGAAGAACGTGTTACGCTCC




LSGRRGTRPNASFYSK
TGGCTCTTCTGTTGGGGGATGGGAACACAAAGCTGTCGGGTCGGAG




DPELLAAYRRCAEALG
AGGTACACGTCCTAATGCCTCCTTCTACAGCAAAGACCCCGAATTG




AKVKAYVHPTTGVVTL
CTCGCGGCTTATCGCCGGTGTGCAGAAGCCTTGGGTGCAAAGGTGA




ATLAPRPGAQDPVKRL
AAGCATACGTCCACCCGACTACGGGGGTGGTTACACTCGCAACCCT




VVEAGMVAKAEEKRVP
CGCTCCACGTCCTGGAGCTCAAGATCCTGTCAAACGCCTCGTTGTC




EEVFRYRREALALFLG
GAGGCGGGAATGGTTGCTAAAGCCGAAGAGAAGAGGGTCCCGGAGG




RLFSTDGSVEKKRISY
AGGTGTTTCGTTACCGGCGTGAGGCGTTGGCCCTTTTCTTGGGCCG




SSASLGLAQDVAHLLL
TTTGTTCTCGACAGACGGCTCTGTTGAAAAGAAGAGGATCTCTTAT




RLGIRSQLRSRGPRAH
TCAAGTGCCAGTTTGGGACTGGCCCAGGATGTCGCACATCTCTTGC




EVLISGREDILRFAEL
TGCGCCTTGGAATTAGATCTCAACTCCGTTCGAGAGGGCCACGGGC




IGPYLLGAKRERLAAL
TCACGAGGTTCTTATATCGGGCCGCGAGGATATTTTGCGATTTGCT




EAEARRRLPGQGWHLR
GAACTTATCGGACCCTACCTCTTGGGGGCCAAGAGGGAGAGACTTG




LVLPAVAYRVSEAKRR
CAGCGCTGGAAGCTGAGGCCCGCAGGCGTTTGCCTGGACAGGGATG




SGFSWSEAGRRVAVAG
GCACTTGCGGCTTGTTCTTCCTGCCGTGGCGTACAGAGTGAGCGAG




SCLSSGLNLKLPRRYL
GCTAAAAGGCGCTCGGGATTTTCGTGGAGTGAAGCCGGTCGGCGCG




SRHRLSLLGEAFADPG
TCGCAGTTGCGGGATCGTGTTTGTCATCTGGACTCAACCTCAAATT




LEALAEGQVLWDPIVA
GCCCAGACGCTACCTTTCTCGGCACCGGTTGTCGCTGCTCGGTGAG




VEPAGKARTFDLRVPP
GCTTTTGCCGACCCTGGGCTGGAAGCGCTCGCGGAAGGCCAAGTGC




FANFVSEDLVVHNTSL
TCTGGGACCCTATTGTTGCTGTCGAACCGGCCGGTAAGGCGAGAAC




GQVTIDGGTYDIYRTT
ATTCGACTTGCGCGTTCCACCCTTTGCAAACTTCGTGAGCGAGGAC




RVNQPSIVGTATFDQY
CTGGTGGTGCATAACACGTCCCTGGGCCAAGTGACAATCGATGGCG




WSVRTSKRTSGTVTVT
GGACCTACGACATCTATAGGACGACACGCGTCAACCAGCCTTCCAT




DHFRAWANRGLNLGTI
TGTGGGGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCT




DQITLCVEGYQSSGSA
AAGCGGACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCT




NITQNTFSQGSSSGSS
GGGCGAACCGGGGCCTGAACCTCGGCACAATAGACCAAATTACATT




GGSSGSTTTTRIECEN
GTGCGTGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAG




MSLSGPYVSRITNPFN
AACACCTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCAT




GIALYANGDTARATVN
CCGGCTCCACAACGACTACTCGCATCGAGTGTGAGAACATGTCCTT




FPASRNYNFRLRGCGN
GTCCGGACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGTATT




NNNLARVDLRIDGRTV
GCGCTGTACGCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCC




GTFYYQGTYPWEAPID
CCGCAAGTCGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAA




NVYVSAGSHTVEITVT
CAATAATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTC




ADNGTWDVYADYLVIQ
GGGACCTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCAATTG




* (SEQ ID NO:
ACAATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGT




58)
TACTGCGGATAACGGCACATGGGACGTGTATGCCGACTACCTGGTG





ATACAGTGA (SEQ ID NO: 130)





2030
P77853m3
MQTSITLTSNASGTFD
ATGCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTG




GYYYELWKDTGNTTMT
ACGGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAAT




VYTQGRFSCQWSNLPE
GACGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCTAATTTG




EWVPLTKNGKSKTFRI
CCAGAAGAGTGGGTTCCTTTAACTAAGAATGGTAAGTCAAAGACCT




GGFVDGLMKANQGKVK
TTAGAATTGGAGGCTTCGTAGACGGTTTGATGAAGGCTAACCAAGG




KTGDTEVLEVAGIHAN
AAAGGTCAAGAAGACCGGTGACACCGAAGTATTAGAGGTTGCAGGT




SFDRKSKKSRTMAVKA
ATCCATGCCAATTCCTTTGACAGAAAGTCAAAGAAGTCCAGAACCA




VIRHRYSGNVYRIVLN
TGGCTGTAAAAGCAGTCATTAGACACAGATATTCCGGAAACGTGTA




SGRKITITEGHSLFVY
CAGAATAGTTTTGAACTCCGGAAGAAAGATCACCATTACTGAGGGA




RNGDLVEATGEDVKIG
CATTCCTTATTCGTCTATAGAAACGGTGACTTGGTGGAAGCCACAG




DNLAVPRSDGSGDITE
GTGAGGATGTAAAGATAGGTGATAACTTAGCTGTTCCAAGAAGCGA




DRVVEIKREYYDGYVY
CGGATCCGGAGACATTACTGAGGATAGAGTTGTAGAAATTAAGAGA




DLSLDEDENFLAGHGY
GAGTACTACGACGGTTATGTCTATGACTTGTCATTGGATGAAGATG




LMAHNSNINNALFRTG
AAAATTTCTTGGCAGGACACGGTTACTTGATGGCCCATAACTCGAA




KKYNQNWQSLGTIRIT
CATCAATAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAAT




YSATYNPNGNSYLCIY
TGGCAGTCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACA




GWSTNPLVEFYIVESW
ACCCAAACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAA




GNWRPPGATSLGQVTI
CCCATTGGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGA




DGGTYDIYRTTRVNQP
CCGCCTGGTGCCACGTCCCTGGGCCAAGTGACAATCGATGGCGGGA




SIVGTATFDQYWSVRT
CCTACGACATCTATAGGACGACACGCGTCAACCAGCCTTCCATTGT




SKRTSGTVTVTDHFRA
GGGGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCTAAG




WANRGLNLGTIDQITL
CGGACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCTGGG




CVEGYQSSGSANITQN
CGAACCGGGGCCTGAACCTCGGCACAATAGACCAAATTACATTGTG




TFSQGSSSGSSGGSSG
CGTGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAGAAC




STTTTRIECENMSLSG
ACCTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCATCCG




PYVSRITNPFNGIALY
GCTCCACAACGACTACTCGCATCGAGTGTGAGAACATGTCCTTGTC




ANGDTARATVNFPASC
CGGACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGTATTGCG




NYNFRLRGCGNNNNLA
CTGTACGCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCCCCG




RVDLRIDGRTVGTFYY
CAAGTTGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAACAA




QGTYPWEAPIDNVYVS
TAATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTCGGG




AGSHTVEITVTADNGT
ACCTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCAATTGACA




WDVYADYLVIQ*
ATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGTTAC




(SEQ ID NO: 59)
TGCGGATAACGGCACATGGGACGTGTATGCCGACTACCTGGTGATA





CAGTGA (SEQ ID NO: 131)





2031
GluB4SP:P54583
MATIAFSRLSIYFCVL
ATGGCCACCATCGCTTTCTCCCGCTTGTCCATCTACTTCTGCGTGC




LLCHGSMAAGGGYWHT
TTCTCCTGTGCCACGGCTCCATGGCCGCTGGAGGAGGATACTGGCA




SGREILDANNVPVRIA
CACTTCCGGCAGGGAGATCCTCGACGCAAATAACGTTCCAGTCAGA




GINWFGFETCNYVVHG
ATCGCCGGGATTAATTGGTTTGGCTTCGAAACGTGTAACTACGTGG




LWSRDYRSMLDQIKSL
TTCACGGCCTGTGGTCTCGGGATTACAGATCAATGCTCGACCAGAT




GYNTIRLPYSDDILKP
CAAATCCTTGGGGTATAATACAATTAGGCTGCCCTACAGCGATGAC




GTMPNSINFYQMNQDL
ATTCTTAAGCCTGGAACCATGCCGAACTCGATTAATTTCTACCAAA




QGLTSLQVMDKIVAYA
TGAACCAGGATCTGCAGGGATTGACTTCTCTGCAGGTTATGGACAA




GQIGLRIILDRHRPDC
GATCGTGGCGTACGCCGGCCAAATCGGGCTCAGAATTATTTTGGAT




SGQSALWYTSSVSEAT
CGGCACAGGCCAGACTGCTCAGGTCAGTCGGCCCTGTGGTACACAA




WISDLQALAQRYKGNP
GCTCCGTGTCAGAGGCAACATGGATTTCAGATCTTCAAGCCCTCGC




TVVGFDLHNEPHDPAC
ACAACGCTATAAAGGCAACCCCACGGTTGTGGGATTCGACCTTCAC




WGCGDPSIDWRLAAER
AACGAACCTCACGATCCGGCCTGTTGGGGCTGCGGGGACCCTTCGA




AGNAVLSVNPNLLIFV
TCGACTGGAGACTGGCAGCGGAGAGGGCTGGTAACGCCGTTCTCAG




EGVQSYNGDSYWWGGN
CGTCAATCCCAACTTGCTGATCTTTGTGGAGGGAGTTCAGTCCTAC




LQGAGQYPVVLNVPNR
AACGGCGATTCTTACTGGTGGGGCGGAAATCTCCAAGGCGCAGGGC




LVYSAHDYATSVYPQT
AGTATCCTGTCGTGCTTAACGTTCCGAATCGCCTGGTCTACTCAGC




WFSDPTFPNNMPGIWN
ACACGACTACGCGACTAGCGTGTACCCACAGACGTGGTTCTCCGAT




KNWGYLFNQNIAPVWL
CCCACATTTCCTAACAATATGCCGGGAATCTGGAACAAGAATTGGG




GEFGTTLQSTTDQTWL
GTTACTTGTTTAACCAAAACATTGCTCCAGTTTGGTTGGGTGAATT




KTLVQYLRPTAQYGAD
TGGCACCACTCTTCAGTCGACGACAGACCAAACCTGGCTGAAAACC




SFQWTFWSWNPDSGDT
CTCGTCCAGTATTTGCGGCCAACTGCTCAGTACGGAGCAGATTCTT




GGILKDDWQTVDTVKD
TTCAATGGACGTTCTGGTCTTGGAATCCTGACTCCGGGGATACAGG




GYLAPIKSSIFDPVGA
CGGTATCCTGAAAGACGATTGGCAGACCGTGGACACTGTTAAGGAC




SASPSSQPSPSVSPSP
GGGTACTTGGCGCCGATTAAAAGCTCGATCTTTGACCCAGTCGGCG




SPSPSASRTPTPTPTP
CTAGCGCTTCCCCATCTTCACAACCTTCGCCGAGCGTCAGCCCCAG




TASPTPTLTPTATPTP
CCCAAGCCCAAGCCCGTCTGCCAGCAGAACCCCCACTCCCACACCT




TASPTPSPTAASGARC
ACCCCCACGGCCTCACCAACTCCGACGCTCACTCCTACGGCGACGC




TASYQVNSDWGNGFTV
CAACACCAACTGCTTCACCCACTCCTAGCCCCACCGCAGCGAGCGG




TVAVTNSGSVATKTWT
GGCTAGGTGCACCGCTTCTTACCAGGTCAACTCTGACTGGGGTAAT




VSWTFGGNQTITNSWN
GGCTTCACCGTGACTGTGGCGGTCACTAACTCAGGAAGCGTCGCGA




AAVTQNGQSVTARNMS
CGAAAACCTGGACTGTGTCCTGGACGTTCGGGGGCAACCAAACAAT




YNNVIQPGQNTTFGFQ
CACCAACAGCTGGAACGCTGCAGTTACGCAGAATGGGCAAAGCGTC




ASYTGSNAAPTVACAA
ACGGCGCGCAATATGAGCTACAACAACGTGATTCAACCAGGCCAGA




S* (SEQ ID NO:
ATACCACATTCGGTTTTCAAGCAAGCTATACCGGGTCAAACGCTGC




60)
CCCAACTGTCGCTTGTGCTGCCTCATGA (SEQ ID NO:





132)





2032
GluB4SP:P54583:
MATIAFSRLSIYFCVL
ATGGCCACCATCGCTTTCTCCCGCTTGTCCATCTACTTCTGCGTGC



SEKDEL
LLCHGSMAAGGGYWHT
TTCTCCTGTGCCACGGCTCCATGGCCGCTGGAGGAGGATACTGGCA




SGREILDANNVPVRIA
CACTTCCGGCAGGGAGATCCTCGACGCAAATAACGTTCCAGTCAGA




GINWFGFETCNYVVHG
ATCGCCGGGATTAATTGGTTTGGCTTCGAAACGTGTAACTACGTGG




LWSRDYRSMLDQIKSL
TTCACGGCCTGTGGTCTCGGGATTACAGATCAATGCTCGACCAGAT




GYNTIRLPYSDDILKP
CAAATCCTTGGGGTATAATACAATTAGGCTGCCCTACAGCGATGAC




GTMPNSINFYQMNQDL
ATTCTTAAGCCTGGAACCATGCCGAACTCGATTAATTTCTACCAAA




QGLTSLQVMDKIVAYA
TGAACCAGGATCTGCAGGGATTGACTTCTCTGCAGGTTATGGACAA




GQIGLRIILDRHRPDC
GATCGTGGCGTACGCCGGCCAAATCGGGCTCAGAATTATTTTGGAT




SGQSALWYTSSVSEAT
CGGCACAGGCCAGACTGCTCAGGTCAGTCGGCCCTGTGGTACACAA




WISDLQALAQRYKGNP
GCTCCGTGTCAGAGGCAACATGGATTTCAGATCTTCAAGCCCTCGC




TVVGFDLHNEPHDPAC
ACAACGCTATAAAGGCAACCCCACGGTTGTGGGATTCGACCTTCAC




WGCGDPSIDWRLAAER
AACGAACCTCACGATCCGGCCTGTTGGGGCTGCGGGGACCCTTCGA




AGNAVLSVNPNLLIFV
TCGACTGGAGACTGGCAGCGGAGAGGGCTGGTAACGCCGTTCTCAG




EGVQSYNGDSYWWGGN
CGTCAATCCCAACTTGCTGATCTTTGTGGAGGGAGTTCAGTCCTAC




LQGAGQYPVVLNVPNR
AACGGCGATTCTTACTGGTGGGGCGGAAATCTCCAAGGCGCAGGGC




LVYSAHDYATSVYPQT
AGTATCCTGTCGTGCTTAACGTTCCGAATCGCCTGGTCTACTCAGC




WFSDPTFPNNMPGIWN
ACACGACTACGCGACTAGCGTGTACCCACAGACGTGGTTCTCCGAT




KNWGYLFNQNIAPVWL
CCCACATTTCCTAACAATATGCCGGGAATCTGGAACAAGAATTGGG




GEFGTTLQSTTDQTWL
GTTACTTGTTTAACCAAAACATTGCTCCAGTTTGGTTGGGTGAATT




KTLVQYLRPTAQYGAD
TGGCACCACTCTTCAGTCGACGACAGACCAAACCTGGCTGAAAACC




SFQWTFWSWNPDSGDT
CTCGTCCAGTATTTGCGGCCAACTGCTCAGTACGGAGCAGATTCTT




GGILKDDWQTVDTVKD
TTCAATGGACGTTCTGGTCTTGGAATCCTGACTCCGGGGATACAGG




GYLAPIKSSIFDPVGA
CGGTATCCTGAAAGACGATTGGCAGACCGTGGACACTGTTAAGGAC




SASPSSQPSPSVSPSP
GGGTACTTGGCGCCGATTAAAAGCTCGATCTTTGACCCAGTCGGCG




SPSPSASRTPTPTPTP
CTAGCGCTTCCCCATCTTCACAACCTTCGCCGAGCGTCAGCCCCAG




TASPTPTLTPTATPTP
CCCAAGCCCAAGCCCGTCTGCCAGCAGAACCCCCACTCCCACACCT




TASPTPSPTAASGARC
ACCCCCACGGCCTCACCAACTCCGACGCTCACTCCTACGGCGACGC




TASYQVNSDWGNGFTV
CAACACCAACTGCTTCACCCACTCCTAGCCCCACCGCAGCGAGCGG




TVAVTNSGSVATKTWT
GGCTAGGTGCACCGCTTCTTACCAGGTCAACTCTGACTGGGGTAAT




VSWTFGGNQTITNSWN
GGCTTCACCGTGACTGTGGCGGTCACTAACTCAGGAAGCGTCGCGA




AAVTQNGQSVTARNMS
CGAAAACCTGGACTGTGTCCTGGACGTTCGGGGGCAACCAAACAAT




YNNVIQPGQNTTFGFQ
CACCAACAGCTGGAACGCTGCAGTTACGCAGAATGGGCAAAGCGTC




ASYTGSNAAPTVACAA
ACGGCGCGCAATATGAGCTACAACAACGTGATTCAACCAGGCCAGA




SSEKDEL* (SEQ ID
ATACCACATTCGGTTTTCAAGCAAGCTATACCGGGTCAAACGCTGC




NO: 61)
CCCAACTGTCGCTTGTGCTGCCTCAAGCGAGAAGGACGAGCTGTGA





(SEQ ID NO: 133)





2033
P54583
MAGGGYWHTSGREILD
ATGGCTGGAGGAGGATACTGGCACACTTCCGGCAGGGAGATCCTCG




ANNVPVRIAGINWFGF
ACGCAAATAACGTTCCAGTCAGAATCGCCGGGATTAATTGGTTTGG




ETCNYVVHGLWSRDYR
CTTCGAAACGTGTAACTACGTGGTTCACGGCCTGTGGTCTCGGGAT




SMLDQIKSLGYNTIRL
TACAGATCAATGCTCGACCAGATCAAATCCTTGGGGTATAATACAA




PYSDDILKPGTMPNSI
TTAGGCTGCCCTACAGCGATGACATTCTTAAGCCTGGAACCATGCC




NFYQMNQDLQGLTSLQ
GAACTCGATTAATTTCTACCAAATGAACCAGGATCTGCAGGGATTG




VMDKIVAYAGQIGLRI
ACTTCTCTGCAGGTTATGGACAAGATCGTGGCGTACGCCGGCCAAA




ILDRHRPDCSGQSALW
TCGGGCTCAGAATTATTTTGGATCGGCACAGGCCAGACTGCTCAGG




YTSSVSEATWISDLQA
TCAGTCGGCCCTGTGGTACACAAGCTCCGTGTCAGAGGCAACATGG




LAQRYKGNPTVVGFDL
ATTTCAGATCTTCAAGCCCTCGCACAACGCTATAAAGGCAACCCCA




HNEPHDPACWGCGDPS
CGGTTGTGGGATTCGACCTTCACAACGAACCTCACGATCCGGCCTG




IDWRLAAERAGNAVLS
TTGGGGCTGCGGGGACCCTTCGATCGACTGGAGACTGGCAGCGGAG




VNPNLLIFVEGVQSYN
AGGGCTGGTAACGCCGTTCTCAGCGTCAATCCCAACTTGCTGATCT




GDSYWWGGNLQGAGQY
TTGTGGAGGGAGTTCAGTCCTACAACGGCGATTCTTACTGGTGGGG




PVVLNVPNRLVYSAHD
CGGAAATCTCCAAGGCGCAGGGCAGTATCCTGTCGTGCTTAACGTT




YATSVYPQTWFSDPTF
CCGAATCGCCTGGTCTACTCAGCACACGACTACGCGACTAGCGTGT




PNNMPGIWNKNWGYLF
ACCCACAGACGTGGTTCTCCGATCCCACATTTCCTAACAATATGCC




NQNIAPVWLGEFGTTL
GGGAATCTGGAACAAGAATTGGGGTTACTTGTTTAACCAAAACATT




QSTTDQTWLKTLVQYL
GCTCCAGTTTGGTTGGGTGAATTTGGCACCACTCTTCAGTCGACGA




RPTAQYGADSFQWTFW
CAGACCAAACCTGGCTGAAAACCCTCGTCCAGTATTTGCGGCCAAC




SWNPDSGDTGGILKDD
TGCTCAGTACGGAGCAGATTCTTTTCAATGGACGTTCTGGTCTTGG




WQTVDTVKDGYLAPIK
AATCCTGACTCCGGGGATACAGGCGGTATCCTGAAAGACGATTGGC




SSIFDPVGASASPSSQ
AGACCGTGGACACTGTTAAGGACGGGTACTTGGCGCCGATTAAAAG




PSPSVSPSPSPSPSAS
CTCGATCTTTGACCCAGTCGGCGCTAGCGCTTCCCCATCTTCACAA




RTPTPTPTPTASPTPT
CCTTCGCCGAGCGTCAGCCCCAGCCCAAGCCCAAGCCCGTCTGCCA




LTPTATPTPTASPTPS
GCAGAACCCCCACTCCCACACCTACCCCCACGGCCTCACCAACTCC




PTAASGARCTASYQVN
GACGCTCACTCCTACGGCGACGCCAACACCAACTGCTTCACCCACT




SDWGNGFTVTVAVTNS
CCTAGCCCCACCGCAGCGAGCGGGGCTAGGTGCACCGCTTCTTACC




GSVATKTWTVSWTFGG
AGGTCAACTCTGACTGGGGTAATGGCTTCACCGTGACTGTGGCGGT




NQTITNSWNAAVTQNG
CACTAACTCAGGAAGCGTCGCGACGAAAACCTGGACTGTGTCCTGG




QSVTARNMSYNNVIQP
ACGTTCGGGGGCAACCAAACAATCACCAACAGCTGGAACGCTGCAG




GQNTTFGFQASYTGSN
TTACGCAGAATGGGCAAAGCGTCACGGCGCGCAATATGAGCTACAA




AAPTVACAAS*
CAACGTGATTCAACCAGGCCAGAATACCACATTCGGTTTTCAAGCA




(SEQ ID NO: 62)
AGCTATACCGGGTCAAACGCTGCCCCAACTGTCGCTTGTGCTGCCT





CATGA (SEQ ID NO: 134)





2034
P54583:SEKDEL
MAGGGYWHTSGREILD
ATGGCTGGAGGAGGATACTGGCACACTTCCGGCAGGGAGATCCTCG




ANNVPVRIAGINWFGF
ACGCAAATAACGTTCCAGTCAGAATCGCCGGGATTAATTGGTTTGG




ETCNYVVHGLWSRDYR
CTTCGAAACGTGTAACTACGTGGTTCACGGCCTGTGGTCTCGGGAT




SMLDQIKSLGYNTIRL
TACAGATCAATGCTCGACCAGATCAAATCCTTGGGGTATAATACAA




PYSDDILKPGTMPNSI
TTAGGCTGCCCTACAGCGATGACATTCTTAAGCCTGGAACCATGCC




NFYQMNQDLQGLTSLQ
GAACTCGATTAATTTCTACCAAATGAACCAGGATCTGCAGGGATTG




VMDKIVAYAGQIGLRI
ACTTCTCTGCAGGTTATGGACAAGATCGTGGCGTACGCCGGCCAAA




ILDRHRPDCSGQSALW
TCGGGCTCAGAATTATTTTGGATCGGCACAGGCCAGACTGCTCAGG




YTSSVSEATWISDLQA
TCAGTCGGCCCTGTGGTACACAAGCTCCGTGTCAGAGGCAACATGG




LAQRYKGNPTVVGFDL
ATTTCAGATCTTCAAGCCCTCGCACAACGCTATAAAGGCAACCCCA




HNEPHDPACWGCGDPS
CGGTTGTGGGATTCGACCTTCACAACGAACCTCACGATCCGGCCTG




IDWRLAAERAGNAVLS
TTGGGGCTGCGGGGACCCTTCGATCGACTGGAGACTGGCAGCGGAG




VNPNLLIFVEGVQSYN
AGGGCTGGTAACGCCGTTCTCAGCGTCAATCCCAACTTGCTGATCT




GDSYWWGGNLQGAGQY
TTGTGGAGGGAGTTCAGTCCTACAACGGCGATTCTTACTGGTGGGG




PVVLNVPNRLVYSAHD
CGGAAATCTCCAAGGCGCAGGGCAGTATCCTGTCGTGCTTAACGTT




YATSVYPQTWFSDPTF
CCGAATCGCCTGGTCTACTCAGCACACGACTACGCGACTAGCGTGT




PNNMPGIWNKNWGYLF
ACCCACAGACGTGGTTCTCCGATCCCACATTTCCTAACAATATGCC




NQNIAPVWLGEFGTTL
GGGAATCTGGAACAAGAATTGGGGTTACTTGTTTAACCAAAACATT




QSTTDQTWLKTLVQYL
GCTCCAGTTTGGTTGGGTGAATTTGGCACCACTCTTCAGTCGACGA




RPTAQYGADSFQWTFW
CAGACCAAACCTGGCTGAAAACCCTCGTCCAGTATTTGCGGCCAAC




SWNPDSGDTGGILKDD
TGCTCAGTACGGAGCAGATTCTTTTCAATGGACGTTCTGGTCTTGG




WQTVDTVKDGYLAPIK
AATCCTGACTCCGGGGATACAGGCGGTATCCTGAAAGACGATTGGC




SSIFDPVGASASPSSQ
AGACCGTGGACACTGTTAAGGACGGGTACTTGGCGCCGATTAAAAG




PSPSVSPSPSPSPSAS
CTCGATCTTTGACCCAGTCGGCGCTAGCGCTTCCCCATCTTCACAA




RTPTPTPTPTASPTPT
CCTTCGCCGAGCGTCAGCCCCAGCCCAAGCCCAAGCCCGTCTGCCA




LTPTATPTPTASPTPS
GCAGAACCCCCACTCCCACACCTACCCCCACGGCCTCACCAACTCC




PTAASGARCTASYQVN
GACGCTCACTCCTACGGCGACGCCAACACCAACTGCTTCACCCACT




SDWGNGFTVTVAVTNS
CCTAGCCCCACCGCAGCGAGCGGGGCTAGGTGCACCGCTTCTTACC




GSVATKTWTVSWTFGG
AGGTCAACTCTGACTGGGGTAATGGCTTCACCGTGACTGTGGCGGT




NQTITNSWNAAVTQNG
CACTAACTCAGGAAGCGTCGCGACGAAAACCTGGACTGTGTCCTGG




QSVTARNMSYNNVIQP
ACGTTCGGGGGCAACCAAACAATCACCAACAGCTGGAACGCTGCAG




GQNTTFGFQASYTGSN
TTACGCAGAATGGGCAAAGCGTCACGGCGCGCAATATGAGCTACAA




AAPTVACAASSEKDEL
CAACGTGATTCAACCAGGCCAGAATACCACATTCGGTTTTCAAGCA




* (SEQ ID NO:
AGCTATACCGGGTCAAACGCTGCCCCAACTGTCGCTTGTGCTGCCT




63)
CAAGCGAGAAGGACGAGCTGTGA (SEQ ID NO: 135)





2035
PR1a:P54583
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAQN
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCCA




AGGGYWHTSGREILDA
GAACGCTGGAGGAGGATACTGGCACACTTCCGGCAGGGAGATCCTC




NNVPVRIAGINWFGFE
GACGCAAATAACGTTCCAGTCAGAATCGCCGGGATTAATTGGTTTG




TCNYVVHGLWSRDYRS
GCTTCGAAACGTGTAACTACGTGGTTCACGGCCTGTGGTCTCGGGA




MLDQIKSLGYNTIRLP
TTACAGATCAATGCTCGACCAGATCAAATCCTTGGGGTATAATACA




YSDDILKPGTMPNSIN
ATTAGGCTGCCCTACAGCGATGACATTCTTAAGCCTGGAACCATGC




FYQMNQDLQGLTSLQV
CGAACTCGATTAATTTCTACCAAATGAACCAGGATCTGCAGGGATT




MDKIVAYAGQIGLRII
GACTTCTCTGCAGGTTATGGACAAGATCGTGGCGTACGCCGGCCAA




LDRHRPDCSGQSALWY
ATCGGGCTCAGAATTATTTTGGATCGGCACAGGCCAGACTGCTCAG




TSSVSEATWISDLQAL
GTCAGTCGGCCCTGTGGTACACAAGCTCCGTGTCAGAGGCAACATG




AQRYKGNPTVVGFDLH
GATTTCAGATCTTCAAGCCCTCGCACAACGCTATAAAGGCAACCCC




NEPHDPACWGCGDPSI
ACGGTTGTGGGATTCGACCTTCACAACGAACCTCACGATCCGGCCT




DWRLAAERAGNAVLSV
GTTGGGGCTGCGGGGACCCTTCGATCGACTGGAGACTGGCAGCGGA




NPNLLIFVEGVQSYNG
GAGGGCTGGTAACGCCGTTCTCAGCGTCAATCCCAACTTGCTGATC




DSYWWGGNLQGAGQYP
TTTGTGGAGGGAGTTCAGTCCTACAACGGCGATTCTTACTGGTGGG




VVLNVPNRLVYSAHDY
GCGGAAATCTCCAAGGCGCAGGGCAGTATCCTGTCGTGCTTAACGT




ATSVYPQTWFSDPTFP
TCCGAATCGCCTGGTCTACTCAGCACACGACTACGCGACTAGCGTG




NNMPGIWNKNWGYLFN
TACCCACAGACGTGGTTCTCCGATCCCACATTTCCTAACAATATGC




QNIAPVWLGEFGTTLQ
CGGGAATCTGGAACAAGAATTGGGGTTACTTGTTTAACCAAAACAT




STTDQTWLKTLVQYLR
TGCTCCAGTTTGGTTGGGTGAATTTGGCACCACTCTTCAGTCGACG




PTAQYGADSFQWTFWS
ACAGACCAAACCTGGCTGAAAACCCTCGTCCAGTATTTGCGGCCAA




WNPDSGDTGGILKDDW
CTGCTCAGTACGGAGCAGATTCTTTTCAATGGACGTTCTGGTCTTG




QTVDTVKDGYLAPIKS
GAATCCTGACTCCGGGGATACAGGCGGTATCCTGAAAGACGATTGG




SIFDPVGASASPSSQP
CAGACCGTGGACACTGTTAAGGACGGGTACTTGGCGCCGATTAAAA




SPSVSPSPSPSPSASR
GCTCGATCTTTGACCCAGTCGGCGCTAGCGCTTCCCCATCTTCACA




TPTPTPTPTASPTPTL
ACCTTCGCCGAGCGTCAGCCCCAGCCCAAGCCCAAGCCCGTCTGCC




TPTATPTPTASPTPSP
AGCAGAACCCCCACTCCCACACCTACCCCCACGGCCTCACCAACTC




TAASGARCTASYQVNS
CGACGCTCACTCCTACGGCGACGCCAACACCAACTGCTTCACCCAC




DWGNGFTVTVAVTNSG
TCCTAGCCCCACCGCAGCGAGCGGGGCTAGGTGCACCGCTTCTTAC




SVATKTWTVSWTFGGN
CAGGTCAACTCTGACTGGGGTAATGGCTTCACCGTGACTGTGGCGG




QTITNSWNAAVTQNGQ
TCACTAACTCAGGAAGCGTCGCGACGAAAACCTGGACTGTGTCCTG




SVTARNMSYNNVIQPG
GACGTTCGGGGGCAACCAAACAATCACCAACAGCTGGAACGCTGCA




QNTTFGFQASYTGSNA
GTTACGCAGAATGGGCAAAGCGTCACGGCGCGCAATATGAGCTACA




APTVACAAS*
ACAACGTGATTCAACCAGGCCAGAATACCACATTCGGTTTTCAAGC




(SEQ ID NO: 64)
AAGCTATACCGGGTCAAACGCTGCCCCAACTGTCGCTTGTGCTGCC





TCATGA (SEQ ID NO: 136)





2036
PR1a:P54583:SEKDEL
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAQN
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCCA




AGGGYWHTSGREILDA
GAACGCTGGAGGAGGATACTGGCACACTTCCGGCAGGGAGATCCTC




NNVPVRIAGINWFGFE
GACGCAAATAACGTTCCAGTCAGAATCGCCGGGATTAATTGGTTTG




TCNYVVHGLWSRDYRS
GCTTCGAAACGTGTAACTACGTGGTTCACGGCCTGTGGTCTCGGGA




MLDQIKSLGYNTIRLP
TTACAGATCAATGCTCGACCAGATCAAATCCTTGGGGTATAATACA




YSDDILKPGTMPNSIN
ATTAGGCTGCCCTACAGCGATGACATTCTTAAGCCTGGAACCATGC




FYQMNQDLQGLTSLQV
CGAACTCGATTAATTTCTACCAAATGAACCAGGATCTGCAGGGATT




MDKIVAYAGQIGLRII
GACTTCTCTGCAGGTTATGGACAAGATCGTGGCGTACGCCGGCCAA




LDRHRPDCSGQSALWY
ATCGGGCTCAGAATTATTTTGGATCGGCACAGGCCAGACTGCTCAG




TSSVSEATWISDLQAL
GTCAGTCGGCCCTGTGGTACACAAGCTCCGTGTCAGAGGCAACATG




AQRYKGNPTVVGFDLH
GATTTCAGATCTTCAAGCCCTCGCACAACGCTATAAAGGCAACCCC




NEPHDPACWGCGDPSI
ACGGTTGTGGGATTCGACCTTCACAACGAACCTCACGATCCGGCCT




DWRLAAERAGNAVLSV
GTTGGGGCTGCGGGGACCCTTCGATCGACTGGAGACTGGCAGCGGA




NPNLLIFVEGVQSYNG
GAGGGCTGGTAACGCCGTTCTCAGCGTCAATCCCAACTTGCTGATC




DSYWWGGNLQGAGQYP
TTTGTGGAGGGAGTTCAGTCCTACAACGGCGATTCTTACTGGTGGG




VVLNVPNRLVYSAHDY
GCGGAAATCTCCAAGGCGCAGGGCAGTATCCTGTCGTGCTTAACGT




ATSVYPQTWFSDPTFP
TCCGAATCGCCTGGTCTACTCAGCACACGACTACGCGACTAGCGTG




NNMPGIWNKNWGYLFN
TACCCACAGACGTGGTTCTCCGATCCCACATTTCCTAACAATATGC




QNIAPVWLGEFGTTLQ
CGGGAATCTGGAACAAGAATTGGGGTTACTTGTTTAACCAAAACAT




STTDQTWLKTLVQYLR
TGCTCCAGTTTGGTTGGGTGAATTTGGCACCACTCTTCAGTCGACG




PTAQYGADSFQWTFWS
ACAGACCAAACCTGGCTGAAAACCCTCGTCCAGTATTTGCGGCCAA




WNPDSGDTGGILKDDW
CTGCTCAGTACGGAGCAGATTCTTTTCAATGGACGTTCTGGTCTTG




QTVDTVKDGYLAPIKS
GAATCCTGACTCCGGGGATACAGGCGGTATCCTGAAAGACGATTGG




SIFDPVGASASPSSQP
CAGACCGTGGACACTGTTAAGGACGGGTACTTGGCGCCGATTAAAA




SPSVSPSPSPSPSASR
GCTCGATCTTTGACCCAGTCGGCGCTAGCGCTTCCCCATCTTCACA




TPTPTPTPTASPTPTL
ACCTTCGCCGAGCGTCAGCCCCAGCCCAAGCCCAAGCCCGTCTGCC




TPTATPTPTASPTPSP
AGCAGAACCCCCACTCCCACACCTACCCCCACGGCCTCACCAACTC




TAASGARCTASYQVNS
CGACGCTCACTCCTACGGCGACGCCAACACCAACTGCTTCACCCAC




DWGNGFTVTVAVTNSG
TCCTAGCCCCACCGCAGCGAGCGGGGCTAGGTGCACCGCTTCTTAC




SVATKTWTVSWTFGGN
CAGGTCAACTCTGACTGGGGTAATGGCTTCACCGTGACTGTGGCGG




QTITNSWNAAVTQNGQ
TCACTAACTCAGGAAGCGTCGCGACGAAAACCTGGACTGTGTCCTG




SVTARNMSYNNVIQPG
GACGTTCGGGGGCAACCAAACAATCACCAACAGCTGGAACGCTGCA




QNTTFGFQASYTGSNA
GTTACGCAGAATGGGCAAAGCGTCACGGCGCGCAATATGAGCTACA




APTVACAASSEKDEL*
ACAACGTGATTCAACCAGGCCAGAATACCACATTCGGTTTTCAAGC




(SEQ ID NO: 65)
AAGCTATACCGGGTCAAACGCTGCCCCAACTGTCGCTTGTGCTGCC





TCAAGCGAGAAGGACGAGCTGTGA (SEQ ID NO: 137)





2037
BAASS:P54583
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQVAGGGYW
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAGTCGCTGGAGGAGGATA




HTSGREILDANNVPVR
CTGGCACACTTCCGGCAGGGAGATCCTCGACGCAAATAACGTTCCA




IAGINWFGFETCNYVV
GTCAGAATCGCCGGGATTAATTGGTTTGGCTTCGAAACGTGTAACT




HGLWSRDYRSMLDQIK
ACGTGGTTCACGGCCTGTGGTCTCGGGATTACAGATCAATGCTCGA




SLGYNTIRLPYSDDIL
CCAGATCAAATCCTTGGGGTATAATACAATTAGGCTGCCCTACAGC




KPGTMPNSINFYQMNQ
GATGACATTCTTAAGCCTGGAACCATGCCGAACTCGATTAATTTCT




DLQGLTSLQVMDKIVA
ACCAAATGAACCAGGATCTGCAGGGATTGACTTCTCTGCAGGTTAT




YAGQIGLRIILDRHRP
GGACAAGATCGTGGCGTACGCCGGCCAAATCGGGCTCAGAATTATT




DCSGQSALWYTSSVSE
TTGGATCGGCACAGGCCAGACTGCTCAGGTCAGTCGGCCCTGTGGT




ATWISDLQALAQRYKG
ACACAAGCTCCGTGTCAGAGGCAACATGGATTTCAGATCTTCAAGC




NPTVVGFDLHNEPHDP
CCTCGCACAACGCTATAAAGGCAACCCCACGGTTGTGGGATTCGAC




ACWGCGDPSIDWRLAA
CTTCACAACGAACCTCACGATCCGGCCTGTTGGGGCTGCGGGGACC




ERAGNAVLSVNPNLLI
CTTCGATCGACTGGAGACTGGCAGCGGAGAGGGCTGGTAACGCCGT




FVEGVQSYNGDSYWWG
TCTCAGCGTCAATCCCAACTTGCTGATCTTTGTGGAGGGAGTTCAG




GNLQGAGQYPVVLNVP
TCCTACAACGGCGATTCTTACTGGTGGGGCGGAAATCTCCAAGGCG




NRLVYSAHDYATSVYP
CAGGGCAGTATCCTGTCGTGCTTAACGTTCCGAATCGCCTGGTCTA




QTWFSDPTFPNNMPGI
CTCAGCACACGACTACGCGACTAGCGTGTACCCACAGACGTGGTTC




WNKNWGYLFNQNIAPV
TCCGATCCCACATTTCCTAACAATATGCCGGGAATCTGGAACAAGA




WLGEFGTTLQSTTDQT
ATTGGGGTTACTTGTTTAACCAAAACATTGCTCCAGTTTGGTTGGG




WLKTLVQYLRPTAQYG
TGAATTTGGCACCACTCTTCAGTCGACGACAGACCAAACCTGGCTG




ADSFQWTFWSWNPDSG
AAAACCCTCGTCCAGTATTTGCGGCCAACTGCTCAGTACGGAGCAG




DTGGILKDDWQTVDTV
ATTCTTTTCAATGGACGTTCTGGTCTTGGAATCCTGACTCCGGGGA




KDGYLAPIKSSIFDPV
TACAGGCGGTATCCTGAAAGACGATTGGCAGACCGTGGACACTGTT




GASASPSSQPSPSVSP
AAGGACGGGTACTTGGCGCCGATTAAAAGCTCGATCTTTGACCCAG




SPSPSPSASRTPTPTP
TCGGCGCTAGCGCTTCCCCATCTTCACAACCTTCGCCGAGCGTCAG




TPTASPTPTLTPTATP
CCCCAGCCCAAGCCCAAGCCCGTCTGCCAGCAGAACCCCCACTCCC




TPTASPTPSPTAASGA
ACACCTACCCCCACGGCCTCACCAACTCCGACGCTCACTCCTACGG




RCTASYQVNSDWGNGF
CGACGCCAACACCAACTGCTTCACCCACTCCTAGCCCCACCGCAGC




TVTVAVTNSGSVATKT
GAGCGGGGCTAGGTGCACCGCTTCTTACCAGGTCAACTCTGACTGG




WTVSWTFGGNQTITNS
GGTAATGGCTTCACCGTGACTGTGGCGGTCACTAACTCAGGAAGCG




WNAAVTQNGQSVTARN
TCGCGACGAAAACCTGGACTGTGTCCTGGACGTTCGGGGGCAACCA




MSYNNVIQPGQNTTFG
AACAATCACCAACAGCTGGAACGCTGCAGTTACGCAGAATGGGCAA




FQASYTGSNAAPTVAC
AGCGTCACGGCGCGCAATATGAGCTACAACAACGTGATTCAACCAG




AAS* (SEQ ID
GCCAGAATACCACATTCGGTTTTCAAGCAAGCTATACCGGGTCAAA




NO: 66)
CGCTGCCCCAACTGTCGCTTGTGCTGCCTCATGA (SEQ ID





NO: 138)





2038
BAASS:P54583:SEKDEL
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQVAGGGYW
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAGTCGCTGGAGGAGGATA




HTSGREILDANNVPVR
CTGGCACACTTCCGGCAGGGAGATCCTCGACGCAAATAACGTTCCA




IAGINWFGFETCNYVV
GTCAGAATCGCCGGGATTAATTGGTTTGGCTTCGAAACGTGTAACT




HGLWSRDYRSMLDQIK
ACGTGGTTCACGGCCTGTGGTCTCGGGATTACAGATCAATGCTCGA




SLGYNTIRLPYSDDIL
CCAGATCAAATCCTTGGGGTATAATACAATTAGGCTGCCCTACAGC




KPGTMPNSINFYQMNQ
GATGACATTCTTAAGCCTGGAACCATGCCGAACTCGATTAATTTCT




DLQGLTSLQVMDKIVA
ACCAAATGAACCAGGATCTGCAGGGATTGACTTCTCTGCAGGTTAT




YAGQIGLRIILDRHRP
GGACAAGATCGTGGCGTACGCCGGCCAAATCGGGCTCAGAATTATT




DCSGQSALWYTSSVSE
TTGGATCGGCACAGGCCAGACTGCTCAGGTCAGTCGGCCCTGTGGT




ATWISDLQALAQRYKG
ACACAAGCTCCGTGTCAGAGGCAACATGGATTTCAGATCTTCAAGC




NPTVVGFDLHNEPHDP
CCTCGCACAACGCTATAAAGGCAACCCCACGGTTGTGGGATTCGAC




ACWGCGDPSIDWRLAA
CTTCACAACGAACCTCACGATCCGGCCTGTTGGGGCTGCGGGGACC




ERAGNAVLSVNPNLLI
CTTCGATCGACTGGAGACTGGCAGCGGAGAGGGCTGGTAACGCCGT




FVEGVQSYNGDSYWWG
TCTCAGCGTCAATCCCAACTTGCTGATCTTTGTGGAGGGAGTTCAG




GNLQGAGQYPVVLNVP
TCCTACAACGGCGATTCTTACTGGTGGGGCGGAAATCTCCAAGGCG




NRLVYSAHDYATSVYP
CAGGGCAGTATCCTGTCGTGCTTAACGTTCCGAATCGCCTGGTCTA




QTWFSDPTFPNNMPGI
CTCAGCACACGACTACGCGACTAGCGTGTACCCACAGACGTGGTTC




WNKNWGYLFNQNIAPV
TCCGATCCCACATTTCCTAACAATATGCCGGGAATCTGGAACAAGA




WLGEFGTTLQSTTDQT
ATTGGGGTTACTTGTTTAACCAAAACATTGCTCCAGTTTGGTTGGG




WLKTLVQYLRPTAQYG
TGAATTTGGCACCACTCTTCAGTCGACGACAGACCAAACCTGGCTG




ADSFQWTFWSWNPDSG
AAAACCCTCGTCCAGTATTTGCGGCCAACTGCTCAGTACGGAGCAG




DTGGILKDDWQTVDTV
ATTCTTTTCAATGGACGTTCTGGTCTTGGAATCCTGACTCCGGGGA




KDGYLAPIKSSIFDPV
TACAGGCGGTATCCTGAAAGACGATTGGCAGACCGTGGACACTGTT




GASASPSSQPSPSVSP
AAGGACGGGTACTTGGCGCCGATTAAAAGCTCGATCTTTGACCCAG




SPSPSPSASRTPTPTP
TCGGCGCTAGCGCTTCCCCATCTTCACAACCTTCGCCGAGCGTCAG




TPTASPTPTLTPTATP
CCCCAGCCCAAGCCCAAGCCCGTCTGCCAGCAGAACCCCCACTCCC




TPTASPTPSPTAASGA
ACACCTACCCCCACGGCCTCACCAACTCCGACGCTCACTCCTACGG




RCTASYQVNSDWGNGF
CGACGCCAACACCAACTGCTTCACCCACTCCTAGCCCCACCGCAGC




TVTVAVTNSGSVATKT
GAGCGGGGCTAGGTGCACCGCTTCTTACCAGGTCAACTCTGACTGG




WTVSWTFGGNQTITNS
GGTAATGGCTTCACCGTGACTGTGGCGGTCACTAACTCAGGAAGCG




WNAAVTQNGQSVTARN
TCGCGACGAAAACCTGGACTGTGTCCTGGACGTTCGGGGGCAACCA




MSYNNVIQPGQNTTFG
AACAATCACCAACAGCTGGAACGCTGCAGTTACGCAGAATGGGCAA




FQASYTGSNAAPTVAC
AGCGTCACGGCGCGCAATATGAGCTACAACAACGTGATTCAACCAG




AASSEKDEL*
GCCAGAATACCACATTCGGTTTTCAAGCAAGCTATACCGGGTCAAA




(SEQ ID NO: 67)
CGCTGCCCCAACTGTCGCTTGTGCTGCCTCAAGCGAGAAGGACGAG





CTGTGA (SEQ ID NO: 139)





2040
PR1a:NtEGm
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAAY
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCGC




DYKQVLRDSLLFYEAQ
TTACGACTACAAGCAGGTGTTGCGGGACTCGCTACTATTCTATGAG




RSGRLPADQKVTWRKD
GCCCAGAGATCCGGCCGGCTCCCAGCCGACCAGAAGGTCACGTGGA




SALNDQGDQGQDLTGG
GGAAGGATAGCGCGCTGAATGACCAGGGTGACCAGGGACAAGACTT




YFDAGDFVKFGFPMAY
GACCGGCGGCTACTTTGACGCTGGGGACTTCGTCAAGTTCGGGTTC




TATVLAWGLIDFEAGY
CCCATGGCTTATACCGCAACCGTGCTGGCATGGGGCCTCATAGATT




SSAGALDDGRKAVKWA
TTGAGGCCGGCTACAGCAGTGCCGGGGCCTTGGATGATGGACGGAA




TDYFIKAHTSQNEFYG
GGCTGTCAAATGGGCCACCGACTATTTCATAAAGGCCCACACAAGT




QVGQGDADHAFWGRPE
CAAAATGAGTTCTATGGTCAGGTCGGCCAGGGTGACGCCGATCACG




DMTMARPAYKIDTSRP
CTTTCTGGGGAAGACCAGAGGATATGACGATGGCGCGCCCGGCGTA




GSDLAGETAAALAAAS
CAAGATAGACACCTCAAGGCCTGGCTCTGATCTGGCAGGCGAGACA




IVFRNVDGTYSNNLLT
GCGGCTGCTCTTGCCGCTGCTTCAATCGTGTTCCGGAACGTCGATG




HARQLFDFANNYRGKY
GCACTTACTCAAATAACCTGTTAACACACGCTCGCCAGCTATTCGA




SDSITDARNFYASADY
CTTCGCGAACAACTACCGGGGAAAGTATAGTGACTCTATTACTGAC




RDELVWAAAWLYRATN
GCAAGAAATTTCTACGCAAGCGCAGACTACAGAGACGAGTTGGTTT




DNTYLNTAESLYDEFG
GGGCTGCTGCGTGGTTATACAGAGCGACCAACGACAACACCTACCT




LQNWGGGLNWDSKVSG
CAACACTGCTGAGTCACTGTACGATGAGTTTGGGCTACAGAACTGG




VQVLLAKLTNKQAYKD
GGGGGGGGCCTGAACTGGGATAGCAAGGTGTCTGGCGTGCAGGTGT




TVQSYVNYLINNQQKT
TGTTGGCCAAGCTTACCAATAAGCAGGCCTACAAGGACACGGTGCA




PKGLLYIDMWGTLRHA
GTCTTACGTCAATTACCTAATTAATAACCAGCAGAAGACTCCCAAG




ANAAFIMLEAAELGLS
GGCCTCCTCTACATCGACATGTGGGGCACCCTTCGCCACGCTGCCA




ASSYRQFAQTQIDYAL
ACGCCGCATTCATCATGCTCGAAGCCGCCGAGCTGGGCTTGTCCGC




GDGGRSFVCGFGSNPP
CTCCTCTTATAGACAGTTCGCGCAAACGCAAATCGACTACGCCCTG




TRPHHRSSSCPPAPAT
GGCGATGGTGGCCGCTCCTTTGTGTGCGGGTTCGGGAGTAATCCTC




CDWNTFNSPDPNYHVL
CTACGAGACCGCACCACAGATCCTCGTCGTGCCCGCCAGCTCCCGC




SGALVGGPDQNDNYVD
TACTTGCGACTGGAATACATTCAACTCACCTGACCCAAACTACCAC




DRSDYVHNEVATDYNA
GTCCTCTCTGGGGCCCTAGTGGGCGGACCTGATCAGAATGACAACT




GFQSALAALVALGY*
ACGTCGATGACCGTTCAGACTATGTTCACAACGAAGTCGCCACTGA




(SEQ ID NO: 68)
TTACAACGCGGGTTTCCAGTCCGCGTTAGCTGCTTTGGTGGCCCTT





GGTTACTGA (SEQ ID NO: 140)





2041
GluB4SP:NtEGm
MATIAFSRLSIYFCVL
ATGGCCACCATCGCTTTCTCCCGCTTGTCCATCTACTTCTGCGTGC




LLCHGSMAAYDYKQVL
TTCTCCTGTGCCACGGCTCCATGGCCGCTTACGACTACAAGCAGGT




RDSLLFYEAQRSGRLP
GTTGCGGGACTCGCTACTATTCTATGAGGCCCAGAGATCCGGCCGG




ADQKVTWRKDSALNDQ
CTCCCAGCCGACCAGAAGGTCACGTGGAGGAAGGATAGCGCGCTGA




GDQGQDLTGGYFDAGD
ATGACCAGGGTGACCAGGGACAAGACTTGACCGGCGGCTACTTTGA




FVKFGFPMAYTATVLA
CGCTGGGGACTTCGTCAAGTTCGGGTTCCCCATGGCTTATACCGCA




WGLIDFEAGYSSAGAL
ACCGTGCTGGCATGGGGCCTCATAGATTTTGAGGCCGGCTACAGCA




DDGRKAVKWATDYFIK
GTGCCGGGGCCTTGGATGATGGACGGAAGGCTGTCAAATGGGCCAC




AHTSQNEFYGQVGQGD
CGACTATTTCATAAAGGCCCACACAAGTCAAAATGAGTTCTATGGT




ADHAFWGRPEDMTMAR
CAGGTCGGCCAGGGTGACGCCGATCACGCTTTCTGGGGAAGACCAG




PAYKIDTSRPGSDLAG
AGGATATGACGATGGCGCGCCCGGCGTACAAGATAGACACCTCAAG




ETAAALAAASIVFRNV
GCCTGGCTCTGATCTGGCAGGCGAGACAGCGGCTGCTCTTGCCGCT




DGTYSNNLLTHARQLF
GCTTCAATCGTGTTCCGGAACGTCGATGGCACTTACTCAAATAACC




DFANNYRGKYSDSITD
TGTTAACACACGCTCGCCAGCTATTCGACTTCGCGAACAACTACCG




ARNFYASADYRDELVW
GGGAAAGTATAGTGACTCTATTACTGACGCAAGAAATTTCTACGCA




AAAWLYRATNDNTYLN
AGCGCAGACTACAGAGACGAGTTGGTTTGGGCTGCTGCGTGGTTAT




TAESLYDEFGLQNWGG
ACAGAGCGACCAACGACAACACCTACCTCAACACTGCTGAGTCACT




GLNWDSKVSGVQVLLA
GTACGATGAGTTTGGGCTACAGAACTGGGGGGGGGGCCTGAACTGG




KLTNKQAYKDTVQSYV
GATAGCAAGGTGTCTGGCGTGCAGGTGTTGTTGGCCAAGCTTACCA




NYLINNQQKTPKGLLY
ATAAGCAGGCCTACAAGGACACGGTGCAGTCTTACGTCAATTACCT




IDMWGTLRHAANAAFI
AATTAATAACCAGCAGAAGACTCCCAAGGGCCTCCTCTACATCGAC




MLEAAELGLSASSYRQ
ATGTGGGGCACCCTTCGCCACGCTGCCAACGCCGCATTCATCATGC




FAQTQIDYALGDGGRS
TCGAAGCCGCCGAGCTGGGCTTGTCCGCCTCCTCTTATAGACAGTT




FVCGFGSNPPTRPHHR
CGCGCAAACGCAAATCGACTACGCCCTGGGCGATGGTGGCCGCTCC




SSSCPPAPATCDWNTF
TTTGTGTGCGGGTTCGGGAGTAATCCTCCTACGAGACCGCACCACA




NSPDPNYHVLSGALVG
GATCCTCGTCGTGCCCGCCAGCTCCCGCTACTTGCGACTGGAATAC




GPDQNDNYVDDRSDYV
ATTCAACTCACCTGACCCAAACTACCACGTCCTCTCTGGGGCCCTA




HNEVATDYNAGFQSAL
GTGGGCGGACCTGATCAGAATGACAACTACGTCGATGACCGTTCAG




AALVALGY* (SEQ
ACTATGTTCACAACGAAGTCGCCACTGATTACAACGCGGGTTTCCA




ID NO: 69)
GTCCGCGTTAGCTGCTTTGGTGGCCCTTGGTTACTGA (SEQ





ID NO: 141)





2042
HvAleSP:P54583
MAHARVLLLALAVLAT
ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCA




AAVAVASSSSFADSNP
CCGCCGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAA




IRPVTDRAASTAGGGY
CCCGATCCGCCCGGTGACCGACCGCGCCGCCTCCACCGCTGGAGGA




WHTSGREILDANNVPV
GGATACTGGCACACTTCCGGCAGGGAGATCCTCGACGCAAATAACG




RIAGINWFGFETCNYV
TTCCAGTCAGAATCGCCGGGATTAATTGGTTTGGCTTCGAAACGTG




VHGLWSRDYRSMLDQI
TAACTACGTGGTTCACGGCCTGTGGTCTCGGGATTACAGATCAATG




KSLGYNTIRLPYSDDI
CTCGACCAGATCAAATCCTTGGGGTATAATACAATTAGGCTGCCCT




LKPGTMPNSINFYQMN
ACAGCGATGACATTCTTAAGCCTGGAACCATGCCGAACTCGATTAA




QDLQGLTSLQVMDKIV
TTTCTACCAAATGAACCAGGATCTGCAGGGATTGACTTCTCTGCAG




AYAGQIGLRIILDRHR
GTTATGGACAAGATCGTGGCGTACGCCGGCCAAATCGGGCTCAGAA




PDCSGQSALWYTSSVS
TTATTTTGGATCGGCACAGGCCAGACTGCTCAGGTCAGTCGGCCCT




EATWISDLQALAQRYK
GTGGTACACAAGCTCCGTGTCAGAGGCAACATGGATTTCAGATCTT




GNPTVVGFDLHNEPHD
CAAGCCCTCGCACAACGCTATAAAGGCAACCCCACGGTTGTGGGAT




PACWGCGDPSIDWRLA
TCGACCTTCACAACGAACCTCACGATCCGGCCTGTTGGGGCTGCGG




AERAGNAVLSVNPNLL
GGACCCTTCGATCGACTGGAGACTGGCAGCGGAGAGGGCTGGTAAC




IFVEGVQSYNGDSYWW
GCCGTTCTCAGCGTCAATCCCAACTTGCTGATCTTTGTGGAGGGAG




GGNLQGAGQYPVVLNV
TTCAGTCCTACAACGGCGATTCTTACTGGTGGGGCGGAAATCTCCA




PNRLVYSAHDYATSVY
AGGCGCAGGGCAGTATCCTGTCGTGCTTAACGTTCCGAATCGCCTG




PQTWFSDPTFPNNMPG
GTCTACTCAGCACACGACTACGCGACTAGCGTGTACCCACAGACGT




IWNKNWGYLFNQNIAP
GGTTCTCCGATCCCACATTTCCTAACAATATGCCGGGAATCTGGAA




VWLGEFGTTLQSTTDQ
CAAGAATTGGGGTTACTTGTTTAACCAAAACATTGCTCCAGTTTGG




TWLKTLVQYLRPTAQY
TTGGGTGAATTTGGCACCACTCTTCAGTCGACGACAGACCAAACCT




GADSFQWTFWSWNPDS
GGCTGAAAACCCTCGTCCAGTATTTGCGGCCAACTGCTCAGTACGG




GDTGGILKDDWQTVDT
AGCAGATTCTTTTCAATGGACGTTCTGGTCTTGGAATCCTGACTCC




VKDGYLAPIKSSIFDP
GGGGATACAGGCGGTATCCTGAAAGACGATTGGCAGACCGTGGACA




VGASASPSSQPSPSVS
CTGTTAAGGACGGGTACTTGGCGCCGATTAAAAGCTCGATCTTTGA




PSPSPSPSASRTPTPT
CCCAGTCGGCGCTAGCGCTTCCCCATCTTCACAACCTTCGCCGAGC




PTPTASPTPTLTPTAT
GTCAGCCCCAGCCCAAGCCCAAGCCCGTCTGCCAGCAGAACCCCCA




PTPTASPTPSPTAASG
CTCCCACACCTACCCCCACGGCCTCACCAACTCCGACGCTCACTCC




ARCTASYQVNSDWGNG
TACGGCGACGCCAACACCAACTGCTTCACCCACTCCTAGCCCCACC




FTVTVAVTNSGSVATK
GCAGCGAGCGGGGCTAGGTGCACCGCTTCTTACCAGGTCAACTCTG




TWTVSWTFGGNQTITN
ACTGGGGTAATGGCTTCACCGTGACTGTGGCGGTCACTAACTCAGG




SWNAAVTQNGQSVTAR
AAGCGTCGCGACGAAAACCTGGACTGTGTCCTGGACGTTCGGGGGC




NMSYNNVIQPGQNTTF
AACCAAACAATCACCAACAGCTGGAACGCTGCAGTTACGCAGAATG




GFQASYTGSNAAPTVA
GGCAAAGCGTCACGGCGCGCAATATGAGCTACAACAACGTGATTCA




CAAS* (SEQ ID
ACCAGGCCAGAATACCACATTCGGTTTTCAAGCAAGCTATACCGGG




NO: 70)
TCAAACGCTGCCCCAACTGTCGCTTGTGCTGCCTCATGA (SEQ





ID NO: 142)





2043
NtEGm
MAYDYKQVLRDSLLFY
ATGGCTTACGACTACAAGCAGGTGTTGCGGGACTCGCTACTATTCT




EAQRSGRLPADQKVTW
ATGAGGCCCAGAGATCCGGCCGGCTCCCAGCCGACCAGAAGGTCAC




RKDSALNDQGDQGQDL
GTGGAGGAAGGATAGCGCGCTGAATGACCAGGGTGACCAGGGACAA




TGGYFDAGDFVKFGFP
GACTTGACCGGCGGCTACTTTGACGCTGGGGACTTCGTCAAGTTCG




MAYTATVLAWGLIDFE
GGTTCCCCATGGCTTATACCGCAACCGTGCTGGCATGGGGCCTCAT




AGYSSAGALDDGRKAV
AGATTTTGAGGCCGGCTACAGCAGTGCCGGGGCCTTGGATGATGGA




KWATDYFIKAHTSQNE
CGGAAGGCTGTCAAATGGGCCACCGACTATTTCATAAAGGCCCACA




FYGQVGQGDADHAFWG
CAAGTCAAAATGAGTTCTATGGTCAGGTCGGCCAGGGTGACGCCGA




RPEDMTMARPAYKIDT
TCACGCTTTCTGGGGAAGACCAGAGGATATGACGATGGCGCGCCCG




SRPGSDLAGETAAALA
GCGTACAAGATAGACACCTCAAGGCCTGGCTCTGATCTGGCAGGCG




AASIVFRNVDGTYSNN
AGACAGCGGCTGCTCTTGCCGCTGCTTCAATCGTGTTCCGGAACGT




LLTHARQLFDFANNYR
CGATGGCACTTACTCAAATAACCTGTTAACACACGCTCGCCAGCTA




GKYSDSITDARNFYAS
TTCGACTTCGCGAACAACTACCGGGGAAAGTATAGTGACTCTATTA




ADYRDELVWAAAWLYR
CTGACGCAAGAAATTTCTACGCAAGCGCAGACTACAGAGACGAGTT




ATNDNTYLNTAESLYD
GGTTTGGGCTGCTGCGTGGTTATACAGAGCGACCAACGACAACACC




EFGLQNWGGGLNWDSK
TACCTCAACACTGCTGAGTCACTGTACGATGAGTTTGGGCTACAGA




VSGVQVLLAKLTNKQA
ACTGGGGGGGGGGCCTGAACTGGGATAGCAAGGTGTCTGGCGTGCA




YKDTVQSYVNYLINNQ
GGTGTTGTTGGCCAAGCTTACCAATAAGCAGGCCTACAAGGACACG




QKTPKGLLYIDMWGTL
GTGCAGTCTTACGTCAATTACCTAATTAATAACCAGCAGAAGACTC




RHAANAAFIMLEAAEL
CCAAGGGCCTCCTCTACATCGACATGTGGGGCACCCTTCGCCACGC




GLSASSYRQFAQTQID
TGCCAACGCCGCATTCATCATGCTCGAAGCCGCCGAGCTGGGCTTG




YALGDGGRSFVCGFGS
TCCGCCTCCTCTTATAGACAGTTCGCGCAAACGCAAATCGACTACG




NPPTRPHHRSSSCPPA
CCCTGGGCGATGGTGGCCGCTCCTTTGTGTGCGGGTTCGGGAGTAA




PATCDWNTFNSPDPNY
TCCTCCTACGAGACCGCACCACAGATCCTCGTCGTGCCCGCCAGCT




HVLSGALVGGPDQNDN
CCCGCTACTTGCGACTGGAATACATTCAACTCACCTGACCCAAACT




YVDDRSDYVHNEVATD
ACCACGTCCTCTCTGGGGCCCTAGTGGGCGGACCTGATCAGAATGA




YNAGFQSALAALVALG
CAACTACGTCGATGACCGTTCAGACTATGTTCACAACGAAGTCGCC




Y* (SEQ ID NO:
ACTGATTACAACGCGGGTTTCCAGTCCGCGTTAGCTGCTTTGGTGG




71)
CCCTTGGTTACTGA (SEQ ID NO: 143)





2044
PR1a:NtEGm
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAAY
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCGC




DYKQVLRDSLLFYEAQ
TTACGACTACAAGCAGGTGTTGCGGGACTCGCTACTATTCTATGAG




RSGRLPADQKVTWRKD
GCCCAGAGATCCGGCCGGCTCCCAGCCGACCAGAAGGTCACGTGGA




SALNDQGDQGQDLTGG
GGAAGGATAGCGCGCTGAATGACCAGGGTGACCAGGGACAAGACTT




YFDAGDFVKFGFPMAY
GACCGGCGGCTACTTTGACGCTGGGGACTTCGTCAAGTTCGGGTTC




TATVLAWGLIDFEAGY
CCCATGGCTTATACCGCAACCGTGCTGGCATGGGGCCTCATAGATT




SSAGALDDGRKAVKWA
TTGAGGCCGGCTACAGCAGTGCCGGGGCCTTGGATGATGGACGGAA




TDYFIKAHTSQNEFYG
GGCTGTCAAATGGGCCACCGACTATTTCATAAAGGCCCACACAAGT




QVGQGDADHAFWGRPE
CAAAATGAGTTCTATGGTCAGGTCGGCCAGGGTGACGCCGATCACG




DMTMARPAYKIDTSRP
CTTTCTGGGGAAGACCAGAGGATATGACGATGGCGCGCCCGGCGTA




GSDLAGETAAALAAAS
CAAGATAGACACCTCAAGGCCTGGCTCTGATCTGGCAGGCGAGACA




IVFRNVDGTYSNNLLT
GCGGCTGCTCTTGCCGCTGCTTCAATCGTGTTCCGGAACGTCGATG




HARQLFDFANNYRGKY
GCACTTACTCAAATAACCTGTTAACACACGCTCGCCAGCTATTCGA




SDSITDARNFYASADY
CTTCGCGAACAACTACCGGGGAAAGTATAGTGACTCTATTACTGAC




RDELVWAAAWLYRATN
GCAAGAAATTTCTACGCAAGCGCAGACTACAGAGACGAGTTGGTTT




DNTYLNTAESLYDEFG
GGGCTGCTGCGTGGTTATACAGAGCGACCAACGACAACACCTACCT




LQNWGGGLNWDSKVSG
CAACACTGCTGAGTCACTGTACGATGAGTTTGGGCTACAGAACTGG




VQVLLAKLTNKQAYKD
GGGGGGGGCCTGAACTGGGATAGCAAGGTGTCTGGCGTGCAGGTGT




TVQSYVNYLINNQQKT
TGTTGGCCAAGCTTACCAATAAGCAGGCCTACAAGGACACGGTGCA




PKGLLYIDMWGTLRHA
GTCTTACGTCAATTACCTAATTAATAACCAGCAGAAGACTCCCAAG




ANAAFIMLEAAELGLS
GGCCTCCTCTACATCGACATGTGGGGCACCCTTCGCCACGCTGCCA




ASSYRQFAQTQIDYAL
ACGCCGCATTCATCATGCTCGAAGCCGCCGAGCTGGGCTTGTCCGC




GDGGRSFVCGFGSNPP
CTCCTCTTATAGACAGTTCGCGCAAACGCAAATCGACTACGCCCTG




TRPHHRSSSCPPAPAT
GGCGATGGTGGCCGCTCCTTTGTGTGCGGGTTCGGGAGTAATCCTC




CDWNTFNSPDPNYHVL
CTACGAGACCGCACCACAGATCCTCGTCGTGCCCGCCAGCTCCCGC




SGALVGGPDQNDNYVD
TACTTGCGACTGGAATACATTCAACTCACCTGACCCAAACTACCAC




DRSDYVHNEVATDYNA
GTCCTCTCTGGGGCCCTAGTGGGCGGACCTGATCAGAATGACAACT




GFQSALAALVALGY*
ACGTCGATGACCGTTCAGACTATGTTCACAACGAAGTCGCCACTGA




(SEQ ID NO: 72)
TTACAACGCGGGTTTCCAGTCCGCGTTAGCTGCTTTGGTGGCCCTT





GGTTACTGA (SEQ ID NO: 144)





2045
PR1a:NtEGm:SEKDEL
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAAY
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCGC




DYKQVLRDSLLFYEAQ
TTACGACTACAAGGAGGTGTTGCGGGACTCGCTACTATTCTATGAG




RSGRLPADQKVTWRKD
GCCCAGAGATCCGGCCGGCTCCCAGCCGACCAGAAGGTCACGTGGA




SALNDQGDQGQDLTGG
GGAAGGATAGCGCGCTGAATGACCAGGGTGACCAGGGACAAGACTT




YFDAGDFVKFGFPMAY
GACCGGCGGCTACTTTGACGCTGGGGACTTCGTCAAGTTCGGGTTC




TATVLAWGLIDFEAGY
CCCATGGCTTATACCGCAACCGTGCTGGCATGGGGCCTCATAGATT




SSAGALDDGRKAVKWA
TTGAGGCCGGCTACAGCAGTGCCGGGGCCTTGGATGATGGACGGAA




TDYFIKAHTSQNEFYG
GGCTGTCAAATGGGCCACCGACTATTTCATAAAGGCCCACACAAGT




QVGQGDADHAFWGRPE
CAAAATGAGTTCTATGGTCAGGTCGGCCAGGGTGACGCCGATCACG




DMTMARPAYKIDTSRP
CTTTCTGGGGAAGACCAGAGGATATGACGATGGCGCGCCCGGCGTA




GSDLAGETAAALAAAS
CAAGATAGACACCTCAAGGCCTGGCTCTGATCTGGCAGGCGAGACA




IVFRNVDGTYSNNLLT
GCGGCTGCTCTTGCCGCTGCTTCAATCGTGTTCCGGAACGTCGATG




HARQLFDFANNYRGKY
GCACTTACTCAAATAACCTGTTAACACACGCTCGCCAGCTATTCGA




SDSITDARNFYASADY
CTTCGCGAACAACTACCGGGGAAAGTATAGTGACTCTATTACTGAC




RDELVWAAAWLYRATN
GCAAGAAATTTCTACGCAAGCGCAGACTACAGAGACGAGTTGGTTT




DNTYLNTAESLYDEFG
GGGCTGCTGCGTGGTTATACAGAGCGACCAACGACAACACCTACCT




LQNWGGGLNWDSKVSG
CAACACTGCTGAGTCACTGTACGATGAGTTTGGGCTACAGAACTGG




VQVLLAKLTNKQAYKD
GGGGGGGGCCTGAACTGGGATAGCAAGGTGTCTGGCGTGCAGGTGT




TVQSYVNYLINNQQKT
TGTTGGCCAAGCTTACCAATAAGCAGGCCTACAAGGACACGGTGCA




PKGLLYIDMWGTLRHA
GTCTTACGTCAATTACCTAATTAATAACCAGCAGAAGACTCCCAAG




ANAAFIMLEAAELGLS
GGCCTCCTCTACATCGACATGTGGGGCACCCTTCGCCACGCTGCCA




ASSYRQFAQTQIDYAL
ACGCCGCATTCATCATGCTCGAAGCCGCCGAGCTGGGCTTGTCCGC




GDGGRSFVCGFGSNPP
CTCCTCTTATAGACAGTTCGCGCAAACGCAAATCGACTACGCCCTG




TRPHHRSSSCPPAPAT
GGCGATGGTGGCCGCTCCTTTGTGTGCGGGTTCGGGAGTAATCCTC




CDWNTFNSPDPNYHVL
CTACGAGACCGCACCACAGATCCTCGTCGTGCCCGCCAGCTCCCGC




SGALVGGPDQNDNYVD
TACTTGCGACTGGAATACATTCAACTCACCTGACCCAAACTACCAC




DRSDYVHNEVATDYNA
GTCCTCTCTGGGGCCCTAGTGGGCGGACCTGATCAGAATGACAACT




GFQSALAALVALGYSE
ACGTCGATGACCGTTCAGACTATGTTCACAACGAAGTCGCCACTGA




KDEL* (SEQ ID
TTACAACGCGGGTTTCCAGTCCGCGTTAGCTGCTTTGGTGGCCCTT




NO: 73)
GGTTACAGCGAGAAGGACGAGCTGTGA (SEQ ID NO: 145)





2046
BAASS:NtEGm:SEKDEL
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQVAYDYKQ
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAGTCGCTTACGACTACAA




VLRDSLLFYEAQRSGR
GCAGGTGTTGCGGGACTCGCTACTATTCTATGAGGCCCAGAGATCC




LPADQKVTWRKDSALN
GGCCGGCTCCCAGCCGACCAGAAGGTCACGTGGAGGAAGGATAGCG




DQGDQGQDLTGGYFDA
CGCTGAATGACCAGGGTGACCAGGGACAAGACTTGACCGGCGGCTA




GDFVKFGFPMAYTATV
CTTTGACGCTGGGGACTTCGTCAAGTTCGGGTTCCCCATGGCTTAT




LAWGLIDFEAGYSSAG
ACCGCAACCGTGCTGGCATGGGGCCTCATAGATTTTGAGGCCGGCT




ALDDGRKAVKWATDYF
ACAGCAGTGCCGGGGCCTTGGATGATGGACGGAAGGCTGTCAAATG




IKAHTSQNEFYGQVGQ
GGCCACCGACTATTTCATAAAGGCCCACACAAGTCAAAATGAGTTC




GDADHAFWGRPEDMTM
TATGGTCAGGTCGGCCAGGGTGACGCCGATCACGCTTTCTGGGGAA




ARPAYKIDTSRPGSDL
GACCAGAGGATATGACGATGGCGCGCCCGGCGTACAAGATAGACAC




AGETAAALAAASIVFR
CTCAAGGCCTGGCTCTGATCTGGCAGGCGAGACAGCGGCTGCTCTT




NVDGTYSNNLLTHARQ
GCCGCTGCTTCAATCGTGTTCCGGAACGTCGATGGCACTTACTCAA




LFDFANNYRGKYSDSI
ATAACCTGTTAACACACGCTCGCCAGCTATTCGACTTCGCGAACAA




TDARNFYASADYRDEL
CTACCGGGGAAAGTATAGTGACTCTATTACTGACGCAAGAAATTTC




VWAAAWLYRATNDNTY
TACGCAAGCGCAGACTACAGAGACGAGTTGGTTTGGGCTGCTGCGT




LNTAESLYDEFGLQNW
GGTTATACAGAGCGACCAACGACAACACCTACCTCAACACTGCTGA




GGGLNWDSKVSGVQVL
GTCACTGTACGATGAGTTTGGGCTACAGAACTGGGGGGGGGGCCTG




LAKLTNKQAYKDTVQS
AACTGGGATAGCAAGGTGTCTGGCGTGCAGGTGTTGTTGGCCAAGC




YVNYLINNQQKTPKGL
TTACCAATAAGCAGGCCTACAAGGACACGGTGCAGTCTTACGTCAA




LYIDMWGTLRHAANAA
TTACCTAATTAATAACCAGCAGAAGACTCCCAAGGGCCTCCTCTAC




FIMLEAAELGLSASSY
ATCGACATGTGGGGCACCCTTCGCCACGCTGCCAACGCCGCATTCA




RQFAQTQIDYALGDGG
TCATGCTCGAAGCCGCCGAGCTGGGCTTGTCCGCCTCCTCTTATAG




RSFVCGFGSNPPTRPH
ACAGTTCGCGCAAACGCAAATCGACTACGCCCTGGGCGATGGTGGC




HRSSSCPPAPATCDWN
CGCTCCTTTGTGTGCGGGTTCGGGAGTAATCCTCCTACGAGACCGC




TFNSPDPNYHVLSGAL
ACCACAGATCCTCGTCGTGCCCGCCAGCTCCCGCTACTTGCGACTG




VGGPDQNDNYVDDRSD
GAATACATTCAACTCACCTGACCCAAACTACCACGTCCTCTCTGGG




YVHNEVATDYNAGFQS
GCCCTAGTGGGCGGACCTGATCAGAATGACAACTACGTCGATGACC




ALAALVALGYSEKDEL
GTTCAGACTATGTTCACAACGAAGTCGCCACTGATTACAACGCGGG




* (SEQ ID NO:
TTTCCAGTCCGCGTTAGCTGCTTTGGTGGCCCTTGGTTACAGCGAG




74)
AAGGACGAGCTGTGA (SEQ ID NO: 146)





2047
HvAleSP:P54583:
MAHARVLLLALAVLAT
ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCA



SEKDEL
AAVAVASSSSFADSNP
CCGCCGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAA




IRPVTDRAASTAGGGY
CCCGATCCGCCCGGTGACCGACCGCGCCGCCTCCACCGCTGGAGGA




WHTSGREILDANNVPV
GGATACTGGCACACTTCCGGCAGGGAGATCCTCGACGCAAATAACG




RIAGINWFGFETCNYV
TTCCAGTCAGAATCGCCGGGATTAATTGGTTTGGCTTCGAAACGTG




VHGLWSRDYRSMLDQI
TAACTACGTGGTTCACGGCCTGTGGTCTCGGGATTACAGATCAATG




KSLGYNTIRLPYSDDI
CTCGACCAGATCAAATCCTTGGGGTATAATACAATTAGGCTGCCCT




LKPGTMPNSINFYQMN
ACAGCGATGACATTCTTAAGCCTGGAACCATGCCGAACTCGATTAA




QDLQGLTSLQVMDKIV
TTTCTACCAAATGAACCAGGATCTGCAGGGATTGACTTCTCTGCAG




AYAGQIGLRIILDRHR
GTTATGGACAAGATCGTGGCGTACGCCGGCCAAATCGGGCTCAGAA




PDCSGQSALWYTSSVS
TTATTTTGGATCGGCACAGGCCAGACTGCTCAGGTCAGTCGGCCCT




EATWISDLQALAQRYK
GTGGTACACAAGCTCCGTGTCAGAGGCAACATGGATTTCAGATCTT




GNPTVVGFDLHNEPHD
CAAGCCCTCGCACAACGCTATAAAGGCAACCCCACGGTTGTGGGAT




PACWGCGDPSIDWRLA
TCGACCTTCACAACGAACCTCACGATCCGGCCTGTTGGGGCTGCGG




AERAGNAVLSVNPNLL
GGACCCTTCGATCGACTGGAGACTGGCAGCGGAGAGGGCTGGTAAC




IFVEGVQSYNGDSYWW
GCCGTTCTCAGCGTCAATCCCAACTTGCTGATCTTTGTGGAGGGAG




GGNLQGAGQYPVVLNV
TTCAGTCCTACAACGGCGATTCTTACTGGTGGGGCGGAAATCTCCA




PNRLVYSAHDYATSVY
AGGCGCAGGGCAGTATCCTGTCGTGCTTAACGTTCCGAATCGCCTG




PQTWFSDPTFPNNMPG
GTCTACTCAGCACACGACTACGCGACTAGCGTGTACCCACAGACGT




IWNKNWGYLFNQNIAP
GGTTCTCCGATCCCACATTTCCTAACAATATGCCGGGAATCTGGAA




VWLGEFGTTLQSTTDQ
CAAGAATTGGGGTTACTTGTTTAACCAAAACATTGCTCCAGTTTGG




TWLKTLVQYLRPTAQY
TTGGGTGAATTTGGCACCACTCTTCAGTCGACGACAGACCAAACCT




GADSFQWTFWSWNPDS
GGCTGAAAACCCTCGTCCAGTATTTGCGGCCAACTGCTCAGTACGG




GDTGGILKDDWQTVDT
AGCAGATTCTTTTCAATGGACGTTCTGGTCTTGGAATCCTGACTCC




VKDGYLAPIKSSIFDP
GGGGATACAGGCGGTATCCTGAAAGACGATTGGCAGACCGTGGACA




VGASASPSSQPSPSVS
CTGTTAAGGACGGGTACTTGGCGCCGATTAAAAGCTCGATCTTTGA




PSPSPSPSASRTPTPT
CCCAGTCGGCGCTAGCGCTTCCCCATCTTCACAACCTTCGCCGAGC




PTPTASPTPTLTPTAT
GTCAGCCCCAGCCCAAGCCCAAGCCCGTCTGCCAGCAGAACCCCCA




PTPTASPTPSPTAASG
CTCCCACACCTACCCCCACGGCCTCACCAACTCCGACGCTCACTCC




ARCTASYQVNSDWGNG
TACGGCGACGCCAACACCAACTGCTTCACCCACTCCTAGCCCCACC




FTVTVAVTNSGSVATK
GCAGCGAGCGGGGCTAGGTGCACCGCTTCTTACCAGGTCAACTCTG




TWTVSWTFGGNQTITN
ACTGGGGTAATGGCTTCACCGTGACTGTGGCGGTCACTAACTCAGG




SWNAAVTQNGQSVTAR
AAGCGTCGCGACGAAAACCTGGACTGTGTCCTGGACGTTCGGGGGC




NMSYNNVIQPGQNTTF
AACCAAACAATCACCAACAGCTGGAACGCTGCAGTTACGCAGAATG




GFQASYTGSNAAPTVA
GGCAAAGCGTCACGGCGCGCAATATGAGCTACAACAACGTGATTCA




CAASSEKDEL*
ACCAGGCCAGAATACCACATTCGGTTTTCAAGCAAGCTATACCGGG




(SEQ ID NO: 75)
TCAAACGCTGCCCCAACTGTCGCTTGTGCTGCCTCAAGCGAGAAGG





ACGAGCTGTGA (SEQ ID NO: 147)





2048
HvAleSP:NtEGm
MAHARVLLLALAVLAT
ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCA




AAVAVASSSSFADSNP
CCGCCGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAA




IRPVTDRAASTAYDYK
CCCGATCCGCCCGGTGACCGACCGCGCCGCCTCCACCGCTTACGAC




QVLRDSLLFYEAQRSG
TACAAGCAGGTGTTGCGGGACTCGCTACTATTCTATGAGGCCCAGA




RLPADQKVTWRKDSAL
GATCCGGCCGGCTCCCAGCCGACCAGAAGGTCACGTGGAGGAAGGA




NDQGDQGQDLTGGYFD
TAGCGCGCTGAATGACCAGGGTGACCAGGGACAAGACTTGACCGGC




AGDFVKFGFPMAYTAT
GGCTACTTTGACGCTGGGGACTTCGTCAAGTTCGGGTTCCCCATGG




VLAWGLIDFEAGYSSA
CTTATACCGCAACCGTGCTGGCATGGGGCCTCATAGATTTTGAGGC




GALDDGRKAVKWATDY
CGGCTACAGCAGTGCCGGGGCCTTGGATGATGGACGGAAGGCTGTC




FIKAHTSQNEFYGQVG
AAATGGGCCACCGACTATTTCATAAAGGCCCACACAAGTCAAAATG




QGDADHAFWGRPEDMT
AGTTCTATGGTCAGGTCGGCCAGGGTGACGCCGATCACGCTTTCTG




MARPAYKIDTSRPGSD
GGGAAGACCAGAGGATATGACGATGGCGCGCCCGGCGTACAAGATA




LAGETAAALAAASIVF
GACACCTCAAGGCCTGGCTCTGATCTGGCAGGCGAGACAGCGGCTG




RNVDGTYSNNLLTHAR
CTCTTGCCGCTGCTTCAATCGTGTTCCGGAACGTCGATGGCACTTA




QLFDFANNYRGKYSDS
CTCAAATAACCTGTTAACACACGCTCGCCAGCTATTCGACTTCGCG




ITDARNFYASADYRDE
AACAACTACCGGGGAAAGTATAGTGACTCTATTACTGACGCAAGAA




LVWAAAWLYRATNDNT
ATTTCTACGCAAGCGCAGACTACAGAGACGAGTTGGTTTGGGCTGC




YLNTAESLYDEFGLQN
TGCGTGGTTATACAGAGCGACCAACGACAACACCTACCTCAACACT




WGGGLNWDSKVSGVQV
GCTGAGTCACTGTACGATGAGTTTGGGCTACAGAACTGGGGGGGGG




LLAKLTNKQAYKDTVQ
GCCTGAACTGGGATAGCAAGGTGTCTGGCGTGCAGGTGTTGTTGGC




SYVNYLINNQQKTPKG
CAAGCTTACCAATAAGCAGGCCTACAAGGACACGGTGCAGTCTTAC




LLYIDMWGTLRHAANA
GTCAATTACCTAATTAATAACCAGCAGAAGACTCCCAAGGGCCTCC




AFIMLEAAELGLSASS
TCTACATCGACATGTGGGGCACCCTTCGCCACGCTGCCAACGCCGC




YRQFAQTQIDYALGDG
ATTCATCATGCTCGAAGCCGCCGAGCTGGGCTTGTCCGCCTCCTCT




GRSFVCGFGSNPPTRP
TATAGACAGTTCGCGCAAACGCAAATCGACTACGCCCTGGGCGATG




HHRSSSCPPAPATCDW
GTGGCCGCTCCTTTGTGTGCGGGTTCGGGAGTAATCCTCCTACGAG




NTFNSPDPNYHVLSGA
ACCGCACCACAGATCCTCGTCGTGCCCGCCAGCTCCCGCTACTTGC




LVGGPDQNDNYVDDRS
GACTGGAATACATTCAACTCACCTGACCCAAACTACCACGTCCTCT




DYVHNEVATDYNAGFQ
CTGGGGCCCTAGTGGGCGGACCTGATCAGAATGACAACTACGTCGA




SALAALVALGY*
TGACCGTTCAGACTATGTTCACAACGAAGTCGCCACTGATTACAAC




(SEQ ID NO: 76)
GCGGGTTTCCAGTCCGCGTTAGCTGCTTTGGTGGCCCTTGGTTACT





GA (SEQ ID NO: 148)





2049
HvAleSP:NtEGm:
MAHARVLLLALAVLAT
ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCA



SEKDEL
AAVAVASSSSFADSNP
CCGCCGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAA




IRPVTDRAASTAYDYK
CCCGATCCGCCCGGTGACCGACCGCGCCGCCTCCACCGCTTACGAC




QVLRDSLLFYEAQRSG
TACAAGCAGGTGTTGCGGGACTCGCTACTATTCTATGAGGCCCAGA




RLPADQKVTWRKDSAL
GATCCGGCCGGCTCCCAGCCGACCAGAAGGTCACGTGGAGGAAGGA




NDQGDQGQDLTGGYFD
TAGCGCGCTGAATGACCAGGGTGACCAGGGACAAGACTTGACCGGC




AGDFVKFGFPMAYTAT
GGCTACTTTGACGCTGGGGACTTCGTCAAGTTCGGGTTCCCCATGG




VLAWGLIDFEAGYSSA
CTTATACCGCAACCGTGCTGGCATGGGGCCTCATAGATTTTGAGGC




GALDDGRKAVKWATDY
CGGCTACAGGAGTGCCGGGGCCTTGGATGATGGACGGAAGGCTGTC




FIKAHTSQNEFYGQVG
AAATGGGCCACCGACTATTTCATAAAGGCCCACACAAGTCAAAATG




QGDADHAFWGRPEDMT
AGTTCTATGGTCAGGTCGGCCAGGGTGACGCCGATCACGCTTTCTG




MARPAYKIDTSRPGSD
GGGAAGACCAGAGGATATGACGATGGCGCGCCCGGCGTACAAGATA




LAGETAAALAAASIVF
GACACCTCAAGGCCTGGCTCTGATCTGGCAGGCGAGACAGCGGCTG




RNVDGTYSNNLLTHAR
CTCTTGCCGCTGCTTCAATCGTGTTCCGGAACGTCGATGGCACTTA




QLFDFANNYRGKYSDS
CTCAAATAACCTGTTAACACACGCTCGCCAGCTATTCGACTTCGCG




ITDARNFYASADYRDE
AACAACTACCGGGGAAAGTATAGTGACTCTATTACTGACGCAAGAA




LVWAAAWLYRATNDNT
ATTTCTACGCAAGCGCAGACTACAGAGACGAGTTGGTTTGGGCTGC




YLNTAESLYDEFGLQN
TGCGTGGTTATACAGAGCGACCAACGACAACACCTACCTCAACACT




WGGGLNWDSKVSGVQV
GCTGAGTCACTGTACGATGAGTTTGGGCTACAGAACTGGGGGGGGG




LLAKLTNKQAYKDTVQ
GCCTGAACTGGGATAGCAAGGTGTCTGGCGTGCAGGTGTTGTTGGC




SYVNYLINNQQKTPKG
CAAGCTTACCAATAAGCAGGCCTACAAGGACACGGTGCAGTCTTAC




LLYIDMWGTLRHAANA
GTCAATTACCTAATTAATAACCAGCAGAAGACTCCCAAGGGCCTCC




AFIMLEAAELGLSASS
TCTACATCGACATGTGGGGCACCCTTCGCCACGCTGCCAACGCCGC




YRQFAQTQIDYALGDG
ATTCATCATGCTCGAAGCCGCCGAGCTGGGCTTGTCCGCCTCCTCT




GRSFVCGFGSNPPTRP
TATAGACAGTTCGCGCAAACGCAAATCGACTACGCCCTGGGCGATG




HHRSSSCPPAPATCDW
GTGGCCGCTCCTTTGTGTGCGGGTTCGGGAGTAATCCTCCTACGAG




NTFNSPDPNYHVLSGA
ACCGCACCACAGATCCTCGTCGTGCCCGCCAGCTCCCGCTACTTGC




LVGGPDQNDNYVDDRS
GACTGGAATACATTCAACTCACCTGACCCAAACTACCACGTCCTCT




DYVHNEVATDYNAGFQ
CTGGGGCCCTAGTGGGCGGACCTGATCAGAATGACAACTACGTCGA




SALAALVALGYSEKDE
TGACCGTTCAGACTATGTTCACAACGAAGTCGCCACTGATTACAAC




L* (SEQ ID NO:
GCGGGTTTCCAGTCCGCGTTAGCTGCTTTGGTGGCCCTTGGTTACA




77)
GCGAGAAGGACGAGCTGTGA (SEQ ID NO: 149)





2050
P26222
MNDSPFYVNPNMSSAE
ATGAACGATAGTCCATTCTACGTGAACCCGAATATGTCATCAGCTG




WVRNNPNDPRTPVIRD
AGTGGGTGCGTAACAACCCCAATGACCCTCGCACACCAGTCATTAG




RIASVPQGTWFAHHNP
GGATCGTATTGCCTCGGTGCCCCAAGGAACGTGGTTCGCCCACCAT




GQITGQVDALMSAAQA
AACCCTGGCCAGATTACAGGGCAAGTTGATGCTCTGATGTCCGCCG




AGKIPILVVYNAPGRD
CTCAAGCCGCGGGTAAGATCCCTATTCTCGTGGTGTACAACGCACC




CGNHSSGGAPSHSAYR
AGGACGCGACTGCGGGAATCATAGTTCGGGTGGGGCTCCTTCCCAC




SWIDEFAAGLKNRPAY
AGCGCTTATCGGTCTTGGATCGACGAGTTTGCTGCTGGCCTCAAGA




IIVEPDLISLMSSCMQ
ACCGTCCCGCTTACATCATTGTGGAGCCTGACCTGATAAGCCTTAT




HVQQEVLETMAYAGKA
GTCGTCGTGTATGCAGCACGTTCAACAGGAGGTGCTCGAGACTATG




LKAGSSQARIYFDAGH
GCCTACGCAGGGAAGGCCTTGAAGGCCGGCTCATCCCAGGCCCGTA




SAWHSPAQMASWLQQA
TCTATTTCGACGCGGGGCATTCGGCGTGGCATTCACCAGCGCAGAT




DISNSAHGIATNTSNY
GGCTTCTTGGCTCCAGCAGGCTGATATCTCAAACTCTGCACATGGT




RWTADEVAYAKAVLSA
ATCGCCACGAATACTTCTAACTACCGTTGGACCGCTGATGAAGTCG




IGNPSLRAVIDTSRNG
CGTACGCCAAGGCCGTGCTGTCCGCCATAGGAAATCCCTCCCTCAG




NGPAGNEWCDPSGRAI
AGCCGTCATAGATACGTCCCGCAACGGAAATGGCCCTGCTGGAAAT




GTPSTTNTGDPMIDAF
GAGTGGTGCGACCCAAGCGGACGCGCTATCGGAACCCCGAGTACCA




LWIKLPGEADGCIAGA
CAAATACTGGCGACCCAATGATCGATGCTTTCCTCTGGATTAAGCT




GQFVPQAAYEMAIAAG
TCCGGGAGAAGCAGACGGTTGCATCGCCGGAGCTGGCCAATTCGTT




GTNPNPNPNPTPTPTP
CCACAAGCAGCATACGAGATGGCTATTGCGGCGGGTGGTACGAATC




TPTPPPGSSGACTATY
CTAATCCCAACCCCAACCCTACGCCAACGCCCACACCGACTCCCAC




TIANEWNDGFQATVTV
TCCACCTCCGGGGAGCAGCGGCGCCTGCACAGCCACCTATACAATC




TANQNITGWTVTWTFT
GCAAACGAATGGAATGATGGCTTCCAAGCGACGGTGACGGTGACCG




DGQTITNAWNADVSTS
CGAACCAGAACATCACTGGGTGGACTGTCACTTGGACTTTCACGGA




GSSVTARNVGHNGTLS
TGGACAGACTATTACTAACGCCTGGAATGCTGACGTTTCGACGTCA




QGASTEFGFVGSKGNS
GGTTCGTCTGTGACGGCGCGCAACGTCGGGCATAATGGTACTCTCT




NSVPTLTCAAS*
CCCAGGGCGCCAGCACAGAGTTTGGCTTTGTCGGCTCAAAGGGAAA




(SEQ ID NO: 78)
TTCAAATAGCGTCCCCACTCTCACGTGCGCCGCCTCGTGA





(SEQ ID NO: 150)





2051
PR1a:P26222
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAND
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCAA




SPFYVNPNMSSAEWVR
CGATAGTCCATTCTACGTGAACCCGAATATGTCATCAGCTGAGTGG




NNPNDPRTPVIRDRIA
GTGCGTAACAACCCCAATGACCCTCGCACACCAGTCATTAGGGATC




SVPQGTWFAHHNPGQI
GTATTGCCTCGGTGCCCCAAGGAACGTGGTTCGCCCACCATAACCC




TGQVDALMSAAQAAGK
TGGCCAGATTACAGGGCAAGTTGATGCTCTGATGTCCGCCGCTCAA




IPILVVYNAPGRDCGN
GCCGCGGGTAAGATCCCTATTCTCGTGGTGTACAACGCACCAGGAC




HSSGGAPSHSAYRSWI
GCGACTGCGGGAATCATAGTTCGGGTGGGGCTCCTTCCCACAGCGC




DEFAAGLKNRPAYIIV
TTATCGGTCTTGGATCGACGAGTTTGCTGCTGGCCTCAAGAACCGT




EPDLISLMSSCMQHVQ
CCCGCTTACATCATTGTGGAGCCTGACCTGATAAGCCTTATGTCGT




QEVLETMAYAGKALKA
CGTGTATGCAGCACGTTCAACAGGAGGTGCTCGAGACTATGGCCTA




GSSQARIYFDAGHSAW
CGCAGGGAAGGCCTTGAAGGCCGGCTCATCCCAGGCCCGTATCTAT




HSPAQMASWLQQADIS
TTCGACGCGGGGCATTCGGCGTGGCATTCACCAGCGCAGATGGCTT




NSAHGIATNTSNYRWT
CTTGGCTCCAGCAGGCTGATATCTCAAACTCTGCACATGGTATCGC




ADEVAYAKAVLSAIGN
CACGAATACTTCTAACTACCGTTGGACCGCTGATGAAGTCGCGTAC




PSLRAVIDTSRNGNGP
GCCAAGGCCGTGCTGTCCGCCATAGGAAATCCCTCCCTCAGAGCCG




AGNEWCDPSGRAIGTP
TCATAGATACGTCCCGCAACGGAAATGGCCCTGCTGGAAATGAGTG




STTNTGDPMIDAFLWI
GTGCGACCCAAGCGGACGCGCTATCGGAACCCCGAGTACCACAAAT




KLPGEADGCIAGAGQF
ACTGGCGACCCAATGATCGATGCTTTCCTCTGGATTAAGCTTCCGG




VPQAAYEMAIAAGGTN
GAGAAGCAGACGGTTGCATCGCCGGAGCTGGCCAATTCGTTCCACA




PNPNPNPTPTPTPTPT
AGCAGCATACGAGATGGCTATTGCGGCGGGTGGTACGAATCCTAAT




PPPGSSGACTATYTIA
CCCAACCCCAACCCTACGCCAACGCCCACACCGACTCCCACTCCAC




NEWNDGFQATVTVTAN
CTCCGGGGAGCAGCGGCGCCTGCACAGCCACCTATACAATCGCAAA




QNITGWTVTWTFTDGQ
CGAATGGAATGATGGCTTCCAAGCGACGGTGACGGTGACCGCGAAC




TITNAWNADVSTSGSS
CAGAACATCACTGGGTGGACTGTCACTTGGACTTTCACGGATGGAC




VTARNVGHNGTLSQGA
AGACTATTACTAACGCCTGGAATGCTGACGTTTCGACGTCAGGTTC




STEFGFVGSKGNSNSV
GTCTGTGACGGCGCGCAACGTCGGGCATAATGGTACTCTCTCCCAG




PTLTCAAS* (SEQ
GGCGCCAGCACAGAGTTTGGCTTTGTCGGCTCAAAGGGAAATTCAA




ID NO: 79)
ATAGCGTCCCCACTCTCACGTGCGCCGCCTCGTGA (SEQ ID





NO: 151)





2052
PR1a:P26222:SEKDEL
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAND
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCAA




SPFYVNPNMSSAEWVR
CGATAGTCCATTCTACGTGAACCCGAATATGTCATCAGCTGAGTGG




NNPNDPRTPVIRDRIA
GTGCGTAACAACCCCAATGACCCTCGCACACCAGTCATTAGGGATC




SVPQGTWFAHHNPGQI
GTATTGCCTCGGTGCCCCAAGGAACGTGGTTCGCCCACCATAACCC




TGQVDALMSAAQAAGK
TGGCCAGATTACAGGGCAAGTTGATGCTCTGATGTCCGCCGCTCAA




IPILVVYNAPGRDCGN
GCCGCGGGTAAGATCCCTATTCTCGTGGTGTACAACGCACCAGGAC




HSSGGAPSHSAYRSWI
GCGACTGCGGGAATCATAGTTCGGGTGGGGCTCCTTCCCACAGCGC




DEFAAGLKNRPAYIIV
TTATCGGTCTTGGATCGACGAGTTTGCTGCTGGCCTCAAGAACCGT




EPDLISLMSSCMQHVQ
CCCGCTTACATCATTGTGGAGCCTGACCTGATAAGCCTTATGTCGT




QEVLETMAYAGKALKA
CGTGTATGCAGCACGTTCAACAGGAGGTGCTCGAGACTATGGCCTA




GSSQARIYFDAGHSAW
CGCAGGGAAGGCCTTGAAGGCCGGCTCATCCCAGGCCCGTATCTAT




HSPAQMASWLQQADIS
TTCGACGCGGGGCATTCGGCGTGGCATTCACCAGCGCAGATGGCTT




NSAHGIATNTSNYRWT
CTTGGCTCCAGCAGGCTGATATCTCAAACTCTGCACATGGTATCGC




ADEVAYAKAVLSAIGN
CACGAATACTTCTAACTACCGTTGGACCGCTGATGAAGTCGCGTAC




PSLRAVIDTSRNGNGP
GCCAAGGCCGTGCTGTCCGCCATAGGAAATCCCTCCCTCAGAGCCG




AGNEWCDPSGRAIGTP
TCATAGATACGTCCCGCAACGGAAATGGCCCTGCTGGAAATGAGTG




STTNTGDPMIDAFLWI
GTGCGACCCAAGCGGACGCGCTATCGGAACCCCGAGTACCACAAAT




KLPGEADGCIAGAGQF
ACTGGCGACCCAATGATCGATGCTTTCCTCTGGATTAAGCTTCCGG




VPQAAYEMAIAAGGTN
GAGAAGCAGACGGTTGCATCGCCGGAGCTGGCCAATTCGTTCCACA




PNPNPNPTPTPTPTPT
AGCAGCATACGAGATGGCTATTGCGGCGGGTGGTACGAATCCTAAT




PPPGSSGACTATYTIA
CCCAACCCCAACCCTACGCCAACGCCCACACCGACTCCCACTCCAC




NEWNDGFQATVTVTAN
CTCCGGGGAGCAGCGGCGCCTGCACAGCCACCTATACAATCGCAAA




QNITGWTVTWTFTDGQ
CGAATGGAATGATGGCTTCCAAGCGACGGTGACGGTGACCGCGAAC




TITNAWNADVSTSGSS
CAGAACATCACTGGGTGGACTGTCACTTGGACTTTCACGGATGGAC




VTARNVGHNGTLSQGA
AGACTATTACTAACGCCTGGAATGCTGACGTTTCGACGTCAGGTTC




STEFGFVGSKGNSNSV
GTCTGTGACGGCGCGCAACGTCGGGCATAATGGTACTCTCTCCCAG




PTLTCAASSEKDEL*
GGCGCCAGCACAGAGTTTGGCTTTGTCGGCTCAAAGGGAAATTCAA




(SEQ ID NO: 80)
ATAGCGTCCCCACTCTCACGTGCGCCGCCTCGAGCGAGAAGGACGA





GCTGTGA (SEQ ID NO: 152)





2053
BAASS:P26222
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQNDSPFYV
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAAACGATAGTCCATTCTA




NPNMSSAEWVRNNPND
CGTGAACCCGAATATGTCATCAGCTGAGTGGGTGCGTAACAACCCC




PRTPVIRDRIASVPQG
AATGACCCTCGCACACCAGTCATTAGGGATCGTATTGCCTCGGTGC




TWFAHHNPGQITGQVD
CCCAAGGAACGTGGTTCGCCCACCATAACCCTGGCCAGATTACAGG




ALMSAAQAAGKIPILV
GCAAGTTGATGCTCTGATGTCCGCCGCTCAAGCCGCGGGTAAGATC




VYNAPGRDCGNHSSGG
CCTATTCTCGTGGTGTACAACGCACCAGGACGCGACTGCGGGAATC




APSHSAYRSWIDEFAA
ATAGTTCGGGTGGGGCTCCTTCCCACAGCGCTTATCGGTCTTGGAT




GLKNRPAYIIVEPDLI
CGACGAGTTTGCTGCTGGCCTCAAGAACCGTCCCGCTTACATCATT




SLMSSCMQHVQQEVLE
GTGGAGCCTGACCTGATAAGCCTTATGTCGTCGTGTATGCAGCACG




TMAYAGKALKAGSSQA
TTCAACAGGAGGTGCTCGAGACTATGGCCTACGCAGGGAAGGCCTT




RIYFDAGHSAWHSPAQ
GAAGGCCGGCTCATCCCAGGCCCGTATCTATTTCGACGCGGGGCAT




MASWLQQADISNSAHG
TCGGCGTGGCATTCACCAGCGCAGATGGCTTCTTGGCTCCAGCAGG




IATNTSNYRWTADEVA
CTGATATCTCAAACTCTGCACATGGTATCGCCACGAATACTTCTAA




YAKAVLSAIGNPSLRA
CTACCGTTGGACCGCTGATGAAGTCGCGTACGCCAAGGCCGTGCTG




VIDTSRNGNGPAGNEW
TCCGCCATAGGAAATCCCTCCCTCAGAGCCGTCATAGATACGTCCC




CDPSGRAIGTPSTTNT
GCAACGGAAATGGCCCTGCTGGAAATGAGTGGTGCGACCCAAGCGG




GDPMIDAFLWIKLPGE
ACGCGCTATCGGAACCCCGAGTACCACAAATACTGGCGACCCAATG




ADGCIAGAGQFVPQAA
ATCGATGCTTTCCTCTGGATTAAGCTTCCGGGAGAAGCAGACGGTT




YEMAIAAGGTNPNPNP
GCATCGCCGGAGCTGGCCAATTCGTTCCACAAGCAGCATACGAGAT




NPTPTPTPTPTPPPGS
GGCTATTGCGGCGGGTGGTACGAATCCTAATCCCAACCCCAACCCT




SGACTATYTIANEWND
ACGCCAACGCCCACACCGACTCCCACTCCACCTCCGGGGAGCAGCG




GFQATVTVTANQNITG
GCGCCTGCACAGCCACCTATACAATCGCAAACGAATGGAATGATGG




WTVTWTFTDGQTITNA
CTTCCAAGCGACGGTGACGGTGACCGCGAACCAGAACATCACTGGG




WNADVSTSGSSVTARN
TGGACTGTCACTTGGACTTTCACGGATGGACAGACTATTACTAACG




VGHNGTLSQGASTEFG
CCTGGAATGCTGACGTTTCGACGTCAGGTTCGTCTGTGACGGCGCG




FVGSKGNSNSVPTLTC
CAACGTCGGGCATAATGGTACTCTCTCCCAGGGCGCCAGCACAGAG




AAS* (SEQ ID
TTTGGCTTTGTCGGCTCAAAGGGAAATTCAAATAGCGTCCCCACTC




NO: 81)
TCACGTGCGCCGCCTCGTGA (SEQ ID NO: 153)





2054
BAASS:P26222:SEKDEL
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQNDSPFYV
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAAACGATAGTCCATTCTA




NPNMSSAEWVRNNPND
CGTGAACCCGAATATGTCATCAGCTGAGTGGGTGCGTAACAACCCC




PRTPVIRDRIASVPQG
AATGACCCTCGCACACCAGTCATTAGGGATCGTATTGCCTCGGTGC




TWFAHHNPGQITGQVD
CCCAAGGAACGTGGTTCGCCCACCATAACCCTGGCCAGATTACAGG




ALMSAAQAAGKIPILV
GCAAGTTGATGCTCTGATGTCCGCCGCTCAAGCCGCGGGTAAGATC




VYNAPGRDCGNHSSGG
CCTATTCTCGTGGTGTACAACGCACCAGGACGCGACTGCGGGAATC




APSHSAYRSWIDEFAA
ATAGTTCGGGTGGGGCTCCTTCCCACAGCGCTTATCGGTCTTGGAT




GLKNRPAYIIVEPDLI
CGACGAGTTTGCTGCTGGCCTCAAGAACCGTCCCGCTTACATCATT




SLMSSCMQHVQQEVLE
GTGGAGCCTGACCTGATAAGCCTTATGTCGTCGTGTATGCAGCACG




TMAYAGKALKAGSSQA
TTCAACAGGAGGTGCTCGAGACTATGGCCTACGCAGGGAAGGCCTT




RIYFDAGHSAWHSPAQ
GAAGGCCGGCTCATCCCAGGCCCGTATCTATTTCGACGCGGGGCAT




MASWLQQADISNSAHG
TCGGCGTGGCATTCACCAGCGCAGATGGCTTCTTGGCTCCAGCAGG




IATNTSNYRWTADEVA
CTGATATCTCAAACTCTGCACATGGTATCGCCACGAATACTTCTAA




YAKAVLSAIGNPSLRA
CTACCGTTGGACCGCTGATGAAGTCGCGTACGCCAAGGCCGTGCTG




VIDTSRNGNGPAGNEW
TCCGCCATAGGAAATCCCTCCCTCAGAGCCGTCATAGATACGTCCC




CDPSGRAIGTPSTTNT
GCAACGGAAATGGCCCTGCTGGAAATGAGTGGTGCGACCCAAGCGG




GDPMIDAFLWIKLPGE
ACGCGCTATCGGAACCCCGAGTACCACAAATACTGGCGACCCAATG




ADGCIAGAGQFVPQAA
ATCGATGCTTTCCTCTGGATTAAGCTTCCGGGAGAAGCAGACGGTT




YEMAIAAGGTNPNPNP
GCATCGCCGGAGCTGGCCAATTCGTTCCACAAGCAGCATACGAGAT




NPTPTPTPTPTPPPGS
GGCTATTGCGGCGGGTGGTACGAATCCTAATCCCAACCCCAACCCT




SGACTATYTIANEWND
ACGCCAACGCCCACACCGACTCCCACTCCACCTCCGGGGAGCAGCG




GFQATVTVTANQNITG
GCGCCTGCACAGCCACCTATACAATCGCAAACGAATGGAATGATGG




WTVTWTFTDGQTITNA
CTTCCAAGCGACGGTGACGGTGACCGCGAACCAGAACATCACTGGG




WNADVSTSGSSVTARN
TGGACTGTCACTTGGACTTTCACGGATGGACAGACTATTACTAACG




VGHNGTLSQGASTEFG
CCTGGAATGCTGACGTTTCGACGTCAGGTTCGTCTGTGACGGCGCG




FVGSKGNSNSVPTLTC
CAACGTCGGGCATAATGGTACTCTCTCCCAGGGCGCCAGCACAGAG




AASSEKDEL*
TTTGGCTTTGTCGGCTCAAAGGGAAATTCAAATAGCGTCCCCACTC




(SEQ ID NO: 82)
TCACGTGCGCCGCCTCGAGCGAGAAGGACGAGCTGTGA (SEQ





ID NO: 154)





2055
HvAleSP:P26222
MAHARVLLLALAVLAT
ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCA




AAVAVASSSSFADSNP
CCGCCGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAA




IRPVTDRAASTNDSPF
CCCGATCCGCCCGGTGACCGACCGCGCCGCCTCCACCAACGATAGT




YVNPNMSSAEWVRNNP
CCATTCTACGTGAACCCGAATATGTCATCAGCTGAGTGGGTGCGTA




NDPRTPVIRDRIASVP
ACAACCCCAATGACCCTCGCACACCAGTCATTAGGGATCGTATTGC




QGTWFAHHNPGQITGQ
CTCGGTGCCCCAAGGAACGTGGTTCGCCCACCATAACCCTGGCCAG




VDALMSAAQAAGKIPI
ATTACAGGGCAAGTTGATGCTCTGATGTCCGCCGCTCAAGCCGCGG




LVVYNAPGRDCGNHSS
GTAAGATCCCTATTCTCGTGGTGTACAACGCACCAGGACGCGACTG




GGAPSHSAYRSWIDEF
CGGGAATCATAGTTCGGGTGGGGCTCCTTCCCACAGCGCTTATCGG




AAGLKNRPAYIIVEPD
TCTTGGATCGACGAGTTTGCTGCTGGCCTCAAGAACCGTCCCGCTT




LISLMSSCMQHVQQEV
ACATCATTGTGGAGCCTGACCTGATAAGCCTTATGTCGTCGTGTAT




LETMAYAGKALKAGSS
GCAGCACGTTCAACAGGAGGTGCTCGAGACTATGGCCTACGCAGGG




QARIYFDAGHSAWHSP
AAGGCCTTGAAGGCCGGCTCATCCCAGGCCCGTATCTATTTCGACG




AQMASWLQQADISNSA
CGGGGCATTCGGCGTGGCATTCACCAGCGCAGATGGCTTCTTGGCT




HGIATNTSNYRWTADE
CCAGCAGGCTGATATCTCAAACTCTGCACATGGTATCGCCACGAAT




VAYAKAVLSAIGNPSL
ACTTCTAACTACCGTTGGACCGCTGATGAAGTCGCGTACGCCAAGG




RAVIDTSRNGNGPAGN
CCGTGCTGTCCGCCATAGGAAATCCCTCCCTCAGAGCCGTCATAGA




EWCDPSGRAIGTPSTT
TACGTCCCGCAACGGAAATGGCCCTGCTGGAAATGAGTGGTGCGAC




NTGDPMIDAFLWIKLP
CCAAGCGGACGCGCTATCGGAACCCCGAGTACCACAAATACTGGCG




GEADGCIAGAGQFVPQ
ACCCAATGATCGATGCTTTCCTCTGGATTAAGCTTCCGGGAGAAGC




AAYEMAIAAGGTNPNP
AGACGGTTGCATCGCCGGAGCTGGCCAATTCGTTCCACAAGCAGCA




NPNPTPTPTPTPTPPP
TACGAGATGGCTATTGCGGCGGGTGGTACGAATCCTAATCCCAACC




GSSGACTATYTIANEW
CCAACCCTACGCCAACGCCCACACCGACTCCCACTCCACCTCCGGG




NDGFQATVTVTANQNI
GAGCAGCGGCGCCTGCACAGCCACCTATACAATCGCAAACGAATGG




TGWTVTWTFTDGQTIT
AATGATGGCTTCCAAGCGACGGTGACGGTGACCGCGAACCAGAACA




NAWNADVSTSGSSVTA
TCACTGGGTGGACTGTCACTTGGACTTTCACGGATGGACAGACTAT




RNVGHNGTLSQGASTE
TACTAACGCCTGGAATGCTGACGTTTCGACGTCAGGTTCGTCTGTG




FGFVGSKGNSNSVPTL
ACGGCGCGCAACGTCGGGCATAATGGTACTCTCTCCCAGGGCGCCA




TCAAS* (SEQ ID
GCACAGAGTTTGGCTTTGTCGGCTCAAAGGGAAATTCAAATAGCGT




NO:
CCCCACTCTCACGTGCGCCGCCTCGTGA (SEQ ID NO:




83)
155)





2056
HvAleSP:P26222:
MAHARVLLLALAVLAT
ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCA



SEKDEL
AAVAVASSSSFADSNP
CCGCCGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAA




IRPVTDRAASTNDSPF
CCCGATCCGCCCGGTGACCGACCGCGCCGCCTCCACCAACGATAGT




YVNPNMSSAEWVRNNP
CCATTCTACGTGAACCCGAATATGTCATCAGCTGAGTGGGTGCGTA




NDPRTPVIRDRIASVP
ACAACCCCAATGACCCTCGCACACCAGTCATTAGGGATCGTATTGC




QGTWFAHHNPGQITGQ
CTCGGTGCCCCAAGGAACGTGGTTCGCCCACCATAACCCTGGCCAG




VDALMSAAQAAGKIPI
ATTACAGGGCAAGTTGATGCTCTGATGTCCGCCGCTCAAGCCGCGG




LVVYNAPGRDCGNHSS
GTAAGATCCCTATTCTCGTGGTGTACAACGCACCAGGACGCGACTG




GGAPSHSAYRSWIDEF
CGGGAATCATAGTTCGGGTGGGGCTCCTTCCCACAGCGCTTATCGG




AAGLKNRPAYIIVEPD
TCTTGGATCGACGAGTTTGCTGCTGGCCTCAAGAACCGTCCCGCTT




LISLMSSCMQHVQQEV
ACATCATTGTGGAGCCTGACCTGATAAGCCTTATGTCGTCGTGTAT




LETMAYAGKALKAGSS
GCAGCACGTTCAACAGGAGGTGCTCGAGACTATGGCCTACGCAGGG




QARIYFDAGHSAWHSP
AAGGCCTTGAAGGCCGGCTCATCCCAGGCCCGTATCTATTTCGACG




AQMASWLQQADISNSA
CGGGGCATTCGGCGTGGCATTCACCAGCGCAGATGGCTTCTTGGCT




HGIATNTSNYRWTADE
CCAGCAGGCTGATATCTCAAACTCTGCACATGGTATCGCCACGAAT




VAYAKAVLSAIGNPSL
ACTTCTAACTACCGTTGGACCGCTGATGAAGTCGCGTACGCCAAGG




RAVIDTSRNGNGPAGN
CCGTGCTGTCCGCCATAGGAAATCCCTCCCTCAGAGCCGTCATAGA




EWCDPSGRAIGTPSTT
TACGTCCCGCAACGGAAATGGCCCTGCTGGAAATGAGTGGTGCGAC




NTGDPMIDAFLWIKLP
CCAAGCGGACGCGCTATCGGAACCCCGAGTACCACAAATACTGGCG




GEADGCIAGAGQFVPQ
ACCCAATGATCGATGCTTTCCTCTGGATTAAGCTTCCGGGAGAAGC




AAYEMAIAAGGTNPNP
AGACGGTTGCATCGCCGGAGCTGGCCAATTCGTTCCACAAGCAGCA




NPNPTPTPTPTPTPPP
TACGAGATGGCTATTGCGGCGGGTGGTACGAATCCTAATCCCAACC




GSSGACTATYTIANEW
CCAACCCTACGCCAACGCCCACACCGACTCCCACTCCACCTCCGGG




NDGFQATVTVTANQNI
GAGCAGCGGCGCCTGCACAGCCACCTATACAATCGCAAACGAATGG




TGWTVTWTFTDGQTIT
AATGATGGCTTCCAAGCGACGGTGACGGTGACCGCGAACCAGAACA




NAWNADVSTSGSSVTA
TCACTGGGTGGACTGTCACTTGGACTTTCACGGATGGACAGACTAT




RNVGHNGTLSQGASTE
TACTAACGCCTGGAATGCTGACGTTTCGACGTCAGGTTCGTCTGTG




FGFVGSKGNSNSVPTL
ACGGCGCGCAACGTCGGGCATAATGGTACTCTCTCCCAGGGCGCCA




TCAASSEKDEL*
GCACAGAGTTTGGCTTTGTCGGCTCAAAGGGAAATTCAAATAGCGT




(SEQ ID NO: 84)
CCCCACTCTCACGTGCGCCGCCTCGAGCGAGAAGGACGAGCTGTGA





(SEQ ID NO: 156)





2057
BAASS:P77853:SEKDEL
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGATSLGQVTIDG
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGC




GTYDIYRTTRVNQPSI
CAAGTGACAATCGATGGCGGGACCTACGACATCTATAGGACGACAC




VGTATFDQYWSVRTSK
GCGTCAACCAGCCTTCCATTGTGGGGACAGCCACGTTCGATCAGTA




RTSGTVTVTDHFRAWA
CTGGAGCGTGCGCACCTCTAAGCGGACTTCAGGAACAGTGACCGTG




NRGLNLGTIDQITLCV
ACCGATCACTTCCGCGCCTGGGCGAACCGGGGCCTGAACCTCGGCA




EGYQSSGSANITQNTF
CAATAGACCAAATTACATTGTGCGTGGAGGGTTACCAAAGCTCTGG




SQGSSSGSSGGSSGST
ATCAGCCAACATCACCCAGAACACCTTCTCTCAGGGCTCTTCTTCC




TTTRIECENMSLSGPY
GGCAGTTCGGGTGGCTCATCCGGCTCCACAACGACTACTCGCATCG




VSRITNPFNGIALYAN
AGTGTGAGAACATGTCCTTGTCCGGACCCTACGTTAGCAGGATCAC




GDTARATVNFPASRNY
CAATCCCTTTAATGGTATTGCGCTGTACGCCAACGGAGACACAGCC




NFRLRGCGNNNNLARV
CGCGCTACCGTTAACTTCCCCGCAAGTCGCAACTACAATTTCCGCC




DLRIDGRTVGTFYYQG
TGCGGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACCTGAG




TYPWEAPIDNVYVSAG
GATCGACGGACGGACCGTCGGGACCTTTTATTACCAGGGCACATAC




SHTVEITVTADNGTWD
CCCTGGGAGGCCCCAATTGACAATGTTTATGTCAGTGCGGGGAGTC




VYADYLVIQSEKDEL*
ATACAGTCGAAATCACTGTTACTGCGGATAACGGCACATGGGACGT




(SEQ ID NO: 85)
GTATGCCGACTACCTGGTGATACAGAGCGAGAAGGACGAGCTGTGA





(SEQ ID NO: 157)





2058
PR1a:P77853:SEKDEL
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAQQ
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCCA




TSITLTSNASGTFDGY
GCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTGAC




YYELWKDTGNTTMTVY
GGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAATGA




TQGRFSCQWSNINNAL
CGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCGAACATCAA




FRTGKKYNQNWQSLGT
TAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTGGCAG




IRITYSATYNPNGNSY
TCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACAACCCAA




LCIYGWSTNPLVEFYI
ACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAACCCATT




VESWGNWRPPGATSLG
GGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGACCGCCT




QVTIDGGTYDIYRTTR
GGTGCCACGTCCCTGGGCCAAGTGACAATCGATGGCGGGACCTACG




VNQPSIVGTATFDQYW
ACATCTATAGGACGACACGCGTCAACCAGCCTTCCATTGTGGGGAC




SVRTSKRTSGTVTVTD
AGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCTAAGCGGACT




HFRAWANRGLNLGTID
TCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCTGGGCGAACC




QITLCVEGYQSSGSAN
GGGGCCTGAACCTCGGCACAATAGACCAAATTACATTGTGCGTGGA




ITQNTFSQGSSSGSSG
GGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAGAACACCTTC




GSSGSTTTTRIECENM
TCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCATCCGGCTCCA




SLSGPYVSRITNPFNG
CAACGACTACTCGCATCGAGTGTGAGAACATGTCCTTGTCCGGACC




IALYANGDTARATVNF
CTACGTTAGCAGGATCACCAATCCCTTTAATGGTATTGCGCTGTAC




PASRNYNFRLRGCGNN
GCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCCCCGCAAGTC




NNLARVDLRIDGRTVG
GCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAACAATAATCT




TFYYQGTYPWEAPIDN
TGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTCGGGACCTTT




VYVSAGSHTVEITVTA
TATTACCAGGGCACATACCCCTGGGAGGCCCCAATTGACAATGTTT




DNGTWDVYADYLVIQS
ATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGTTACTGCGGA




EKDEL* (SEQ ID
TAACGGCACATGGGACGTGTATGCCGACTACCTGGTGATACAGAGC




NO: 86)
GAGAAGGACGAGCTGTGA (SEQ ID NO: 158)





2059
O43097
MFPAGNATELEKRQTT
ATGTTCCCAGCTGGAAACGCAACGGAATTGGAGAAAAGACAAACCA




PNSEGWHDGYYYSWWS
CCCCTAACTCTGAGGGCTGGCATGACGGATACTACTACTCTTGGTG




DGGAQATYTNLEGGTY
GAGCGATGGTGGTGCACAGGCCACCTATACAAACCTCGAAGGCGGC




EISWGDGGNLVGGKGW
ACTTATGAGATTTCATGGGGTGACGGTGGCAACCTTGTCGGCGGAA




NPGLNARAIHFEGVYQ
AGGGGTGGAACCCCGGACTTAACGCCAGGGCAATCCACTTCGAAGG




PNGNSYLAVYGWTRNP
GGTGTACCAGCCCAATGGCAACTCATACCTGGCCGTCTACGGGTGG




LVEYYIVENFGTYDPS
ACGCGCAATCCGCTGGTTGAGTACTATATCGTGGAGAATTTCGGAA




SGATDLGTVECDGSIY
CTTATGACCCTAGCTCCGGTGCCACGGACCTCGGGACAGTCGAGTG




RLGKTTRVNAPSIDGT
TGACGGAAGCATCTACAGGCTGGGTAAAACTACCCGCGTTAATGCT




QTFDQYWSVRQDKRTS
CCATCGATCGACGGCACGCAAACATTTGATCAATACTGGTCCGTGC




GTVQTGCHFDAWARAG
GGCAGGATAAGAGGACAAGCGGCACAGTTCAGACGGGTTGCCACTT




LNVNGDHYYQIVATEG
TGATGCCTGGGCAAGAGCGGGGCTCAATGTGAATGGGGACCACTAC




YFSSGYARITVADVG*
TATCAGATTGTGGCGACCGAGGGCTATTTCTCCAGTGGCTATGCGC




(SEQ ID NO: 87)
GTATAACCGTCGCTGATGTTGGATGA (SEQ ID NO: 159)





2060
PR1a:O43097
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAFP
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCTT




AGNATELEKRQTTPNS
CCCAGCTGGAAACGCAACGGAATTGGAGAAAAGACAAACCACCCCT




EGWHDGYYYSWWSDGG
AACTCTGAGGGCTGGCATGACGGATACTACTACTCTTGGTGGAGCG




AQATYTNLEGGTYEIS
ATGGTGGTGCACAGGCCACCTATACAAACCTCGAAGGCGGCACTTA




WGDGGNLVGGKGWNPG
TGAGATTTCATGGGGTGACGGTGGCAACCTTGTCGGCGGAAAGGGG




LNARAIHFEGVYQPNG
TGGAACCCCGGACTTAACGCCAGGGCAATCCACTTCGAAGGGGTGT




NSYLAVYGWTRNPLVE
ACCAGCCCAATGGCAACTCATACCTGGCCGTCTACGGGTGGACGCG




YYIVENFGTYDPSSGA
CAATCCGCTGGTTGAGTACTATATCGTGGAGAATTTCGGAACTTAT




TDLGTVECDGSIYRLG
GACCCTAGCTCCGGTGCCACGGACCTCGGGACAGTCGAGTGTGACG




KTTRVNAPSIDGTQTF
GAAGCATCTACAGGCTGGGTAAAACTACCCGCGTTAATGCTCCATC




DQYWSVRQDKRTSGTV
GATCGACGGCACGCAAACATTTGATCAATACTGGTCCGTGCGGCAG




QTGCHFDAWARAGLNV
GATAAGAGGACAAGCGGCACAGTTCAGACGGGTTGCCACTTTGATG




NGDHYYQIVATEGYFS
CCTGGGCAAGAGCGGGGCTCAATGTGAATGGGGACCACTACTATCA




SGYARITVADVG*
GATTGTGGCGACCGAGGGCTATTTCTCCAGTGGCTATGCGCGTATA




(SEQ ID NO: 88)
ACCGTCGCTGATGTTGGATGA (SEQ ID NO: 160)





2061
PR1a:O43097:SEKDEL
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAFP
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCTT




AGNATELEKRQTTPNS
CCCAGCTGGAAACGCAACGGAATTGGAGAAAAGACAAACCACCCCT




EGWHDGYYYSWWSDGG
AACTCTGAGGGCTGGCATGACGGATACTACTACTCTTGGTGGAGCG




AQATYTNLEGGTYEIS
ATGGTGGTGCACAGGCCACCTATACAAACCTCGAAGGCGGCACTTA




WGDGGNLVGGKGWNPG
TGAGATTTCATGGGGTGACGGTGGCAACCTTGTCGGCGGAAAGGGG




LNARAIHFEGVYQPNG
TGGAACCCCGGACTTAACGCCAGGGCAATCCACTTCGAAGGGGTGT




NSYLAVYGWTRNPLVE
ACCAGCCCAATGGCAACTCATACCTGGCCGTCTACGGGTGGACGCG




YYIVENFGTYDPSSGA
CAATCCGCTGGTTGAGTACTATATCGTGGAGAATTTCGGAACTTAT




TDLGTVECDGSIYRLG
GACCCTAGCTCCGGTGCCACGGACCTCGGGACAGTCGAGTGTGACG




KTTRVNAPSIDGTQTF
GAAGCATCTACAGGCTGGGTAAAACTACCCGCGTTAATGCTCCATC




DQYWSVRQDKRTSGTV
GATCGACGGCACGCAAACATTTGATCAATACTGGTCCGTGCGGCAG




QTGCHFDAWARAGLNV
GATAAGAGGACAAGCGGCACAGTTCAGACGGGTTGCCACTTTGATG




NGDHYYQIVATEGYFS
CCTGGGCAAGAGCGGGGCTCAATGTGAATGGGGACCACTACTATCA




SGYARITVADVGSEKD
GATTGTGGCGACCGAGGGCTATTTCTCCAGTGGCTATGCGCGTATA




EL* (SEQ ID
ACCGTCGCTGATGTTGGAAGCGAGAAGGACGAGCTGTGA (SEQ




NO: 89)
ID NO: 161)





2062
BAASS:O43097
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQVFPAGNA
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAGTCTTCCCAGCTGGAAA




TELEKRQTTPNSEGWH
CGCAACGGAATTGGAGAAAAGACAAACCACCCCTAACTCTGAGGGC




DGYYYSWWSDGGAQAT
TGGCATGACGGATACTACTACTCTTGGTGGAGCGATGGTGGTGCAC




YTNLEGGTYEISWGDG
AGGCCACCTATACAAACCTCGAAGGCGGCACTTATGAGATTTCATG




GNLVGGKGWNPGLNAR
GGGTGACGGTGGCAACCTTGTCGGCGGAAAGGGGTGGAACCCCGGA




AIHFEGVYQPNGNSYL
CTTAACGCCAGGGCAATCCACTTCGAAGGGGTGTACCAGCCCAATG




AVYGWTRNPLVEYYIV
GCAACTCATACCTGGCCGTCTACGGGTGGACGCGCAATCCGCTGGT




ENFGTYDPSSGATDLG
TGAGTACTATATCGTGGAGAATTTCGGAACTTATGACCCTAGCTCC




TVECDGSIYRLGKTTR
GGTGCCACGGACCTCGGGACAGTCGAGTGTGACGGAAGCATCTACA




VNAPSIDGTQTFDQYW
GGCTGGGTAAAACTACCCGCGTTAATGCTCCATCGATCGACGGCAC




SVRQDKRTSGTVQTGC
GCAAACATTTGATCAATACTGGTCCGTGCGGCAGGATAAGAGGACA




HFDAWARAGLNVNGDH
AGCGGCACAGTTCAGACGGGTTGCCACTTTGATGCCTGGGCAAGAG




YYQIVATEGYFSSGYA
CGGGGCTCAATGTGAATGGGGACCACTACTATCAGATTGTGGCGAC




RITVADVG* (SEQ
CGAGGGCTATTTCTCCAGTGGCTATGCGCGTATAACCGTCGCTGAT




ID NO: 90)
GTTGGATGA (SEQ ID NO: 162)





2063
BAASS:O43097:SEKDEL
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQVFPAGNA
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAGTCTTCCCAGCTGGAAA




TELEKRQTTPNSEGWH
CGCAACGGAATTGGAGAAAAGACAAACCACCCCTAACTCTGAGGGC




DGYYYSWWSDGGAQAT
TGGCATGACGGATACTACTACTCTTGGTGGAGCGATGGTGGTGCAC




YTNLEGGTYEISWGDG
AGGCCACCTATACAAACCTCGAAGGCGGCACTTATGAGATTTCATG




GNLVGGKGWNPGLNAR
GGGTGACGGTGGCAACCTTGTCGGCGGAAAGGGGTGGAACCCCGGA




AIHFEGVYQPNGNSYL
CTTAACGCCAGGGCAATCCACTTCGAAGGGGTGTACCAGCCCAATG




AVYGWTRNPLVEYYIV
GCAACTCATACCTGGCCGTCTACGGGTGGACGCGCAATCCGCTGGT




ENFGTYDPSSGATDLG
TGAGTACTATATCGTGGAGAATTTCGGAACTTATGACCCTAGCTCC




TVECDGSIYRLGKTTR
GGTGCCACGGACCTCGGGACAGTCGAGTGTGACGGAAGCATCTACA




VNAPSIDGTQTFDQYW
GGCTGGGTAAAACTACCCGCGTTAATGCTCCATCGATCGACGGCAC




SVRQDKRTSGTVQTGC
GCAAACATTTGATCAATACTGGTCCGTGCGGCAGGATAAGAGGACA




HFDAWARAGLNVNGDH
AGCGGCACAGTTCAGACGGGTTGCCACTTTGATGCCTGGGCAAGAG




YYQIVATEGYFSSGYA
CGGGGCTCAATGTGAATGGGGACCACTACTATCAGATTGTGGCGAC




RITVADVGSEKDEL*
CGAGGGCTATTTCTCCAGTGGCTATGCGCGTATAACCGTCGCTGAT




(SEQ ID NO: 91)
GTTGGAAGCGAGAAGGACGAGCTGTGA (SEQ ID NO: 163)





2064
HvAleSP:O43097
MAHARVLLLALAVLAT
ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCA




AAVAVASSSSFADSNP
CCGCCGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAA




IRPVTDRAASTFPAGN
CCCGATCCGCCCGGTGACCGACCGCGCCGCCTCCACCTTCCCAGCT




ATELEKRQTTPNSEGW
GGAAACGCAACGGAATTGGAGAAAAGACAAACCACCCCTAACTCTG




HDGYYYSWWSDGGAQA
AGGGCTGGCATGACGGATACTACTACTCTTGGTGGAGCGATGGTGG




TYTNLEGGTYEISWGD
TGCACAGGCCACCTATACAAACCTCGAAGGCGGCACTTATGAGATT




GGNLVGGKGWNPGLNA
TCATGGGGTGACGGTGGCAACCTTGTCGGCGGAAAGGGGTGGAACC




RAIHFEGVYQPNGNSY
CCGGACTTAACGCCAGGGCAATCCACTTCGAAGGGGTGTACCAGCC




LAVYGWTRNPLVEYYI
CAATGGCAACTCATACCTGGCCGTCTACGGGTGGACGCGCAATCCG




VENFGTYDPSSGATDL
CTGGTTGAGTACTATATCGTGGAGAATTTCGGAACTTATGACCCTA




GTVECDGSIYRLGKTT
GCTCCGGTGCCACGGACCTCGGGACAGTCGAGTGTGACGGAAGCAT




RVNAPSIDGTQTFDQY
CTACAGGCTGGGTAAAACTACCCGCGTTAATGCTCCATCGATCGAC




WSVRQDKRTSGTVQTG
GGCACGCAAACATTTGATCAATACTGGTCCGTGCGGCAGGATAAGA




CHFDAWARAGLNVNGD
GGACAAGCGGCACAGTTCAGACGGGTTGCCACTTTGATGCCTGGGC




HYYQIVATEGYFSSGY
AAGAGCGGGGCTCAATGTGAATGGGGACCACTACTATCAGATTGTG




ARITVADVG*
GCGACCGAGGGCTATTTCTCCAGTGGCTATGCGCGTATAACCGTCG




(SEQ ID NO: 92)
CTGATGTTGGATGA (SEQ ID NO: 164)





2065
HvAleSP:O43097:
MAHARVLLLALAVLAT
ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCA



SEKDEL
AAVAVASSSSFADSNP
CCGCCGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAA




IRPVTDRAASTFPAGN
CCCGATCCGCCCGGTGACCGACCGCGCCGCCTCCACCTTCCCAGCT




ATELEKRQTTPNSEGW
GGAAACGCAACGGAATTGGAGAAAAGACAAACCACCCCTAACTCTG




HDGYYYSWWSDGGAQA
AGGGCTGGCATGACGGATACTACTACTCTTGGTGGAGCGATGGTGG




TYTNLEGGTYEISWGD
TGCACAGGCCACCTATACAAACCTCGAAGGCGGCACTTATGAGATT




GGNLVGGKGWNPGLNA
TCATGGGGTGACGGTGGCAACCTTGTCGGCGGAAAGGGGTGGAACC




RAIHFEGVYQPNGNSY
CCGGACTTAACGCCAGGGCAATCCACTTCGAAGGGGTGTACCAGCC




LAVYGWTRNPLVEYYI
CAATGGCAACTCATACCTGGCCGTCTACGGGTGGACGCGCAATCCG




VENFGTYDPSSGATDL
CTGGTTGAGTACTATATCGTGGAGAATTTCGGAACTTATGACCCTA




GTVECDGSIYRLGKTT
GCTCCGGTGCCACGGACCTCGGGACAGTCGAGTGTGACGGAAGCAT




RVNAPSIDGTQTFDQY
CTACAGGCTGGGTAAAACTACCCGCGTTAATGCTCCATCGATCGAC




WSVRQDKRTSGTVQTG
GGCACGCAAACATTTGATCAATACTGGTCCGTGCGGCAGGATAAGA




CHFDAWARAGLNVNGD
GGACAAGCGGCACAGTTCAGACGGGTTGCCACTTTGATGCCTGGGC




HYYQIVATEGYFSSGY
AAGAGCGGGGCTCAATGTGAATGGGGACCACTACTATCAGATTGTG




ARITVADVGSEKDEL*
GCGACCGAGGGCTATTTCTCCAGTGGCTATGCGCGTATAACCGTCG




(SEQ ID NO: 93)
CTGATGTTGGAAGCGAGAAGGACGAGCTGTGA (SEQ ID NO:





165)





2066
BAASS:P77853S158-2
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGATSLGQVTIDG
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGC




GTYDIYRTTRVNQPCL
CAAGTGACAATCGATGGCGGGACCTACGACATCTATAGGACGACAC




AEGSLVLDAATGQRVP
GCGTCAACCAGCCTTGCCTGGCCGAGGGCTCGCTCGTCTTGGACGC




IEKVRPGMEVFSLGPD
GGCTACCGGGCAGAGGGTCCCTATCGAAAAGGTGCGTCCGGGGATG




YRLYRVPVLEVLESGV
GAAGTTTTCTCCTTGGGACCTGATTACAGACTGTATCGGGTGCCCG




REVVRLRTRSGRTLVL
TTTTGGAGGTCCTTGAGAGCGGGGTTAGGGAAGTTGTGCGCCTCAG




TPDHPLLTPEGWKPLC
AACTCGGTCAGGGAGAACGCTGGTGTTGACACCAGATCACCCGCTT




DLPLGTPIAVPAELPV
TTGACCCCCGAAGGTTGGAAACCTCTTTGTGACCTCCCGCTTGGAA




AGHLAPPEERVTLLAL
CTCCAATTGCAGTCCCCGCAGAACTGCCTGTGGCGGGCCACTTGGC




LLGDGNTKLPGRRGTR
CCCACCTGAAGAACGTGTTACGCTCCTGGCTCTTCTGTTGGGGGAT




PNAFFYSKDPELLAAY
GGGAACACAAAGCTGCCGGGTCGGAGAGGTACACGTCCTAATGCCT




RRCAEALGAKVKAYVH
TCTTCTACAGCAAAGACCCCGAATTGCTCGCGGCTTATCGCCGGTG




PTTGVVTLATLAPRPG
TGCAGAAGCCTTGGGTGCAAAGGTGAAAGCATACGTCCACCCGACT




AQDPVKRLVVEAGMVA
ACGGGGGTGGTTACACTCGCAACCCTCGCTCCACGTCCTGGAGCTC




KAEEKRVPEEVFRYRR
AAGATCCTGTCAAACGCCTCGTTGTCGAGGCGGGAATGGTTGCTAA




EALALFLGRLFSTDGS
AGCCGAAGAGAAGAGGGTCCCGGAGGAGGTGTTTCGTTACCGGCGT




VEKKRISYSSASLGLA
GAGGCGTTGGCCCTTTTCTTGGGCCGTTTGTTCTCGACAGACGGCT




QDDAHLLLRLGITSQL
CTGTTGAAAAGAAGAGGATCTCTTATTCAAGTGCCAGTTTGGGACT




RSRGPRAHEVLISGRE
GGCCCAGGATGACGCACATCTCTTGCTGCGCCTTGGAATTACATCT




DILRFAELIGPYLLGA
CAACTCCGTTCGAGAGGGCCACGGGCTCACGAGGTTCTTATATCGG




KRERLAALEAEARRRL
GCCGCGAGGATATTTTGCGGTTTGCTGAACTTATCGGACCCTACCT




PGQGWHLRLVLPAVAY
CTTGGGGGCCAAGAGGGAGAGACTTGCAGCGCTGGAAGCTGAGGCC




RVSEAKRRSGFSWSEA
CGCAGGCGTTTGCCTGGACAGGGATGGCACTTGCGGCTTGTTCTTC




GRRVAVAGSCLSSGLN
CTGCCGTGGCGTACAGAGTGAGCGAGGCTAAAAGGCGCTCGGGATT




LKLPRRYLSRHRLSLL
TTCGTGGAGTGAAGCCGGTCGGCGCGTCGCAGTTGCGGGATCGTGT




GEAFADPGLEALAEGQ
TTGTCATCTGGACTCAACCTCAAATTGCCCAGACGCTACCTTTCTC




VLWDPIVAVEPAGKAR
GGCACCGGTTGTCGCTGCTCGGTGAGGCTTTTGCCGACCCTGGGCT




TFDLRVPPFANFVSED
GGAAGCGCTCGCGGAAGGCCAAGTGCTCTGGGACCCTATTGTTGCT




LVVHNSIVGTATFDQY
GTCGAACCGGCCGGTAAGGCGAGAACATTCGACTTGCGCGTTCCAC




WSVRTSKRTSGTVTVT
CCTTTGCAAACTTCGTGAGCGAGGACCTGGTGGTGCATAACTCCAT




DHFRAWANRGLNLGTI
TGTGGGGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCT




DQITLCVEGYQSSGSA
AAGCGGACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCT




NITQNTFSQGSSSGSS
GGGCGAACCGGGGCCTGAACCTCGGCACAATAGACCAAATTACATT




GGSSGSTTTTRIECEN
GTGCGTGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAG




MSLSGPYVSRITNPFN
AACACCTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCAT




GIALYANGDTARATVN
CCGGCTCCACAACGACTACTCGCATCGAGTGTGAGAACATGTCCTT




FPASRNYNFRLRGCGN
GTCCGGACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGTATT




NNNLARVDLRIDGRTV
GCGCTGTACGCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCC




GTFYYQGTYPWEAPID
CCGCAAGTCGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAA




NVYVSAGSHTVEITVT
CAATAATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTC




ADNGTWDVYADYLVIQ
GGGACCTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCAATTG




* (SEQ ID NO:
ACAATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGT




94)
TACTGCGGATAACGGCACATGGGACGTGTATGCCGACTACCTGGTG





ATACAGTGA (SEQ ID NO: 166)





2067
BAASS:P77853S158-
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG



19
LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGATSLGQVTIDG
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGC




GTYDIYRTTRVNQPCL
CAAGTGACAATCGATGGCGGGACCTACGACATCTATAGGACGACAC




AEGSLVLDAATGQRVP
GCGTCAACCAGCCTTGCCTGGCCGAGGGCTCGCTCGTCTTGGACGC




IEKVRPGMEVFSLGPD
GGCTACCGGGCAGAGGGTCCCTATCGAAAAGGTGCGTCCGGGGATG




YRLYRVPVLEVLESGV
GAAGTTTTCTCCTTGGGACCTGATTACAGACTGTATCGGGTGCCCG




GEVVRLRTRSGRTLVL
TTTTGGAGGTCCTTGAGAGCGGGGTTGGGGAAGTTGTGCGCGTCAG




TPDHPLLTPEGWKPLC
AACTCGGTCAGGGAGAACGCTGGTGTTGACACCAGATCACCCGCTT




DLPLGTPIAVPAELPV
TTGACCCCCGAAGGTTGGAAACCTGTTTGTGACCTCCCGCTTGGAA




AGHLAPPEERVTLLAL
CTCCAATTGCAGTCCCCGCAGAACTGCCTGTGGCGGGCCACTTGGC




LLGDGNTKLSGRRGTR
CCCACCTGAAGAACGTGTTACGCTCCTGGCTCTTCTGTTGGGGGAT




PIAFFYSKDPELLAAY
GGGAACACAAAGCTGTCGGGTCGGAGAGGTACACGTCCTATTGCCT




RRCAEALGAKVKAYVH
TCTTCTACAGCAAAGACCCCGAATTGCTCGCGGCTTATCGCCGGTG




PTTGVVTLATLAPRPG
TGCAGAAGCCTTGGGTGCAAAGGTGAAAGCATACGTCCACCCGACT




AQDPVKRLVVEAGMVA
ACGGGGGTGGTTACACTCGCAACCCTCGCTCCACGTCCTGGAGCTC




KAEEKRVPEEVFRYRR
AAGATCCTGTCAAACGCCTCGTTGTCGAGGCGGGAATGGTTGCTAA




EALALFLGRLFSTDGS
AGCCGAAGAGAAGAGGGTCCCGGAGGAGGTGTTTCGTTACCGGCGT




VEKKRISYSSASLGLA
GAGGCGTTGGCCCTTTTCTTGGGCCGTTTGTTCTCGACAGACGGCT




QDVAHLLLRLGITSQL
CTGTTGAAAAGAAGAGGATCTCTTATTCAAGTGCCAGTTTGGGACT




RSRGPRAHEVLISGRE
GGCCCAGGATGTCGCACATCTCTTGCTGCGCCTTGGAATTACATCT




DILRFAELIGPYLLGA
CAACTCCGTTCGAGAGGGCCACGGGCTCACGAGGTTCTTATATCGG




KRERLAALEAEARRRL
GCCGCGAGGATATTTTGCGGTTTGCTGAACTTATCGGACCCTACCT




PGQGWHLRLVLPAVAY
CTTGGGGGCCAAGAGGGAGAGACTTGCAGCGCTGGAAGCTGAGGCC




RVSEAKRRSGFSWSEA
CGCAGGCGTTTGCCTGGACAGGGATGGCACTTGCGGCTTGTTCTTC




GRRVAVAGSCLSSGLN
CTGCCGTGGCGTACAGAGTGAGCGAGGCTAAAAGGCGCTCGGGATT




LKLPRRYLSRHRLSLL
TTCGTGGAGTGAAGCCGGTCGGCGCGTCGCAGTTGCGGGATCGTGT




GEAFADPGLEALAEGQ
TTGTCATCTGGACTCAACCTCAAATTGCCCAGACGCTACCTTTCTC




VLWDPIVAVEPAGKAR
GGCACCGGTTGTCGCTGCTCGGTGAGGCTTTTGCCGACCCTGGGCT




TFDLRVPPFANFVSED
GGAAGCGCTCGCGGAAGGCCAAGTGCTCTGGGACCCTATTGTTGCT




LVVHNSIVGTATFDQY
GTCGAACCGGCCGGTAAGGCGAGAACATTCGACTTGCGCGTTCCAC




WSVRTSKRTSGTVTVT
CCTTTGCAAACTTCGTGAGCGAGGACCTGGTGGTGCATAACTCCAT




DHFRAWANRGLNLGTI
TGTGGGGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCT




DQITLCVEGYQSSGSA
AAGCGGACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCT




NITQNTFSQGSSSGSS
GGGCGAACCGGGGCCTGAACCTCGGCACAATAGACCAAATTACATT




GGSSGSTTTTRIECEN
GTGCGTGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAG




MSLSGPYVSRITNPFN
AACACCTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCAT




GIALYANGDTARATVN
CCGGCTCCACAACGACTACTCGCATCGAGTGTGAGAACATGTCCTT




FPASRNYNFRLRGCGN
GTCCGGACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGTATT




NNNLARVDLRIDGRTV
GCGCTGTACGCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCC




GTFYYQGTYPWEAPID
CCGCAAGTCGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAA




NVYVSAGSHTVEITVT
CAATAATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTC




ADNGTWDVYADYLVIQ
GGGACCTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCAATTG




* (SEQ ID NO:
ACAATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGT




95)
TACTGCGGATAACGGCACATGGGACGTGTATGCCGACTACCTGGTG





ATACAGTGA (SEQ ID NO: 167)





2068
BAASS:P77853T134-1
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGACLAEGSLVLD
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCTGCCTGGCCGAG




AATGQRVPIEKVRPGM
GGCTCGCTCGTCTTGGACGCGGCTACCGGGCAGAGGGTCCCTATCG




EVFSLGPDYRLYRVPV
AAAAGGTGCGTCCGGGGATGGAAGTTTTCTCCTTGGGACCTGATTA




LEVLESGVREVVRLRT
CAGACTGTATCGGGTGCCCGTTTTGGAGGTCCTTGAGAGCGGGGTT




RSGRTLVLTPDHPLLT
AGGGAAGTTGTGCGCCTCAGAACTCGGTCAGGGAGAACGCTGGTGT




PEGWKPLCDLPLGTPI
TGACACCAGATCACCCGCTTTTGACCCCCGAAGGTTGGAAACCTCT




AVPAELPVACHLAPPE
TTGTGACCTCCCGCTTGGAACTCCAATTGCAGTCCCCGCAGAACTG




ERVTLLALLLGDGNTK
CCTGTGGCGTGCCACTTGGCCCCACCTGAAGAACGTGTTACGCTCC




PSGRRGTRPNAFFYSK
TGGCTCTTCTGTTGGGGGATGGGAACACAAAGCCGTCGGGTCGGAG




DPELLAAYRRCAEALG
AGGTACACGTCCTAATGCCTTCTTCTACAGCAAAGACCCCGAATTG




AKVKAYVHPTTGVVTL
CTCGCGGCTTATCGCCGGTGTGCAGAAGCCTTGGGTGCAAAGGTGA




ATLAPRPGAQDPVKRL
AAGCATACGTCCACCCGACTACGGGGGTGGTTACACTCGCAACCCT




VVEAGMVAKAEEKRVP
CGCTCCACGTCCTGGAGCTCAAGATCCTGTCAAACGCCTCGTTGTC




EEVFRYRREALALFLG
GAGGCGGGAATGGTTGCTAAAGCCGAAGAGAAGAGGGTCCCGGAGG




RLFSTDGSVEKKRISY
AGGTGTTTCGTTACCGGCGTGAGGCGTTGGCCCTTTTCTTGGGCCG




SSASLGLAQDVAHLLL
TTTGTTCTCGACAGACGGCTCTGTTGAAAAGAAGAGGATCTCTTAT




RLGITSQLRSRGPRAH
TCAAGTGCCAGTTTGGGACTGGCCCAGGATGTCGCACATCTCTTGC




EVLISGREDILRFAEL
TGCGCCTTGGAATTACATCTCAACTCCGTTCGAGAGGGCCACGGGC




IGPYLLGAKRERLAAL
TCACGAGGTTCTTATATCGGGCCGCGAGGATATTTTGCGGTTTGCT




EAEARRRLPGQGWHLR
GAACTTATCGGACCCTACCTCTTGGGGGCCAAGAGGGAGAGACTTG




LVLPAVAYRVSEAKRR
CAGCGCTGGAAGCTGAGGCCCGCAGGCGTTTGCCTGGACAGGGATG




SGFSWSEAGRRVAVAG
GCACTTGCGGCTTGTTCTTCCTGCCGTGGCGTACAGAGTGAGCGAG




SCLSSGLNLKLPRRYL
GCTAAAAGGCGCTCGGGATTTTCGTGGAGTGAAGCCGGTCGGCGCG




SRHRLSLLGEAFADPG
TCGCAGTTGCGGGATCGTGTTTGTCATCTGGACTCAACCTCAAATT




LEALAEGQVLWDPIVA
GCCCAGACGCTACCTTTCTCGGCACCGGTTGTCGCTGCTCGGTGAG




VEPAGKARTFDLRVPP
GCTTTTGCCGACCCTGGGCTGGAAGCGCTCGCGGAAGGCCAAGTGC




FANFVSEDLVVHNTSP
TCTGGGACCCTATTGTTGCTGTCGAACCGGCCGGTAAGGCGAGAAC




LGQVTIDGGTYDIYRT
ATTCGACTTGCGCGTTCCACCCTTTGCAAACTTCGTGAGCGAGGAC




TRVNQPSIVGTATFDQ
CTGGTGGTGCATAACACGTCCCCCTTGGGCCAAGTGACAATCGATG




YWSVRTSKRTSGTVTV
GCGGGACCTACGACATCTATAGGACGACACGCGTCAACCAGCCTTC




TDHFRAWANRGLNLGT
CATTGTGGGGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACC




IDQITLCVEGYQSSGS
TCTAAGCGGACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCG




ANITQNTFSQGSSSGS
CCTGGGCGAACCGGGGCCTGAACCTCGGCACAATAGACCAAATTAC




SGGSSGSTTTTRIECE
ATTGTGCGTGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCACC




NMSLSGPYVSRITNPF
CAGAACACCTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCT




NGIALYANGDTARATV
CATCCGGCTCCACAACGACTACTCGCATCGAGTGTGAGAACATGTC




NFPASRNYNFRLRGCG
CTTGTCCGGACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGT




NNNNLARVDLRIDGRT
ATTGCGCTGTACGCCAACGGAGACACAGCCCGCGCTACCGTTAACT




VGTFYYQGTYPWEAPI
TCCCCGCAAGTCGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAA




DNVYVSAGSHTVEITV
CAACAATAATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGACC




TADNGTWDVYADYLVI
GTCGGGACCTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCAA




Q* (SEQ ID NO:
TTGACAATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCAC




96)
TGTTACTGCGGATAACGGCACATGGGACGTGTATGCCGACTACCTG





GTGATACAGTGA (SEQ ID NO: 168)





2069
O68438
MLEDKSPKLPDYKNDL
ATGCTGGAGGACAAGTCTCCCAAACTGCCTGATTATAAGAACGACC




LYERTFDEGLCFPWHT
TTCTGTACGAACGCACATTCGACGAGGGGCTCTGCTTCCCGTGGCA




CEDSGGKCDFAVVDVP
CACGTGCGAAGATTCAGGAGGGAAATGCGATTTTGCCGTGGTCGAC




GEPGNKAFRLTVIDKG
GTTCCAGGCGAGCCTGGGAACAAGGCGTTCAGGCTCACTGTTATCG




QNKWSVQMRHRGITLE
ATAAGGGTCAGAACAAGTGGTCGGTCCAAATGAGACACCGGGGTAT




QGHTYTVRFTIWSDKS
CACGTTGGAGCAGGGGCACACATACACCGTTCGGTTTACTATCTGG




CRVYAKIGQMGEPYTE
AGCGACAAGAGCTGCCGCGTGTATGCCAAAATCGGCCAAATGGGTG




YWNNNWNPFNLTPGQK
AACCCTACACGGAGTACTGGAACAATAACTGGAATCCGTTCAACCT




LTVEQNFTMNYPTDDT
CACTCCGGGGCAGAAATTGACGGTGGAACAGAACTTTACTATGAAT




CEFTFHLGGELAAGTP
TATCCCACGGACGACACGTGTGAGTTTACCTTCCACTTGGGAGGGG




YYVYLDDVSLYDPRFV
AACTGGCAGCCGGGACCCCTTACTACGTGTACCTCGACGACGTTTC




KPVEYVLPQPDVRVNQ
TCTTTACGATCCCCGCTTTGTCAAGCCAGTGGAATACGTCCTGCCT




VGYLPFAKKYATVVSS
CAACCGGATGTCAGGGTTAATCAAGTTGGATACCTCCCTTTTGCTA




STSPLKWQLLNSANQV
AGAAATATGCTACTGTCGTGTCATCGAGCACGTCCCCATTGAAGTG




VLEGNTIPKGLDKDSQ
GCAACTTCTGAATAGTGCAAACCAAGTTGTCTTGGAGGGCAATACA




DYVHWIDFSNFKTEGK
ATCCCCAAGGGACTGGACAAAGATTCACAAGACTACGTTCATTGGA




GYYFKLPTVNSDTNYS
TCGATTTCTCGAACTTTAAGACCGAAGGCAAGGGGTACTATTTCAA




HPFDISADIYSKMKFD
GTTGCCCACTGTGAACTCCGATACTAACTACTCCCACCCGTTTGAT




ALAFFYHKRSGIPIEM
ATTTCTGCAGATATCTATTCAAAGATGAAGTTCGACGCGCTCGCTT




PYAGGEQWTRPAGHIG
TCTTTTACCATAAAAGGTCGGGAATACCAATCGAGATGCCCTACGC




VAPNKGDTNVPTWPQD
CGGGGGAGAGCAGTGGACAAGGCCCGCAGGGCACATTGGTGTCGCG




DEYAGRPQKYYTKDVT
CCGAACAAGGGCGACACGAATGTGCCAACTTGGCCCCAGGATGACG




GGWYDAGDHGKYVVNG
AATATGCTGGACGCCCCCAGAAATACTATACGAAAGACGTGACCGG




GIAVWTLMNMYERAKI
CGGGTGGTACGATGCCGGTGACCACGGCAAGTACGTCGTGAACGGG




RGIANQGAYKDGGMNI
GGTATCGCAGTTTGGACCCTTATGAATATGTACGAGAGAGCAAAGA




PERNNGYPDILDEARW
TTAGAGGAATCGCTAACCAGGGTGCCTACAAAGATGGAGGAATGAA




EIEFFKKMQVTEKEDP
TATCCCGGAAAGGAATAACGGCTATCCTGATATTCTGGACGAGGCC




SIAGMVHHKIHDFRWT
AGATGGGAGATCGAATTTTTTAAGAAGATGCAAGTCACTGAGAAAG




ALGMLPHEDPQPRYLR
AAGATCCGTCGATTGCAGGTATGGTGCACCACAAGATCCACGATTT




PVSTAATLNFAATLAQ
CAGGTGGACGGCGCTCGGAATGTTGCCTCACGAGGACCCCCAGCCA




SARLWKDYDPTFAADC
CGCTACCTTCGGCCCGTCAGCACAGCGGCAACCCTGAATTTCGCAG




LEKAEIAWQAALKHPD
CGACCCTCGCTCAGTCTGCCAGATTGTGGAAGGATTACGACCCGAC




IYAEYTPGSGGPGGGP
TTTTGCAGCGGACTGCCTTGAGAAAGCTGAAATTGCCTGGCAAGCA




YNDDYVGDEFYWAACE
GCACTCAAACACCCGGACATCTACGCTGAGTACACGCCAGGAAGCG




LYVTTGKDEYKNYLMN
GTGGGCCGGGTGGAGGTCCTTATAATGACGATTATGTCGGGGACGA




SPHYLEMPAKMGENGG
GTTCTACTGGGCCGCTTGTGAACTCTATGTGACAACCGGTAAGGAT




ANGEDNGLWGCFTWGT
GAGTACAAGAATTACTTGATGAATAGTCCGCACTATCTGGAAATGC




TQGLGTITLALVENGL
CAGCGAAGATGGGCGAGAACGGAGGGGCTAACGGCGAGGACAACGG




PSADIQKARNNIAKAA
TCTCTGGGGCTGCTTTACTTGGGGAACGACACAGGGGTTGGGTACA




DKWLENIEEQGYRLPI
ATTACCCTTGCCCTCGTTGAAAACGGCCTCCCTTCGGCGGATATTC




KQAEDERGGYPWGSNS
AAAAGGCCCGCAACAATATCGCTAAAGCCGCAGATAAGTGGCTTGA




FILNQMIVMGYAYDFT
GAATATTGAAGAACAAGGTTACCGCCTGCCTATCAAACAAGCGGAG




GNSKYLDGMQDGMSYL
GATGAACGGGGCGGATACCCGTGGGGTAGTAATTCTTTCATTCTCA




LGRNGLDQSYVTGYGE
ACCAGATGATCGTCATGGGCTACGCTTACGACTTCACGGGAAACAG




RPLQNPHDRFWTPQTS
CAAGTATCTTGACGGGATGCAGGACGGCATGTCCTACCTGCTCGGT




KKFPAPPPGIIAGGPN
AGAAACGGACTTGATCAATCGTACGTTACTGGGTACGGGGAGAGGC




SRFEDPTITAAVKKDT
CACTTCAGAACCCCCACGACCGCTTTTGGACCCCTCAAACTTCGAA




PPQKCYIDHTDSWSTN
GAAATTCCCGGCCCCACCCCCTGGTATTATCGCAGGCGGGCCGAAT




EITINWNAPFAWVTAY
AGCCGGTTTGAAGATCCAACGATCACTGCAGCGGTTAAGAAGGATA




LDEIDLITPPGGVDPE
CACCCCCGCAGAAGTGCTATATTGACCACACCGATTCCTGGTCTAC




EPEVIYGDCNGDGKVN
TAACGAGATCACGATTAATTGGAACGCCCCCTTCGCGTGGGTCACA




STDAVALKRYILRSGI
GCGTATCTGGACGAAATTGACTTGATTACCCCACCCGGCGGAGTGG




SINTDNADVNADGRVN
ACCCTGAAGAGCCGGAAGTTATCTACGGTGATTGTAACGGCGACGG




STDLAILKRYILKEID
AAAGGTTAATTCGACCGATGCTGTGGCCCTTAAAAGGTATATCCTC




VLPHK* (SEQ ID
CGCAGCGGTATCTCGATCAACACGGACAACGCGGACGTTAATGCAG




NO: 97)
ATGGTCGCGTGAATAGCACTGACCTCGCTATTTTGAAGCGCTATAT





TTTGAAGGAGATCGATGTTCTTCCTCACAAGTGA (SEQ ID





NO: 169)





2070
PR1a:O68438
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAQN
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCCA




LEDKSPKLPDYKNDLL
GAACCTGGAGGACAAGTCTCCCAAACTGCCTGATTATAAGAACGAC




YERTFDEGLCFPWHTC
CTTCTGTACGAACGCACATTCGACGAGGGGCTCTGCTTCCCGTGGC




EDSGGKCDFAVVDVPG
ACACGTGCGAAGATTCAGGAGGGAAATGCGATTTTGCCGTGGTCGA




EPGNKAFRLTVIDKGQ
CGTTCCAGGCGAGCCTGGGAACAAGGCGTTCAGGCTCACTGTTATC




NKWSVQMRHRGITLEQ
GATAAGGGTCAGAACAAGTGGTCGGTCCAAATGAGACACCGGGGTA




GHTYTVRFTIWSDKSC
TCACGTTGGAGCAGGGGCACACATACACCGTTCGGTTTACTATCTG




RVYAKIGQMGEPYTEY
GAGCGACAAGAGCTGCCGCGTGTATGCCAAAATCGGCCAAATGGGT




WNNNWNPFNLTPGQKL
GAACCCTACACGGAGTACTGGAACAATAACTGGAATCCGTTCAACC




TVEQNFTMNYPTDDTC
TCACTCCGGGGCAGAAATTGACGGTGGAACAGAACTTTACTATGAA




EFTFHLGGELAAGTPY
TTATCCCACGGACGACACGTGTGAGTTTACCTTCCACTTGGGAGGG




YVYLDDVSLYDPRFVK
GAACTGGCAGCCGGGACCCCTTACTACGTGTACCTCGACGACGTTT




PVEYVLPQPDVRVNQV
CTCTTTACGATCCCCGCTTTGTCAAGCCAGTGGAATACGTCCTGCC




GYLPFAKKYATVVSSS
TCAACCGGATGTCAGGGTTAATCAAGTTGGATACCTCCCTTTTGCT




TSPLKWQLLNSANQVV
AAGAAATATGCTACTGTCGTGTCATCGAGCACGTCCCCATTGAAGT




LEGNTIPKGLDKDSQD
GGCAACTTCTGAATAGTGCAAACCAAGTTGTCTTGGAGGGCAATAC




YVHWIDFSNFKTEGKG
AATCCCCAAGGGACTGGACAAAGATTCACAAGACTACGTTCATTGG




YYFKLPTVNSDTNYSH
ATCGATTTCTCGAACTTTAAGACCGAAGGCAAGGGGTACTATTTCA




PFDISADIYSKMKFDA
AGTTGCCCACTGTGAACTCCGATACTAACTACTCCCACCCGTTTGA




LAFFYHKRSGIPIEMP
TATTTCTGCAGATATCTATTCAAAGATGAAGTTCGACGCGCTCGCT




YAGGEQWTRPAGHIGV
TTCTTTTACCATAAAAGGTCGGGAATACCAATCGAGATGCCCTACG




APNKGDTNVPTWPQDD
CCGGGGGAGAGCAGTGGACAAGGCCCGCAGGGCACATTGGTGTCGC




EYAGRPQKYYTKDVTG
GCCGAACAAGGGCGACACGAATGTGCCAACTTGGCCCCAGGATGAC




GWYDAGDHGKYVVNGG
GAATATGCTGGACGCCCCCAGAAATACTATACGAAAGACGTGACCG




IAVWTLMNMYERAKIR
GCGGGTGGTACGATGCCGGTGACCACGGCAAGTACGTCGTGAACGG




GIANQGAYKDGGMNIP
GGGTATCGCAGTTTGGACCCTTATGAATATGTACGAGAGAGCAAAG




ERNNGYPDILDEARWE
ATTAGAGGAATCGCTAACCAGGGTGCCTACAAAGATGGAGGAATGA




IEFFKKMQVTEKEDPS
ATATCCCGGAAAGGAATAACGGCTATCCTGATATTCTGGACGAGGC




IAGMVHHKIHDFRWTA
CAGATGGGAGATCGAATTTTTTAAGAAGATGCAAGTCACTGAGAAA




LGMLPHEDPQPRYLRP
GAAGATCCGTCGATTGCAGGTATGGTGCACCACAAGATCCACGATT




VSTAATLNFAATLAQS
TCAGGTGGACGGCGCTCGGAATGTTGCCTCACGAGGACCCCCAGCC




ARLWKDYDPTFAADCL
ACGCTACCTTCGGCCCGTCAGCACAGCGGCAACCCTGAATTTCGCA




EKAEIAWQAALKHPDI
GCGACCCTCGCTCAGTCTGCCAGATTGTGGAAGGATTACGACCCGA




YAEYTPGSGGPGGGPY
CTTTTGCAGCGGACTGCCTTGAGAAAGCTGAAATTGCCTGGCAAGC




NDDYVGDEFYWAACEL
AGCACTCAAACACCCGGACATCTACGCTGAGTACACGCCAGGAAGC




YVTTGKDEYKNYLMNS
GGTGGGCCGGGTGGAGGTCCTTATAATGACGATTATGTCGGGGACG




PHYLEMPAKMGENGGA
AGTTCTACTGGGCCGCTTGTGAACTCTATGTGACAACCGGTAAGGA




NGEDNGLWGCFTWGTT
TGAGTACAAGAATTACTTGATGAATAGTCCGCACTATCTGGAAATG




QGLGTITLALVENGLP
CCAGCGAAGATGGGCGAGAACGGAGGGGCTAACGGCGAGGACAACG




SADIQKARNNIAKAAD
GTCTCTGGGGCTGCTTTACTTGGGGAACGACACAGGGGTTGGGTAC




KWLENIEEQGYRLPIK
AATTACCCTTGCCCTCGTTGAAAACGGCCTCCCTTCGGCGGATATT




QAEDERGGYPWGSNSF
CAAAAGGCCCGCAACAATATCGCTAAAGCCGCAGATAAGTGGCTTG




ILNQMIVMGYAYDFTG
AGAATATTGAAGAACAAGGTTACCGCCTGCCTATCAAACAAGCGGA




NSKYLDGMQDGMSYLL
GGATGAACGGGGCGGATACCCGTGGGGTAGTAATTCTTTCATTCTC




GRNGLDQSYVTGYGER
AACCAGATGATCGTCATGGGCTACGCTTACGACTTCACGGGAAACA




PLQNPHDRFWTPQTSK
GCAAGTATCTTGACGGGATGCAGGACGGCATGTCCTACCTGCTCGG




KFPAPPPGIIAGGPNS
TAGAAACGGACTTGATCAATCGTACGTTACTGGGTACGGGGAGAGG




RFEDPTITAAVKKDTP
CCACTTCAGAACCCCCACGACCGCTTTTGGACCCCTCAAACTTCGA




PQKCYIDHTDSWSTNE
AGAAATTCCCGGCCCCACCCCCTGGTATTATCGCAGGCGGGCCGAA




ITINWNAPFAWVTAYL
TAGCCGGTTTGAAGATCCAACGATCACTGCAGCGGTTAAGAAGGAT




DEIDLITPPGGVDPEE
ACACCCCCGCAGAAGTGCTATATTGACCACACCGATTCCTGGTCTA




PEVIYGDCNGDGKVNS
CTAACGAGATCACGATTAATTGGAACGCCCCCTTCGCGTGGGTCAC




TDAVALKRYILRSGIS
AGCGTATCTGGACGAAATTGACTTGATTACCCCACCCGGCGGAGTG




INTDNADVNADGRVNS
GACCCTGAAGAGCCGGAAGTTATCTACGGTGATTGTAACGGCGACG




TDLAILKRYILKEIDV
GAAAGGTTAATTCGACCGATGCTGTGGCCCTTAAAAGGTATATCCT




LPHK* (SEQ ID
CCGCAGCGGTATCTCGATCAACACGGACAACGCGGACGTTAATGCA




NO: 98)
GATGGTCGCGTGAATAGCACTGACCTCGCTATTTTGAAGCGCTATA





TTTTGAAGGAGATCGATGTTCTTCCTCACAAGTGA (SEQ ID





NO: 170)





2071
PR1a:O68438:SEKDEL
MGFVLFSQLPSFLLVS
ATGGGCTTCGTGCTCTTCTCCCAGCTGCCTTCCTTCCTTCTTGTCT




TLLLFLVISHSCRAQN
CCACCCTGCTCTTGTTCCTCGTGATCTCCCACTCCTGCCGCGCCCA




LEDKSPKLPDYKNDLL
GAACCTGGAGGACAAGTCTCCCAAACTGCCTGATTATAAGAACGAC




YERTFDEGLCFPWHTC
CTTCTGTACGAACGCACATTCGACGAGGGGCTCTGCTTCCCGTGGC




EDSGGKCDFAVVDVPG
ACACGTGCGAAGATTCAGGAGGGAAATGCGATTTTGCCGTGGTCGA




EPGNKAFRLTVIDKGQ
CGTTCCAGGCGAGCCTGGGAACAAGGCGTTCAGGCTCACTGTTATC




NKWSVQMRHRGITLEQ
GATAAGGGTCAGAACAAGTGGTCGGTCCAAATGAGACACCGGGGTA




GHTYTVRFTIWSDKSC
TCACGTTGGAGCAGGGGCACACATACACCGTTCGGTTTACTATCTG




RVYAKIGQMGEPYTEY
GAGCGACAAGAGCTGCCGCGTGTATGCCAAAATCGGCCAAATGGGT




WNNNWNPFNLTPGQKL
GAACCCTACACGGAGTACTGGAACAATAACTGGAATCCGTTCAACC




TVEQNFTMNYPTDDTC
TCACTCCGGGGCAGAAATTGACGGTGGAACAGAACTTTACTATGAA




EFTFHLGGELAAGTPY
TTATCCCACGGACGACACGTGTGAGTTTACCTTCCACTTGGGAGGG




YVYLDDVSLYDPRFVK
GAACTGGCAGCCGGGACCCCTTACTACGTGTACCTCGACGACGTTT




PVEYVLPQPDVRVNQV
CTCTTTACGATCCCCGCTTTGTCAAGCCAGTGGAATACGTCCTGCC




GYLPFAKKYATVVSSS
TCAACCGGATGTCAGGGTTAATCAAGTTGGATACCTCCCTTTTGCT




TSPLKWQLLNSANQVV
AAGAAATATGCTACTGTCGTGTCATCGAGCACGTCCCCATTGAAGT




LEGNTIPKGLDKDSQD
GGCAACTTCTGAATAGTGCAAACCAAGTTGTCTTGGAGGGCAATAC




YVHWIDFSNFKTEGKG
AATCCCCAAGGGACTGGACAAAGATTCACAAGACTACGTTCATTGG




YYFKLPTVNSDTNYSH
ATCGATTTCTCGAACTTTAAGACCGAAGGCAAGGGGTACTATTTCA




PFDISADIYSKMKFDA
AGTTGCCCACTGTGAACTCCGATACTAACTACTCCCACCCGTTTGA




LAFFYHKRSGIPIEMP
TATTTCTGCAGATATCTATTCAAAGATGAAGTTCGACGCGCTCGCT




YAGGEQWTRPAGHIGV
TTCTTTTACCATAAAAGGTCGGGAATACCAATCGAGATGCCCTACG




APNKGDTNVPTWPQDD
CCGGGGGAGAGCAGTGGACAAGGCCCGCAGGGCACATTGGTGTCGC




EYAGRPQKYYTKDVTG
GCCGAACAAGGGCGACACGAATGTGCCAACTTGGCCCCAGGATGAC




GWYDAGDHGKYVVNGG
GAATATGCTGGACGCCCCCAGAAATACTATACGAAAGACGTGACCG




IAVWTLMNMYERAKIR
GCGGGTGGTACGATGCCGGTGACCACGGCAAGTACGTCGTGAACGG




GIANQGAYKDGGMNIP
GGGTATCGCAGTTTGGACCCTTATGAATATGTACGAGAGAGCAAAG




ERNNGYPDILDEARWE
ATTAGAGGAATCGCTAACCAGGGTGCCTACAAAGATGGAGGAATGA




IEFFKKMQVTEKEDPS
ATATCCCGGAAAGGAATAACGGCTATCCTGATATTCTGGACGAGGC




IAGMVHHKIHDFRWTA
CAGATGGGAGATCGAATTTTTTAAGAAGATGCAAGTCACTGAGAAA




LGMLPHEDPQPRYLRP
GAAGATCCGTCGATTGCAGGTATGGTGCACCACAAGATCCACGATT




VSTAATLNFAATLAQS
TCAGGTGGACGGCGCTCGGAATGTTGCCTCACGAGGACCCCCAGCC




ARLWKDYDPTFAADCL
ACGCTACCTTCGGCCCGTCAGCACAGCGGCAACCCTGAATTTCGCA




EKAEIAWQAALKHPDI
GCGACCCTCGCTCAGTCTGCCAGATTGTGGAAGGATTACGACCCGA




YAEYTPGSGGPGGGPY
CTTTTGCAGCGGACTGCCTTGAGAAAGCTGAAATTGCCTGGCAAGC




NDDYVGDEFYWAACEL
AGCACTCAAACACCCGGACATCTACGCTGAGTACACGCCAGGAAGC




YVTTGKDEYKNYLMNS
GGTGGGCCGGGTGGAGGTCCTTATAATGACGATTATGTCGGGGACG




PHYLEMPAKMGENGGA
AGTTCTACTGGGCCGCTTGTGAACTCTATGTGACAACCGGTAAGGA




NGEDNGLWGCFTWGTT
TGAGTACAAGAATTACTTGATGAATAGTCCGCACTATCTGGAAATG




QGLGTITLALVENGLP
CCAGCGAAGATGGGCGAGAACGGAGGGGCTAACGGCGAGGACAACG




SADIQKARNNIAKAAD
GTCTCTGGGGCTGCTTTACTTGGGGAACGACACAGGGGTTGGGTAC




KWLENIEEQGYRLPIK
AATTACCCTTGCCCTCGTTGAAAACGGCCTCCCTTCGGCGGATATT




QAEDERGGYPWGSNSF
CAAAAGGCCCGCAACAATATCGCTAAAGCCGCAGATAAGTGGCTTG




ILNQMIVMGYAYDFTG
AGAATATTGAAGAACAAGGTTACCGCCTGCCTATCAAACAAGCGGA




NSKYLDGMQDGMSYLL
GGATGAACGGGGCGGATACCCGTGGGGTAGTAATTCTTTCATTCTC




GRNGLDQSYVTGYGER
AACCAGATGATCGTCATGGGCTACGCTTACGACTTCACGGGAAACA




PLQNPHDRFWTPQTSK
GCAAGTATCTTGACGGGATGCAGGACGGCATGTCCTACCTGCTCGG




KFPAPPPGIIAGGPNS
TAGAAACGGACTTGATCAATCGTACGTTACTGGGTACGGGGAGAGG




RFEDPTITAAVKKDTP
CCACTTCAGAACCCCCACGACCGCTTTTGGACCCCTCAAACTTCGA




PQKCYIDHTDSWSTNE
AGAAATTCCCGGCCCCACCCCCTGGTATTATCGCAGGCGGGCCGAA




ITINWNAPFAWVTAYL
TAGCCGGTTTGAAGATCCAACGATCACTGCAGCGGTTAAGAAGGAT




DEIDLITPPGGVDPEE
ACACCCCCGCAGAAGTGCTATATTGACCACACCGATTCCTGGTCTA




PEVIYGDCNGDGKVNS
CTAACGAGATCACGATTAATTGGAACGCCCCCTTCGCGTGGGTCAC




TDAVALKRYILRSGIS
AGCGTATCTGGACGAAATTGACTTGATTACCCCACCCGGCGGAGTG




INTDNADVNADGRVNS
GACCCTGAAGAGCCGGAAGTTATCTACGGTGATTGTAACGGCGACG




TDLAILKRYILKEIDV
GAAAGGTTAATTCGACCGATGCTGTGGCCCTTAAAAGGTATATCCT




LPHKSEKDEL*
CCGCAGCGGTATCTCGATCAACACGGACAACGCGGACGTTAATGCA




(SEQ ID NO: 99)
GATGGTCGCGTGAATAGCACTGACCTCGCTATTTTGAAGCGCTATA





TTTTGAAGGAGATCGATGTTCTTCCTCACAAGAGCGAGAAGGACGA





GCTGTGA (SEQ ID NO: 171)





2072
BAASS:O68438
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQVLEDKSP
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAGTCCTGGAGGACAAGTC




KLPDYKNDLLYERTFD
TCCCAAACTGCCTGATTATAAGAACGACCTTCTGTACGAACGCACA




EGLCFPWHTCEDSGGK
TTCGACGAGGGGCTCTGCTTCCCGTGGCACACGTGCGAAGATTCAG




CDFAVVDVPGEPGNKA
GAGGGAAATGCGATTTTGCCGTGGTCGACGTTCCAGGCGAGCCTGG




FRLTVIDKGQNKWSVQ
GAACAAGGCGTTCAGGCTCACTGTTATCGATAAGGGTCAGAACAAG




MRHRGITLEQGHTYTV
TGGTCGGTCCAAATGAGACACCGGGGTATCACGTTGGAGCAGGGGC




RFTIWSDKSCRVYAKI
ACACATACACCGTTCGGTTTACTATCTGGAGCGACAAGAGCTGCCG




GQMGEPYTEYWNNNWN
CGTGTATGCCAAAATCGGCCAAATGGGTGAACCCTACACGGAGTAC




PFNLTPGQKLTVEQNF
TGGAACAATAACTGGAATCCGTTCAACCTCACTCCGGGGCAGAAAT




TMNYPTDDTCEFTFHL
TGACGGTGGAACAGAACTTTACTATGAATTATCCCACGGACGACAC




GGELAAGTPYYVYLDD
GTGTGAGTTTACCTTCCACTTGGGAGGGGAACTGGCAGCCGGGACC




VSLYDPRFVKPVEYVL
CCTTACTACGTGTACCTCGACGACGTTTCTCTTTACGATCCCCGCT




PQPDVRVNQVGYLPFA
TTGTCAAGCCAGTGGAATACGTCCTGCCTCAACCGGATGTCAGGGT




KKYATVVSSSTSPLKW
TAATCAAGTTGGATACCTCCCTTTTGCTAAGAAATATGCTACTGTC




QLLNSANQVVLEGNTI
GTGTCATCGAGCACGTCCCCATTGAAGTGGCAACTTCTGAATAGTG




PKGLDKDSQDYVHWID
CAAACCAAGTTGTCTTGGAGGGCAATACAATCCCCAAGGGACTGGA




FSNFKTEGKGYYFKLP
CAAAGATTCACAAGACTACGTTCATTGGATCGATTTCTCGAACTTT




TVNSDTNYSHPFDISA
AAGACCGAAGGCAAGGGGTACTATTTCAAGTTGCCCACTGTGAACT




DIYSKMKFDALAFFYH
CCGATACTAACTACTCCCACCCGTTTGATATTTCTGCAGATATCTA




KRSGIPIEMPYAGGEQ
TTCAAAGATGAAGTTCGACGCGCTCGCTTTCTTTTACCATAAAAGG




WTRPAGHIGVAPNKGD
TCGGGAATACCAATCGAGATGCCCTACGCCGGGGGAGAGCAGTGGA




TNVPTWPQDDEYAGRP
CAAGGCCCGCAGGGCACATTGGTGTCGCGCCGAACAAGGGCGACAC




QKYYTKDVTGGWYDAG
GAATGTGCCAACTTGGCCCCAGGATGACGAATATGCTGGACGCCCC




DHGKYVVNGGIAVWTL
CAGAAATACTATACGAAAGACGTGACCGGCGGGTGGTACGATGCCG




MNMYERAKIRGIANQG
GTGACCACGGCAAGTACGTCGTGAACGGGGGTATCGCAGTTTGGAC




AYKDGGMNIPERNNGY
CCTTATGAATATGTACGAGAGAGCAAAGATTAGAGGAATCGCTAAC




PDILDEARWEIEFFKK
CAGGGTGCCTACAAAGATGGAGGAATGAATATCCCGGAAAGGAATA




MQVTEKEDPSIAGMVH
ACGGCTATCCTGATATTCTGGACGAGGCCAGATGGGAGATCGAATT




HKIHDFRWTALGMLPH
TTTTAAGAAGATGCAAGTCACTGAGAAAGAAGATCCGTCGATTGCA




EDPQPRYLRPVSTAAT
GGTATGGTGCACCACAAGATCCACGATTTCAGGTGGACGGCGCTCG




LNFAATLAQSARLWKD
GAATGTTGCCTCACGAGGACCCCCAGCCACGCTACCTTCGGCCCGT




YDPTFAADCLEKAEIA
CAGCACAGCGGCAACCCTGAATTTCGCAGCGACCCTCGCTCAGTCT




WQAALKHPDIYAEYTP
GCCAGATTGTGGAAGGATTACGACCCGACTTTTGCAGCGGACTGCC




GSGGPGGGPYNDDYVG
TTGAGAAAGCTGAAATTGCCTGGCAAGCAGCACTCAAACACCCGGA




DEFYWAACELYVTTGK
CATCTACGCTGAGTACACGCCAGGAAGCGGTGGGCCGGGTGGAGGT




DEYKNYLMNSPHYLEM
CCTTATAATGACGATTATGTCGGGGACGAGTTCTACTGGGCCGCTT




PAKMGENGGANGEDNG
GTGAACTCTATGTGACAACCGGTAAGGATGAGTACAAGAATTACTT




LWGCFTWGTTQGLGTI
GATGAATAGTCCGCACTATCTGGAAATGCCAGCGAAGATGGGCGAG




TLALVENGLPSADIQK
AACGGAGGGGCTAACGGCGAGGACAACGGTCTCTGGGGCTGCTTTA




ARNNIAKAADKWLENI
CTTGGGGAACGACACAGGGGTTGGGTACAATTACCCTTGCCCTCGT




EEQGYRLPIKQAEDER
TGAAAACGGCCTCCCTTCGGCGGATATTCAAAAGGCCCGCAACAAT




GGYPWGSNSFILNQMI
ATCGCTAAAGCCGCAGATAAGTGGCTTGAGAATATTGAAGAACAAG




VMGYAYDFTGNSKYLD
GTTACCGCCTGCCTATCAAACAAGCGGAGGATGAACGGGGCGGATA




GMQDGMSYLLGRNGLD
CCCGTGGGGTAGTAATTCTTTCATTCTCAACCAGATGATCGTCATG




QSYVTGYGERPLQNPH
GGCTACGCTTACGACTTCACGGGAAACAGCAAGTATCTTGACGGGA




DRFWTPQTSKKFPAPP
TGCAGGACGGCATGTCCTACCTGCTCGGTAGAAACGGACTTGATCA




PGIIAGGPNSRFEDPT
ATCGTACGTTACTGGGTACGGGGAGAGGCCACTTCAGAACCCCCAC




ITAAVKKDTPPQKCYI
GACCGCTTTTGGACCCCTCAAACTTCGAAGAAATTCCCGGCCCCAC




DHTDSWSTNEITINWN
CCCCTGGTATTATCGCAGGCGGGCCGAATAGCCGGTTTGAAGATCC




APFAWVTAYLDEIDLI
AACGATCACTGCAGCGGTTAAGAAGGATACACCCCCGCAGAAGTGC




TPPGGVDPEEPEVIYG
TATATTGACCACACCGATTCCTGGTCTACTAACGAGATCACGATTA




DCNGDGKVNSTDAVAL
ATTGGAACGCCCCCTTCGCGTGGGTCACAGCGTATCTGGACGAAAT




KRYILRSGISINTDNA
TGACTTGATTACCCCACCCGGCGGAGTGGACCCTGAAGAGCCGGAA




DVNADGRVNSTDLAIL
GTTATCTACGGTGATTGTAACGGCGACGGAAAGGTTAATTCGACCG




KRYILKEIDVLPHK*
ATGCTGTGGCCCTTAAAAGGTATATCCTCCGCAGCGGTATCTCGAT




(SEQ ID NO: 100)
CAACACGGACAACGCGGACGTTAATGCAGATGGTCGCGTGAATAGC





ACTGACCTCGCTATTTTGAAGCGCTATATTTTGAAGGAGATCGATG





TTCTTCCTCACAAGTGA (SEQ ID NO: 172)





2073
BAASS:O68438:SEKDEL
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG




LSASLASGQVLEDKSP
GCCTGTCGGCCAGCTTGGCCTCCGGGCAAGTCCTGGAGGACAAGTC




KLPDYKNDLLYERTFD
TCCCAAACTGCCTGATTATAAGAACGACCTTCTGTACGAACGCACA




EGLCFPWHTCEDSGGK
TTCGACGAGGGGCTCTGCTTCCCGTGGCACACGTGCGAAGATTCAG




CDFAVVDVPGEPGNKA
GAGGGAAATGCGATTTTGCCGTGGTCGACGTTCCAGGCGAGCCTGG




FRLTVIDKGQNKWSVQ
GAACAAGGCGTTCAGGCTCACTGTTATCGATAAGGGTCAGAACAAG




MRHRGITLEQGHTYTV
TGGTCGGTCCAAATGAGACACCGGGGTATCACGTTGGAGCAGGGGC




RFTIWSDKSCRVYAKI
ACACATACACCGTTCGGTTTACTATCTGGAGCGACAAGAGCTGCCG




GQMGEPYTEYWNNNWN
CGTGTATGCCAAAATCGGCCAAATGGGTGAACCCTACACGGAGTAC




PFNLTPGQKLTVEQNF
TGGAACAATAACTGGAATCCGTTCAACCTCACTCCGGGGCAGAAAT




TMNYPTDDTCEFTFHL
TGACGGTGGAACAGAACTTTACTATGAATTATCCCACGGACGACAC




GGELAAGTPYYVYLDD
GTGTGAGTTTACCTTCCACTTGGGAGGGGAACTGGCAGCCGGGACC




VSLYDPRFVKPVEYVL
CCTTACTACGTGTACCTCGACGACGTTTCTCTTTACGATCCCCGCT




PQPDVRVNQVGYLPFA
TTGTCAAGCCAGTGGAATACGTCCTGCCTCAACCGGATGTCAGGGT




KKYATVVSSSTSPLKW
TAATCAAGTTGGATACCTCCCTTTTGCTAAGAAATATGCTACTGTC




QLLNSANQVVLEGNTI
GTGTCATCGAGCACGTCCCCATTGAAGTGGCAACTTCTGAATAGTG




PKGLDKDSQDYVHWID
CAAACCAAGTTGTCTTGGAGGGCAATACAATCCCCAAGGGACTGGA




FSNFKTEGKGYYFKLP
CAAAGATTCACAAGACTACGTTCATTGGATCGATTTCTCGAACTTT




TVNSDTNYSHPFDISA
AAGACCGAAGGCAAGGGGTACTATTTCAAGTTGCCCACTGTGAACT




DIYSKMKFDALAFFYH
CCGATACTAACTACTCCCACCCGTTTGATATTTCTGCAGATATCTA




KRSGIPIEMPYAGGEQ
TTCAAAGATGAAGTTCGACGCGCTCGCTTTCTTTTACCATAAAAGG




WTRPAGHIGVAPNKGD
TCGGGAATACCAATCGAGATGCCCTACGCCGGGGGAGAGCAGTGGA




TNVPTWPQDDEYAGRP
CAAGGCCCGCAGGGCACATTGGTGTCGCGCCGAACAAGGGCGACAC




QKYYTKDVTGGWYDAG
GAATGTGCCAACTTGGCCCCAGGATGACGAATATGCTGGACGCCCC




DHGKYVVNGGIAVWTL
CAGAAATACTATACGAAAGACGTGACCGGCGGGTGGTACGATGCCG




MNMYERAKIRGIANQG
GTGACCACGGCAAGTACGTCGTGAACGGGGGTATCGCAGTTTGGAC




AYKDGGMNIPERNNGY
CCTTATGAATATGTACGAGAGAGCAAAGATTAGAGGAATCGCTAAC




PDILDEARWEIEFFKK
CAGGGTGCCTACAAAGATGGAGGAATGAATATCCCGGAAAGGAATA




MQVTEKEDPSIAGMVH
ACGGCTATCCTGATATTCTGGACGAGGCCAGATGGGAGATCGAATT




HKIHDFRWTALGMLPH
TTTTAAGAAGATGCAAGTCACTGAGAAAGAAGATCCGTCGATTGCA




EDPQPRYLRPVSTAAT
GGTATGGTGCACCACAAGATCCACGATTTCAGGTGGACGGCGCTCG




LNFAATLAQSARLWKD
GAATGTTGCCTCACGAGGACCCCCAGCCACGCTACCTTCGGCCCGT




YDPTFAADCLEKAEIA
CAGCACAGCGGCAACCCTGAATTTCGCAGCGACCCTCGCTCAGTCT




WQAALKHPDIYAEYTP
GCCAGATTGTGGAAGGATTACGACCCGACTTTTGCAGCGGACTGCC




GSGGPGGGPYNDDYVG
TTGAGAAAGCTGAAATTGCCTGGCAAGCAGCACTCAAACACCCGGA




DEFYWAACELYVTTGK
CATCTACGCTGAGTACACGCCAGGAAGCGGTGGGCCGGGTGGAGGT




DEYKNYLMNSPHYLEM
CCTTATAATGACGATTATGTCGGGGACGAGTTCTACTGGGCCGCTT




PAKMGENGGANGEDNG
GTGAACTCTATGTGACAACCGGTAAGGATGAGTACAAGAATTACTT




LWGCFTWGTTQGLGTI
GATGAATAGTCCGCACTATCTGGAAATGCCAGCGAAGATGGGCGAG




TLALVENGLPSADIQK
AACGGAGGGGCTAACGGCGAGGACAACGGTCTCTGGGGCTGCTTTA




ARNNIAKAADKWLENI
CTTGGGGAACGACACAGGGGTTGGGTACAATTACCCTTGCCCTCGT




EEQGYRLPIKQAEDER
TGAAAACGGCCTCCCTTCGGCGGATATTCAAAAGGCCCGCAACAAT




GGYPWGSNSFILNQMI
ATCGCTAAAGCCGCAGATAAGTGGCTTGAGAATATTGAAGAACAAG




VMGYAYDFTGNSKYLD
GTTACCGCCTGCCTATCAAACAAGCGGAGGATGAACGGGGCGGATA




GMQDGMSYLLGRNGLD
CCCGTGGGGTAGTAATTCTTTCATTCTCAACCAGATGATCGTCATG




QSYVTGYGERPLQNPH
GGCTACGCTTACGACTTCACGGGAAACAGCAAGTATCTTGACGGGA




DRFWTPQTSKKFPAPP
TGCAGGACGGCATGTCCTACCTGCTCGGTAGAAACGGACTTGATCA




PGIIAGGPNSRFEDPT
ATCGTACGTTACTGGGTACGGGGAGAGGCCACTTCAGAACCCCCAC




ITAAVKKDTPPQKCYI
GACCGCTTTTGGACCCCTCAAACTTCGAAGAAATTCCCGGCCCCAC




DHTDSWSTNEITINWN
CCCCTGGTATTATCGCAGGCGGGCCGAATAGCCGGTTTGAAGATCC




APFAWVTAYLDEIDLI
AACGATCACTGCAGCGGTTAAGAAGGATACACCCCCGCAGAAGTGC




TPPGGVDPEEPEVIYG
TATATTGACCACACCGATTCCTGGTCTACTAACGAGATCACGATTA




DCNGDGKVNSTDAVAL
ATTGGAACGCCCCCTTCGCGTGGGTCACAGCGTATCTGGACGAAAT




KRYILRSGISINTDNA
TGACTTGATTACCCCACCCGGCGGAGTGGACCCTGAAGAGCCGGAA




DVNADGRVNSTDLAIL
GTTATCTACGGTGATTGTAACGGCGACGGAAAGGTTAATTCGACCG




KRYILKEIDVLPHKSE
ATGCTGTGGCCCTTAAAAGGTATATCCTCCGCAGCGGTATCTCGAT




KDEL* (SEQ ID
CAACACGGACAACGCGGACGTTAATGCAGATGGTCGCGTGAATAGC




NO: 101)
ACTGACCTCGCTATTTTGAAGCGCTATATTTTGAAGGAGATCGATG





TTCTTCCTCACAAGAGCGAGAAGGACGAGCTGTGA (SEQ ID





NO: 173)





2074
HvAleSP:O68438
MAHARVLLLALAVLAT
ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCA




AAVAVASSSSFADSNP
CCGCCGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAA




IRPVTDRAASTLEDKS
CCCGATCCGCCCGGTGACCGACCGCGCCGCCTCCACCCTGGAGGAC




PKLPDYKNDLLYERTF
AAGTCTCCCAAACTGCCTGATTATAAGAACGACCTTCTGTACGAAC




DEGLCFPWHTCEDSGG
GCACATTCGACGAGGGGCTCTGCTTCCCGTGGCACACGTGCGAAGA




KCDFAVVDVPGEPGNK
TTCAGGAGGGAAATGCGATTTTGCCGTGGTCGACGTTCCAGGCGAG




AFRLTVIDKGQNKWSV
CCTGGGAACAAGGCGTTCAGGCTCACTGTTATCGATAAGGGTCAGA




QMRHRGITLEQGHTYT
ACAAGTGGTCGGTCCAAATGAGACACCGGGGTATCACGTTGGAGCA




VRFTIWSDKSCRVYAK
GGGGCACACATACACCGTTCGGTTTACTATCTGGAGCGACAAGAGC




IGQMGEPYTEYWNNNW
TGCCGCGTGTATGCCAAAATCGGCCAAATGGGTGAACCCTACACGG




NPFNLTPGQKLTVEQN
AGTACTGGAACAATAACTGGAATCCGTTCAACCTCACTCCGGGGCA




FTMNYPTDDTCEFTFH
GAAATTGACGGTGGAACAGAACTTTACTATGAATTATCCCACGGAC




LGGELAAGTPYYVYLD
GACACGTGTGAGTTTACCTTCCACTTGGGAGGGGAACTGGCAGCCG




DVSLYDPRFVKPVEYV
GGACCCCTTACTACGTGTACCTCGACGACGTTTCTCTTTACGATCC




LPQPDVRVNQVGYLPF
CCGCTTTGTCAAGCCAGTGGAATACGTCCTGCCTCAACCGGATGTC




AKKYATVVSSSTSPLK
AGGGTTAATCAAGTTGGATACCTCCCTTTTGCTAAGAAATATGCTA




WQLLNSANQVVLEGNT
CTGTCGTGTCATCGAGCACGTCCCCATTGAAGTGGCAACTTCTGAA




IPKGLDKDSQDYVHWI
TAGTGCAAACCAAGTTGTCTTGGAGGGCAATACAATCCCCAAGGGA




DFSNFKTEGKGYYFKL
CTGGACAAAGATTCACAAGACTACGTTCATTGGATCGATTTCTCGA




PTVNSDTNYSHPFDIS
ACTTTAAGACCGAAGGCAAGGGGTACTATTTCAAGTTGCCCACTGT




ADIYSKMKFDALAFFY
GAACTCCGATACTAACTACTCCCACCCGTTTGATATTTCTGCAGAT




HKRSGIPIEMPYAGGE
ATCTATTCAAAGATGAAGTTCGACGCGCTCGCTTTCTTTTACCATA




QWTRPAGHIGVAPNKG
AAAGGTCGGGAATACCAATCGAGATGCCCTACGCCGGGGGAGAGCA




DTNVPTWPQDDEYAGR
GTGGACAAGGCCCGCAGGGCACATTGGTGTCGCGCCGAACAAGGGC




PQKYYTKDVTGGWYDA
GACACGAATGTGCCAACTTGGCCCCAGGATGACGAATATGCTGGAC




GDHGKYVVNGGIAVWT
GCCCCCAGAAATACTATACGAAAGACGTGACCGGCGGGTGGTACGA




LMNMYERAKIRGIANQ
TGCCGGTGACCACGGCAAGTACGTCGTGAACGGGGGTATCGCAGTT




GAYKDGGMNIPERNNG
TGGACCCTTATGAATATGTACGAGAGAGCAAAGATTAGAGGAATCG




YPDILDEARWEIEFFK
CTAACCAGGGTGCCTACAAAGATGGAGGAATGAATATCCCGGAAAG




KMQVTEKEDPSIAGMV
GAATAACGGCTATCCTGATATTCTGGACGAGGCCAGATGGGAGATC




HHKIHDFRWTALGMLP
GAATTTTTTAAGAAGATGCAAGTCACTGAGAAAGAAGATCCGTCGA




HEDPQPRYLRPVSTAA
TTGCAGGTATGGTGCACCACAAGATCCACGATTTCAGGTGGACGGC




TLNFAATLAQSARLWK
GCTCGGAATGTTGCCTCACGAGGACCCCCAGCCACGCTACCTTCGG




DYDPTFAADCLEKAEI
CCCGTCAGCACAGCGGCAACCCTGAATTTCGCAGCGACCCTCGCTC




AWQAALKHPDIYAEYT
AGTCTGCCAGATTGTGGAAGGATTACGACCCGACTTTTGCAGCGGA




PGSGGPGGGPYNDDYV
CTGCCTTGAGAAAGCTGAAATTGCCTGGCAAGCAGCACTCAAACAC




GDEFYWAACELYVTTG
CCGGACATCTACGCTGAGTACACGCCAGGAAGCGGTGGGCCGGGTG




KDEYKNYLMNSPHYLE
GAGGTCCTTATAATGACGATTATGTCGGGGACGAGTTCTACTGGGC




MPAKMGENGGANGEDN
CGCTTGTGAACTCTATGTGACAACCGGTAAGGATGAGTACAAGAAT




GLWGCFTWGTTQGLGT
TACTTGATGAATAGTCCGCACTATCTGGAAATGCCAGCGAAGATGG




ITLALVENGLPSADIQ
GCGAGAACGGAGGGGCTAACGGCGAGGACAACGGTCTCTGGGGCTG




KARNNIAKAADKWLEN
CTTTACTTGGGGAACGACACAGGGGTTGGGTACAATTACCCTTGCC




IEEQGYRLPIKQAEDE
CTCGTTGAAAACGGCCTCCCTTCGGCGGATATTCAAAAGGCCCGCA




RGGYPWGSNSFILNQM
ACAATATCGCTAAAGCCGCAGATAAGTGGCTTGAGAATATTGAAGA




IVMGYAYDFTGNSKYL
ACAAGGTTACCGCCTGCCTATCAAACAAGCGGAGGATGAACGGGGC




DGMQDGMSYLLGRNGL
GGATACCCGTGGGGTAGTAATTCTTTCATTCTCAACCAGATGATCG




DQSYVTGYGERPLQNP
TCATGGGCTACGCTTACGACTTCACGGGAAACAGCAAGTATCTTGA




HDRFWTPQTSKKFPAP
CGGGATGCAGGACGGCATGTCCTACCTGCTCGGTAGAAACGGACTT




PPGIIAGGPNSRFEDP
GATCAATCGTACGTTACTGGGTACGGGGAGAGGCCACTTCAGAACC




TITAAVKKDTPPQKCY
CCCACGACCGCTTTTGGACCCCTCAAACTTCGAAGAAATTCCCGGC




IDHTDSWSTNEITINW
CCCACCCCCTGGTATTATCGCAGGCGGGCCGAATAGCCGGTTTGAA




NAPFAWVTAYLDEIDL
GATCCAACGATCACTGCAGCGGTTAAGAAGGATACACCCCCGCAGA




ITPPGGVDPEEPEVIY
AGTGCTATATTGACCACACCGATTCCTGGTCTACTAACGAGATCAC




GDCNGDGKVNSTDAVA
GATTAATTGGAACGCCCCCTTCGCGTGGGTCACAGCGTATCTGGAC




LKRYILRSGISINTDN
GAAATTGACTTGATTACCCCACCCGGCGGAGTGGACCCTGAAGAGC




ADVNADGRVNSTDLAI
CGGAAGTTATCTACGGTGATTGTAACGGCGACGGAAAGGTTAATTC




LKRYILKEIDVLPHK*
GACCGATGCTGTGGCCCTTAAAAGGTATATCCTCCGCAGCGGTATC




(SEQ ID NO: 102)
TCGATCAACACGGACAACGCGGACGTTAATGCAGATGGTCGCGTGA





ATAGCACTGACCTCGCTATTTTGAAGCGCTATATTTTGAAGGAGAT





CGATGTTCTTCCTCACAAGTGA (SEQ ID NO: 174)





2075
HvAleSP:O68438:
MAHARVLLLALAVLAT
ATGGCCCACGCCCGCGTCCTCCTCCTGGCGCTCGCCGTCCTGGCCA



SEKDEL
AAVAVASSSSFADSNP
CCGCCGCCGTCGCCGTCGCCTCCTCCTCCTCCTTCGCCGACTCCAA




IRPVTDRAASTLEDKS
CCCGATCCGCCCGGTGACCGACCGCGCCGCCTCCACCCTGGAGGAC




PKLPDYKNDLLYERTF
AAGTCTCCCAAACTGCCTGATTATAAGAACGACCTTCTGTACGAAC




DEGLCFPWHTCEDSGG
GCACATTCGACGAGGGGCTCTGCTTCCCGTGGCACACGTGCGAAGA




KCDFAVVDVPGEPGNK
TTCAGGAGGGAAATGCGATTTTGCCGTGGTCGACGTTCCAGGCGAG




AFRLTVIDKGQNKWSV
CCTGGGAACAAGGCGTTCAGGCTCACTGTTATCGATAAGGGTCAGA




QMRHRGITLEQGHTYT
ACAAGTGGTCGGTCCAAATGAGACACCGGGGTATCACGTTGGAGCA




VRFTIWSDKSCRVYAK
GGGGCACACATACACCGTTCGGTTTACTATCTGGAGCGACAAGAGC




IGQMGEPYTEYWNNNW
TGCCGCGTGTATGCCAAAATCGGCCAAATGGGTGAACCCTACACGG




NPFNLTPGQKLTVEQN
AGTACTGGAACAATAACTGGAATCCGTTCAACCTCACTCCGGGGCA




FTMNYPTDDTCEFTFH
GAAATTGACGGTGGAACAGAACTTTACTATGAATTATCCCACGGAC




LGGELAAGTPYYVYLD
GACACGTGTGAGTTTACCTTCCACTTGGGAGGGGAACTGGCAGCCG




DVSLYDPRFVKPVEYV
GGACCCCTTACTACGTGTACCTCGACGACGTTTCTCTTTACGATCC




LPQPDVRVNQVGYLPF
CCGCTTTGTCAAGCCAGTGGAATACGTCCTGCCTCAACCGGATGTC




AKKYATVVSSSTSPLK
AGGGTTAATCAAGTTGGATACCTCCCTTTTGCTAAGAAATATGCTA




WQLLNSANQVVLEGNT
CTGTCGTGTCATCGAGCACGTCCCCATTGAAGTGGCAACTTCTGAA




IPKGLDKDSQDYVHWI
TAGTGCAAACCAAGTTGTCTTGGAGGGCAATACAATCCCCAAGGGA




DFSNFKTEGKGYYFKL
CTGGACAAAGATTCACAAGACTACGTTCATTGGATCGATTTCTCGA




PTVNSDTNYSHPFDIS
ACTTTAAGACCGAAGGCAAGGGGTACTATTTCAAGTTGCCCACTGT




ADIYSKMKFDALAFFY
GAACTCCGATACTAACTACTCCCACCCGTTTGATATTTCTGCAGAT




HKRSGIPIEMPYAGGE
ATCTATTCAAAGATGAAGTTCGACGCGCTCGCTTTCTTTTACCATA




QWTRPAGHIGVAPNKG
AAAGGTCGGGAATACCAATCGAGATGCCCTACGCCGGGGGAGAGCA




DTNVPTWPQDDEYAGR
GTGGACAAGGCCCGCAGGGCACATTGGTGTCGCGCCGAACAAGGGC




PQKYYTKDVTGGWYDA
GACACGAATGTGCCAACTTGGCCCCAGGATGACGAATATGCTGGAC




GDHGKYVVNGGIAVWT
GCCCCCAGAAATACTATACGAAAGACGTGACCGGCGGGTGGTACGA




LMNMYERAKIRGIANQ
TGCCGGTGACCACGGCAAGTACGTCGTGAACGGGGGTATCGCAGTT




GAYKDGGMNIPERNNG
TGGACCCTTATGAATATGTACGAGAGAGCAAAGATTAGAGGAATCG




YPDILDEARWEIEFFK
CTAACCAGGGTGCCTACAAAGATGGAGGAATGAATATCCCGGAAAG




KMQVTEKEDPSIAGMV
GAATAACGGCTATCCTGATATTCTGGACGAGGCCAGATGGGAGATC




HHKIHDFRWTALGMLP
GAATTTTTTAAGAAGATGCAAGTCACTGAGAAAGAAGATCCGTCGA




HEDPQPRYLRPVSTAA
TTGCAGGTATGGTGCACCACAAGATCCACGATTTCAGGTGGACGGC




TLNFAATLAQSARLWK
GCTCGGAATGTTGCCTCACGAGGACCCCCAGCCACGCTACCTTCGG




DYDPTFAADCLEKAEI
CCCGTCAGCACAGCGGCAACCCTGAATTTCGCAGCGACCCTCGCTC




AWQAALKHPDIYAEYT
AGTCTGCCAGATTGTGGAAGGATTACGACCCGACTTTTGCAGCGGA




PGSGGPGGGPYNDDYV
CTGCCTTGAGAAAGCTGAAATTGCCTGGCAAGCAGCACTCAAACAC




GDEFYWAACELYVTTG
CCGGACATCTACGCTGAGTACACGCCAGGAAGCGGTGGGCCGGGTG




KDEYKNYLMNSPHYLE
GAGGTCCTTATAATGACGATTATGTCGGGGACGAGTTCTACTGGGC




MPAKMGENGGANGEDN
CGCTTGTGAACTCTATGTGACAACCGGTAAGGATGAGTACAAGAAT




GLWGCFTWGTTQGLGT
TACTTGATGAATAGTCCGCACTATCTGGAAATGCCAGCGAAGATGG




ITLALVENGLPSADIQ
GCGAGAACGGAGGGGCTAACGGCGAGGACAACGGTCTCTGGGGCTG




KARNNIAKAADKWLEN
CTTTACTTGGGGAACGACACAGGGGTTGGGTACAATTACCCTTGCC




IEEQGYRLPIKQAEDE
CTCGTTGAAAACGGCCTCCCTTCGGCGGATATTCAAAAGGCCCGCA




RGGYPWGSNSFILNQM
ACAATATCGCTAAAGCCGCAGATAAGTGGCTTGAGAATATTGAAGA




IVMGYAYDFTGNSKYL
ACAAGGTTACCGCCTGCCTATCAAACAAGCGGAGGATGAACGGGGC




DGMQDGMSYLLGRNGL
GGATACCCGTGGGGTAGTAATTCTTTCATTCTCAACCAGATGATCG




DQSYVTGYGERPLQNP
TCATGGGCTACGCTTACGACTTCACGGGAAACAGCAAGTATCTTGA




HDRFWTPQTSKKFPAP
CGGGATGCAGGACGGCATGTCCTACCTGCTCGGTAGAAACGGACTT




PPGIIAGGPNSRFEDP
GATCAATCGTACGTTACTGGGTACGGGGAGAGGCCACTTCAGAACC




TITAAVKKDTPPQKCY
CCCACGACCGCTTTTGGACCCCTCAAACTTCGAAGAAATTCCCGGC




IDHTDSWSTNEITINW
CCCACCCCCTGGTATTATCGCAGGCGGGCCGAATAGCCGGTTTGAA




NAPFAWVTAYLDEIDL
GATCCAACGATCACTGCAGCGGTTAAGAAGGATACACCCCCGCAGA




ITPPGGVDPEEPEVIY
AGTGCTATATTGACCACACCGATTCCTGGTCTACTAACGAGATCAC




GDCNGDGKVNSTDAVA
GATTAATTGGAACGCCCCCTTCGCGTGGGTCACAGCGTATCTGGAC




LKRYILRSGISINTDN
GAAATTGACTTGATTACCCCACCCGGCGGAGTGGACCCTGAAGAGC




ADVNADGRVNSTDLAI
CGGAAGTTATCTACGGTGATTGTAACGGCGACGGAAAGGTTAATTC




LKRYILKEIDVLPHKS
GACCGATGCTGTGGCCCTTAAAAGGTATATCCTCCGCAGCGGTATC




EKDEL* (SEQ ID
TCGATCAACACGGACAACGCGGACGTTAATGCAGATGGTCGCGTGA




NO: 103)
ATAGCACTGACCTCGCTATTTTGAAGCGCTATATTTTGAAGGAGAT





CGATGTTCTTCCTCACAAGAGCGAGAAGGACGAGCTGTGA





(SEQ ID NO: 175)





2076
P77853S158-2
MQTSITLTSNASGTFD
ATGCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTG




GYYYELWKDTGNTTMT
ACGGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAAT




VYTQGRFSCQWSNINN
GACGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCGAACATC




ALFRTGKKYNQNWQSL
AATAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTGGC




GTIRITYSATYNPNGN
AGTCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACAACCC




SYLCIYGWSTNPLVEF
AAACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAACCCA




YIVESWGNWRPPGATS
TTGGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGACCGC




LGQVTIDGGTYDIYRT
CTGGTGCCACGTCCCTGGGCCAAGTGACAATCGATGGCGGGACCTA




TRVNQPCLAEGSLVLD
CGACATCTATAGGACGACACGCGTCAACCAGCCTTGCCTGGCCGAG




AATGQRVPIEKVRPGM
GGCTCGCTCGTCTTGGACGCGGCTACCGGGCAGAGGGTCCCTATCG




EVFSLGPDYRLYRVPV
AAAAGGTGCGTCCGGGGATGGAAGTTTTCTCCTTGGGACCTGATTA




LEVLESGVREVVRLRT
CAGACTGTATCGGGTGCCCGTTTTGGAGGTCCTTGAGAGCGGGGTT




RSGRTLVLTPDHPLLT
AGGGAAGTTGTGCGCCTCAGAACTCGGTCAGGGAGAACGCTGGTGT




PEGWKPLCDLPLGTPI
TGACACCAGATCACCCGCTTTTGACCCCCGAAGGTTGGAAACCTCT




AVPAELPVAGHLAPPE
TTGTGACCTCCCGCTTGGAACTCCAATTGCAGTCCCCGCAGAACTG




ERVTLLALLLGDGNTK
CCTGTGGCGGGCCACTTGGCCCCACCTGAAGAACGTGTTACGCTCC




LPGRRGTRPNAFFYSK
TGGCTCTTCTGTTGGGGGATGGGAACACAAAGCTGCCGGGTCGGAG




DPELLAAYRRCAEALG
AGGTACACGTCCTAATGCCTTCTTCTACAGCAAAGACCCCGAATTG




AKVKAYVHPTTGVVTL
CTCGCGGCTTATCGCCGGTGTGCAGAAGCCTTGGGTGCAAAGGTGA




ATLAPRPGAQDPVKRL
AAGCATACGTCCACCCGACTACGGGGGTGGTTACACTCGCAACCCT




VVEAGMVAKAEEKRVP
CGCTCCACGTCCTGGAGCTCAAGATCCTGTCAAACGCCTCGTTGTC




EEVFRYRREALALFLG
GAGGCGGGAATGGTTGCTAAAGCCGAAGAGAAGAGGGTCCCGGAGG




RLFSTDGSVEKKRISY
AGGTGTTTCGTTACCGGCGTGAGGCGTTGGCCCTTTTCTTGGGCCG




SSASLGLAQDDAHLLL
TTTGTTCTCGACAGACGGCTCTGTTGAAAAGAAGAGGATCTCTTAT




RLGITSQLRSRGPRAH
TCAAGTGCCAGTTTGGGACTGGCCCAGGATGACGCACATCTCTTGC




EVLISGREDILRFAEL
TGCGCCTTGGAATTACATCTCAACTCCGTTCGAGAGGGCCACGGGC




IGPYLLGAKRERLAAL
TCACGAGGTTCTTATATCGGGCCGCGAGGATATTTTGCGGTTTGCT




EAEARRRLPGQGWHLR
GAACTTATCGGACCCTACCTCTTGGGGGCCAAGAGGGAGAGACTTG




LVLPAVAYRVSEAKRR
CAGCGCTGGAAGCTGAGGCCCGCAGGCGTTTGCCTGGACAGGGATG




SGFSWSEAGRRVAVAG
GCACTTGCGGCTTGTTCTTCCTGCCGTGGCGTACAGAGTGAGCGAG




SCLSSGLNLKLPRRYL
GCTAAAAGGCGCTCGGGATTTTCGTGGAGTGAAGCCGGTCGGCGCG




SRHRLSLLGEAFADPG
TCGCAGTTGCGGGATCGTGTTTGTCATCTGGACTCAACCTCAAATT




LEALAEGQVLWDPIVA
GCCCAGACGCTACCTTTCTCGGCACCGGTTGTCGCTGCTCGGTGAG




VEPAGKARTFDLRVPP
GCTTTTGCCGACCCTGGGCTGGAAGCGCTCGCGGAAGGCCAAGTGC




FANFVSEDLVVHNSIV
TCTGGGACCCTATTGTTGCTGTCGAACCGGCCGGTAAGGCGAGAAC




GTATFDQYWSVRTSKR
ATTCGACTTGCGCGTTCCACCCTTTGCAAACTTCGTGAGCGAGGAC




TSGTVTVTDHFRAWAN
CTGGTGGTGCATAACTCCATTGTGGGGACAGCCACGTTCGATCAGT




RGLNLGTIDQITLCVE
ACTGGAGCGTGCGCACCTCTAAGCGGACTTCAGGAACAGTGACCGT




GYQSSGSANITQNTFS
GACCGATCACTTCCGCGCCTGGGCGAACCGGGGCCTGAACCTCGGC




QGSSSGSSGGSSGSTT
ACAATAGACCAAATTACATTGTGCGTGGAGGGTTACCAAAGCTCTG




TTRIECENMSLSGPYV
GATCAGCCAACATCACCCAGAACACCTTCTCTCAGGGCTCTTCTTC




SRITNPFNGIALYANG
CGGCAGTTCGGGTGGCTCATCCGGCTCCACAACGACTACTCGCATC




DTARATVNFPASRNYN
GAGTGTGAGAACATGTCCTTGTCCGGACCCTACGTTAGCAGGATCA




FRLRGCGNNNNLARVD
CCAATCCCTTTAATGGTATTGCGCTGTACGCCAACGGAGACACAGC




LRIDGRTVGTFYYQGT
CCGCGCTACCGTTAACTTCCCCGCAAGTCGCAACTACAATTTCCGC




YPWEAPIDNVYVSAGS
CTGCGGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACCTGA




HTVEITVTADNGTWDV
GGATCGACGGACGGACCGTCGGGACCTTTTATTACCAGGGCACATA




YADYLVIQ* (SEQ
CCCCTGGGAGGCCCCAATTGACAATGTTTATGTCAGTGCGGGGAGT




ID NO: 104)
CATACAGTCGAAATCACTGTTACTGCGGATAACGGCACATGGGACG





TGTATGCCGACTACCTGGTGATACAGTGA (SEQ ID NO:





176)





2077
P77853S158-19
MQTSITLTSNASGTFD
ATGCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTG




GYYYELWKDTGNTTMT
ACGGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAAT




VYTQGRFSCQWSNINN
GACGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCGAACATC




ALFRTGKKYNQNWQSL
AATAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTGGC




GTIRITYSATYNPNGN
AGTCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACAACCC




SYLCIYGWSTNPLVEF
AAACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAACCCA




YIVESWGNWRPPGATS
TTGGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGACCGC




LGQVTIDGGTYDIYRT
CTGGTGCCACGTCCCTGGGCCAAGTGACAATCGATGGCGGGACCTA




TRVNQPCLAEGSLVLD
CGACATCTATAGGACGACACGCGTCAACCAGCCTTGCCTGGCCGAG




AATGQRVPIEKVRPGM
GGCTCGCTCGTCTTGGACGCGGCTACCGGGCAGAGGGTCCCTATCG




EVFSLGPDYRLYRVPV
AAAAGGTGCGTCCGGGGATGGAAGTTTTCTCCTTGGGACCTGATTA




LEVLESGVGEVVRLRT
CAGACTGTATCGGGTGCCCGTTTTGGAGGTCCTTGAGAGCGGGGTT




RSGRTLVLTPDHPLLT
GGGGAAGTTGTGCGCCTCAGAACTCGGTCAGGGAGAACGCTGGTGT




PEGWKPLCDLPLGTPI
TGACACCAGATCACCCGCTTTTGACCCCCGAAGGTTGGAAACCTCT




AVPAELPVAGHLAPPE
TTGTGACCTCCCGCTTGGAACTCCAATTGCAGTCCCCGCAGAACTG




ERVTLLALLLGDGNTK
CCTGTGGCGGGCCACTTGGCCCCACCTGAAGAACGTGTTACGCTCC




LSGRRGTRPIAFFYSK
TGGCTCTTCTGTTGGGGGATGGGAACACAAAGCTGTCGGGTCGGAG




DPELLAAYRRCAEALG
AGGTACACGTCCTATTGCCTTCTTCTACAGCAAAGACCCCGAATTG




AKVKAYVHPTTGVVTL
CTCGCGGCTTATCGCCGGTGTGCAGAAGCCTTGGGTGCAAAGGTGA




ATLAPRPGAQDPVKRL
AAGCATACGTCCACCCGACTACGGGGGTGGTTACACTCGCAACCCT




VVEAGMVAKAEEKRVP
CGCTCCACGTCCTGGAGCTCAAGATCCTGTCAAACGCCTCGTTGTC




EEVFRYRREALALFLG
GAGGCGGGAATGGTTGCTAAAGCCGAAGAGAAGAGGGTCCCGGAGG




RLFSTDGSVEKKRISY
AGGTGTTTCGTTACCGGCGTGAGGCGTTGGCCCTTTTCTTGGGCCG




SSASLGLAQDVAHLLL
TTTGTTCTCGACAGACGGCTCTGTTGAAAAGAAGAGGATCTCTTAT




RLGITSQLRSRGPRAH
TCAAGTGCCAGTTTGGGACTGGCCCAGGATGTCGCACATCTCTTGC




EVLISGREDILRFAEL
TGCGCCTTGGAATTACATCTCAACTCCGTTCGAGAGGGCCACGGGC




IGPYLLGAKRERLAAL
TCACGAGGTTCTTATATCGGGCCGCGAGGATATTTTGCGGTTTGCT




EAEARRRLPGQGWHLR
GAACTTATCGGACCCTACCTCTTGGGGGCCAAGAGGGAGAGACTTG




LVLPAVAYRVSEAKRR
CAGCGCTGGAAGCTGAGGCCCGCAGGCGTTTGCCTGGACAGGGATG




SGFSWSEAGRRVAVAG
GCACTTGCGGCTTGTTCTTCCTGCCGTGGCGTACAGAGTGAGCGAG




SCLSSGLNLKLPRRYL
GCTAAAAGGCGCTCGGGATTTTCGTGGAGTGAAGCCGGTCGGCGCG




SRHRLSLLGEAFADPG
TCGCAGTTGCGGGATCGTGTTTGTCATCTGGACTCAACCTCAAATT




LEALAEGQVLWDPIVA
GCCCAGACGCTACCTTTCTCGGCACCGGTTGTCGCTGCTCGGTGAG




VEPAGKARTFDLRVPP
GCTTTTGCCGACCCTGGGCTGGAAGCGCTCGCGGAAGGCCAAGTGC




FANFVSEDLVVHNSIV
TCTGGGACCCTATTGTTGCTGTCGAACCGGCCGGTAAGGCGAGAAC




GTATFDQYWSVRTSKR
ATTCGACTTGCGCGTTCCACCCTTTGCAAACTTCGTGAGCGAGGAC




TSGTVTVTDHFRAWAN
CTGGTGGTGCATAACTCCATTGTGGGGACAGCCACGTTCGATCAGT




RGLNLGTIDQITLCVE
ACTGGAGCGTGCGCACCTCTAAGCGGACTTCAGGAACAGTGACCGT




GYQSSGSANITQNTFS
GACCGATCACTTCCGCGCCTGGGCGAACCGGGGCCTGAACCTCGGC




QGSSSGSSGGSSGSTT
ACAATAGACCAAATTACATTGTGCGTGGAGGGTTACCAAAGCTCTG




TTRIECENMSLSGPYV
GATCAGCCAACATCACCCAGAACACCTTCTCTCAGGGCTCTTCTTC




SRITNPFNGIALYANG
CGGCAGTTCGGGTGGCTCATCCGGCTCCACAACGACTACTCGCATC




DTARATVNFPASRNYN
GAGTGTGAGAACATGTCCTTGTCCGGACCCTACGTTAGCAGGATCA




FRLRGCGNNNNLARVD
CCAATCCCTTTAATGGTATTGCGCTGTACGCCAACGGAGACACAGC




LRIDGRTVGTFYYQGT
CCGCGCTACCGTTAACTTCCCCGCAAGTCGCAACTACAATTTCCGC




YPWEAPIDNVYVSAGS
CTGCGGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACCTGA




HTVEITVTADNGTWDV
GGATCGACGGACGGACCGTCGGGACCTTTTATTACCAGGGCACATA




YADYLVIQ* (SEQ
CCCCTGGGAGGCCCCAATTGACAATGTTTATGTCAGTGCGGGGAGT




ID NO: 105)
CATACAGTCGAAATCACTGTTACTGCGGATAACGGCACATGGGACG





TGTATGCCGACTACCTGGTGATACAGTGA (SEQ ID NO:





177)





2078
P77853T134-1
MQTSITLTSNASGTFD
ATGCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTG




GYYYELWKDTGNTTMT
ACGGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAAT




VYTQGRFSCQWSNINN
GACGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCGAACATC




ALFRTGKKYNQNWQSL
AATAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTGGC




GTIRITYSATYNPNGN
AGTCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACAACCC




SYLCIYGWSTNPLVEF
AAACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAACCCA




YIVESWGNWRPPGACL
TTGGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGACCGC




AEGSLVLDAATGQRVP
CTGGTGCCTGCCTGGCCGAGGGCTCGCTCGTCTTGGACGCGGCTAC




IEKVRPGMEVFSLGPD
CGGGCAGAGGGTCCCTATCGAAAAGGTGCGTCCGGGGATGGAAGTT




YRLYRVPVLEVLESGV
TTCTCCTTGGGACCTGATTACAGACTGTATCGGGTGCCCGTTTTGG




REVVRLRTRSGRTLVL
AGGTCCTTGAGAGCGGGGTTAGGGAAGTTGTGCGCCTCAGAACTCG




TPDHPLLTPEGWKPLC
GTCAGGGAGAACGCTGGTGTTGACACCAGATCACCCGCTTTTGACC




DLPLGTPIAVPAELPV
CCCGAAGGTTGGAAACCTCTTTGTGACCTCCCGCTTGGAACTCCAA




ACHLAPPEERVTLLAL
TTGCAGTCCCCGCAGAACTGCCTGTGGCGTGCCACTTGGCCCCACC




LLGDGNTKPSGRRGTR
TGAAGAACGTGTTACGCTCCTGGCTCTTCTGTTGGGGGATGGGAAC




PNAFFYSKDPELLAAY
ACAAAGCCGTCGGGTCGGAGAGGTACACGTCCTAATGCCTTCTTCT




RRCAEALGAKVKAYVH
ACAGCAAAGACCCCGAATTGCTCGCGGCTTATCGCCGGTGTGCAGA




PTTGVVTLATLAPRPG
AGCCTTGGGTGCAAAGGTGAAAGCATACGTCCACCCGACTACGGGG




AQDPVKRLVVEAGMVA
GTGGTTACACTCGCAACCCTCGCTCCACGTCCTGGAGCTCAAGATC




KAEEKRVPEEVFRYRR
CTGTCAAACGCCTCGTTGTCGAGGCGGGAATGGTTGCTAAAGCCGA




EALALFLGRLFSTDGS
AGAGAAGAGGGTCCCGGAGGAGGTGTTTCGTTACCGGCGTGAGGCG




VEKKRISYSSASLGLA
TTGGCCCTTTTCTTGGGCCGTTTGTTCTCGACAGACGGCTCTGTTG




QDVAHLLLRLGITSQL
AAAAGAAGAGGATCTCTTATTCAAGTGCCAGTTTGGGACTGGCCCA




RSRGPRAHEVLISGRE
GGATGTCGCACATCTCTTGCTGCGCCTTGGAATTACATCTCAACTC




DILRFAELIGPYLLGA
CGTTCGAGAGGGCCACGGGCTCACGAGGTTCTTATATCGGGCCGCG




KRERLAALEAEARRRL
AGGATATTTTGCGGTTTGCTGAACTTATCGGACCCTACCTCTTGGG




PGQGWHLRLVLPAVAY
GGCCAAGAGGGAGAGACTTGCAGCGCTGGAAGCTGAGGCCCGCAGG




RVSEAKRRSGESWSEA
CGTTTGCCTGGACAGGGATGGCACTTGCGGCTTGTTCTTCCTGCCG




GRRVAVAGSCLSSGLN
TGGCGTACAGAGTGAGCGAGGCTAAAAGGCGCTCGGGATTTTCGTG




LKLPRRYLSRHRLSLL
GAGTGAAGCCGGTCGGCGCGTCGCAGTTGCGGGATCGTGTTTGTCA




GEAFADPGLEALAEGQ
TCTGGACTCAACCTCAAATTGCCCAGACGCTACCTTTCTCGGCACC




VLWDPIVAVEPAGKAR
GGTTGTCGCTGCTCGGTGAGGCTTTTGCCGACCCTGGGCTGGAAGC




TFDLRVPPFANFVSED
GCTCGCGGAAGGCCAAGTGCTCTGGGACCCTATTGTTGCTGTCGAA




LVVHNTSPLGQVTIDG
CCGGCCGGTAAGGCGAGAACATTCGACTTGCGCGTTCCACCCTTTG




GTYDIYRTTRVNQPSI
CAAACTTCGTGAGCGAGGACCTGGTGGTGCATAACACGTCCCCCTT




VGTATFDQYWSVRTSK
GGGCCAAGTGACAATCGATGGCGGGACCTACGACATCTATAGGACG




RTSGTVTVTDHFRAWA
ACACGCGTCAACCAGCCTTCCATTGTGGGGACAGCCACGTTCGATC




NRGLNLGTIDQITLCV
AGTACTGGAGCGTGCGCACCTCTAAGCGGACTTCAGGAACAGTGAC




EGYQSSGSANITQNTF
CGTGACCGATCACTTCCGCGCCTGGGCGAACCGGGGCCTGAACCTC




SQGSSSGSSGGSSGST
GGCACAATAGACCAAATTACATTGTGCGTGGAGGGTTACCAAAGCT




TTTRIECENMSLSGPY
CTGGATCAGCCAACATCACCCAGAACACCTTCTCTCAGGGCTCTTC




VSRITNPFNGIALYAN
TTCCGGCAGTTCGGGTGGCTCATCCGGCTCCACAACGACTACTCGC




GDTARATVNFPASRNY
ATCGAGTGTGAGAACATGTCCTTGTCCGGACCCTACGTTAGCAGGA




NFRLRGCGNNNNLARV
TCACCAATCCCTTTAATGGTATTGCGCTGTACGCCAACGGAGACAC




DLRIDGRTVGTFYYQG
AGCCCGCGCTACCGTTAACTTCCCCGCAAGTCGCAACTACAATTTC




TYPWEAPIDNVYVSAG
CGCCTGCGGGGTTGCGGCAACAACAATAATCTTGCCCGTGTGGACC




SHTVEITVTADNGTWD
TGAGGATCGACGGACGGACCGTCGGGACCTTTTATTACCAGGGCAC




VYADYLVIQ*
ATACCCCTGGGAGGCCCCAATTGACAATGTTTATGTCAGTGCGGGG




(SEQ ID NO: 106)
AGTCATACAGTCGAAATCACTGTTACTGCGGATAACGGCACATGGG





ACGTGTATGCCGACTACCTGGTGATACAGTGA (SEQ ID NO:





178)





2079
BAASS:P77853S158-
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG



2:SEKDEL
LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGATSLGQVTIDG
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGC




GTYDIYRTTRVNQPCL
CAAGTGACAATCGATGGCGGGACCTACGACATCTATAGGACGACAC




AEGSLVLDAATGQRVP
GCGTCAACCAGCCTTGCCTGGCCGAGGGCTCGCTCGTCTTGGACGC




IEKVRPGMEVFSLGPD
GGCTACCGGGCAGAGGGTCCCTATCGAAAAGGTGCGTCCGGGGATG




YRLYRVPVLEVLESGV
GAAGTTTTCTCCTTGGGACCTGATTACAGACTGTATCGGGTGCCCG




REVVRLRTRSGRTLVL
TTTTGGAGGTCCTTGAGAGCGGGGTTAGGGAAGTTGTGCGCCTCAG




TPDHPLLTPEGWKPLC
AACTCGGTCAGGGAGAACGCTGGTGTTGACACCAGATCACCCGCTT




DLPLGTPIAVPAELPV
TTGACCCCCGAAGGTTGGAAACCTCTTTGTGACCTCCCGCTTGGAA




AGHLAPPEERVTLLAL
CTCCAATTGCAGTCCCCGCAGAACTGCCTGTGGCGGGCCACTTGGC




LLGDGNTKLPGRRGTR
CCCACCTGAAGAACGTGTTACGCTCCTGGCTCTTCTGTTGGGGGAT




PNAFFYSKDPELLAAY
GGGAACACAAAGCTGCCGGGTCGGAGAGGTACACGTCCTAATGCCT




RRCAEALGAKVKAYVH
TCTTCTACAGCAAAGACCCCGAATTGCTCGCGGCTTATCGCCGGTG




PTTGVVTLATLAPRPG
TGCAGAAGCCTTGGGTGCAAAGGTGAAAGCATACGTCCACCCGACT




AQDPVKRLVVEAGMVA
ACGGGGGTGGTTACACTCGCAACCCTCGCTCCACGTCCTGGAGCTC




KAEEKRVPEEVFRYRR
AAGATCCTGTCAAACGCCTCGTTGTCGAGGCGGGAATGGTTGCTAA




EALALFLGRLFSTDGS
AGCCGAAGAGAAGAGGGTCCCGGAGGAGGTGTTTCGTTACCGGCGT




VEKKRISYSSASLGLA
GAGGCGTTGGCCCTTTTCTTGGGCCGTTTGTTCTCGACAGACGGCT




QDDAHLLLRLGITSQL
CTGTTGAAAAGAAGAGGATCTCTTATTCAAGTGCCAGTTTGGGACT




RSRGPRAHEVLISGRE
GGCCCAGGATGACGCACATCTCTTGCTGCGCCTTGGAATTACATCT




DILRFAELIGPYLLGA
CAACTCCGTTCGAGAGGGCCACGGGCTCACGAGGTTCTTATATCGG




KRERLAALEAEARRRL
GCCGCGAGGATATTTTGCGGTTTGCTGAACTTATCGGACCCTACCT




PGQGWHLRLVLPAVAY
CTTGGGGGCCAAGAGGGAGAGACTTGCAGCGCTGGAAGCTGAGGCC




RVSEAKRRSGFSWSEA
CGCAGGCGTTTGCCTGGACAGGGATGGCACTTGCGGCTTGTTCTTC




GRRVAVAGSCLSSGLN
CTGCCGTGGCGTACAGAGTGAGCGAGGCTAAAAGGCGCTCGGGATT




LKLPRRYLSRHRLSLL
TTCGTGGAGTGAAGCCGGTCGGCGCGTCGCAGTTGCGGGATCGTGT




GEAFADPGLEALAEGQ
TTGTCATCTGGACTCAACCTCAAATTGCCCAGACGCTACCTTTCTC




VLWDPIVAVEPAGKAR
GGCACCGGTTGTCGCTGCTCGGTGAGGCTTTTGCCGACCCTGGGCT




TFDLRVPPFANFVSED
GGAAGCGCTCGCGGAAGGCCAAGTGCTCTGGGACCCTATTGTTGCT




LVVHNSIVGTATFDQY
GTCGAACCGGCCGGTAAGGCGAGAACATTCGACTTGCGCGTTCCAC




WSVRTSKRTSGTVTVT
CCTTTGCAAACTTCGTGAGCGAGGACCTGGTGGTGCATAACTCCAT




DHFRAWANRGLNLGTI
TGTGGGGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCT




DQITLCVEGYQSSGSA
AAGCGGACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCT




NITQNTFSQGSSSGSS
GGGCGAACCGGGGCCTGAACCTCGGCACAATAGACCAAATTACATT




GGSSGSTTTTRIECEN
GTGCGTGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAG




MSLSGPYVSRITNPFN
AACACCTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCAT




GIALYANGDTARATVN
CCGGCTCCACAACGACTACTCGCATCGAGTGTGAGAACATGTCCTT




FPASRNYNFRLRGCGN
GTCCGGACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGTATT




NNNLARVDLRIDGRTV
GCGCTGTACGCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCC




GTFYYQGTYPWEAPID
CCGCAAGTCGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAA




NVYVSAGSHTVEITVT
CAATAATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTC




ADNGTWDVYADYLVIQ
GGGACCTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCAATTG




SEKDEL* (SEQ
ACAATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGT




ID NO: 107)
TACTGCGGATAACGGCACATGGGACGTGTATGCCGACTACCTGGTG





ATACAGAGCGAGAAGGACGAGCTGTGA (SEQ ID NO: 179)





2080
BAASS:P77853S158-
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG



19:SEKDEL
LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGATSLGQVTIDG
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGC




GTYDIYRTTRVNQPCL
CAAGTGACAATCGATGGCGGGACCTACGACATCTATAGGACGACAC




AEGSLVLDAATGQRVP
GCGTCAACCAGCCTTGCCTGGCCGAGGGCTCGCTCGTCTTGGACGC




IEKVRPGMEVFSLGPD
GGCTACCGGGCAGAGGGTCCCTATCGAAAAGGTGCGTCCGGGGATG




YRLYRVPVLEVLESGV
GAAGTTTTCTCCTTGGGACCTGATTACAGACTGTATCGGGTGCCCG




GEVVRLRTRSGRTLVL
TTTTGGAGGTCCTTGAGAGCGGGGTTGGGGAAGTTGTGCGCCTCAG




TPDHPLLTPEGWKPLC
AACTCGGTCAGGGAGAACGCTGGTGTTGACACCAGATCACCCGCTT




DLPLGTPIAVPAELPV
TTGACCCCCGAAGGTTGGAAACCTCTTTGTGACCTCCCGCTTGGAA




AGHLAPPEERVTLLAL
CTCCAATTGCAGTCCCCGCAGAACTGCCTGTGGCGGGCCACTTGGC




LLGDGNTKLSGRRGTR
CCCACCTGAAGAACGTGTTACGCTCCTGGCTCTTCTGTTGGGGGAT




PIAFFYSKDPELLAAY
GGGAACACAAAGCTGTCGGGTCGGAGAGGTACACGTCCTATTGCCT




RRCAEALGAKVKAYVH
TCTTCTACAGCAAAGACCCCGAATTGCTCGCGGCTTATCGCCGGTG




PTTGVVTLATLAPRPG
TGCAGAAGCCTTGGGTGCAAAGGTGAAAGCATACGTCCACCCGACT




AQDPVKRLVVEAGMVA
ACGGGGGTGGTTACACTCGCAACCCTCGCTCCACGTCCTGGAGCTC




KAEEKRVPEEVFRYRR
AAGATCCTGTCAAACGCCTCGTTGTCGAGGCGGGAATGGTTGCTAA




EALALFLGRLFSTDGS
AGCCGAAGAGAAGAGGGTCCCGGAGGAGGTGTTTCGTTACCGGCGT




VEKKRISYSSASLGLA
GAGGCGTTGGCCCTTTTCTTGGGCCGTTTGTTCTCGACAGACGGCT




QDVAHLLLRLGITSQL
CTGTTGAAAAGAAGAGGATCTCTTATTCAAGTGCCAGTTTGGGACT




RSRGPRAHEVLISGRE
GGCCCAGGATGTCGCACATCTCTTGCTGCGCCTTGGAATTACATCT




DILRFAELIGPYLLGA
CAACTCCGTTCGAGAGGGCCACGGGCTCACGAGGTTCTTATATCGG




KRERLAALEAEARRRL
GCCGCGAGGATATTTTGCGGTTTGCTGAACTTATCGGACCCTACCT




PGQGWHLRLVLPAVAY
CTTGGGGGCCAAGAGGGAGAGACTTGCAGCGCTGGAAGCTGAGGCC




RVSEAKRRSGFSWSEA
CGCAGGCGTTTGCCTGGACAGGGATGGCACTTGCGGCTTGTTCTTC




GRRVAVAGSCLSSGLN
CTGCCGTGGCGTACAGAGTGAGCGAGGCTAAAAGGCGCTCGGGATT




LKLPRRYLSRHRLSLL
TTCGTGGAGTGAAGCCGGTCGGCGCGTCGCAGTTGCGGGATCGTGT




GEAFADPGLEALAEGQ
TTGTCATCTGGACTCAACCTCAAATTGCCCAGACGCTACCTTTCTC




VLWDPIVAVEPAGKAR
GGCACCGGTTGTCGCTGCTCGGTGAGGCTTTTGCCGACCCTGGGCT




TFDLRVPPFANFVSED
GGAAGCGCTCGCGGAAGGCCAAGTGCTCTGGGACCCTATTGTTGCT




LVVHNSIVGTATFDQY
GTCGAACCGGCCGGTAAGGCGAGAACATTCGACTTGCGCGTTCCAC




WSVRTSKRTSGTVTVT
CCTTTGCAAACTTCGTGAGCGAGGACCTGGTGGTGCATAACTCCAT




DHFRAWANRGLNLGTI
TGTGGGGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACCTCT




DQITLCVEGYQSSGSA
AAGCGGACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCGCCT




NITQNTFSQGSSSGSS
GGGCGAACCGGGGCCTGAACCTCGGCACAATAGACCAAATTACATT




GGSSGSTTTTRIECEN
GTGCGTGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCACCCAG




MSLSGPYVSRITNPFN
AACACCTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCTCAT




GIALYANGDTARATVN
CCGGCTCCACAACGACTACTCGCATCGAGTGTGAGAACATGTCCTT




FPASRNYNFRLRGCGN
GTCCGGACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGTATT




NNNLARVDLRIDGRTV
GCGCTGTACGCCAACGGAGACACAGCCCGCGCTACCGTTAACTTCC




GTFYYQGTYPWEAPID
CCGCAAGTCGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAACAA




NVYVSAGSHTVEITVT
CAATAATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGACCGTC




ADNGTWDVYADYLVIQ
GGGACCTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCAATTG




SEKDEL* (SEQ
ACAATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCACTGT




ID NO: 108)
TACTGCGGATAACGGCACATGGGACGTGTATGCCGACTACCTGGTG





ATACAGAGCGAGAAGGACGAGCTGTGA (SEQ ID NO: 180)





2081
BAASS:P77853T143-
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG



1:SEKDEL
LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGACLAEGSLVLD
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCTGCCTGGCCGAG




AATGQRVPIEKVRPGM
GGCTCGCTCGTCTTGGACGCGGCTACCGGGCAGAGGGTCCCTATCG




EVFSLGPDYRLYRVPV
AAAAGGTGCGTCCGGGGATGGAAGTTTTCTCCTTGGGACCTGATTA




LEVLESGVREVVRLRT
CAGACTGTATCGGGTGCCCGTTTTGGAGGTCCTTGAGAGCGGGGTT




RSGRTLVLTPDHPLLT
AGGGAAGTTGTGCGCCTCAGAACTCGGTCAGGGAGAACGCTGGTGT




PEGWKPLCDLPLGTPI
TGACACCAGATCACCCGCTTTTGACCCCCGAAGGTTGGAAACCTCT




AVPAELPVACHLAPPE
TTGTGACCTCCCGCTTGGAACTCCAATTGCAGTCCCCGCAGAACTG




ERVTLLALLLGDGNTK
CCTGTGGCGTGCCACTTGGCCCCACCTGAAGAACGTGTTACGCTCC




PSGRRGTRPNAFFYSK
TGGCTCTTCTGTTGGGGGATGGGAACACAAAGCCGTCGGGTCGGAG




DPELLAAYRRCAEALG
AGGTACACGTCCTAATGCCTTCTTCTACAGCAAAGACCCCGAATTG




AKVKAYVHPTTGVVTL
CTCGCGGCTTATCGCCGGTGTGCAGAAGCCTTGGGTGCAAAGGTGA




ATLAPRPGAQDPVKRL
AAGCATACGTCCACCCGACTACGGGGGTGGTTACACTCGCAACCCT




VVEAGMVAKAEEKRVP
CGCTCCACGTCCTGGAGCTCAAGATCCTGTCAAACGCCTCGTTGTC




EEVFRYRREALALFLG
GAGGCGGGAATGGTTGCTAAAGCCGAAGAGAAGAGGGTCCCGGAGG




RLFSTDGSVEKKRISY
AGGTGTTTCGTTACCGGCGTGAGGCGTTGGCCCTTTTCTTGGGCCG




SSASLGLAQDVAHLLL
TTTGTTCTCGACAGACGGCTCTGTTGAAAAGAAGAGGATCTCTTAT




RLGITSQLRSRGPRAH
TCAAGTGCCAGTTTGGGACTGGCCCAGGATGTCGCACATCTCTTGC




EVLISGREDILRFAEL
TGCGCCTTGGAATTACATCTCAACTCCGTTCGAGAGGGCCACGGGC




IGPYLLGAKRERLAAL
TCACGAGGTTCTTATATCGGGCCGCGAGGATATTTTGCGGTTTGCT




EAEARRRLPGQGWHLR
GAACTTATCGGACCCTACCTCTTGGGGGCCAAGAGGGAGAGACTTG




LVLPAVAYRVSEAKRR
CAGCGCTGGAAGCTGAGGCCCGCAGGCGTTTGCCTGGACAGGGATG




SGFSWSEAGRRVAVAG
GCACTTGCGGCTTGTTCTTCCTGCCGTGGCGTACAGAGTGAGCGAG




SCLSSGLNLKLPRRYL
GCTAAAAGGCGCTCGGGATTTTCGTGGAGTGAAGCCGGTCGGCGCG




SRHRLSLLGEAFADPG
TCGCAGTTGCGGGATCGTGTTTGTCATCTGGACTCAACCTCAAATT




LEALAEGQVLWDPIVA
GCCCAGACGCTACCTTTCTCGGCACCGGTTGTCGCTGCTCGGTGAG




VEPAGKARTFDLRVPP
GCTTTTGCCGACCCTGGGCTGGAAGCGCTCGCGGAAGGCCAAGTGC




FANFVSEDLVVHNTSP
TCTGGGACCCTATTGTTGCTGTCGAACCGGCCGGTAAGGCGAGAAC




LGQVTIDGGTYDIYRT
ATTCGACTTGCGCGTTCCACCCTTTGCAAACTTCGTGAGCGAGGAC




TRVNQPSIVGTATFDQ
CTGGTGGTGCATAACACGTCCCCCTTGGGCCAAGTGACAATCGATG




YWSVRTSKRTSGTVTV
GCGGGACCTACGACATCTATAGGACGACACGCGTCAACCAGCCTTC




TDHFRAWANRGLNLGT
CATTGTGGGGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCACC




IDQITLCVEGYQSSGS
TCTAAGCGGACTTCAGGAACAGTGACCGTGACCGATCACTTCCGCG




ANITQNTFSQGSSSGS
CCTGGGCGAACCGGGGCCTGAACCTCGGCACAATAGACCAAATTAC




SGGSSGSTTTTRIECE
ATTGTGCGTGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCACC




NMSLSGPYVSRITNPF
CAGAACACCTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGCT




NGIALYANGDTARATV
CATCCGGCTCCACAACGACTACTCGCATCGAGTGTGAGAACATGTC




NFPASRNYNFRLRGCG
CTTGTCCGGACCCTACGTTAGCAGGATCACCAATCCCTTTAATGGT




NNNNLARVDLRIDGRT
ATTGCGCTGTACGCCAACGGAGACACAGCCCGCGCTACCGTTAACT




VGTFYYQGTYPWEAPI
TCCCCGCAAGTCGCAACTACAATTTCCGCCTGCGGGGTTGCGGCAA




DNVYVSAGSHTVEITV
CAACAATAATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGACC




TADNGTWDVYADYLVI
GTCGGGACCTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCAA




QSEKDEL* (SEQ
TTGACAATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCAC




ID NO: 109)
TGTTACTGCGGATAACGGCACATGGGACGTGTATGCCGACTACCTG





GTGATACAGAGCGAGAAGGACGAGCTGTGA (SEQ ID NO:





181)





2082
GluB4SP:O43097
MATIAFSRLSIYFCVL
ATGGCCACCATCGCTTTCTCCCGCTTGTCCATCTACTTCTGCGTGC




LLCHGSMAFPAGNATE
TTCTCCTGTGCCACGGCTCCATGGCCTTCCCAGCTGGAAACGCAAC




LEKRQTTPNSEGWHDG
GGAATTGGAGAAAAGACAAACCACCCCTAACTCTGAGGGCTGGCAT




YYYSWWSDGGAQATYT
GACGGATACTACTACTCTTGGTGGAGCGATGGTGGTGCACAGGCCA




NLEGGTYEISWGDGGN
CCTATACAAACCTCGAAGGCGGCACTTATGAGATTTCATGGGGTGA




LVGGKGWNPGLNARAI
CGGTGGCAACCTTGTCGGCGGAAAGGGGTGGAACCCCGGACTTAAC




HFEGVYQPNGNSYLAV
GCCAGGGCAATCCACTTCGAAGGGGTGTACCAGCCCAATGGCAACT




YGWTRNPLVEYYIVEN
CATACCTGGCCGTCTACGGGTGGACGCGCAATCCGCTGGTTGAGTA




FGTYDPSSGATDLGTV
CTATATCGTGGAGAATTTCGGAACTTATGACCCTAGCTCCGGTGCC




ECDGSIYRLGKTTRVN
ACGGACCTCGGGACAGTCGAGTGTGACGGAAGCATCTACAGGCTGG




APSIDGTQTFDQYWSV
GTAAAACTACCCGCGTTAATGCTCCATCGATCGACGGCACGCAAAC




RQDKRTSGTVQTGCHF
ATTTGATCAATACTGGTCCGTGCGGCAGGATAAGAGGACAAGCGGC




DAWARAGLNVNGDHYY
ACAGTTCAGACGGGTTGCCACTTTGATGCCTGGGCAAGAGCGGGGC




QIVATEGYFSSGYARI
TCAATGTGAATGGGGACCACTACTATCAGATTGTGGCGACCGAGGG




TVADVG* (SEQ
CTATTTCTCCAGTGGCTATGCGCGTATAACCGTCGCTGATGTTGGA




ID NO: 110)
TGA (SEQ ID NO: 182)





2083
GluB4SP:O43097:
MATIAFSRLSIYFCVL
ATGGCCACCATCGCTTTCTCCCGCTTGTCCATCTACTTCTGCGTGC



SEKDEL
LLCHGSMAFPAGNATE
TTCTCCTGTGCCACGGCTCCATGGCCTTCCCAGCTGGAAACGCAAC




LEKRQTTPNSEGWHDG
GGAATTGGAGAAAAGACAAACCACCCCTAACTCTGAGGGCTGGCAT




YYYSWWSDGGAQATYT
GACGGATACTACTACTCTTGGTGGAGCGATGGTGGTGCACAGGCCA




NLEGGTYEISWGDGGN
CCTATACAAACCTCGAAGGCGGCACTTATGAGATTTCATGGGGTGA




LVGGKGWNPGLNARAI
CGGTGGCAACCTTGTCGGCGGAAAGGGGTGGAACCCCGGACTTAAC




HFEGVYQPNGNSYLAV
GCCAGGGCAATCCACTTCGAAGGGGTGTACCAGCCCAATGGCAACT




YGWTRNPLVEYYIVEN
CATACCTGGCCGTCTACGGGTGGACGCGCAATCCGCTGGTTGAGTA




FGTYDPSSGATDLGTV
CTATATCGTGGAGAATTTCGGAACTTATGACCCTAGCTCCGGTGCC




ECDGSIYRLGKTTRVN
ACGGACCTCGGGACAGTCGAGTGTGACGGAAGCATCTACAGGCTGG




APSIDGTQTFDQYWSV
GTAAAACTACCCGCGTTAATGCTCCATCGATCGACGGCACGCAAAC




RQDKRTSGTVQTGCHF
ATTTGATCAATACTGGTCCGTGCGGCAGGATAAGAGGACAAGCGGC




DAWARAGLNVNGDHYY
ACAGTTCAGACGGGTTGCCACTTTGATGCCTGGGCAAGAGCGGGGC




QIVATEGYFSSGYARI
TCAATGTGAATGGGGACCACTACTATCAGATTGTGGCGACCGAGGG




TVADVGSEKDEL*
CTATTTCTCCAGTGGCTATGCGCGTATAACCGTCGCTGATGTTGGA




(SEQ ID NO: 111)
AGCGAGAAGGACGAGCTGTGA (SEQ ID NO: 183)





2084
GluB4SP:NtEGm
MATIAFSRLSIYFCVL
ATGGCCACCATCGCTTTCTCCCGCTTGTCCATCTACTTCTGCGTGC




LLCHGSMAAYDYKQVL
TTCTCCTGTGCCACGGCTCCATGGCCGCTTACGACTACAAGCAGGT




RDSLLFYEAQRSGRLP
GTTGCGGGACTCGCTACTATTCTATGAGGCCCAGAGATCCGGCCGG




ADQKVTWRKDSALNDQ
CTCCCAGCCGACCAGAAGGTCACGTGGAGGAAGGATAGCGCGCTGA




GDQGQDLTGGYFDAGD
ATGACCAGGGTGACCAGGGACAAGACTTGACCGGCGGCTACTTTGA




FVKFGFPMAYTATVLA
CGCTGGGGACTTCGTCAAGTTCGGGTTCCCCATGGCTTATACCGCA




WGLIDFEAGYSSAGAL
ACCGTGCTGGCATGGGGCCTCATAGATTTTGAGGCCGGCTACAGCA




DDGRKAVKWATDYFIK
GTGCCGGGGCCTTGGATGATGGACGGAAGGCTGTCAAATGGGCCAC




AHTSQNEFYGQVGQGD
CGACTATTTCATAAAGGCCCACACAAGTCAAAATGAGTTCTATGGT




ADHAFWGRPEDMTMAR
CAGGTCGGCCAGGGTGACGCCGATCACGCTTTCTGGGGAAGACCAG




PAYKIDTSRPGSDLAG
AGGATATGACGATGGCGCGCCGGGCGTACAAGATAGACACCTCAAG




ETAAALAAASIVFRNV
GCCTGGCTCTGATCTGGCAGGCGAGACAGCGGCTGCTCTTGCCGCT




DGTYSNNLLTHARQLF
GCTTCAATCGTGTTCCGGAACGTCGATGGCACTTACTCAAATAACC




DFANNYRGKYSDSITD
TGTTAACACACGCTCGCCAGCTATTCGACTTCGCGAACAACTACCG




ARNFYASADYRDELVW
GGGAAAGTATAGTGACTCTATTACTGACGCAAGAAATTTCTACGCA




AAAWLYRATNDNTYLN
AGCGCAGACTACAGAGACGAGTTGGTTTGGGCTGCTGCGTGGTTAT




TAESLYDEFGLQNWGG
ACAGAGCGACCAACGACAACACCTACCTCAACACTGCTGAGTCACT




GLNWDSKVSGVQVLLA
GTACGATGAGTTTGGGCTACAGAACTGGGGGGGGGGCCTGAACTGG




KLTNKQAYKDTVQSYV
GATAGCAAGGTGTCTGGCGTGCAGGTGTTGTTGGCCAAGCTTACCA




NYLINNQQKTPKGLLY
ATAAGCAGGCCTACAAGGACACGGTGCAGTCTTACGTCAATTACCT




IDMWGTLRHAANAAFI
AATTAATAACCAGCAGAAGACTCCCAAGGGCCTCCTCTACATCGAC




MLEAAELGLSASSYRQ
ATGTGGGGCACCCTTCGCCACGCTGCCAACGCCGCATTCATCATGC




FAQTQIDYALGDGGRS
TCGAAGCCGCCGAGCTGGGCTTGTCCGCCTCCTCTTATAGACAGTT




FVCGFGSNPPTRPHHR
CGCGCAAACGCAAATCGACTACGCCCTGGGCGATGGTGGCCGCTCC




SSSCPPAPATCDWNTF
TTTGTGTGCGGGTTCGGGAGTAATCCTCCTACGAGACCGCACCACA




NSPDPNYHVLSGALVG
GATCCTCGTCGTGCCCGCCAGCTCCCGCTACTTGCGACTGGAATAC




GPDQNDNYVDDRSDYV
ATTCAACTCACCTGACCCAAACTACCACGTCCTCTCTGGGGCCCTA




HNEVATDYNAGFQSAL
GTGGGCGGACCTGATCAGAATGACAACTACGTCGATGACCGTTCAG




AALVALGY* (SEQ
ACTATGTTCACAACGAAGTCGCCACTGATTACAACGCGGGTTTCCA




ID NO: 112)
GTCCGCGTTAGCTGCTTTGGTGGCCCTTGGTTACTGA (SEQ





ID NO: 184)





2085
P77853T145-307
MQTSITLTSNASGTFD
ATGCAAACAAGCATTACTCTGACATCCAACGCATCCGGTACGTTTG




GYYYELWKDTGNTTMT
ACGGTTACTATTACGAACTCTGGAAGGATACTGGCAATACAACAAT




VYTQGRFSCQWSNINN
GACGGTCTACACTCAAGGTCGCTTTTCCTGCCAGTGGTCGAACATC




ALFRTGKKYNQNWQSL
AATAACGCGTTGTTTAGGACCGGGAAGAAATACAACCAGAATTGGC




GTIRITYSATYNPNGN
AGTCTCTTGGCACAATCCGGATCACGTACTCTGCGACTTACAACCC




SYLCIYGWSTNPLVEF
AAACGGGAACTCCTACTTGTGTATCTATGGCTGGTCTACCAACCCA




YIVESWGNWRPPGATS
TTGGTCGAGTTCTACATCGTTGAGTCCTGGGGGAACTGGAGACCGC




LGQVTIDGGSVTGDTE
CTGGTGCCACGTCCCTGGGCCAAGTGACAATCGATGGCGGGAGCGT




IIVKRNGRIEFVPIEK
TACTGGAGACACCGAAATTATCGTCAAGAGAAATGGTAGGATCGAA




LFERVDYRIGEKEYCI
TTTGTCCCGATCGAGAAGCTCTTTGAGAGAGTGGACTATAGAATAG




LEDVEALTLDNRDKLI
GCGAGAAAGAATACTGCATCCTTGAGGACGTTGAGGCGCTGACTCT




WKKVPYVMRHRAKKKV
TGACAACAGAGACAAACTTATTTGGAAGAAGGTGCCCTACGTCATG




YRIWITNSWYIDVTED
CGTCACAGGGCAAAGAAAAAGGTCTACCGTATCTGGATTACTAATT




HSLIVAEDGLKEARPM
CATGGTACATAGACGTTACAGAGGACCACTCCCTGATTGTGGCTGA




EIEGKSLIATKDDLSG
GGACGGGCTGAAGGAGGCCCGCCCCATGGAAATTGAGGGCAAGTCT




VEYIKPHAIEEISYNG
CTGATTGCAACTAAAGATGATCTCTCTGGCGTTGAGTACATCAAGC




YVYDIEVEGTHRFFAN
CTCACGCTATTGAGGAGATTAGTTACAACGGTTACGTGTACGATAT




GILVHNTYDIYRTTRV
CGAAGTGGAGGGTACTCATAGATTCTTCGCTAATGGGATACTGGTG




NQPSIVGTATFDQYWS
CATAACACCTACGACATCTATAGGACGACACGCGTCAACCAGCCTT




VRTSKRTSGTVTVTDH
CCATTGTGGGGACAGCCACGTTCGATCAGTACTGGAGCGTGCGCAC




FRAWANRGLNLGTIDQ
CTCTAAGCGGACTTCAGGAACAGTGACCGTGACCGATCACTTCCGC




ITLCVEGYQSSGSANI
GCCTGGGCGAACCGGGGCCTGAACCTCGGCACAATAGACCAAATTA




TQNTFSQGSSSGSSGG
CATTGTGCGTGGAGGGTTACCAAAGCTCTGGATCAGCCAACATCAC




SSGSTTTTRIECENMS
CCAGAACACCTTCTCTCAGGGCTCTTCTTCCGGCAGTTCGGGTGGC




LSGPYVSRITNPFNGI
TCATCCGGCTCCACAACGACTACTCGCATCGAGTGTGAGAACATGT




ALYANGDTARATVNFP
CCTTGTCCGGACCCTACGTTAGCAGGATCACCAATCCCTTTAATGG




ASRNYNFRLRGCGNNN
TATTGCGCTGTACGCCAACGGAGACACAGCCCGCGCTACCGTTAAC




NLARVDLRIDGRTVGT
TTCCCCGCAAGTCGCAACTACAATTTCCGCCTGCGGGGTTGCGGCA




FYYQGTYPWEAPIDNV
ACAACAATAATCTTGCCCGTGTGGACCTGAGGATCGACGGACGGAC




YVSAGSHTVEITVTAD
CGTCGGGACCTTTTATTACCAGGGCACATACCCCTGGGAGGCCCCA




NGTWDVYADYLVIQ*
ATTGACAATGTTTATGTCAGTGCGGGGAGTCATACAGTCGAAATCA




(SEQ ID NO: 113)
CTGTTACTGCGGATAACGGCACATGGGACGTGTATGCCGACTACCT





GGTGATACAGTGA (SEQ ID NO: 185)





2086
BAASS:P77853T145-
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG



307
LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGATSLGQVTIDG
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGC




GSVTGDTEIIVKRNGR
CAAGTGACAATCGATGGCGGGAGCGTTACTGGAGACACCGAAATTA




IEFVPIEKLFERVDYR
TCGTCAAGAGAAATGGTAGGATCGAATTTGTCCCGATCGAGAAGCT




IGEKEYCILEDVEALT
CTTTGAGAGAGTGGACTATAGAATAGGCGAGAAAGAATACTGCATC




LDNRDKLIWKKVPYVM
CTTGAGGACGTTGAGGCGCTGACTCTTGACAACAGAGACAAACTTA




RHRAKKKVYRIWITNS
TTTGGAAGAAGGTGCCCTACGTCATGCGTCACAGGGCAAAGAAAAA




WYIDVTEDHSLIVAED
GGTCTACCGTATCTGGATTACTAATTCATGGTACATAGACGTTACA




GLKEARPMEIEGKSLI
GAGGACCACTCCCTGATTGTGGCTGAGGACGGGCTGAAGGAGGCCC




ATKDDLSGVEYIKPHA
GCCCCATGGAAATTGAGGGCAAGTCTCTGATTGCAACTAAAGATGA




IEEISYNGYVYDIEVE
TCTCTCTGGCGTTGAGTACATCAAGCCTCACGCTATTGAGGAGATT




GTHRFFANGILVHNTY
AGTTACAACGGTTACGTGTACGATATCGAAGTGGAGGGTACTCATA




DIYRTTRVNQPSIVGT
GATTCTTCGCTAATGGGATACTGGTGCATAACACCTACGACATCTA




ATFDQYWSVRTSKRTS
TAGGACGACACGCGTCAACCAGCCTTCCATTGTGGGGACAGCCACG




GTVTVTDHFRAWANRG
TTCGATCAGTACTGGAGCGTGCGCACCTCTAAGCGGACTTCAGGAA




LNLGTIDQITLCVEGY
CAGTGACCGTGACCGATCACTTCCGCGCCTGGGCGAACCGGGGCCT




QSSGSANITQNTFSQG
GAACCTCGGCACAATAGACCAAATTACATTGTGCGTGGAGGGTTAC




SSSGSSGGSSGSTTTT
CAAAGCTCTGGATCAGCCAACATCACCCAGAACACCTTCTCTCAGG




RIECENMSLSGPYVSR
GCTCTTCTTCCGGCAGTTCGGGTGGCTCATCCGGCTCCACAACGAC




ITNPFNGIALYANGDT
TACTCGCATCGAGTGTGAGAACATGTCCTTGTCCGGACCCTACGTT




ARATVNFPASRNYNFR
AGCAGGATCACCAATCCCTTTAATGGTATTGCGCTGTACGCCAACG




LRGCGNNNNLARVDLR
GAGACACAGCCCGCGCTACCGTTAACTTCCCCGCAAGTCGCAACTA




IDGRTVGTFYYQGTYP
CAATTTCCGCCTGCGGGGTTGCGGCAACAACAATAATCTTGCCCGT




WEAPIDNVYVSAGSHT
GTGGACCTGAGGATCGACGGACGGACCGTCGGGACCTTTTATTACC




VEITVTADNGTWDVYA
AGGGCACATACCCCTGGGAGGCCCCAATTGACAATGTTTATGTCAG




DYLVIQ* (SEQ
TGCGGGGAGTCATACAGTCGAAATCACTGTTACTGCGGATAACGGC




ID NO: 114)
ACATGGGACGTGTATGCCGACTACCTGGTGATACAGTGA (SEQ





ID NO: 186)





2087
BAASS:P77853T145-
MANKHLSLSLFLVLLG
ATGGCGAACAAACATTTGTCCCTCTCCCTCTTCCTCGTCCTCCTTG



307:SEKDEL
LSASLASGQQTSITLT
GCCTGTCGGCCAGCTTGGCCTCCGGGCAACAAACAAGCATTACTCT




SNASGTFDGYYYELWK
GACATCCAACGCATCCGGTACGTTTGACGGTTACTATTACGAACTC




DTGNTTMTVYTQGRFS
TGGAAGGATACTGGCAATACAACAATGACGGTCTACACTCAAGGTC




CQWSNINNALFRTGKK
GCTTTTCCTGCCAGTGGTCGAACATCAATAACGCGTTGTTTAGGAC




YNQNWQSLGTIRITYS
CGGGAAGAAATACAACCAGAATTGGCAGTCTCTTGGCACAATCCGG




ATYNPNGNSYLCIYGW
ATCACGTACTCTGCGACTTACAACCCAAACGGGAACTCCTACTTGT




STNPLVEFYIVESWGN
GTATCTATGGCTGGTCTACCAACCCATTGGTCGAGTTCTACATCGT




WRPPGATSLGQVTIDG
TGAGTCCTGGGGGAACTGGAGACCGCCTGGTGCCACGTCCCTGGGC




GSVTGDTEIIVKRNGR
CAAGTGACAATCGATGGCGGGAGCGTTACTGGAGACACCGAAATTA




IEFVPIEKLFERVDYR
TCGTCAAGAGAAATGGTAGGATCGAATTTGTCCCGATCGAGAAGCT




IGEKEYCILEDVEALT
CTTTGAGAGAGTGGACTATAGAATAGGCGAGAAAGAATACTGCATC




LDNRDKLIWKKVPYVM
CTTGAGGACGTTGAGGCGCTGACTCTTGACAACAGAGACAAACTTA




RHRAKKKVYRIWITNS
TTTGGAAGAAGGTGCCCTACGTCATGCGTCACAGGGCAAAGAAAAA




WYIDVTEDHSLIVAED
GGTCTACCGTATCTGGATTACTAATTCATGGTACATAGACGTTACA




GLKEARPMEIEGKSLI
GAGGACCACTCCCTGATTGTGGCTGAGGACGGGCTGAAGGAGGCCC




ATKDDLSGVEYIKPHA
GCCCCATGGAAATTGAGGGCAAGTCTCTGATTGCAACTAAAGATGA




IEEISYNGYVYDIEVE
TCTCTCTGGCGTTGAGTACATCAAGCCTCACGCTATTGAGGAGATT




GTHRFFANGILVHNTY
AGTTACAACGGTTACGTGTACGATATCGAAGTGGAGGGTACTCATA




DIYRTTRVNQPSIVGT
GATTCTTCGCTAATGGGATACTGGTGCATAACACCTACGACATCTA




ATFDQYWSVRTSKRTS
TAGGACGACACGCGTCAACCAGCCTTCCATTGTGGGGACAGCCACG




GTVTVTDHFRAWANRG
TTCGATCAGTACTGGAGCGTGCGCACCTCTAAGCGGACTTCAGGAA




LNLGTIDQITLCVEGY
CAGTGACCGTGACCGATCACTTCCGCGCCTGGGCGAACCGGGGCCT




QSSGSANITQNTFSQG
GAACCTCGGCACAATAGACCAAATTACATTGTGCGTGGAGGGTTAC




SSSGSSGGSSGSTTTT
CAAAGCTCTGGATCAGCCAACATCACCCAGAACACCTTCTCTCAGG




RIECENMSLSGPYVSR
GCTCTTCTTCCGGCAGTTCGGGTGGCTCATCCGGCTCCACAACGAC




ITNPFNGIALYANGDT
TACTCGCATCGAGTGTGAGAACATGTCCTTGTCCGGACCCTACGTT




ARATVNFPASRNYNFR
AGCAGGATCACCAATCCCTTTAATGGTATTGCGCTGTACGCCAACG




LRGCGNNNNLARVDLR
GAGACACAGCCCGCGCTACCGTTAACTTCCCCGCAAGTCGCAACTA




IDGRTVGTFYYQGTYP
CAATTTCCGCCTGCGGGGTTGCGGCAACAACAATAATCTTGCCCGT




WEAPIDNVYVSAGSHT
GTGGACCTGAGGATCGACGGACGGACCGTCGGGACCTTTTATTACC




VEITVTADNGTWDVYA
AGGGCACATACCCCTGGGAGGCCCCAATTGACAATGTTTATGTCAG




DYLVIQSEKDEL*
TGCGGGGAGTCATACAGTCGAAATCACTGTTACTGCGGATAACGGC




(SEQ ID NO: 115)
ACATGGGACGTGTATGCCGACTACCTGGTGATACAGAGCGAGAAGG





ACGAGCTGTGA (SEQ ID NO: 187)









Example 6—Plant Transformation

Maize Transformation



Agrobacterium-mediated transformation of immature maize embryos was performed as described in Negrotto et al., (2000) Plant Cell Reports 19: 798-803, which is incorporated herein by reference as if fully set forth. Transformation plasmids and selectable marker genes used for transformation were cloned into a pAG-series vector suitable for monocot transformation as described above. The vectors utilized for this example contained the phosphomannose isomerase (PMI) gene (Negrotto et at (2000) Plant Cell Reports 19: 798-803) as a selectable marker, but other markers could be used in the same capacity.


Transformation Vector and Agrobacterium Strains



Agrobacterium tumefaciens transformation vectors were constructed using standard molecular techniques known in the art, as described above. The plasmids were introduced into Agrobacterium strains LBA4404+pSB1 (Ishida et al. (1996) Nature Biotechnology 14:745-750, which is incorporated herein by reference as if fully set forth).


Overnight cultures of the Agrobacterium strain containing the plasmid were grown for two days on plates with solid YP medium for 2 to 4 days at 28° C. containing 100 mg/L spectinomycin and 10 mg/L tetracycline.



Agrobacterium was re-suspended in LS-inf media supplemented with 100 mM acetosyringone (As) (LSAs medium) (Negrotto et al., (2000) Plant Cell Rep 19: 798-803, which is incorporated herein by reference as if fully set forth) until the Agrobacterium cells were uniformly dispersed in the suspension. The Agrobacterium suspension was then diluted to an OD660 in the range of 0.5 to 0.8 and vortexed for about 15 seconds.


Infection and Co-Cultivation of Maize Immature Embryos


Maize (Zea maize cultivars HiII, A188 or B73) stock plants were grown in a greenhouse under 16 hours of daylight at 28° C. Immature ears were collected 7 to 15 days after pollination and sterilized by immersing in 20% chlorine bleach (available under the registered trademark CHLOROX®) for 15-20 minutes. Sterilized ears were then rinsed thoroughly with sterile water.


Immature zygotic embryos were isolated from the kernels and collected into a sterile eppendorf tube containing liquid LS-inf+100 p1M As (LSAs) media. Embryos were vortexed for 5 seconds and rinsed once with fresh infection medium. Infection media was removed, Agrobacterium solution was added and embryos were vortexed for 30 seconds and allowed to settle with the bacteria for about 5 minutes.


After inoculation, immature embryos were then transferred scutellum side up to LSAs medium and cultured in the dark for two to three days at 22 C.


Recovery, Selection of Transformed Maize Embryogenic Tissue and Plant Regeneration


After co-cultivation, immature embryos were transferred onto LSDc medium supplemented with 200 mg/l of timentine and 1.6 mg/l silver nitrate (Negrotto et al. 2000). The plates were incubated for 5 to 15 days at 28° C. in the dark.


Embryos producing embryogenic callus were transferred to LSD1M0. 5S medium (LSDc with 5 mg/l Dicamba, 10 g/l mannose, 5 g/l sucrose). The cultures were selected on this medium for 6 weeks with 3 week subculture intervals. Surviving cultures were transferred either to LSD1M0.5S medium to be bulked-up or to Reg1 medium (as described in Negrotto et al., 2000). Following culturing in the light (16 hour light/8 hour dark regiment), green tissues were then transferred to Reg2 medium without growth regulators (as described in Negrotto et al., 2000) and incubated for 1-2 weeks. Well-developed seedlings with leaves and roots were transferred to Reg3 medium (as described in Negrotto et al., 2000) and grown in the light.


Leaves were sampled for PCR analysis to identify transgenic plants containing the selectable marker gene according to Negrotto et al. (2000), and gene of interest. PCR positive and rooted plants were rinsed with water to wash off the agar medium, and transplanted to soil and grown in the greenhouse for seeds.


Switchgrass Transformation


Media used in developing the Agrobacterium-mediated transformation protocol, employed to transform switchgrass plants, were prepared using standard methods known to one of ordinary skill in the art. The following media were used in the Examples described herein.


Somatic Embryo Induction Medium (SEI)


SEI medium was prepared using 4.3 g of MS basal salt mixture, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 30 g sucrose, 5 mg 2,4-D and 10 mg BAP, 1.2 g/l Gelrite (Sigma, St. Louis, Mo., USA). These reagents were mixed in sterile water, which was taken up to a final volume of 1 L. The pH was adjusted to 5.8 prior to autoclaving.


Regeneration Medium


Regeneration medium was prepared using 4.3 g of MS basal salt mixture, MS vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 30 g sucrose, and 1.2 g Gelrite (Sigma, St. Louis, Mo., USA). These reagents were mixed in sterile water and taken up to a final volume of 1 L. The pH was adjusted to 5.8 prior to autoclaving.


Inoculation Medium (SW-1)


SW-1 medium was prepared using 4.3 g MS salts, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 68.5 g sucrose, 36 g glucose, and 1 g casamino acids. These reagents were mixed in sterile water and taken up to a final volume of 1 L. The pH was adjusted to 5.8 prior to autoclaving.


Co-Cultivation Medium (SW-2)


SW-2 medium was prepared using 4.3 g MS salts, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 0.7 g L-proline, 10 mg BAP, 5 mg 2,4-D, 0.5 g MES, 20 g sucrose, 10 g glucose and 1.2 g Gelrite. These reagents were mixed in sterile water and taken up to a final volume of 1 L. The pH was adjusted to 5.8 prior to autoclaving.


Resting Medium (SW-3)


SW-3 medium was prepared using 4.3 g MS salts, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 10 mg BAP, 5 mg 2,4-D, 30 g sucrose and 1.2 g Gelrite. These reagents were mixed in sterile water and taken up to a final volume of 1 L. The pH was adjusted to 5.8 prior to autoclaving.


Selection Medium 1 (S1)


51 medium was prepared using 4.3 g MS salts, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 10 mg BAP, 5 mg 2,4-D, 5 g sucrose, 10 g mannose and 1.2 g Gelrite. These reagents were mixed in sterile water and taken up to a final volume of 1 L. The pH was adjusted to 5.8 prior to autoclaving. Regeneration medium (R1). R1 medium was prepared using 4.3 g MS salts, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 30 g sucrose and 1.2 g Gelrite. These reagents were mixed in sterile water and taken up to a final volume of 1 L. The pH was adjusted to 5.8 prior to autoclaving.


Initiation of Embryogenic Callus Cultures


Mature switchgrass seeds (Panicum virgatum, cv. Alamo) were prepared for transformation by removing their seed coat using sand paper. With the seed coat removed, individual seeds were selected for sterilization. Switchgrass seeds were sterilized by immersing in 20% chlorine bleach (available under the registered trademark CHLOROX®) for 5-10 minutes. Sterilized seeds were then rinsed thoroughly with sterile water. Sterile seeds were placed onto somatic embryo induction medium (SEI) and were incubated at 28° C. in the dark for about 3-4 weeks. Resulting embryogenic callus clusters were transferred to fresh SEI medium and cultured for additional 6 weeks with 3 weeks subculture intervals at 28° C. in the dark.


Transformation Vector and Agrobacterium Strains



Agrobacterium tumefaciens transformation vectors were constructed as described above using standard molecular techniques known in the art. The plasmids were introduced into Agrobacterium strains LBA4404+pSB1 (Ishida et al. (1996) Nature Biotechnology 14:745-750).


Overnight cultures of the Agrobacterium strain containing the plasmid were grown for two days on plates with YP medium containing 100 mg/L spectinomycin and 10 mg/L tetracycline.


Preparation of Agrobacterium for Transformation



Agrobacterium culture was initiated weekly from a glycerol stock stored at −80° C., on YP semi-solid medium containing appropriate antibiotics and grown at 28° C. in an incubator.


The Agrobacterium was streaked onto fresh YP medium containing appropriate antibiotics the day before the inoculation and was grown in a 28° C. incubator. For plant transformation use, the Agrobacterium was collected from the plate using a disposable plastic inoculation loop and suspended in liquid inoculation medium, such as SW1, in a sterile 15 ml disposable polypropylene centrifugation tube. Agrobacterium was resuspended in the tube by vortexing for about 3 to 5 minutes until the Agrobacterium cells were uniformly dispersed in the suspension. The Agrobacterium suspension was then diluted to an OD660 in the range of 0.5 to 0.8 and vortexed for about 15 seconds.


Infection and Co-Cultivation of Switchgrass Embryogenic Callus Cultures


The switchgrass type II repetitive somatic embryogenic callus clusters, 2 mm to 3 mm in diameter, were infected with Agrobacterium by mixing the explants with bacterial suspension as prepared above, and vortexed for 30 sec. The mixture was incubated with the prepared explants for about 3 to 15 minutes at room temperature.


Following infection, the Agrobacterium suspension explants were placed on co-cultivation medium (SW-2) in 100×15 mm Petri plates and were incubated for 2 to 3 days at 22° C. in the dark.


Regeneration and Selection of Transgenic Plants


After co-cultivation, the explants were transferred onto recovery medium with antibiotics to kill Agrobacterium or to inhibit Agrobacterium growth, without selection agent, such as recovery medium (SW3) supplemented with 200 mg/L timentin. The plates were incubated for 5 to 15 days at 28° C. in the dark. The explants were then transferred to S1 solid medium (10 g/L mannose and 5 g/l sucrose) supplemented with antibiotics for about 14 to 21 days. The explants were then transferred to fresh S1 medium (10 g/L mannose and 5 g/l sucrose) for about 14 to 21 days. Resistant clones were transferred to embryo differentiation medium R1 (5 g/l mannose and 10 g/l sucrose) and were incubated at 28° C. in the dark for about 2 to 3 weeks.


Differentiating plant tissues were transferred to fresh embryo differentiation medium R1 (5 g/l mannose and 10 g/l sucrose) and were incubated at 26° C. in the light for about 2 to 3 weeks.


Well-developed seedlings with leaves and roots were transferred to rooting medium. Leaves were sampled for PCR analysis to identify transgenic plants containing the selectable marker gene according to Negrotto et al. (2000), and gene of interest. PCR positive and rooted plants were rinsed with water to wash off the agar medium, and transplanted to soil and grown in the greenhouse for seeds.



Sorghum Somatic Embryogenic Culture Transformation


Materials and Methods


Media used in the Agrobacterium-mediated transformation protocol employed to develop transformed sorghum plants were prepared using standard methods known to one of ordinary skill in the art. The following media were used in the Examples described herein.


Somatic Embryo Induction Medium (SGWT-SEI)


4.3 g of MS basal salt mixture, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 1.2 g KH2PO4, 2.0 g L-proline, 0.9 g L-asparagine, 30 g sucrose, 1.5 mg 2,4-D, and 8 g Agar (Sigma, St. Louis, Mo., USA) were combined in sterile water. The final volume of the mixture was taken up to 1 L using sterile water. The pH was adjusted to 5.8 prior to autoclaving.


Regeneration Medium (SGWT-R)


4.3 g of MS basal salt mixture, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 1.2 g KH2PO4, 2.0 g L-proline, 0.9 g L-asparagine, 30 g sucrose, 1.0 mg IAA, 0.5 mg kinetin and 2.4 g Gelrite (Sigma, St. Louis, Mo., USA) were combined in sterile water. The final volume of the mixture was taken up to 1 L using sterile water. The pH was adjusted to 5.8 prior to autoclaving.


Inoculation Medium (SGI-1)


4.3 g MS salts, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 68.5 g sucrose, 36 g glucose, 1.0 g casamino acids, and 1.5 mg 2,4-D were combined in sterile water. The mixture was taken up to a final volume of 1 L using sterile water. The pH was adjusted to 5.2 prior to autoclaving.


Co-Cultivation Medium (SGC-2)


4.3 g of MS basal salt mixture, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 1.2 g KH2PO4, 2.0 g L-proline, 0.9 g L-asparagine, 20 g sucrose, 10 g glucose, 0.5 g MES, 1.5 mg 2,4-D, 40 mg acetosyringone, and 8 g agar were combined in sterile water. The mixture was taken up to a final volume of 1 L using sterile water. The pH was adjusted to 5.8.


Somatic Embryo Induction Medium (SGCI-3)


4.3 g of MS basal salt mixture, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 1.2 g KH2PO4, 2.0 g L-proline, 0.9 g L-asparagine, 30 g sucrose, 1.5 mg 2,4-D, and 8 g agar (Sigma, St. Louis, Mo., USA) were combined in sterile water. The mixture was taken up to a final volume of 1 L using sterile water. The pH was adjusted to 5.8. After autoclaving timentin was added to the final concentration of 200 mg/l.


Selection Medium 1 (SGS1-4)


4.3 g of MS basal salt mixture, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 1.2 g KH2PO4, 2.0 g L-proline, 0.9 g L-asparagine, 5 g sucrose, 10 g mannose, 1.5 mg 2,4-D, and 8 g agar (Sigma, St. Louis, Mo., USA) were combined in sterile water. The mixture was taken up to a final volume of 1 L using sterile water. The pH was adjusted to 5.8. After autoclaving timentin was added to the final concentration of 200 mg/l.


Selection Medium 2 (SGS2-5)


4.3 g of MS basal salt mixture, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 1.2 g KH2PO4, 2.0 g L-proline, 0.9 g L-asparagine, 5 g sucrose, 9.0 g mannose, 1.5 mg 2,4-D, and 8 g agar (Sigma, St. Louis, Mo., USA) were combined in sterile water. The mixture was taken up to a final volume of 1 L using sterile water. The pH was adjusted to 5.8. After autoclaving timentin was added to the final concentration of 200 mg/l.


Regeneration Medium (SGR1-6)


4.3 g of MS basal salt mixture, B5 vitamins (100 mg of myo-Inositol, 1 mg of nicotinic acid, 1 mg of pyridoxine HCl and 10 mg of thiamine HCl), 1.2 g KH2PO4, 2.0 g L-proline, 0.9 g L-asparagine, 20 g sucrose, 5.0 g mannose, 1.0 mg IAA, 0.5 mg kinetin and 2.4 g Gelrite (Sigma, St. Louis, Mo., USA) were combined in sterile water. The mixture was taken up to a final volume of 1 L using sterile water. After autoclaving timentin was added to the final concentration of 200 mg/l.


Initiation of Somatic Embryogenic Cultures from Immature Zygotic Embryos



Sorghum (Sorghum bicolor (L.) Moench) immature caryopses were sterilized by immersing in 20% chlorine bleach (CHLOROX®) for 20 minutes. Sterilized caryopses were then rinsed thoroughly with sterile water.


Immature embryos were isolated from caryopses and were placed onto somatic embryo induction medium (SGWT-SEI). Plates were incubated at 26 to 28° C. in the dark for about 2 to 4 weeks. The resulting somatic embryogenic clusters were used for transformation experiments or transferred to fresh SEI medium and cultured for additional 3 to 6 weeks with 3 weeks subculture intervals at 28° C. in the dark prior to use in transformation experiments.


Transformation Vector and Agrobacterium Strains



Agrobacterium tumefaciens transformation vectors were constructed as described above using standard molecular techniques known in the art. The plasmids were introduced into Agrobacterium strains LBA4404+pSB1 (Ishida et al. (1996) Nature Biotechnology 14:745-750).


Overnight cultures of the Agrobacterium strain containing the plasmid were grown for two days on plates with YP medium containing 100 mg/L spectinomycin and 10 mg/L tetracycline.


Preparation of Agrobacterium for Transformation



Agrobacterium culture was initiated weekly from glycerol stocks, stored at −80° C., onto YP semi-solid medium containing appropriate antibiotics and grown at 28° C. in an incubator.


The Agrobacterium was streaked onto fresh YP medium containing appropriate antibiotics the day before the inoculation and was grown in a 28° C. incubator. For plant transformation use, the Agrobacterium was collected from the plate using a disposable plastic inoculation loop and suspended in liquid inoculation medium, such as SW1, in a sterile 15 ml disposable polypropylene centrifugation tube. Agrobacterium was resuspended in the tube by vortexing for about 3 to 5 minutes until the Agrobacterium cells were uniformly dispersed in the suspension. The Agrobacterium suspension was then diluted to an OD660 of 0.5 to 0.8 and vortexed for about 15 seconds.


Infection and Co-Cultivation of Sorghum Somatic Embryogenic Cultures


The sorghum somatic embryogenic clusters were infected with Agrobacterium by mixing the explants with bacterial suspension prepared as described above, and vortexed for 30 sec. The mixture was incubated with the prepared explants for about 3 to 15 minutes at room temperature.


Following infection, the Agrobacterium suspension explants were placed on co-cultivation medium (SGC-2) in 100×15 mm Petri plates and were incubated for 2 to 3 days at 22° C. in the dark.


Regeneration and Selection of Transgenic Plants


After co-cultivation, the explants were transferred onto recovery medium with antibiotics to kill Agrobacterium, or to inhibit Agrobacterium growth, without a plant selection agent, such as recovery medium (SGCI-3) supplemented with 200 mg/L timentin. The plates were incubated for 5 to 15 days at 28° C. in the dark.


The explants were then transferred to SGS1-4 solid medium (10 g/L mannose and 5 g/l sucrose) supplemented with antibiotics for about 14 to 21 days.


The explants were then transferred to fresh SGS2-5 medium (10 g/L mannose and 5 g/l sucrose) for about 14 to 21 days.


Resistant clones were transferred to embryo differentiation medium SGR1-6 (5 g/l mannose and 10 g/l sucrose) and were incubated at 28° C. in the dark for about 2 to 3 weeks.


Differentiating plant tissues were transferred to fresh embryo differentiation medium R1 (5 g/l mannose and 10 g/l sucrose) and were incubated at 26° C. in the light for about 2 to 3 weeks.


Well developed seedlings with leaves and roots were transferred to rooting medium.


Leaves were sampled for PCR analysis to identify transgenic plants containing the selectable marker gene according to Negrotto et al. (2000), and gene of interest. PCR positive and rooted plants were rinsed with water to wash off the agar medium, and transplanted to soil and grown in the greenhouse for seeds.


Example 7—Analysis of Transgenic Plants

Microbial Production of Enzymes


As part of the analysis of transgenic plants, microbial production can be utilized to generate enzyme standards. Although the microbially produced enzymes may have different glycosylation patterns, or other post-translational modifications, than the protein expressed in plants, the microbial protein is an acceptable standard for generating antibodies, for assay measurements, and for western blots.


Example 8—Production of Xylanases Using P. pastoris

Genes encoding enzymes of interest were cloned into expression vectors and transformed into suitable expression hosts. Pichai pastoris expression was performed in YPD media at 30° C. and 300 rpm. Culture supernatants were harvested after three to five days of expression corresponding to the time point of highest enzyme activity per ml of clarified supernatant. The supernatant was concentrated by tangential flow filtration with a 10 kDa MWCO membrane and exhaustively buffered exchanged with appropriate reaction buffer.


The amount of enzyme present in the concentrated culture supernatants was determined by treating a 10 μl sample with PNGaseF (NEB) according to the manufacture's protocol to remove N-linked glycans from the target protein. The sample was serially diluted and 10 μl of each dilution was fractionated by SDS-PAGE and stained with Simply Blue Safe stain (Invitrogen) according to the manufacture's guidelines. The concentration of the sample was designated as the highest dilution factor in which the target protein was still detectable after staining.


Rabbit Antiserum Generation


Antibodies that cross react with specific proteins were generated by New England Peptide. Proteins of interest were expressed in Pichia pastoris. The resulting culture supernatant was concentrated by tangential flow filtration using a 10 kDa MWCO filter (Millipore) and in some case further purified by column chromatography. The sample concentrate was further polished using centricon filtration device with a 10 kDa MWCO (Millipore) then fractionated by SDS-PAGE. The protein band corresponding to the predicted molecular weight of the target protein was excised from the gel using a razor blade and sent to New England Peptide for anti-sera generation. Upon receipt, the specificity of each antiserum was validated by Western Blot, aliquoted and stored at 4° C. or −20° C. Western Blot analysis was performed under standard conditions known in the art.


Example 9—Determination of Xylanase Activity by Reducing Sugar Measurement

Xylanase activity was determined using birch wood xylan as a substrate and measuring the production of reducing sugar ends with the Nelson-Somogyi reducing sugar microassay (Green et al. 1989, Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates, Anal Biochem. 1989 Nov. 1; 182(2):197-9, which is incorporated by reference herein as if fully set forth). A 2% (w/v) substrate solution was prepared by dissolving birchwood xylan (Sigma) in boiling water. 0.02% azide (final concentration) was added as a preservative. Reagents for the Nelson-Somogyi reducing sugar assay were prepared as previously described (Green et al. 1989). Protein concentrations were determined using the BCA protein assay kit (Thermo Scientific) or represented as a dilution factor as described above.


Assays consisted of 250 μl of 2% birchwood xylan, 250 μl buffer, and varying volumes of xylanase preparation (or xylanase standards used to generate a standard curve) in a total reaction volume of one milliliter. Assays were conducted at 60° C. for 20 minutes then placed on ice to stop the reaction. From each reaction, 50 μl of each reaction were assayed for the presence of reducing sugars using the Nelson-Somogyi reducing sugar assay as previously described. Xylanase activity units were determined from results corresponding to the linear range of the analysis. The specific activity of the enzyme preparations was calculated by the following equation: Specific Activity=(mM reducing ends produced)/(dilution factor concentration).


Referring to FIG. 7, the specific activity of three xylanases with accession numbers P40942, P77853 and O30700 was identified. As shown, the specific activity of O30700 is 5 times that of P40942 and P77853 when birchwood xylan is used as a substrate.


Example 10—Analysis of Transgenic Plant Material

Transgenic plants were assayed to determine the levels of accumulated active enzyme. For these assays, samples of liquid nitrogen frozen leaf tissue were ground in a mortar and pestle and the grindate collected. 10 mg of frozen leaf grindate was distributed into each well of a microtiter. To each well 200 μl of 100 mM buffer was added and the reactions mixed by pipetting. The plates were sealed and placed into a shaking incubator (200 rpm) at 55° C. for 16 hours. Post incubation, each reaction was applied to a Multiscreen HTS filterplate with a 1.2 μm glass fiber filter (Millipore, Billerica Mass.) and filtered by centrifugation at 500×g for 3 minutes. Enzyme activity was assessed by assaying 50 μl of the resulting filtrate using the Nelson-Somogyi reducing sugar assay as previously described. Extracted protein was determined using the BCA protein assay kit (Thermo). Levels of activity were presented as mM reducing sugar ends produced per mg of extracted protein.


Referring to FIG. 8, the activity of various transgenic plant samples expressing Xylanase P77853 is shown. The samples labeled AG2014 and AG2015 were transformed with the plasmids pAG2014 and pAG2015, respectively, and AG2004 is a control. The production of reducing sugars in transgenic plant samples as compared to the wildtype sample indicated the accumulation of active xylanase in transgenic plant tissue.


Example 11—Determination of Activity Against pNP-Conjugated Glycosides

In order to characterize the enzymatic range of activities of particular xylanases several assays were performed using p-nitrophenol (pNP)-conjugated glycosides. One molar stocks of the substrates were made in dimethylsulfoxide. Reactions consisted of 5 mM (final concentration) substrate, 100 mM buffer in 50 μl and 1-10 μl of enzyme preparation. Reactions were prepared then incubated at 60° C. for one hour. The reactions were stopped and developed upon addition of 100 μl of 0.1M carbonate buffer pH 10.5. Hydrolysis of the substrate, which was indicated by the formation of pNP, was detected as an increase of absorbance at 400 nm.


Polysaccharide endohydrolysis substrates was also determined using AZCL conjugated substrates supplies (Megazyme) and used according to the manufacture's standard protocol. Briefly, 250 μl of a specific buffer was mixed with 100 μl of enzyme preparation and 150 μl of water. The reaction was placed in a water bath incubator set at the desired temperature (usually between 37° C. and 70° C.) for five minutes after which one tablet of either xylazyme AX or cellazyme C was added. The reaction were incubated for 10 minutes then removed from the incubator and stopped with 10 ml of 2% (w/v) Tris Base (Sigma®). Endohydrolysis of the polyscaahride substrate was indicated by the release of soluble blue dye. The amount of released dye was quantified by measuring absorbance of the reaction supernatant at 590 nm. Controls for these reactions include protein extracts from the P. pastoris or E. coli wild type strain and recombinant enzyme producing strain.


Table 1, below, demonstrates the detected activities of several xylanases. As indicated endo-xylanase activity was detected for the P77853, O30700 and P40942 samples. Cellobiohydrolase and β-glucosidase activities were detected in samples contain P40942 indicating that this enzyme is capable of endohydrolysis of xylan and exohydrolysis of cellulose and cellobiose.














TABLE 1







β-xylo-

Cellobio-
β-gluco-


Sample
Xylanase
sidase
Cellulase
hydrolase
sidase







P77853
+






O30700
+






P40942
+


+
+



P. pastoris









E. coli















Example 12—Determination of Thermal Stability

Thermal stability of enzymes was assessed by recovery of enzymatic activity after incubation at elevated temperatures. Briefly, preparations of xylanase P77, 030 or 040 were incubated at 4° C., 50° C., 60° C., 70° C. or 80° C. for one hour then assayed using the xylazyme AX substrate as described above. Referring to FIG. 9, xylanases O30700 and P77853 retain nearly 100% activity after one hour incubation at up to 60° C., but have reduced activity when exposed to 70° C. and 80° C. temperature treatments. Xylanase P40942 retains nearly 100% activity after one hour at temperatures up to 70° C., while at 80° C. its activity was reduced relative to exposure at the lower temperatures tested.


The thermal stability of the enzyme is one characteristic that may impact its utility in different applications. For example, in processing lignocellulosic bioimass; e.g., that derived from corn (stover), switchgrass, miscanthus, sorghum, or sugarcane, if the transgenic biomass material is to be treated at 70° C. for one hour, P40942 may be a better enzyme to deliver xylanase activity than O30700 or P77853 because of its increased stability at that temperature. In contrast, if transgenic grain; e.g., from transgenic corn or sorghum, is going to be used in formulating an animal feed ration, where the feed is ground and mixed at a temperature of 50° C., then any of these enzymes may be sufficiently thermal stable. However, these uses of particular enzymes do not preclude other uses of the same particular enzymes.


Example 13—Materials and Methods for Evaluating Transgenic Plants and their Pretreatment and Enzymatic Hydrolysis Processes

Various process configurations may be used to process biomass and certain plant tissues. One process configuration is referred to as a macro-scale process, which can be scaled up, and is described directly below. Another process configuration is referred to as a micro-scale process, which can be used for plant evaluation, and is detailed below, following the description of a macro-scale process.


Example 13a—Macro-Scale Process

Macro-scale sequential low temperature chemi-mechanical pretreatment (CMPT) and one-stage enzymatic hydrolysis:


Referring to FIG. 10, biomass conversion to fermentable sugars by a macro-scale process method was used with several feedstocks. FIG. 10 illustrates the process flow diagram for the macro-scale process.


Biomass Substrate Preparation:


Corn stover was transformed with the noted plasmid containing either a β-glucosidase, endoglucanase, cellobiohydrolase, FAE, or xylanase, or combination of enzymes. The vector used may be any vector encoding a CWDE or derivative thereof, including any one or more of the vectors disclosed herein. In this example, the vector was pAG2015, pAG2042, and pAG2063. The stover was dried in an air-circulator at 37° C. for about 2 weeks. The dried corn stover 1010 was cut to 1.0-1.5 inch long.


Pretreatment:


The cut dried corn stover 1010 was pretreated at step 1020 by using either pure water or a combination of 8%-38% (wt./wt. on corn stover) ammonium bisulfite and 4%-19% (wt./wt. on corn stover) ammonium carbonate (pH 7.6-8.5). The biomass was added to a flask with pretreatment solution at a liquid-to-solid (L/S) ratio of 8. The mixture was shaken at temperatures of 40° C.-90° C. for four to 19 hours. The pretreated material was filtered using VWR grade 415 filter paper, and the material 1025 was collected for further analysis.


Refining:


The pretreated biomass was refined at step 1030 in a blend with DI water at 40° C.-90° C. After blending, the biomass was filtered using VWR grade 415 filter paper. The refined biomass (pulp) that did not pass through was washed with DI water at 40° C.-90° C. DI water. The pulp 1035 was stored at 4° C. for moisture balance and further enzymatic hydrolysis.


Enzymes:


Accellerase™ 1000 enzyme (Genencor International, Rochester, N.Y.), was used. The endoglucanase activity was 2500 CMC U/g (minimum). The beta-glucosidase activity was 400 pNPG U/g (minimum). The appearance was brown liquid. The pH was 4.8-5.2.


Alternatively, a cocktail of enzymes were used, which contained: Endoglucanase (C8546), β-glucosidase (49291), and xylanase (X2753) all purchased from Sigma (St. Louis, Mo.), and a cellobiohydrolase (E-CBHI) that was purchased from Megazyme (Wicklow, Ireland).


Enzymatic Hydrolysis:


The NREL standard protocol (LAP-009) was followed. At step 1040, the pretreated and refined stover was hydrolyzed in 0.1 M sodium citrate (pH 5.0) at a biomass solid content of 6.0% at an enzyme loading of 0.2-0.4 ml per g corn stover to release sugar 1045. The reaction occurred in a 250 mL erhlenmeyer flask at 250 rpm for 0-48 hr period at 45° C.-55° C. Depending upon the enzyme mixture and enzyme expressed in the plant, the pH was varied from 5 to 9. The preferred pH for these enzyme mixtures was usually 5.


Tetracycline or an equivalent antibiotic may optionally be added to the hydrolysis to prevent the growth of any potential microbial contamination.


Analysis of Fermentable Sugars:


The hydrolysate samples were heated at 95° C. for 20 min and then centrifuged at 9,000×g, following which the supernatants were clarified by passage through 0.20 μm PVDF filters (Cat.#: 09-910-13, Fisher Scientific, Pittsburgh, Pa.). Monosaccharide and disaccharide concentrations were determined by high performance liquid chromatography (HPLC), using a Shimadzu LC-20 AD binary pump with LC solutions software (Shimadzu, Kyoto, Japan). Sugar concentrations were determined using an Aminex HPX-87P sugar column (Bio-Rad Laboratories, Hercules, Calif.) operating at 0.6 ml/min and 85° C. with degassed water as the mobile phase. Peak areas for all samples, analyzed with an RI detector (RID LOAD), were integrated and the values were compared to standard curves for quantification.


Results of Macro-Scale Processing


1—Corn Stover from Wild Type AxB Plants.


For corn stover, the theoretical yield of sugar is 33.5% (wt/wt) glucose and 16.3% (wt/wt) xylose.


Pretreatment: conducted as described above with either 8% ammonium bisulfate and 4% ammonium carbonate or 38% ammonium bisulfate, 19% ammonium carbonate at a temperature of 70° C. for 4 hrs.


Enzyme hydrolysis: conducted as described above for 24 or 48 hrs.


The results are presented in Table 2, below. 54.5% (24 hours) and 62.3% (48 hours) glucose recovery yields as well as 20% (24 hours) and 27.5% (48 hours) of xylose recovery yields can be achieved in one-day and two-day enzymatic hydrolysis from diluted chemical pretreatment. The results demonstrate the efficiency of low temperature CMPT on enzymatic hydrolysis.









TABLE 2







Glucose and xylose yields from enzymatic hydrolysis of


pretreated corn stover (A × B)










8% Bisulfite,
38% Bisulfite,


Pretreatment
4% Carbonate
19% Carbonate














Enzymatic hydrolysis
24
48
24
48


time (hrs)


Glucose (g/100 g stover)
18.292
21.056
23.995
24.300


Xylose (g/100 g stover)
3.285
4.483
5.637
5.836









2—Stover.


Oven-dried, wild type AxB corn stover was tested and compared against a mixture of stover from nine pAG2015 transgenic corn plants (referred to in this example as “2015M”).


Pretreatment: conducted as described above with 16% ammonium bisulfate and 8% ammonium carbonate (pH 7.6) at 70° C. for 4 hrs.


Enzyme hydrolysis: conducted as described above for 0 or 24 hrs.


The results are presented in Table 3, below. Better hydrolysis performance in terms of sugar yields were observed from the pAG2015 transgenic corn plants than wild-type AxB plants.









TABLE 3







Glucose and xylose yields from enzymatic hydrolysis


of pretreated corn stover (A × B and 2015M).









Plant source
2015M
Wild type A × B














Enzymatic Hydrolysis (hrs)
0
24
0
24


Glucose (g/100 g stover)
2.171
18.332
2.232
14.771


Xylose (g/100 g stover)
0.390
3.797
0.380
3.303









Example 13b—Micro-Scale Process: Simplified Low Temperature Chemi-Mechanical Pretreatment (CMPT) and Enzymatic Hydrolysis

Referring to FIG. 11, a micro-scale saccharification method was used to screen several biomass feedstocks for conversion to fermentable sugars using either a one-stage or two-stage enzymatic hydrolysis.


Biomass Substrate Preparation:


Corn stover 1110 from corn transformed with the desired vector containing either a beta-glucosidase, endoglucanase, cellobiohydrolase, FAE, or xylanase, or combination of enzymes was obtained. The stover was dried in an air-circulator at 37° C. for about 2 weeks. After drying, the corn stover was cut to 1.0-1.5 inch long. The stover was milled at step 1120 using UDY mill (Model 014, UDY Corporation, Fort Collins, Co) with a screen of 0.5 mm.


Pretreatment:


The milled corn stover was pretreated at step 1130 by using either pure water or chemicals. The biomass was added to 2-mL tubes with pretreatment solution at a liquid-to-solid ratio of 10. 20 mg of biomass could be utilized. The mixture was shaken at temperature of 40° C.-90° C. for 15-19 hrs. The pre-treated material was subject to enzymatic hydrolysis without inter-stage washing.


Enzymes:


Endoglucanase (C8546), beta-glucosidase (49291), and xylanase (X2753) were all purchased from Sigma® (St. Louis, Mo.). The cellobiohydrolase (E-CBHI) was purchased from Megazyme® (Wicklow, Ireland).


Enzymatic Hydrolysis:


The process is based on the NREL standard protocol (LAP-009).


One-Stage Hydrolysis:


The milled, pretreated stover was suspended at a 2% (w/v) glucan loading in polybuffer (50 mM Na citrate, 20 mM K-phosphate, dibasic, 17 mM arginine, 40 mM glycine, 25 mM EPPS, 20 mM HEPES, 0.02% sodium azide) with pH values ranging from 3.5 to 5.0. The pH used was based on final pH of the suspended pretreated stover. The cocktail enzyme loading was based on experiments using 10 mg stover and are given in Table 4, below. Analysis was done on the biomass without any added enzymes (no-cocktail), and with the cocktail missing the xylanse, endoglucanase, or other enzymes that were expressed in the plant (cocktail minus xylanase or endoglucanase depending on the enzyme expressed in plants), in the hydrolysis. This was done to evaluate the effect of the in planta expressed enzymes on hydrolysis. Samples were hydrolyzed at 40° C. or 50° C. for 48-96 hrs at 200 rpm (1 mL reaction volume).


Tetracycline or an equivalent antibiotic may optionally be added to the hydrolysis to prevent the growth of any potential microbial contamination.









TABLE 4







Enzyme loading for a full cocktail










Enzyme
Enzyme loading per 10 mg stover







endoglucanase
0.5 μM



cellobiohydrolase
0.1 μM



β-glycosidase
0.01 μM 



endoxylanase
0.3 μM










Two-Stage Hydrolysis:


The first-stage enzymatic hydrolysis was named depending on the enzymes expressed in plant (for example, “xylanase hydrolysis” or “glucanase hydrolysis”). The second-stage enzymatic hydrolysis that followed was named “enzyme cocktail hydrolysis.”


For the first-stage, milled, pretreated stover was suspended at a 3% (w/v) glucan loading in polybuffer with pH's ranging from 5.0 to 8.4. The pH used was based on the optimal pH for the plant expressed enzyme. This hydrolysis was conducted at 55° C., 300 rpm for 24-48 hrs.


For the enzyme cocktail hydrolysis, the pH was adjusted to 5.0 using concentrated HCl as needed. Then cocktail enzymes were added to samples as noted in one-stage enzymatic hydrolysis, resulting in samples with no cocktail, the full cocktail, and the cocktail minus xylanase or endo-glucanase. Polybuffer pH 5.0 was added for a final solid content of 2%. Samples were hydrolyzed at 50° C. at 200 rpm for 48-96 hrs.


Tetracycline or an equivalent antibiotic may optionally be added to the hydrolysis to prevent the growth of any potential microbial contamination.


Analysis of Fermentable Sugar:


The hydrolysate samples were incubated at 95° C. for 20 min and then centrifuged at 9,000×g, following which the supernatants were clarified by passage through 0.20 μm PVDF filters. Monosaccharide and disaccharide concentrations were determined by high performance liquid chromatography (HPLC), using a Shimadzu LC-20 AD binary pump with LC solutions software (Shimadzu, Kyoto, Japan). Sugar concentrations were determined using an Aminex HPX-87P sugar column (Bio-Rad Laboratories, Hercules, Calif.) operating at 0.6 ml/min and 85° C. with degassed water as the mobile phase. Peak areas for all samples, analyzed with an RI detector (RID LOAD), were integrated and the values were compared to standard curves for quantification.


Results of Micro-Scale Processing


1—One-Stage Enzymatic Hydrolysis, pAG2015.


Plant stover analyzed: a transgenic corn plant designated 2015.05 (made by transforming corn with pAG2015, which expresses a xylanase) was used to provide stover. Control plant: a transgenic corn plant designated 2004.8.4 (a T1 generation plant, descended from a parent that was made by transforming corn with pAG2004, which does not encode a xylanase enzyme) was used to provide control stover. Theoretical sugar yield: 2015.05: 33.35% glucose, 18.69% xylose; 2004.8.4: 2015.05: 34.68% glucose, 20.6% xylose.


Pretreatment: conducted as described above with 1:19 (v/v) 15% NH4OH, 20% NH4Cl at 40° C. or 60° C. for 15 hrs, 300 rpm.


One-stage enzymatic hydrolysis: As described above with 0.02% sodium azide at 50° C. for 48 hours, 250 rpm.



FIG. 12 illustrates the glucose and xylose yield (percentage on biomass weight) from enzymatic hydrolysis of pretreated corn stover (2015.05 and 2004.8.4). As shown in FIG. 12, 2015.05 shows better hydrolysis performance from both overall hydrolysis yield and based on the effect of the in planta xylanase on hydrolysis (as shown by the “Cocktail-Xyl” treatment). In FIG. 12, the following labels are used: 40 C PT: pretreatment done at 40° C.; 60 C PT: pretreatment at 60° C. “Cocktail-Xyl” denotes the one-stage enzymatic hydrolysis that was conducted without xylanase in the external enzyme cocktail. Each labeled sample in FIG. 12 shows the results for no cocktail, full cocktail and cocktail-Xyl from left to right.


2—One-Stage Enzymatic Hydrolysis, pAG2063


Plant stover analyzed: transgenic plants designated 2063.13 and 2063.17 (made by transforming corn with pAG2063, which expresses a xylanase) were used to provide stover. Control plant designated 2004.8.4 (a transgenic plant made by transforming corn with pAG2004; no xylanase enzyme expressed) was used to provide control stover.


Pretreatment: conducted as described above with 1:19 (v/v) 15% NH4OH, 20% NH4Cl, at either 40° C. or 60° C. for 15 hrs, 300 rpm.


One-stage enzymatic hydrolysis: conducted as described above with 1.0 mg/ml tetracycline at 50° C. for 48 hours, 250 rpm.



FIG. 13 illustrates the glucose and xylose yield (percentage on biomass weight) from enzymatic hydrolysis of pretreated corn stover (2004.8.4, 2063.13, and 2063.17). As shown in FIG. 13, transgenic plant 2063.17 shows better hydrolysis performance than control plant and 2063.13 from both overall hydrolysis yield and based on the effect of in planta xylanase on hydrolysis (as shown by the “Cocktail-Xyl” treatment). In FIG. 13, the following labels were used: 40 C PT: pretreatment done at 40° C.; 60 C PT: pretreatment at 60° C. “Cocktail-Xyl” denotes the one-stage enzymatic hydrolysis that was conducted without xylanase being included in the external enzyme cocktail. Each labeled sample in FIG. 13 shows the results for cocktail-Xyl and full cocktail from right to left. Samples where only two bars are visible show only the cocktail-Xyl and full cocktail results. Samples where three bars are visible show the no cocktail results to the left of the full cocktail results.


3—Two-Stage Enzymatic Hydrolysis, pAG2014.


Plant stover analyzed: transgenic plant 2015.05 was used to provide stover; and control plant 2004.8.4 was used to provide control stover. As used herein, a T0 plant is the 1st generation; and a T1 plant is the 2nd generation, created from the T0 plant seeds.


Pretreatment: conducted as described with DI water at 55° C. for 16 hrs, 300 rpm.


First-stage enzymatic hydrolysis (Xylanase hydrolysis): conducted as described previously at 55° C., for 24 hrs with 0.02% sodium azide, 250 rpm.


Second-stage hydrolysis (enzyme cocktail hydrolysis): conducted as described at 50° C. using cocktail for 48 hrs.



FIG. 14 illustrates glucose and xylose yields (percentage on biomass weight) from enzymatic hydrolysis of pretreated corn stover (2015.05 and 2004.8.4). T0 and T1 2015.05 plants both show better hydrolysis performance from both overall hydrolysis yield and based on the effect of the in planta xylanase on hydrolysis (See FIG. 14, “Ct-xyl” treatment). In FIG. 14, the following labels were used: “N Ct”: No Cocktail, “F Ct”: Full Cocktail, “Ct-xyl”: Cocktail minus xylanase. Each labeled sample in FIG. 14 shows the results for no cocktail, full cocktail and cocktail-Xyl from left to right.


4—Two-Stage Enzymatic Hydrolysis, pAG2063.


Plant stover analyzed: A transgenic plant designated 2063.17 (made by transforming corn with pAG2063) was used to provide stover. A control plant designated 2004.8.4 (made by transforming core with pAG2004) was used to provide control stover.


Pretreatment: conducted as described with DI water at 55° C. for 16 hrs, 300 rpm.


First-stage enzymatic hydrolysis (Xylanase hydrolysis): conducted as described previously at 55° C., for 24 hrs with 0.02% sodium azide, 250 rpm.


Second-stage hydrolysis (enzyme cocktail hydrolysis): conducted as described at 50° C. using cocktail for 96 hrs.



FIG. 15 illustrates glucose and xylose yields (percentage on biomass weight) from enzymatic hydrolysis of pretreated corn stover (2064.17 and 2004.8.4). As shown in FIG. 15, both glucose and xylose yields for 2063.17 are consistently higher than for 2004.8.4 through the course of pretreatment, 1st-stage xylanase hydrolysis, and 2nd stage enzyme cocktail hydrolysis. Xylose yield for 2063.17 increases through the courses, indicating a positive effect of in planta xylanase on xylan hydrolysis.


In FIG. 15, the following labels were used: PT: levels after pretreatment; PT-XH: levels after xylanase hydrolysis, 48 hrs: levels after 48 hrs of stage two; 96 hrs: levels after 96 hrs of stage two. “Cocktail-Xyl” denotes the one-stage enzymatic hydrolysis that was conducted without xylanase being included in the external enzyme cocktail. The 2004.8.4, PT2004.8.4 PT-XH, 2063.17 and PT2063.17 PT-XH samples show only no cocktail results. The remaining samples show the results for no cocktail, full cocktail and cocktail minus xylanase from left to right.


5—One-Stage Enzymatic Hydrolysis, pAG2042.


Plant stover analyzed: Transgenic plants designated 2042.2, 2042.3, and 2042.6 (made by transforming corn with pAG2042) were used to provide stover. Control corn plant 2004.8.4 was used to provide control stover.


Pretreatment: conducted as described above with 0.3 M ammonium bisulfite/0.34 M ammonium carbonate at temperatures of either 40° C. or 60° C. for 19 hrs, 300 rpm.


One-stage enzymatic hydrolysis: conducted as described above with 1.0 mg/ml tetracycline at 50° C. for 48 hours, 250 rpm.



FIG. 16 illustrates the glucose yield (percentage on biomass weight) from enzymatic hydrolysis of pretreated corn stover (2042.02, 2042.03, 2042.06 and 2004.8.4). As shown in FIG. 16, the glucose yield from 2042.3 is significantly higher than the glucose yield from the other two transgenic plants (2042.2 and 2042.6) as well as control plant (2004.8.4). In FIG. 16, the following labels were used: 40 C PT: pretreatment done at 40° C.; 60 C PT: pretreatment at 60° C. Each labeled sample in FIG. 16 shows the results for no cocktail, full cocktail and cocktail minus endo-glucanase from left to right.


Example 14—Determination of Reducing Sugar Release with Transgenic Plant Material

Referring to FIG. 8, transgenic plants were assayed to determine the levels of accumulated active enzyme. For these assays, samples of liquid nitrogen frozen leaf tissue were ground with a mortar and pestle and the resulting ground samples were collected. 10 mg of frozen leaf grindate was measured and deposited into a well of a microtiter. To each well, 200 μl of 100 mM sodium phosphate buffer (pH 6.5) was added and the reactions mixed by pipetting. The plates were sealed with foil and placed into a shaking incubator (200 rpm) at 55° C. for 16 hours. Post incubation, each reaction was applied to a Multiscreen HTS filterplate with a 1.2 μm glass fiber filter (Millipore, Billerica Mass.) and filtered by centrifugation at 500×g for 3 minutes. Enzyme activity was assessed by assaying 50 μl of the resulting filtrate using the Nelson-Somogyi reducing sugar assay as previously described. Extracted protein was determined using the BCA protein assay kit (Thermo Scientific). Levels of activity were presented as mM reducing sugar ends produced per mg of extracted protein. The production of reducing sugars in transgenic plant samples (AG2014 and AG2015) as compared to the non-xylanase expressing transgenic control plant sample (AG2004) indicated the accumulation of active xylanase in transgenic plant tissue.


Example 15—Detection of Autolysis Activity in Transgenic Corn Stover

Ten milligrams (+1-1 mg) of ground sample was applied to a 1.5 ml microfuge tube. The ground sample was resuspended in 1 ml of 100 mM sodium phosphate buffer containing 40 μg tetracycline and 30 μg of cycloheximide. The reactions were incubated for 64 hours at 60° C. with end-over-end mixing (18 rpm). The reaction supernatant was collected and assayed for the presence of reducing sugars using the Nelson-Somogyi reducing sugar assay. The results from this assay were reported as mM xylose equivalent reducing ends produced/mg stover by comparison to a xylose standard curve.


Example 16—Transgenic Plants and Transgenic Plants Expressing Cell Wall Degrading Enzymes

In general, for each transformation vector, at least 20 events were made. In some case many more (up to 90) transgenic events were made and all events were used to evaluate the effect of the transformation process and gene expression.


Transgenic Plants Constructed Using pAG3000 and pAG3001


Referring to FIGS. 17A and 17B, T0 plants were regenerated from the transformation protocol described above using pAG3000 and pAG3001. The plant transformation vectors, pAG3000 and pAG3001 were described above. These vectors have the rice actin 1 promoter driving the E. coli gene for phosphomannose isomerase (PMI), which can be used for selecting transgenic plants or other purposes. The difference between pAG3000 and pAG3001 lies in the junction between the rice actin 1 promoter and the PMI gene. In pAG3000 a partial eukaryotic translation initiation site consensus was used, while in pAG3001, the complete eukaryotic translation initiation site was used. Maize embryos were transformed with pAG3000 and pAG3001 as described above.


Transgenic plants expressing pAG3000 and pAG3001 were regenerated as described above. Based on experimental results and following the procedures above, transgenic plants having pAG3000 and pAG3001 were selected at an average rate of 22.6% and 12.3%, respectively in maize. In other species, transformation efficiency (as defined by the number of transgenic plants divided by the number targets for transformation, where no more than one transgenic event can be generated per target) is not easily calculated because target calli are not readily enumerated as discrete targets. The maximum efficiency observed in any single experiment was 28% for pAG3000 and 14% for pAG3001. Based on these data, using the partial eukaryotic translation initiation site consensus sequence provided increased transformation efficiency compared to the complete eukaryotic translation initiation sequence. Although the rice actin 1 promoter is considered a relatively strong constitutive promoter, the transformation efficiencies obtained by linking it to PMI were unknown and it was uncertain how much better they could be improved relative to the CMPS:PMI construct obtained originally. Based on these results, the average transformation selection efficiency using CMPS:PMI was 1.5%, with a maximum of 14%, but efficiencies of 0%, 2%, 3%, 6%, 7%, 13%, and 14% were observed in individual experiments. Ranges in transformation efficiency can be impacted by the quality of the transformation target material, but these averages and ranges help define what could be expected from transformation using these constructs. Based on these results, linking PMI to the rice actin 1 promoter improved PMI transformation efficiency using the procedures described above. Furthermore, using the junction between the rice actin 1 promoter and PMI in pAG3000, improved the average transformation efficiency above the level of improvement when using the junction employed in pAG3001.


As shown in FIGS. 17A and 17B, transgenic plants with pAG3000 (FIG. 17A) and pAG3001 (FIG. 17B) are phenotypically normal for transgenic plants at this stage of development. The transgenic nature of these plants was verified using PCR.


Example 17—Transgenic Plants Constructed Using pAG2004 and pAG2005

Referring to FIGS. 18A, 18B, 18C, 19A and 19B, corn was transformed with the plant transformation vectors, pAG2004 (FIGS. 18A, 18B and 18C) and pAG2005 FIGS. 19A and 19B). These vectors have the rice ubiquitin 3 promoter driving the E. coli gene for phosphomannose isomerase (PMI), which can be used for selecting transgenic plants or other purposes. The difference between pAG2004 and pAG2005 is that pAG2005 contains an additional, empty expression cassette that other genes of interest can be cloned into. In terms of selecting transgenic events, pAG2004 and pAG2005 have the identical rice ubiquitin 3 promoter and PMI selection cassette. These two vectors combined to give an average transformation efficiency of 20%. In individual experiments, these vectors provided transformation efficiencies of 0%, 4%, 7%, 10%, 11%, 12%, 13%, 14%, 15%, 17%, 18%, 24%, 28%, 29%, 30%, 31%, 32%, 40%, 50%, 53%, and 64%. Ranges in transformation efficiency can be impacted by the quality of the transformation target material, but these averages and ranges could be expected from transformation using these constructs.


The rice ubiquitin 3 promoter fused to PMI significantly increased transformation efficiencies that were observed relative to CMPS:PMI, using the method described above. Furthermore, the average transformation efficiency was greater than that using pAG3001, and similar to the efficiency observed using pAG3000. Because the maximum efficiencies obtained using pAG2004 and pAG2005 were greater than those obtained using pAG3000, the pAG2004 and pAG2005 selection cassettes were used for further development of transgenic plants, as described above.



FIGS. 18A, 18B, 18C, 19A and 19B illustrate TO plants regenerated from the transformation protocol described above. FIG. 18A shows that a nearly senescent pAG2004 transgenic plant is phenotypically normal. FIGS. 18B and 18C show that cobs from a pAG2004 transgenic plant are also phenotypically normal. FIGS. 19A and 19B show that pAG2005 transgenic plants are phenotypically normal. The transgenic nature of these plants was verified using PCR.



FIG. 20 illustrates measurement of reducing sugars from transgenic plant event #15 transformed with pAG2004. In FIG. 20, the buffer sample represents the background of the assay, where 1 mg of buffer was used in the measurement. Because pAG2004 does not express a cell wall degrading enzyme, its reducing sugar measurement represents a negative control to compare other plants against and is also representative of wild-type, non-transgenic plants.


Example 18—Transgenic Plants Constructed Using pAG2016

The transformation vector pAG2016 was used in transformation to regenerate transgenic plants. This transformation vector was derived from pAG2005 and contains an expression cassette for the production of beta-glucoronidase (GUS). In this expression cassette, GUS is fused to the maize codon optimized PR1a signal peptide, which directs GUS to the apoplast intercellular space. The transformation efficiency of this vector has an average of 16%, and was in the expected range for the PMI selection cassette used.


Referring to FIGS. 21A and 21B, T0 pAG2016 transgenic plants and cobs are phenotypically normal. The plants were regenerated from the transformation protocol described above. The transgenic nature of these plants was verified using PCR. These plants demonstrate that a transgene can be effectively expressed from the expression cassette contained within pAG2005. The transgenic plants also demonstrate that the PR1a signal peptide, which was fused to GUS in pAG2016, did not interfere dramatically with transformation efficiency or the phenotype of the transgenic plant.


Example 19—Transgenic Plants Constructed Using pAG2014, pAG2015, pAG2020, pAG2025

The transformation vectors pAG2014, pAG2015, pAG2020, pAG2025 were used in transformation to regenerate transgenic plants. Transformation vectors pAG2014, pAG2015, and pAG2020 were derived from pAG2005 and each contains an expression cassette for the production of a xylanase (accession number P77853). In pAG2014, the P77853 gene is fused to the barley alpha amylase signal sequence (BAASS; SEQ ID NO: 8) for cell wall targeting. In pAG2015, the P77853 gene is not fused to any signal peptide and therefore should accumulate in the cytoplasm of cells. In pAG2020, P77853 is fused to the PR1a signal peptide for targeting of the enzyme to the apoplast. In contrast, pAG2025 was derived from pAG2012, which uses the rice glutelin GluB-4 promoter and GluB-4 signal sequence to direct seed tissue specific expression of P77853. The average transformation efficiency for pAG2014 was 30%, for pAG2015 it was 34%, for pAG2020 it was 24%, and for pAG2025 it was 10%. All of these efficiencies were within the expected range of transformation efficiency when using the rice ubiquitin 3 promoter and PMI selection cassette.


Activity measurements were made from transgenic events generated using methods described above. The following figures show the results of the activity measurements.


Referring to FIG. 22, reducing sugar measurements were made for transgenic plants. FIG. 22 shows the reducing sugar production of transgenic plants having pAG2014 (left sample) or pAG2004 (middle samples), and a buffer control (right sample). Transgenic plant event #5 (left sample) made with pAG2014, which expresses the P77853 xylanase produces significantly more reducing sugars when incubated at 60° C. than plants made with pAG2004.


Referring to FIG. 23, enzyme activity measurements were made from dried, senescent corn stover samples. The first six samples from the left in FIG. 23 are different transgenic plants having pAG2014. The seventh sample is a negative control from a transgenic plant having pAG2004. Transgenic plants made with pAG2014 were allowed to senesce, and were then dried down in an incubator to bone dry levels. The level of dry may be less than 1% moisture. The stover samples were milled and assayed as described above. As shown, the enzyme activity is stable even through the senescence, drying, and milling processes. A range of activities was obtained in this data, from low levels (close to the non-xylanase expressing control (2004.15)) up to over 8 μg RBB equivalents/mg stover.


Referring to FIG. 24, enzyme activity measurements were made from leaf tissue samples of transgenic plants made with pAG2015, pAG2014, or pAG2004. A samples for pAG2014 is shown seventh from the right. A sample for pAG2004 is shown last. All other samples are different transgenic events for pAG2015 plants. As seen, a range of activity levels are obtained because gene insertion into the plant genome is highly variable and significantly affects expression properties. In general, a maximum activity level may be achieved for a given vector, and any activity below that level is also possible.


As shown in FIG. 24, pAG2015 (cytoplasmic P77853) and pAG2014 (BAASS:P77853) provide significant activity levels. Activity from pAG2015 is significant when expressed in plants and sampled from green tissues, and from senescent corn stover, however, thus assays have shown that pAG2014 provides a greater level of reducing sugar production when assayed from senescent corn stover. In contrast, pAG2025 provides no activity in green tissues tested (data not shown in FIG. 24), as would be expected given the seed specific nature of the pAG2025 transgene expression cassette.



FIGS. 25A and 25B illustrate transgenic plants made with pAG2014, FIG. 25C illustrates a cob from a transgenic plant made with the pAG2014. FIGS. 26A and 26B illustrate transgenic plants made with pAG2015, and FIGS. 26C and 26D illustrate cobs from transgenic plants made with pAG2015. FIGS. 27A and 27B illustrate transgenic plants made with pAG2020, and FIG. 27C illustrate a cob from a transgenic plant made with pAG2020. Referring to FIGS. 28A, 28B, and 28C, transgenic plants made with pAG2025 are illustrated. These plants demonstrate that the P77853 xylanase can be effectively expressed from the expression cassette contained within pAG2005. The transgenic plants also demonstrate that the BAASS [SEQ ID NO: 8] and PR1a [SEQ ID NO: 6] signal peptides, which are fused to P77853 in pAG2014 and pAG2020, respectively, do not interfere with transformation efficiency, but do impact phenotype relative to cytoplasmic accumulation. The phenotypes of these plants were very interesting and unanticipated. No known work has shown the expression of xylanase enzymes in corn, switchgrass, sorghum, or sugarcane. Based on the results herein, xylanase enzymes impart specific phenotypes, but they were highly dependent upon the specific enzyme, signal peptide, and promoter used, as well as the presence of the ER retention signal, SEKDEL [SEQ ID NO: 12].


The P77853 xylanase is interesting because transgenic maize plants made using pAG2014, pAG2015, pAG2020 and pAG2025 all had normal growth phenotypes, but some had different seed phenotypes. That the plants develop normally is somewhat surprising because xylanase hydrolyzes xylan in the hemicellulose component of plant cell walls


Referring to FIGS. 25A, 25B and 25C, for pAG2014 (BAASS:P77853), severely shriveled kernels were observed in many of the transgenic events. These plants had normal growth and development, but a segregating shriveled seed phenotype was observed in multiple plants. See shriveled seeds 2510 in FIG. 25C. Shriveled seeds were randomly selected along with normal seeds and tested for increases in xylanase activity (indicating presence of the P77853 enzyme). Of the seeds tested, all shriveled seeds had a significant increase in xylanase activity, while the normal seeds had undetectable xylanase activity, as did seeds from a wild-type plant. In addition, twelve shriveled seeds were selected from a random cob and planted alongside 12 normal looking seeds. Of the seeds planted, only one of the 12 shriveled seeds germinated (it was tested by PCR and shown to have the P77853 gene), while nine of the 12 normal seeds germinated. Of the nine normal seeds that germinated, eight did not have the P77853 gene, while one did have the P77853, as determined by PCR. This suggests that P77853, when expressed as a fusion with the BAASS signal sequence, results in seeds that have reduced fertility relative to the non-transgenic seeds and that the level of infertility may be dependent upon the level of P77853 expression. While shriveled seeds and infertility would be a significant commercial detriment in corn, it could be advantageous in switchgrass, sorghum, miscanthus, and sugarcane, where plant sterility may be beneficial from the perspective of regulatory approval. Furthermore, perennial crops like switchgrass and sugarcane can be clonally produced via tissue culture using methods known in the art, and vegetatively expanded. In these crops decreased fertility may be less of an issue and could be advantageous for gene confinement. Thus, while the adverse seed phenotype of P77853 in corn and other grain crops is detrimental, in forage, sugar, and non-grain crops used as animal feedstocks or fermentation feedstocks, P77853 may provide significant benefits for fiber digestion, hydrolysis, and decreased fertility. Transgenic switchgrass events made using pAG2014 were phenotypically normal.


Referring to FIGS. 26A, 26B, 26C and 26D, for pAG2015, which did not have a signal peptide and therefore accumulated P77853 in the cytoplasm of plant cells, no adverse phenotype was observed. Some maize seeds from these plants were slightly more off color than the WT seeds, but no other abnormal phenotype has been observed thus far (See FIG. 26D). These plants do accumulate significant levels of xylanase activity, which is on average at least equal to, and in most events somewhat higher, than the xylanase activity detected in the pAG2014 events. That the two plants do not share the same seed phenotype is noteworthy and indicates that the BAASS [SEQ ID NO: 8] signal sequence for cell wall targeting, which was used in the pAG2014 vector, contributes to the seed phenotype observed in the pAG2014 events. Because these plants accumulate high levels of xylanase activity, they may be useful as a source of xylanase enzyme, as a feedstock that can auto-hydrolyze the hemicellulose components for use in industrial processes such as fermentation, as a forage animal feed or animal feed additive, and as a grain animal feed or feed additive. Unlike transgenic events made using pAG2014, those made using pAG2015 did not have an abnormal seed phenotype and may prove useful in grain crops such as corn, (grain) sorghum, wheat, barley, and others.


Referring to FIGS. 27A, 27B and 27C, for pAG2020 (PR1a:P77853) events, both the plants and cobs looked normal and did not have a significant observable phenotype. This is particularly surprising since PR1a targets the fused P77853 xylanase to the apoplast, where it would be anticipated to have an effect similar to that of the pAG2014 events. It is not known if the PR1a signal peptide causes lower expression, lower enzyme accumulation, or is less effective at targeting the P77853 protein, but the absence of a seed phenotype in these transgenic plants is surprising given the results obtained from pAG2014. Because these plants accumulate xylanase activity, they may be useful as a source of xylanase enzyme, as a feedstock that can auto-hydrolyze the hemicellulose components for use in industrial processes such as fermentation, as a forage animal feed or animal feed additive, and as a grain animal feed or feed additive. Unlike transgenic events made using pAG2014, those made using pAG2020 did not have an abnormal seed phenotype and may prove useful in grain crops such as corn, (grain) sorghum, wheat, barley, and others.


Referring to FIGS. 28A, 28B and 28C, For pAG2025 (GluB4:P77853) events, all plants looked phenotypically normal.


Example 20—Transgenic Plants Constructed Using pAG2017, pAG2019, and pAG2027

The transformation vectors pAG2017, pAG2019, and pAG2027 were used in transformation to regenerate transgenic plants. Transformation vectors pAG2017 and pAG2019 were derived from pAG2005, and each contains an expression cassette for the production of a xylanase (accession number P40942). Vector pAG2027 was derived from pAG2012 and expresses the P40942 xylanase from the GluB-4 promoter, which is expressed predominantly in the seed. In pAG2017, the P40942 xylanase is fused to the PR1a signal peptide for targeting of the enzyme to the apoplast. In pAG2019, the P40942 gene is fused to the barley alpha amylase signal sequence (BAASS; SEQ ID NO: 8) for cell wall targeting. The average transformation efficiency for pAG2017 was 16%, for pAG2019 it was 13%, and for pAG2027 it was 29%.


In contrast to transgenic plants expressing P77853, which were all phenotypically normal except for the above described seed abnormalities, plants expressing the P40942 xylanase were severely stunted, except for those made from pAG2027. Referring to FIGS. 29A, 29B, 29C and 29D, plants transformed with pAG2017 (PR1a:P40942) are severely stunted and never grew to the same height as the wild-type plants, or plants transformed with pAG2020 (PR1a:P77853). FIG. 29A shows a stunted pAG2017 transgenic plant. FIG. 29B shows a stunted pAG2017 transgenic plant along side a wild type plant on the right. FIGS. 29C and 29D show cobs from a pAG2017 transgenic plant with partially shriveled seeds having abnormal coloration. The results with pAG2017 were unanticipated given that P77853 and P40942 have approximately the same specific activity when measured in vitro, on birchwood xylan (see above). P40942 also has some cellobiohydrolase (CBH) activity, so it is possible that this activity contributes to the observed phenotype, but other groups have expressed CBH enzymes in maize with apparently no growth phenotype observed. The significant growth phenotype difference between transgenic plants made with pAG2017 and pAG2020 is quite surprising and very unanticipated.


In addition to the growth phenotype in the pAG2017 plants, the seeds from these plants, or outcrosses of these plants on to AxB non-trangenic plants, also displayed a similar shriveled phenotype as observed in the seeds of transgenic plants made with pAG2014, as well as showing some discoloration of the seeds. Approximately 20 shriveled seeds were collected from the pAG2017 plants and all tested positive for xylanase activity, while plump seeds did not have detectable increases in xylanase activity as determined using the methods described above.


Referring to FIGS. 30A and 30B, transgenic plants made with pAG2019 (BAASS:P40942) also possessed a stunted growth phenotype, similar to transgenic plants made with pAG2017. This was surprising given that transgenic plants made with pAG2014 (BAASS:P77853) did not have a growth phenotype, yet the P40942 and P77853 xylanases have approximately the same specific activity, when measured on birchwood xylan. FIG. 30A shows a stunted transgenic plant made with pAG2019, and FIG. 30B shows a shows a stunted transgenic plant made with pAG2019 along side a wild type plant on the left.


Referring to FIG. 31, transgenic plants made with pAG2027, which express P40942 from the rice GlutB promoter, are phenotypically normal with regards to growth. The left three plants in FIG. 31 were made with pAG2019. The right three plants were made with pAG2027. The result with pAG2027 was in contrast to transgenic plants made with pAG2017 and pAG2019, and is surprising because P40942 expressed from the rice ubiquitin promoter, using either PR1a or the BAASS signaling sequences, caused stunted growth. However, the result agrees with the observation that plants made with pAG2025 (rice ubiquitin 3 promoter driving P77853), are not stunted and grow normally. Given the differences in phenotypes observed between vectors expressing P77853 and P40942, it could not be predicted what the result with pAG2027 would be. Because the GlutB promoter primarily expresses the enzyme in the seed, it may be that none of the enzymes expressed from the GluB promoter will show a growth phenotype or phenotype associated with the green tissue, and only seed phenotypes, similar to those observed in plants made with pAG2014 and pAG2017.


Example 21—Transgenic Plants Constructed Using pAG2018 and pAG2026

The transformation vectors pAG2018 and pAG2026 were used in transformation to regenerate transgenic plants. Vector pAG2018 was derived from pAG2005 and contains an expression cassette for the production of a xylanase (accession number O30700), fused to the BAASS [SEQ ID NO: 8] signal sequence. Vector pAG2026 was derived from pAG2012 and expresses the O30700 xylanase from the GluB-4 promoter, which is expressed predominantly in the seed. The average transformation efficiency for pAG2018 was 13% and for pAG2026 it was 18%.


As described above, transgenic plants expressing P77853 were all phenotypically normal except for the above described seed abnormalities. In contrast, referring to FIGS. 32A, 32B and 32C, transgenic plants made with pAG2018 and expressing the O30700 xylanase were severely stunted and never grew to the same height as the wild-type plants or plants transformed with pAG2014. FIG. 32A shows two transgenic plants made with pAG2018 on the left and two non-hydrolase expressing plants on the right. FIGS. 32B and 32C each show a transgenic plant made with pAG2018. These results were unanticipated given that P77853 and O30700 are both endo-xylanase enzymes, and in contrast to P40942, O30700 does not have any CBH activity. The growth phenotype observed with O30700 was very similar to the stunted growth observed in the pAG2017 and pAG2019 plants.


In contrast to transgenic plants made with pAG2018 transgenic plants made with pAG2026, which express O30700 from the rice GlutB promoter, are phenotypically normal with regards to growth. See FIGS. 33A, 33B and 33C, which illustrate three different transgenic plants made with pAG2026. These results are surprising because O30700 expressed from the rice ubiquitin promoter and fused to the BAASS [SEQ ID NO: 8] signaling sequence caused stunted growth. In contrast, the result agrees with the observation that plants made with pAG2025 (rice ubiquitin 3 promoter driving P77853), are not stunted and grow normally, however, given the differences in phenotypes observed between vectors expressing P77853 and O30700, it could not be predicted what this result would be. Because the GlutB promoter primarily expresses the enzyme in the seed, it may be that none of the enzymes expressed from the GluB promoter will show a growth phenotype or phenotype associated with the green tissue, and only seed phenotypes similar to those observed in plants made with pAG2014 and pAG2017.


Example 22—Transgenic Plants Constructed Using pAG2021, pAG2023 (P77853m3), pAG2022, pAG2024

The transformation vectors pAG2021, pAG2023, pAG2022, and pAG2024 were used in transformation to regenerate transgenic plants. These vectors were all derived from pAG2005 and contain an expression cassette for the production of an intein-modified xylanase (referred to as P77853m3). In transformation vectors pAG2021 and pAG2022, the intein-modified P77853m3 protein was fused to the PR1a signal peptide, while in pAG2023 and pAG2024, P77853m3 was fused to the BAASS signal peptide [SEQ ID NO: 8]. Vectors pAG2022 and pAG2024 also have a SEKDEL endoplasmic reticulum retention sequence [SEQ ID NO: 12] appended to the P77853m3, whereas pAG2021 and pAG2023 lack the SEKDEL sequence [SEQ ID NO:12]. The average transformation efficiency for pAG2021 was 19%, for pAG2022 it was 21%, for pAG2023 it was 24%, and for pAG2024 it was 38%.


None of the transgenic plants made with pAG2021, pAG2022, pAG2023, and pAG2024 have an abnormal phenotype. See FIGS. 34A, 34B, 34C and 34D for pAG2021 results. Transgenic plants made with pAG2021 grew normally, achieved normal height and had a normal seed set. See FIGS. 35A, 35B and 35C for pAG2022 results. Transgenic plants made with pAG2022 also grew normally, achieved normal height and had a normal seed set. See FIGS. 36A, 36B and 36C for pAG2023 results. These figures show that transgenic plants made with pAG2023 grew normally and achieved normal heights. See FIGS. 37A, 37B and 37C for pAG2024 results. These figures show that transgenic plants made with pAG2024 also grew normally and achieved normal heights. It is demonstrated herein that intein modification of a cell wall degrading enzyme can protect a plant from any phenotype that may be imparted by non-intein-modified enzyme. The cis-splicing intein (mini-Psp-pol M1L4 m3), designed to have temperature sensitive splicing activity, was used in this example. Because the plants were grown at non-splicing temperatures there was no observed activity and no associated growth or seed phenotypes. At some temperatures the intein may splice to some extent and reveal active enzyme. Because the plants have a normal phenotype, expression of intein-modified proteins is a way of providing an embedded cell wall degrading activity in plants that can be regained subsequently, but does not have a phenotypic effect on the plant.


Referring to FIG. 38, enzyme activity of selected transgenic events was assayed. This figure highlights activity data from some of the pAG2021 events, along with measurements from pAG2004 events (negative controls for xylanase activity) and a pAG20014 event (positive control for xylanase activity). For this assay, samples of dried corn stover from senescent plants were assayed using the methods described above. Plant samples were labeled according to the vector number that was used to make them. Measurements for 2014.5 (transgenic maize event made with pAG2014 and labeled at 2014.5) represent the positive control for xylanase activity, while measurements for 2004.# (transgenic maize events made with pAG2004) represent xylanase negative control stover. As shown, two of the transgenic plants made with pAG2021 provide significant amounts of xylanase activity, but the plants were phenotypically normal, unlike the pAG2014 events, which showed a seed phenotype.


Embodiments herein include but are not limited to the plants described above and/or illustrated in the drawings or parts thereof, vectors encoding any amino acid sequence herein, vectors including any nucleic acid sequence herein, any amino acid sequence herein, any nucleic acid herein, any plant including a vector herein, any plant including a nucleic acid herein, any plant including an amino acid sequence herein, and any method of using any plant, plant part, vector, amino acid sequence or protein sequence herein.


The sequence of pAG2015 is:









(SEQ ID NO: 207)







aattcatactaaagcttgcatgcctgcaggtcgactctagtaacggccgc





cagtgtgctggaattaattcggcttgtcgaccacccaaccccatatcgac





agaggatgtgaagaacaggtaaatcacgcagaagaacccatctctgatag





cagctatcgattagaacaacgaatccatattgggtccgtgggaaatactt





actgcacaggaagggggcgatctgacgaggccccgccaccggcctcgacc





cgaggccgaggccgacgaagcgccggcgagtacggcgccgcggcggcctc





tgcccgtgccctctgcgcgtgggagggagaggccgcggtggtgggggcgc





gcgcgcgcgcgcgcgcagctggtgcggcggcgcgggggtcagccgccgag





ccggcggcgacggaggagcagggcggcgtggacgcgaacttccgatcggt





tggtcagagtgcgcgagttgggcttagccaattaggtctcaacaatctat





tgggccgtaaaattcatgggccctggtttgtctaggcccaatatcccgtt





catttcagcccacaaatatttccccagaggattattaaggcccacacgca





gcttatagcagatcaagtacgatgtttcctgatcgttggatcggaaacgt





acggtcttgatcaggcatgccgacttcgtcaaagagaggcggcatgacct





gacgcggagttggttccgggcaccgtctggatggtcgtaccgggaccgga





cacgtgtcgcgcctccaactacatggacacgtgtggtgctgccattgggc





cgtacgcgtggcggtgaccgcaccggatgctgcctcgcaccgccttgccc





acgctttatatagagaggttttctctccattaatcgcatagcgagtcgaa





tcgaccgaaggggagggggagcgaagctttgcgttctctaatcgcctcgt





caaggtaactaatcaatcacctcgtcctaatcctcgaatctctcgtggtg





cccgtctaatctcgcgattttgatgctcgtggtggaaagcgtaggaggat





cccgtgcgagttagtctcaatctctcagggtttcgtgcgattttagggtg





atccacctcttaatcgagttacggtttcgtgcgattttagggtaatcctc





ttaatctctcattgatttagggtttcgtgagaatcgaggtagggatctgt





gttatttatatcgatctaatagatggattggttttgagattgttctgtca





gatggggattgtttcgatatattaccctaatgatgtgtcagatggggatt





gtttcgatatattaccctaatgatgtgtcagatggggattgtttcgatat





attaccctaatgatggataataagagtagttcacagttatgttttgatcc





tgccacatagtttgagttttgtgatcagatttagttttacttatttgtgc





ttagttcggatgggattgttctgatattgttccaatagatgaatagctcg





ttaggttaaaatctttaggttgagttaggcgacacatagtttatttcctc





tggatttggattggaattgtgttcttagtttttttcccctggatttggat





tggaattgtgtggagctgggttagagaattacatctgtatcgtgtacacc





tacttgaactgtagagcttgggttctaaggtcaatttaatctgtattgta





tctggctctttgcctagttgaactgtagtgctgatgttgtactgtgtttt





tttacccgttttatttgctttactcgtgcaaatcaaatctgtcagatgct





agaactaggtggctttattctgtgttcttacatagatctgttgtcctgta





gttacttatgtcagttttgttattatctgaagatatttttggttgttgct





tgttgatgtggtgtgagctgtgagcagcgctcttatgattaatgatgctg





tccaattgtagtgtagtatgatgtgattgatatgttcatctattttgagc





tgacagtaccgatatcgtaggatctggtgccaacttattctccagctgct





tttttttacctatgttaattccaatcctttcttgcctcttccagatccag





ataatgcagaaactcattaactcagtgcaaaactatgcctggggcagcaa





aacggcgttgactgaactttatggtatggaaaatccgtccagccagccga





tggccgagctgtggatgggcgcacatccgaaaagcagttcacgagtgcag





aatgccgccggagatatcgtttcactgcgtgatgtgattgagagtgataa





atcgactctgctcggagaggccgttgccaaacgctttggcgaactgcctt





tcctgttcaaagtattatgcgcagcacagccactctccattcaggttcat





ccaaacaaacacaattctgaaatcggttttgccaaagaaaatgccgcagg





tatcccgatggatgccgccgagcgtaactataaagatcctaaccacaagc





cggagctggtttttgcgctgacgcctttccttgcgatgaacgcgtttcgt





gaattttccgagattgtctccctactccagccggtcgcaggtgcacatcc





ggcgattgctcactttttacaacagcctgatgccgaacgtttaagcgaac





tgttcgccagcctgttgaatatgcagggtgaagaaaaatcccgcgcgctg





gcgattttaaaatcggccctcgatagccagcagggtgaaccgtggcaaac





gattcgtttaatttctgaattttacccggaagacagcggtctgttctccc





cgctattgctgaatgtggtgaaattgaaccctggcgaagcgatgttcctg





ttcgctgaaacaccgcacgcttacctgcaaggcgtggcgctggaagtgat





ggcaaactccgataacgtgctgcgtgcgggtctgacgcctaaatacattg





atattccggaactggttgccaatgtgaaattcgaagccaaaccggctaac





cagttgttgacccagccggtgaaacaaggtgcagaactggacttcccgat





tccagtggatgattttgccttctcgctgcatgaccttagtgataaagaaa





ccaccattagccagcagagtgccgccattttgttctgcgtcgaaggcgat





gcaacgttgtggaaaggttctcagcagttacagcttaaaccgggtgaatc





agcgtttattgccgccaacgaatcaccggtgactgtcaaaggccacggcc





gtttagcgcgtgtttacaacaagctgtaagagcttactgaaaaaattaac





atctcttgctaagctgggagctctagatccccgaatttccccgatcgttc





aaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttg





cgatgattatcatataatttctgttgaattacgttaagcatgtaataatt





aacatgtaatgcatgacgttatttatgagatgggtttttatgattagagt





cccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaa





actaggataaattatcgcgcgcggtgtcatctatgttactagatcgggaa





ttggcgagctcgaattaattcagtacattaaaaacgtccgcaatgtgtta





ttaagttgtctaagcgtcaatttgtttacaccacaatatatcctgccacc





agccagccaacagctccccgaccggcagctcggcacaaaatcaccactcg





atacaggcagcccatcagtccgggacggcgtcagcgggagagccgttgta





aggcggcagactttgctcatgttaccgatgctattcggaagaacggcaac





taagctgccgggtttgaaacacggatgatctcgcggagggtagcatgttg





attgtaacgatgacagagcgttgctgcctgtgatcaaatatcatctccct





cgcagagatccgaattatcagccttcttattcatttctcgcttaaccgtg





acaggctgtcgatcttgagaactatgccgacataataggaaatcgctgga





taaagccgctgaggaagctgagtggcgctatttctttagaagtgaacgtt





gacgatcgtcgaccgtaccccgatgaattaattcggacgtacgttctgaa





cacagctggatacttacttgggcgattgtcatacatgacatcaacaatgt





acccgtttgtgtaaccgtctcttggaggttcgtatgacactagtggttcc





cctcagcttgcgactagatgttgaggcctaacattttattagagagcagg





ctagttgcttagatacatgatcttcaggccgttatctgtcagggcaagcg





aaaattggccatttatgacgaccaatgccccgcagaagctcccatctttg





ccgccatagacgccgcgccccccttttggggtgtagaacatccttttgcc





agatgtggaaaagaagttcgttgtcccattgttggcaatgacgtagtagc





cggcgaaagtgcgagacccatttgcgctatatataagcctacgatttccg





ttgcgactattgtcgtaattggatgaactattatcgtagttgctctcaga





gttgtcgtaatttgatggactattgtcgtaattgcttatggagttgtcgt





agttgcttggagaaatgtcgtagttggatggggagtagtcatagggaaga





cgagcttcatccactaaaacaattggcaggtcagcaagtgcctgccccga





tgccatcgcaagtacgaggcttagaaccaccttcaacagatcgcgcatag





tcttccccagctctctaacgcttgagttaagccgcgccgcgaagcggcgt





cggcttgaacgaattgttagacattatttgccgactaccttggtgatctc





gcctttcacgtagtgaacaaattcttccaactgatctgcgcgcgaggcca





agcgatcttcttgtccaagataagcctgcctagcttcaagtatgacgggc





tgatactgggccggcaggcgctccattgcccagtcggcagcgacatcctt





cggcgcgattttgccggttactgcgctgtaccaaatgcgggacaacgtaa





gcactacatttcgctcatcgccagcccagtcgggcggcgagttccatagc





gttaaggtttcatttagcgcctcaaatagatcctgttcaggaaccggatc





aaagagttcctccgccgctggacctaccaaggcaacgctatgttctcttg





cttttgtcagcaagatagccagatcaatgtcgatcgtggctggctcgaag





atacctgcaagaatgtcattgcgctgccattctccaaattgcagttcgcg





cttagctggataacgccacggaatgatgtcgtcgtgcacaacaatggtga





cttctacagcgcggagaatctcgctctctccaggggaagccgaagtttcc





aaaaggtcgttgatcaaagctcgccgcgttgtttcatcaagccttacggt





caccgtaaccagcaaatcaatatcactgtgtggcttcaggccgccatcca





ctgcggagccgtacaaatgtacggccagcaacgtcggttcgagatggcgc





tcgatgacgccaactacctctgatagttgagtcgatacttcggcgatcac





cgcttccctcatgatgtttaactcctgaattaagccgcgccgcgaagcgg





tgtcggcttgaatgaattgttaggcgtcatcctgtgctcccgagaaccag





taccagtacatcgctgtttcgttcgagacttgaggtctagttttatacgt





gaacaggtcaatgccgccgagagtaaagccacattttgcgtacaaattgc





aggcaggtacattgttcgtttgtgtctctaatcgtatgccaaggagctgt





ctgcttagtgcccactttttcgcaaattcgatgagactgtgcgcgactcc





tttgcctcggtgcgtgtgcgacacaacaatgtgttcgatagaggctagat





cgttccatgttgagttgagttcaatcttcccgacaagctcttggtcgatg





aatgcgccatagcaagcagagtcttcatcagagtcatcatccgagatgta





atccttccggtaggggctcacacttctggtagatagttcaaagccttggt





cggataggtgcacatcgaacacttcacgaacaatgaaatggttctcagca





tccaatgtttccgccacctgctcagggatcaccgaaatcttcatatgacg





cctaacgcctggcacagcggatcgcaaacctggcgcggcttttggcacaa





aaggcgtgacaggtttgcgaatccgttgctgccacttgttaacccttttg





ccagatttggtaactataatttatgttagaggcgaagtcttgggtaaaaa





ctggcctaaaattgctggggatttcaggaaagtaaacatcaccttccggc





tcgatgtctattgtagatatatgtagtgtatctacttgatcgggggatct





gctgcctcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcag





ctcccggagacggtcacagcttgtctgtaagcggatgccgggagcagaca





agcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggcgcagcca





tgacccagtcacgtagcgatagcggagtgtatactggcttaactatgcgg





catcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccg





cacagatgcgtaaggagaaaataccgcatcaggcgctcttccgcttcctc





gctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcag





ctcactcaaaggcggtaatacggttatccacagaatcaggggataacgca





ggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaa





ggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatc





acaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataa





agataccaggcgtttccccctggaagctccctcgtgcgctctcctgttcc





gaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcg





tggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtc





gttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccg





ctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacg





acttatcgccactggcagcagccactggtaacaggattagcagagcgagg





tatgtaggcggtgctacagagttcttgaagtggtggcctaactacggcta





cactagaaggacagtatttggtatctgcgctctgctgaagccagttacct





tcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggt





agcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaagg





atctcaagaagatcctttgatcttttctacggggtctgacgctcagtgga





acgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatc





ttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaag





tatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgagg





cacctatctcagcgatctgtctatttcgttcatccatagttgcctgactc





cccgtcgtgtagataactacgatacgggagggcttaccatctggccccag





tgctgcaatgataccgcgagacccacgctcaccggctccagatttatcag





caataaaccagccagccggaagggccgagcgcagaagtggtcctgcaact





ttatccgcctccatccagtctattaattgttgccgggaagctagagtaag





tagttcgccagttaatagtttgcgcaacgttgttgccattgctgcagggg





ggggggggggggggttccattgttcattccacggacaaaaacagagaaag





gaaacgacagaggccaaaaagctcgctttcagcacctgtcgtttcctttc





ttttcagagggtattttaaataaaaacattaagttatgacgaagaagaac





ggaaacgccttaaaccggaaaattttcataaatagcgaaaacccgcgagg





tcgccgccccgtaacctgtcggatcaccggaaaggacccgtaaagtgata





atgattatcatctacatatcacaacgtgcgtggaggccatcaaaccacgt





caaataatcaattatgacgcaggtatcgtattaattgatctgcatcaact





taacgtaaaaacaacttcagacaatacaaatcagcgacactgaatacggg





gcaacctcatgtccccccccccccccccctgcaggcatcgtggtgtcacg





ctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggc





gagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggt





cctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggt





tatggcagcactgcataattctcttactgtcatgccatccgtaagatgct





tttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatg





cggcgaccgagttgctcttgcccggcgtcaacacgggataataccgcgcc





acatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggc





gaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaaccc





actcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttc





tgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataaggg





cgacacggaaatgttgaatactcatactcttcctttttcaatattattga





agcatttatcagggttattgtctcatgagcggatacatatttgaatgtat





ttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgc





cacctgacgtctaagaaaccattattatcatgacattaacctataaaaat





aggcgtatcacgaggccctttcgtcttcaagaattggtcgacgatcttgc





tgcgttcggatattttcgtggagttcccgccacagacccggattgaaggc





gagatccagcaactcgcgccagatcatcctgtgacggaactttggcgcgt





gatgactggccaggacgtcggccgaaagagcgacaagcagatcacgcttt





tcgacagcgtcggatttgcgatcgaggatttttcggcgctgcgctacgtc





cgcgaccgcgttgagggatcaagccacagcagcccactcgaccttctagc





cgacccagacgagccaagggatctttttggaatgctgctccgtcgtcagg





ctttccgacgtttgggtggttgaacagaagtcattatcgcacggaatgcc





aagcactcccgaggggaaccctgtggttggcatgcacatacaaatggacg





aacggataaaccttttcacgcccttttaaatatccgattattctaataaa





cgctcttttctcttaggtttacccgccaatatatcctgtcaaacactgat





agtttaaactgaaggcgggaaacgacaacctgatcatgagcggagaatta





agggagtcacgttatgacccccgccgatgacgcgggacaagccgttttac





gtttggaactgacagaaccgcaacgttgaaggagccactcagcttaatta





agtctaactcgagttactggtacgtaccaaatccatggaatcaaggtacc





gtcgactctagtaacggccgccagtgtgctggaattaattcggcttgtcg





accacccaaccccatatcgacagaggatgtgaagaacaggtaaatcacgc





agaagaacccatctctgatagcagctatcgattagaacaacgaatccata





ttgggtccgtgggaaatacttactgcacaggaagggggcgatctgacgag





gccccgccaccggcctcgacccgaggccgaggccgacgaagcgccggcga





gtacggcgccgcggcggcctctgcccgtgccctctgcgcgtgggagggag





aggccgcggtggtgggggcgcgcgcgcgcgcgcgcgcagctggtgcggcg





gcgcgggggtcagccgccgagccggcggcgacggaggagcagggcggcgt





ggacgcgaacttccgatcggttggtcagagtgcgcgagttgggcttagcc





aattaggtctcaacaatctattgggccgtaaaattcatgggccctggttt





gtctaggcccaatatcccgttcatttcagcccacaaatatttccccagag





gattattaaggcccacacgcagcttatagcagatcaagtacgatgtttcc





tgatcgttggatcggaaacgtacggtcttgatcaggcatgccgacttcgt





caaagagaggcggcatgacctgacgcggagttggttccgggcaccgtctg





gatggtcgtaccgggaccggacacgtgtcgcgcctccaactacatggaca





cgtgtggtgctgccattgggccgtacgcgtggcggtgaccgcaccggatg





ctgcctcgcaccgccttgcccacgctttatatagagaggttttctctcca





ttaatcgcatagcgagtcgaatcgaccgaaggggagggggagcgaagctt





tgcgttctctaatcgcctcgtcaaggtaactaatcaatcacctcgtccta





atcctcgaatctctcgtggtgcccgtctaatctcgcgattttgatgctcg





tggtggaaagcgtaggaggatcccgtgcgagttagtctcaatctctcagg





gtttcgtgcgattttagggtgatccacctcttaatcgagttacggtttcg





tgcgattttagggtaatcctcttaatctctcattgatttagggtttcgtg





agaatcgaggtagggatctgtgttatttatatcgatctaatagatggatt





ggttttgagattgttctgtcagatggggattgtttcgatatattacccta





atgatgtgtcagatggggattgtttcgatatattaccctaatgatgtgtc





agatggggattgtttcgatatattaccctaatgatggataataagagtag





ttcacagttatgttttgatcctgccacatagtttgagttttgtgatcaga





tttagttttacttatttgtgcttagttcggatgggattgttctgatattg





ttccaatagatgaatagctcgttaggttaaaatctttaggttgagttagg





cgacacatagtttatttcctctggatttggattggaattgtgttcttagt





ttttttcccctggatttggattggaattgtgtggagctgggttagagaat





tacatctgtatcgtgtacacctacttgaactgtagagcttgggttctaag





gtcaatttaatctgtattgtatctggctattgcctagttgaactgtagtg





ctgatgttgtactgtgatttttacccgttttatttgctttactcgtgcaa





atcaaatctgtcagatgctagaactaggtggctttattctgtgttcttac





atagatctgttgtcctgtagttacttatgtcagttttgttattatctgaa





gatatttttggttgttgcttgttgatgtggtgtgagctgtgagcagcgct





cttatgattaatgatgctgtccaattgtagtgtagtatgatgtgattgat





atgttcatctattttgagctgacagtaccgatatcgtaggatctggtgcc





aacttattctccagctgcttttttttacctatgttaattccaatcctttc





ttgcctcttccagatccagataatgcaaacaagcattactctgacatcca





acgcatccggtacgtttgacggttactattacgaactctggaaggatact





ggcaatacaacaatgacggtctacactcaaggtcgcttttcctgccagtg





gtcgaacatcaataacgcgttgtttaggaccgggaagaaatacaaccaga





attggcagtctcttggcacaatccggatcacgtactctgcgacttacaac





ccaaacgggaactcctacttgtgtatctatggctggtctaccaacccatt





ggtcgagttctacatcgttgagtcctgggggaactggagaccgcctggtg





ccacgtccctgggccaagtgacaatcgatggcgggacctacgacatctat





aggacgacacgcgtcaaccagccttccattgtggggacagccacgttcga





tcagtactggagcgtgcgcacctctaagcggacttcaggaacagtgaccg





tgaccgatcacttccgcgcctgggcgaaccggggcctgaacctcggcaca





atagaccaaattacattgtgcgtggagggttaccaaagctctggatcagc





caacatcacccagaacaccttctctcagggctcttcttccggcagttcgg





gtggctcatccggctccacaacgactactcgcatcgagtgtgagaacatg





tccttgtccggaccctacgttagcaggatcaccaatccctttaatggtat





tgcgctgtacgccaacggagacacagcccgcgctaccgttaacttccccg





caagtcgcaactacaatttccgcctgcggggttgcggcaacaacaataat





cttgcccgtgtggacctgaggatcgacggacggaccgtcgggacctttta





ttaccagggcacatacccctgggaggccccaattgacaatgtttatgtca





gtgcggggagtcatacagtcgaaatcactgttactgcggataacggcaca





tgggacgtgtatgccgactacctggtgatacagtgacctaggtccccgaa





tttccccgatcgttcaaacatttggcaataaagtttcttaagattgaatc





ctgttgccggtcttgcgatgattatcatataatttctgttgaattacgtt





aagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggt





ttttatgattagagtcccgcaattatacatttaatacgcgatagaaaaca





aaatatagcgcgcaaactaggataaattatcgcgcgcggtgtcatctatg





ttactagatcgggaattgg.






The references cited throughout this application, are incorporated for all purposes apparent herein and in the references themselves as if each reference was fully set forth. For the sake of presentation, specific ones of these references are cited at one or more particular location herein. A citation of a reference at a particular location indicates a manner(s) in which the teachings of the reference are incorporated. However, a citation of a reference at a particular location does not limit the manner in which all of the teachings of the cited reference are incorporated for all purposes.


It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but is intended to cover all modifications which are within the spirit and scope of the invention as defined by the appended claims; the above description; and/or shown in the attached drawings.

Claims
  • 1. A transgenic plant comprising a nucleic acid that encodes a xylanase, wherein the transgenic plant is switchgrass, and the xylanase comprises consists of the amino acid of SEQ ID NO: 44.
  • 2. The transgenic plant of claim 1, wherein the xylanase is expressed in a seed of the switchgrass.
  • 3. The transgenic plant of claim 1, wherein the xylanase is expressed in a compartment of a plant cell of the switchgrass.
  • 4. A method of processing plant biomass comprising: mixing a plant or part thereof with liquid to form a mixture having a liquid to solid ratio selected from a value from 8 to 10, and maintaining the mixture at a temperature less than or equal to 100° C., wherein the liquid comprises water, ammonium bisulfite and ammonium carbonate; and adding at least one cell wall degrading enzyme to the mixture, wherein the plant is the transgenic plant of claim 1.
  • 5. The method of claim 4 further comprising heating the mixture to maintain a temperature of 40° C. to 90° C.
  • 6. The method of claim 4, wherein the ammonium bisulfite is at a concentration of 8% to 38% on a wt./wt. basis with the plant or part thereof.
  • 7. The method of claim 4, wherein the liquid is at a pH of 7.6 to 8.5 and the ammonium carbonate is at a concentration of 4% to 19% on a wt./wt. basis with the plant or part thereof.
  • 8. The method of claim 4, wherein the at least one cell wall degrading enzyme is selected from the group consisting of: an endoglucanase, a 6-glucosidase, a cellobiohydrolase, a xylanase, a cellulase, a glucosidase, a xylosidase, an arabinofuronosidase and a ferulic acid esterase.
  • 9. The method of claim 8, wherein the at least one cell wall degrading enzyme comprises at least one of an endoglucanase, a B-glucosidase and a cellobiohydrolase.
  • 10. The method of claim 8, wherein the at least one cell wall degrading enzyme comprises a xylanase.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 13/508,280 which was filed on Sep. 20, 2012 as a 35 U.S.C. § 371 national phase application of PCT/US10/55746 which was filed on Nov. 5, 2010 and claimed the benefit of U.S. provisional application No. 61/280,635 filed Nov. 6, 2009 and U.S. provisional application No. 61/398,589 filed Jun. 28, 2010. U.S. application Ser. No. 13/508,280 is a continuation-in-part of U.S. application Ser. No. 12/590,444 filed Nov. 6, 2009 and issued on Apr. 16, 2013 as U.S. Pat. No. 8,420,387 All of the above applications are incorporated herein by reference as if fully set forth. The sequence listing electronically filed with this application titled “Sequence Listing,” which was created on Feb. 17, 2016 and had a size of 2,226,296 bytes is incorporated by reference herein as if fully set forth.

US Referenced Citations (27)
Number Name Date Kind
6521435 Okubara et al. Feb 2003 B1
6607902 Schroder Glad et al. Aug 2003 B2
7049485 Sticklen et al. May 2006 B2
7186898 Kossmann et al. Mar 2007 B1
7361806 Lebel et al. Apr 2008 B2
7981650 Levasseur et al. Jul 2011 B2
8093456 Sticklen et al. Jan 2012 B2
8101393 Gray et al. Jan 2012 B2
8343747 Burke et al. Jan 2013 B2
8455715 Paul et al. Jun 2013 B2
9309528 Dixon Apr 2016 B2
9388422 Shen et al. Jul 2016 B2
20020138878 Sticklen et al. Sep 2002 A1
20030131376 Okubara et al. Jul 2003 A1
20030180895 Sibbesen et al. Sep 2003 A1
20030233675 Cao et al. Dec 2003 A1
20040096938 Xu et al. May 2004 A1
20050125860 Raab Jun 2005 A1
20070192900 Sticklen Aug 2007 A1
20070250961 Blaylock et al. Oct 2007 A1
20090119800 Lanahan et al. May 2009 A1
20090155238 Weiner et al. Jun 2009 A1
20090193541 Miles Jul 2009 A1
20090298149 Wang et al. Dec 2009 A1
20100159510 Raab Jun 2010 A1
20120040409 Hau et al. Feb 2012 A1
20120258503 Raab et al. Oct 2012 A1
Foreign Referenced Citations (18)
Number Date Country
2681662 Sep 2008 CA
1954072 Apr 2007 CN
101200734 Jun 2008 CN
101960011 Jan 2011 CN
1293573 Mar 2003 EP
WO-9736995 Oct 1997 WO
0234926 May 2002 WO
03050265 Jun 2003 WO
03056904 Jul 2003 WO
WO 2005096804 Oct 2005 WO
WO-2005096804 Oct 2005 WO
2007146944 Dec 2007 WO
2007146944 Dec 2007 WO
2008064314 May 2008 WO
2009155601 Dec 2009 WO
2009155601 Dec 2009 WO
2010060056 May 2010 WO
2010096510 Aug 2010 WO
Non-Patent Literature Citations (28)
Entry
Jensen et al (Proc. Natl. Acad. Sci. vol. 93 pp. 3487-3491 1996), (Year: 1996).
Herbers et al (Molecular Breeding 2: 81-87, 1996) (Year: 1996).
Somerville, Chris. “Biofuels.” Current biology 17.4 (2007): R115-R119. (Year: 2007).
Jensen et al (1996, “Transgenic Barley Expressing a Protein-Engineered, Thermostable (1,3-1,4)-β-Glucanase During Germination” , PNAS 93:3487-3491).
Perler, Francine, InBase: the Intein Database, Oxford University Press, Nucleic Acids Research, 2002, vol. 30, No. 1, pp. 383-384.
Morris et al., Cloning of the xynB Gene from Dictyoglomus thermophilum Rt46B.1 and Action of the Gene Product on Kraft Pulp, American Society of Mocrobiology, Applied and Environmental Mocrobiology, May 1998, vol. 64, No. 5, pp. 1759-1765.
Canadian Office Action dated Oct. 26, 2017 for Application No. 2829207.
U.S. Office Action dated Sep. 27, 2017 for Application No. 15002280.
UniProtKB—P177853 (P77853_DICTH); Integrated into UniProtKB/TrEMBL: Feb. 1, 1997.
McMillan, “Pretreatment of Lignocellulosic Biomass,” American Chemical Society 1994, 292-324.
Ritte et al., “The starch-related R1 protein is an α-glucan, water dikinase,” PNAS, 2002, vol. 99, No. 10, 7166-7171.
Shen et al., “Engineering a thermoregulated intein-modified xylanase into maize for consolidated lignocellulosic biomass processing,” Nature Biotechnology, vol. 30, No. 11, Nov. 2012 (8 pages).
Zeidler et al., “Temperature-sensitive control of protein activity by conditionally splicing inteins,” Nature Biotechnology, vol. 22, No. 7, Jul. 2004, 871-876.
Xiao-ping Zhang, “Practical Self-help Manual Against Agricultural Disasters,” Harbin Institute of Technology Press, pp. 179-182, Dec. 31, 2008.
Sticklen, “Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol,” Nature Reviews, Genetics, vol. 9, Jun. 2008, 433-443.
Caspers et al., “Synthesis, processing and export of cytoplasmic endo-β-1,4-xylanase from barley aleurone during germination,” The Plant Journal (2001) 26(2), 191-204.
Belknap et al., “pBINPLUS/ARS: an improved plant transformation vector based on Bbinplus” BioTechniques 44: 753-756, May 2008*.
Chinese Office Action issued in Chinese Application No. 2012800213882 with English Translation.
Christian et al., “The yield and composition of switchgrass and coastal panic grass grown as a biofuel in Southern England” Bioresource Technology 83 (2002) 115-124*.
English Translation of First Notification of Office Action dated Jan. 28, 2013, Chinese Application No. 201080060542.8.
GenBank Accession No. BAA33708, “endo-b-1,4-glucanase [Nasutitermes takasagoensis]” First Available Oct. 8, 1999*.
Guo et al., “Protein tolerance to random amino acid change” PNAS 2004 (101) 25: 9205-9210*.
Office Action, Chinese Patent Application No. 201080060542.8, dated Jan. 28, 2013.
Sivamani et al., “Expression enhancement of a rice polyubiquitin gene promoter” Plant Molecular Biology, 2006, 60: 225-239*.
Streatfield et al., “Corn as a production system for human and animal vaccines” Vaccine 21 (2003) 812-815*.
Tokuda et al., “Metazoan cellulase genes from termites: intron/exon structures and sites of expression” Biochim. Biophys. Acta 1447 (2-3), 146-159, 1999*.
Tokuda et al., “Cellulose Digestion in the Wood-Eating Higher Termite, Nasutitermes takasagoensis (Shiraki): Distribution of Cellulases and Properties of Endo_Beta-1,4-glucanase” Zoological Science, 1997, 14: 83-93*.
Office Action issued in U.S. Appl. No. 13/414,627 dated Mar. 12, 2015.
Related Publications (1)
Number Date Country
20160160254 A1 Jun 2016 US
Provisional Applications (2)
Number Date Country
61280635 Nov 2009 US
61398589 Jun 2010 US
Continuations (1)
Number Date Country
Parent 13508280 US
Child 15046064 US
Continuation in Parts (1)
Number Date Country
Parent 12590444 Nov 2009 US
Child 13508280 US