Plasma-arc vaporization chamber with wide bore

Information

  • Patent Grant
  • 8893651
  • Patent Number
    8,893,651
  • Date Filed
    Thursday, May 8, 2008
    16 years ago
  • Date Issued
    Tuesday, November 25, 2014
    10 years ago
Abstract
A plasma-arc vaporization chamber includes features configured to permit very high-energy plasmas, preferably with high hydrogen content. The vaporization chamber includes a female electrode having an internal chamber with a target region made of a conductive material highly resistant to thermal degradation and an isthmus region of sufficient width to slow plasma flow therethrough enough to permit vaporization within the internal chamber of a material delivered into the plasma. The material is preferably injected at an angle counter to the flow of the plasma. The vaporization chamber also includes a flange-cooling chamber adjacent to a flange of the female electrode. Additionally, the chamber preferably includes vortexing gas injectors configured to provide a helical gas flow within at least a portion of the internal chamber.
Description
FIELD OF THE INVENTION

The present invention relates to systems for and methods of vaporizing materials within a plasma-arc device. More particularly, the present invention relates to systems configured to achieve full vaporization of powders within a plasma-arc device.


BACKGROUND OF THE INVENTION

There are a great many devices adapted for thermal spraying using a plasma arc gun. For an example, see U.S. Pat. No. 6,897,402 to Crawmer.


Typically, these devices use a cathode and anode combination that defines a chamber through which gas is flowed. During operation, electricity is passed between the cathode and the anode, forming an arc that energizes the gas to form plasma. A continuous stream of gas is supplied to the gun, formed into plasma, and then ejected from the plasma gun.


When used for coating, these devices are adapted with a port configured to deposit powder into the stream of plasma prior to ejection from the gun. As powder material is deposited, the powder grains partially melt. The stream of plasma and melting particles is directed from the gun through an atmosphere where it cools slightly, and onto a surface where it sticks and hardens to form a coating.


At typical energies, full melting and vaporization of the coating material does not occur prior to ejection. Unfortunately, some applications, such as powder production (as opposed to coating), require full vaporization to achieve desired purities or small grain sizes. A naive route to achieve full vaporization dictates simply running a plasma-arc gun, such as a Crawmer-like device, at higher power. However, because the vaporization points of the materials used in powder production applications are often very high, the power necessary to achieve full vaporization of commercially available powders would destroy the device.


What is needed in the art is a system for and method of achieving full vaporization of powders, while minimizing the wear on the plasma-arc gun.


SUMMARY OF THE INVENTION

The disclosure provides exemplary embodiments of the present invention. In general, the embodiments of the present invention presented relate to long-lasting plasma-arc vaporization chambers configured to operate at high power and mass flow rates.


In one aspect of the present invention, a vaporization chamber is provided. The vaporization chamber comprises a male electrode and a female electrode. The female electrode comprises a first material and has a first end, a second end opposite the first end, and an internal chamber formed within the female electrode in between the first end and the second end. The internal chamber comprises an entry region, a frusto-conical region, and an isthmus region. The entry region is disposed at the first end and configured to receive a working gas. The frusto-conical region extends from the entry region to the isthmus region. The isthmus region has a diameter of at least 0.400 of an inch and extends to the second end along a longitudinal axis of the female electrode. The second end forms a mouth through which a fluid can exit the internal chamber along the longitudinal axis. A vortexing gas injector is disposed proximate the first end and fluidly coupled to the entry region of the internal chamber. The vortexing gas injector is configured to receive a working gas, to produce a vortexing stream of the working gas, and to supply the vortexing stream of working gas to the frusto-conical region of the internal chamber. An electrical connection point is disposed on at least one of the male electrode and the female electrode. The electrical connection point is configured to deliver energy to the vortexing stream of working gas in the frusto-conical region upon receiving power from a power supply, thereby producing an arc between the male electrode and the female electrode within the frusto-conical region of the internal chamber and producing a vortexing stream of plasma that flows into the isthmus region. The vaporization chamber further comprises a target region configured to act as lining for the female electrode in at least a portion of the frusto-conical region and in at least a portion of the isthmus region of the internal chamber. The target region comprises a second material that is distinct from the first material and that is conductive. Furthermore, the target region is configured to protect at least a portion of the female electrode from direct contact with the arc. The vaporization chamber also includes a material delivery port configured to deliver powder into the isthmus region of the internal chamber at an angle counter to the flow of the vortexing stream of plasma, and a mouth flange cooling chamber disposed at the second end of the female electrode adjacent to the mouth. The mouth flange cooling chamber is configured to permit circulation of cooling fluid around the longitudinal axis, thereby cooling the mouth when plasma exits the internal chamber.


In another aspect of the present invention, a method for vaporizing powder is provided. The method comprises providing a vaporization chamber having a male electrode and a female electrode. The female electrode is formed from a first material and has a first end, a second end opposite the first end, and an internal chamber formed within the female electrode in between the first end and the second end. The internal chamber comprises an entry region, a frusto-conical region, and an isthmus region. The entry region is disposed at the first end and is configured to receive a working gas. The frusto-conical region extends from the entry region to the isthmus region. The isthmus region has a diameter of at least 0.400 of an inch and extends to the second end along a longitudinal axis of the female electrode. The second end forms a mouth through which a fluid can exit the internal chamber along the longitudinal axis. The method further comprises flowing a working gas into the internal chamber through a vortexing gas injector disposed at the entry region, thereby producing a vortexing stream of working gas. The vortexing stream of working gas flows into the frusto-conical region. Energy is delivered to the vortexing stream of working gas in the frusto-conical region, thereby producing an arc between the male electrode and the female electrode and producing a vortexing stream of plasma. The arc directly contacts a conductive target region. The target region comprises a second material that is distinct from the first material. The target region protects at least a portion of the female electrode from direct contact with the arc. The vortexing stream of plasma flows through the isthmus region, which has a diameter of at least 0.400 of an inch. A powder is injected through the female electrode into the isthmus region at an angle counter to the flow of the vortexing stream of plasma. The powder and the vortexing stream of plasma are mixed. The plasma vaporizes the powder, thereby forming a fluid stream comprising the vaporized powder. Finally, the fluid stream is ejected out of the internal chamber through a mouth disposed at the second end of the female electrode. The mouth is cooled by a flange cooling member disposed adjacent to the mouth. The flange cooling member comprises a mouth flange cooling chamber configured to permit circulation of cooling fluid around the longitudinal axis of the female electrode.


In preferred embodiments, a housing supports the positioning of the male electrode and the female electrode.


Additionally, the mouth flange cooling chamber can be brazed onto the second end of the female electrode.


Furthermore, the vaporization chamber can also include a network of coolant channels disposed within the housing. This network of coolant channels is configured to permit circulation of coolant around the female electrode and into the mouth flange cooling chamber.


In a preferred embodiment, the isthmus region of the internal chamber has a maximum diameter of 0.500 of an inch.


Additionally, the target region preferably comprises tungsten


Furthermore, the material delivery port is preferably configured to deliver the powder into the isthmus region of the internal chamber at an angle pitched at least 20 degrees towards the entry region measured from a plane perpendicular to the flow of the vortexing stream of plasma.


In a preferred embodiment, the vaporization chamber further comprises a gas supply system fluidly coupled to the vortexing gas injector. The gas supply system is configured to supply the working gas to the vortexing gas injector. The working gas preferably comprises hydrogen and an inert gas, such as argon.


In a preferred embodiment, the vaporization chamber further comprises a power supply that is connected to the electrical connection point. The power supply is preferably configured to produce a vortexing stream of plasma having an electric current greater than 1000 amperes. Additionally, the gas supply system is preferably configured to supply the working gas at a flow rate greater than 5 liters per minute.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a cross-sectional schematic illustration of one embodiment of a plasma gun including a powder port in the female electrode.



FIG. 1B is a cross-sectional schematic illustration of one embodiment of a plasma gun with a powder port in the male electrode.



FIG. 1C is a cross-sectional schematic illustration of one embodiment of a plasma gun including a powder port in a female anode adapted for liquid cooling.



FIG. 2 is a cross-sectional schematic illustration of a plasma-arc vaporization chamber in accordance with the principles of the present invention.



FIG. 3 is a flow chart illustrating one embodiment of a method of vaporizing powder in the plasma-arc vaporization chamber in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The description below concerns several embodiments of the invention. The discussion references the illustrated preferred embodiment. However, the scope of the present invention is not limited to either the illustrated embodiment, nor is it limited to those discussed. To the contrary, the scope should be interpreted as broadly as possible based on the language of the Claims section of this document.


In the following description, numerous details and alternatives are set forth for purpose of explanation. However, one of ordinary skill in the art will realize that the invention can be practiced without the use of these specific details. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail.


This disclosure refers to both particles and powders. These two terms are equivalent, except for the caveat that a singular “powder” refers to a collection of particles. The present invention may apply to a wide variety of powders and particles. Powders that fall within the scope of the present invention may include, but are not limited to, any of the following: (a) nano-structured powders(nano-powders), having an average grain size less than 250 nanometers and an aspect ratio between one and one million; (b) submicron powders, having an average grain size less than 1 micron and an aspect ratio between one and one million; (c) ultra-fine powders, having an average grain size less than 100 microns and an aspect ratio between one and one million; and (d) fine powders, having an average grain size less than 500 microns and an aspect ratio between one and one million.


The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like elements.



FIG. 1A illustrates one embodiment of a plasma spray gun 100 for use in a powder processing system. The plasma torch 100 is a DC plasma torch including a male electrode 120 and a female electrode 130. A power supply 110 is connected to the male electrode 120 and the female electrode 130 and delivers power through the plasma torch 100 by passing current across the gap 160 between the male electrode 120 and the female electrode 130. Furthermore, the plasma gun 100 includes a gas inlet 140 fluidly coupled to the gap 160 and configured to receive a working gas. The plasma gun 100 also includes a plasma outlet 150 fluidly coupled to the gap 160 on the opposite side of the plasma gun 100 from the gas inlet 140 and configured to provide a path through which a plasma powder mixture can be expelled from the plasma gun 100.


During operation, working gas flows through the gas inlet 140, through the gap 160 and out of the outlet 150. At the same time, power is supplied to the plasma gun 100. The current arcing across the gap 160 energizes the working gas and forms plasma, which flows out of the outlet 150. Powdered material is fed into the plasma stream through a powder port 170. The plasma stream entrains and works on the powder, forming a plasma powder mixture that flows out of the spray gun 100 through the outlet 150.



FIG. 1B illustrates another embodiment of a plasma spray gun 100′ for use in a plasma processing system. The plasma gun 100′ is a hollow electrode DC plasma gun including a hollow male electrode 120′ and a female electrode 130. A power supply 110 is connected to the male electrode 120′ and the female electrode 130 and delivers power through the plasma torch 100′ by passing current across the gap 160 between the male electrode 120′ and the female electrode 130. Furthermore, the plasma gun 100′ includes a gas inlet 140′ fluidly coupled to the gap 160 and configured to receive a working gas. The plasma gun 100′ also includes a plasma outlet 150 fluidly coupled to the gap 160 on the opposite side of the plasma gun 100′ from the gas inlet 140′ and configured to provide a path through which a plasma powder mixture can be expelled from the plasma gun 100′. The plasma gun 100′ further comprises a powder port 170′ formed by the interior space within the hollow male electrode 120′ and fluidly coupled to the gap 160, thereby allowing powder to flow through the hollow male electrode 120′ and into the gap 160.


During operation, working gas flows through the working gas inlet 140′, through the gap 160 and out of the outlet 150. At the same time, power is supplied to the plasma gun 100′. The current arcing across the gap 160 energizes the working gas and forms a plasma, which flows out of the outlet 150. Powdered material is fed into the plasma stream through the powder port 170′ of the hollow electrode 120′. The stream entrains and works on the powder, forming a plasma powder mixture that flows out of the spray gun 100′ through the outlet 150.



FIG. 1C illustrates one embodiment of a plasma spray gun 100″ adapted for liquid cooling. The plasma spray gun 100″ is a DC plasma gun including a male electrode 120 and a female electrode 130″. A power supply (not shown) is connected to the male electrode 120 and the female electrode 130″ and delivers power through the plasma gun 100″ by passing current across a gap 160 between the male electrode 120 and the female electrode 130″. Furthermore, the plasma gun 100″ includes a gas inlet 140 fluidly coupled to the gap 160 and configured to receive a working gas. The plasma gun 100″ also includes a plasma outlet 150 fluidly coupled to the gap 160 on the opposite side of the plasma gun 100″ from the gas inlet 140 and configured to provide a path through which a plasma powder mixture can be expelled from the plasma gun 100″. The plasma gun 100″ further comprises a powder port 170″ fluidly coupled to the interior of the female electrode 130″.


The female electrode 130″ includes features 132134″, and 136″ adapted for liquid cooling. In order to operate the plasma spray gun 100″, the gun 100″ is positioned within a gun body (not shown). The exemplary o-ring seals 138″ and other features of the female electrode 130″ are configured to prevent leakage of the liquid coolant. Generally, the gun body is configured so that liquid coolant flows in an annular path around the exterior surfaces of the female electrode 130″. Specifically, coolant is channeled to an annular groove 136″ formed in the front surface of the female electrode 130″. A faceplate (not shown) can be fastened over the annular groove 136″ to form an annular chamber through which coolant flows.


During operation, working gas flows through the working gas inlet 140, through the gap 160 and out of the outlet 150. At the same time, power is supplied to the plasma gun 100″. The current arcing across the gap 160 energizes the working gas and forms a plasma, which flows out of the outlet 150. Powdered material is fed into the plasma stream through the powder port 170″. The stream entrains and works on the powder, forming a plasma powder mixture that flows out of the spray gun 100″ through the outlet 150. As the plasma is formed and applied to the powder, coolant flows through the annular grooves 132″, 134″ and 136″, thereby promoting the cooling of the female electrode 130″ in an attempt to avoid overheating.



FIG. 2 illustrates a plasma-arc vaporization chamber 200 in accordance with the principles of the present invention. The vaporization chamber 200 includes a male electrode 220, a female electrode 230, and a housing 205 configured to support the male electrode 220 and the female electrode 230 within a plasma gun. For clarity, only a portion of the housing 205 is illustrated. The plasma-arc vaporization chamber 200 is part of a plasma-arc vaporization system that includes energy delivery means (not shown), material delivery means (not shown), and a gas supply system 244. In a preferred embodiment, the housing 205 includes a network of coolant channels coupled with a coolant circulation system, which will be discussed in further detail below.


The male electrode 220 is preferably a cathode and includes an active end 225. In a preferred embodiment, the cathode is made of a highly conductive, durable material that is resistant to thermal breakdown. Preferably, electrical connections run from an energy delivery means to the end of the cathode 220 distal from its active end 225. In some embodiments, the male electrode 220 includes tungsten.


The female electrode 230, which is preferably an anode, defines a longitudinal axis and includes an internal chamber. In the illustrated embodiment, the housing 205 and the internal chamber of the female electrode 230 combine to form an extended internal chamber. The extended internal chamber comprises an entry region 262, a frusto-conical region 264, and an isthmus region 266. A mouth 250 provides an opening to the internal chamber. Although in the illustrated embodiment the isthmus region 266 communicates directly with the mouth 250, other embodiments having other configurations are also within the scope of the present invention. A portion of the male electrode 220 is preferably disposed within the internal chamber of the female electrode 230. Specifically, the active end 225 of the male electrode 220 is disposed within the frusto-conical region 264 of the internal chamber.


In a preferred embodiment, the surface of the internal chamber includes a target region 235 that is configured to cover at least a portion of the frusto-conical region 264 and of the isthmus region 266. This target region 235 acts as a lining to protect the interior surface of the female electrode 230 from wear caused by the plasma arc. This protection allows the plasma gun to operate at a high power and enthalpy so that full vaporization of a powder can be achieved, while at the same time minimizing the wear on the plasma gun. Preferably, the target region 235 comprises a material that is distinct from the material of the female electrode. In a preferred embodiment, the second material is a durable, highly conductive material that is resistant to thermal breakdown. One example of such a material is tungsten. However, it is contemplated that other materials can be used as well.


The female electrode 230 comprises an intermediate mouth flange surface 233 adjacent to the mouth 250. In the illustrated embodiment, a flange member 290 with a mouth flange-cooling chamber 292 is coupled to the mouth flange surface 233 of the female electrode 230. The flange-cooling chamber 292 provides a continuous annular channel adjacent to the intermediate mouth flange surface 233. Preferably, the flange-cooling chamber 292 is coupled to a network of coolant channels within the housing 205. In the illustrated embodiment, the flange-cooling chamber 292 is constructed by brazing the flange member 290 onto the female electrode 230. However, in some embodiments, the flange-cooling chamber 292 is integrally formed with the female electrode 230. Additionally, in some embodiments, the mouth 250 of the internal chamber is extended to the end of the flange-cooling chamber 292. In these embodiments, that distal end is considered the mouth flange, and is cooled by circulation of coolant through the flange-cooling chamber 292.


As briefly discussed above, a network of coolant channels within the housing 205 permits circulation of coolant around the female electrode 230. Preferably, some other channels are adjacent to the inactive end of the male electrode 220 to cool the electrode. However, these additional channels are not shown in the figures. An inlet channel 280 leads to a first coolant chamber 282, which is fluidly coupled by an intermediate channel 284 to a second coolant chamber 286. The second coolant chamber 286 fluidly communicates with an outlet channel 288. In a preferred embodiment, flange cooling chamber 292 is fluidly coupled to and configured to receive coolant from the second coolant chamber 286. In this respect, the surface of the brazed-on flange member 290 becomes the flange surface of the electrode 230, and is liquid cooled. Circulating coolant around the flange minimizes damage to the flange from high enthalpy plasma. A faceplate 294 can be coupled to a front edge of the housing 205, preferably forming a flush surface with the flange member 290.


Material transmission conduits 275 permit delivery of materials from the outer surface of the female electrode 230 through the housing 205 to material delivery ports 270 of the female electrode 230, where the materials can be introduced into the internal chamber. Preferably, the material delivery ports 270 are positioned at an angle relative to the longitudinal axis of the female electrode 230 such that material delivered therethrough has a velocity component along the longitudinal axis in the direction of the active end 225 of the male electrode 220 (i.e., in the opposite direction of the flow of the plasma.


The entry region 262 of the extended internal chamber and the male electrode 220 form one or more gas delivery channels 240, which are fluidly coupled to the rest of the extended internal chamber. In a preferred embodiment, vortexing gas injectors 242 are fluidly coupled to supply lines leading from a gas supply system 244 configured to supply working gas and are positioned to feed the working gas into the gas delivery channels 240. These vortexing gas injectors 242 are preferably configured to supply the working gas to the gas delivery channels 240 in a substantially helical pattern. The vortexing gas injectors 242 can be coupled to the housing 205. The gas supply system 244 can be fluidly coupled to a first gas storage system 246, configured to store and supply a first gas, and a second gas storage system 248, configured to store and supply a second gas. In a preferred embodiment, the first gas storage system 246 is configured to supply hydrogen, while the second gas storage system 248 is preferably configured to supply an inert gas, such as argon.


The housing 205 holds and positions the male electrode 220 and the female electrode 230 relative to one another. Furthermore, the housing preferably provides the channels for coolant circulation, materials delivery, and gas delivery discussed above.


In operation, working gas is delivered from the supply system 244 through the vortexing gas injectors 242 into the gas delivery channels 240. The vortexing stream of gas passes through the entry region 262 of the extended internal chamber, into the frusto-conical region 264, through the isthmus region 266, and out the mouth 250 of the chamber 200.


In order to produce plasma, the plasma-arc vaporization system of which the plasma-arc vaporization chamber 200 is a part delivers energy through the male electrode 220 and into the female electrode 230 (or vice versa). Preferably, an energy delivery means supplies electrical energy to the end of the male electrode 220 distal from the active end 225. This process produces an arc between the electrodes, preferably between the active end 225 of the male electrode 220 and the target region 235 of the female electrode 230. Most preferably, the arc is confined to the target region 235.


As the gas stream flows through the internal chamber between the electrodes, energy is delivered to the working gas, producing the an arc between the electrodes and forming a plasma stream from the gas stream. In a preferred embodiment, energizing of the gas begins in the frusto-conical region 264 and is completed within the isthmus region 266. Thus, a gas stream entering the gas delivery channels 240 becomes a plasma stream within the internal chamber and exits the mouth 250 as a plasma stream.


Plasma formation produces heat. In order to cool the electrodes 220 and 230, the vaporization chamber 200 can include the coolant circulation network discussed above. This network is supplied by an external coolant circulation system (not shown), which supplies coolant. In operation, coolant circulates through the inlet channel 280, into the first chamber 282, through the intermediate channel 284, and into the second chamber 286. Fluid from the second chamber 286 exits through the outlet channel 288. Furthermore, fluid from the second chamber 286 preferably circulates into the flange-cooling chamber 292. In a preferred embodiment, fluid flows between the second chamber 286 and the flange-cooling chamber 292 through channels within the female electrode 230.


Preferably, the material transmission conduits 275 are fluidly coupled with a material supply system (not shown) that provides a metered flow of material into the conduits 275. In order to begin vaporizing a material, the material supply system provides material, preferably in the form of powder, to the conduits 275. In a preferred embodiment, the material delivery ports 270 are angled so that they deliver material along a vector that has a component opposite the direction of gas flow within the internal chamber. Material travels through the conduits 275 into the material delivery ports 270, which lead to the isthmus region 266 of the internal chamber.


Many embodiments of the present invention include features selected to increase resonance times for delivered materials. The resonance time relates to the amount of time the delivered material is maintained within a plasmatic environment. Furthermore, some embodiments include features to permit higher plasma energies. By increasing resonance times and permitting higher energy plasmas, the embodiments of the present invention are capable of vaporizing much higher vapor point materials within the internal chamber than are other plasma spray guns.


One way the present invention increases resonance time is by flowing the powder from the ports 270 into the stream of plasma at an angle across the flow of the stream. Preferably, the powder flows into the internal chamber and plasma stream at an angle of at least 20 degrees (measured from a plane perpendicular to the flow of the plasma stream). By delivering material at an angle against the flow of the plasma stream, instead of perpendicular to or angled with the flow, the vaporization chamber 200 increases the resonance time for each material particle. This increase in resonance time allows for the full vaporization of higher vapor point materials to take place.


Another way the present invention increases resonance time is by employing an isthmus region 266 with a width that is sufficiently large to permit vaporization of material delivered through the material delivery port 270 and into the isthmus region 266 during operation of the chamber 200. By using a large width isthmus region 266, the vaporization chamber 200 slows down the plasma stream, thereby increasing resonance times for delivered materials. In a preferred embodiment, the isthmus region has a diameter of at least 0.400 of an inch, thereby providing a significant increase in bore diameter, and thus resonance time, over other vaporization chambers. While the isthmus region preferably has a diameter of at least 0.400 of an inch, in some embodiments the diameter may be restricted to a maximum of 0.500 of an inch in order to avoid a conflict with the coolant channels and chambers.


Some embodiments of the present invention include features to permit increased plasma energies. Increasing plasma energy typically means increasing the amount of energy delivered between the electrodes 220 and 230, increasing the flow rate of the plasma, or varying the composition of the gas. For example, the features included within the present invention permit use of plasmas with energies of above 1000 amperes. Additionally, the present invention preferably employs plasmas having a high hydrogen content. In a preferred embodiment, the present invention employs plasmas having a high hydrogen content and flow rates of more than 5 liters per minute, resulting in at least 43 volts (at least 43 kilowatts when run at energies above 1000 amperes). The hydrogen can be supplied in the working gas. Plasmas with such characteristics stress the electrodes 220 and 230 by increasing the enthalpy of the plasma stream, and by demanding that the electrodes transmit greater amounts of electrical energy.


Traditional female electrodes use a mono-material construction. However with increased plasma energies, thermal durability of the electrode's internal surface becomes more important. Hence, the present invention provides the target material 235 as part of the female electrode 230. The target material 235 is preferably a durable, conductive material that is highly resistant to thermal breakdown. However, in a preferred embodiment, the entire electrode is not constructed from the target material 235. Only a portion of the electrode comprises the target material 235. Preferably, the male electrode 220 and the female electrode 230 are configured so that during normal operation, an arc passing from the active end 225 of the male electrode 220 to the female electrode 230 will ground through the target material 235. The target material 235 acts as a lining to protect the female electrode 230 from wear. In a preferred embodiment, the target material 235 comprises tungsten.


In the preferred mode of operation, the arc between the electrodes 220 and 230 moves around to various locations on the female electrode 230. However, as the plasma energy increases, the frequency of these movements must increase to avoid pitting of the electrode 230. In other words, the higher the energy of the arc, the shorter the time it takes to vaporize the electrode material when concentrated in a single location. Thus, the arc settling time, i.e., the resting time between movements of the arc, must decrease to avoid or minimize degradation of the electrode.


In order to increase the frequency of arc movements, some embodiments of the present invention include the vortexing gas injectors 242. In a preferred embodiment, the vortexing gas injectors 242 are configured to deliver the working gas into the frusto-conical region 264 between the male electrode 220 and the female electrode 230 in a substantially helical pattern. Preferably, within this helical pattern, the highest gas velocities are at angles to the longitudinal axis of the female electrode 230. The helical pattern increases the mass flow rate of the gas relative to the volume flow rate of the gas (both measured along a direct path through the internal chamber).


Additionally, at higher plasma energies, the plasma stream exits the mouth 250 of the vaporization chamber 200 with a higher enthalpy. Without the brazed-on flange member 290, this higher enthalpy could lead to overheating or melting of the intermediate flange surface 233 of the female electrode 230. In order to alleviate this problem, the female electrode 230 includes the brazed-on flange member 290, which is configured to receive coolant, preferably from the second coolant chamber 286. Thus, the surface of the brazed-on flange member 290 becomes the flange surface of the electrode 230, and is liquid cooled. Circulating coolant around the flange minimizes damage to the flange from high enthalpy plasma. It is contemplated that coolant may optionally be supplied directly to the cooling chamber 292 of the flange member 290 without any need for the other coolant channels or chambers.


Embodiments of the present invention are extremely beneficial in achieving full vaporization of powders having a mean grain size up to an including 10 microns. The best results are achieved when employing all of the features discussed above (counter-flow angled powder injection, wide diameter bore, target material lining, vortexing gas injectors, and flange coolant chamber). However, it is contemplated that any combination of these features will result in substantial improvements over the prior art.



FIG. 3 is a flow chart illustrating one embodiment of a method 300 of vaporizing powder in a plasma-arc vaporization chamber in accordance with the principles of the present invention. As would be appreciated by those of ordinary skill in the art, the protocols, processes, and procedures described herein may be repeated continuously or as often as necessary to satisfy the needs described herein. Additionally, although the steps of method 300 are shown in a specific order, certain steps may occur simultaneously or in a different order than is illustrated. Accordingly, the method steps of the present invention should not be limited to any particular order unless either explicitly or implicitly stated in the claims.


At step 302, a vaporization chamber, such as vaporization chamber 200 described above, is provided. The vaporization chamber comprises a male electrode and a female electrode supported within a housing member. The female electrode is formed from a first material and has a first end, a second end opposite the first end, and an internal chamber. The internal chamber extends from an entry region at the first end through a frusto-conical region to an isthmus region. The isthmus region preferably extends all the way to the second end of the female electrode.


At step 304, a working gas flows into the internal chamber through one or more vortexing gas injectors disposed at the entry region, thereby producing a vortexing stream of working gas. In a preferred embodiment, the vortexing gas injectors produce the vortexing stream of working gas in the form of a helical pattern. Preferably, the working gas has a high hydrogen content.


At step 306, the vortexing stream of working gas flows into the frusto-conical region, in between the male electrode and the female electrode.


At step 308, energy is delivered to the vortexing stream of working gas in the frusto-conical region, thereby producing an arc between the male electrode and the female electrode and producing a stream of plasma. It is contemplated that the arc can be produced in a variety of ways. In a preferred embodiment, an energy delivery means delivers energy through the male electrode and into the female electrode (or vice versa). This process produces an arc between the electrodes. In a preferred embodiment, this stream of plasma substantially maintains its vortexing or helical pattern.


At step 310, the arc directly contacts a conductive target region of the female electrode. The target region is formed from a second material, distinct from the first material of the female electrode, that is highly durable and conductive, such as tungsten. The target region acts as a lining that protects at least a portion of the first material of the female electrode. Preferably, the target region protects the rest of the female electrode from any direct contact with the arc. In some embodiments, the target region can be removable from the first material of the female electrode.


At step 312, the stream of plasma flows through the isthmus region. The isthmus region has a diameter of at least 0.400″ in order to reduce the velocity of the plasma stream, thereby increasing the resonance time.


At step 314, a powder is injected, preferably through a conduit in the female electrode, into the isthmus region of the internal chamber. The powder is injected at an angle counter to the flow of the stream of plasma. In a preferred embodiment, the powder flows into the isthmus region and the plasma stream at an angle of at least 20 degrees. This angle is pitched towards the entry region and is measured from a plane perpendicular to the flow of the plasma stream.


At step 316, the powder is mixed with the stream of plasma. The stream of plasma vaporizes the powder, thereby forming a fluid stream comprising the vaporized powder. In a preferred embodiment, the injected powder is fully vaporized. The present invention preferably employs plasmas with energies above 1000 amperes and a high hydrogen content. In a preferred embodiment, the present invention flows the plasma at rates of more than 5 liters per minute, resulting in at least 43 volts (at least 43 kilowatts when run at energies above 1000 amperes).


At step 318, the fluid stream containing the vaporized powder is ejected from the internal chamber through a mouth disposed at the second end of the female electrode. The mouth is cooled by a flange cooling member disposed adjacent to the mouth. In a preferred embodiment, the flange cooling member comprises a coolant chamber as discussed above.


The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. As such, references herein to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made to the embodiments chosen for illustration without departing from the spirit and scope of the invention.

Claims
  • 1. A vaporization chamber comprising: a male electrode;a female electrode comprising a first material, the female electrode having a first end, a second end opposite the first end, and an internal chamber formed within the female electrode in between the first end and the second end, wherein the internal chamber comprises an entry region, a frusto-conical region, and an isthmus region, the entry region being disposed at the first end and configured to receive a working gas, the frusto-conical region extending from the entry region to the isthmus region, wherein the isthmus region has a diameter of at least 0.400 of an inch and extends to the second end along a longitudinal axis of the female electrode, the second end forming a mouth through which a fluid can exit the internal chamber along the longitudinal axis;a vortexing gas injector disposed proximate the first end and fluidly coupled to the entry region of the internal chamber, wherein the vortexing gas injector is configured to receive a working gas, to produce a vortexing stream of the working gas, and to supply the vortexing stream of working gas to the frusto-conical region of the internal chamber;a combustible gas supply system fluidly coupled to the vortexing gas injector, wherein the combustible gas supply system provides a combustible gas as at least a portion of the working gas to the vortexing gas injector;an electrical connection point disposed on at least one of the male electrode and the female electrode, wherein the electrical connection point is configured to deliver energy to the vortexing stream of working gas in the frusto-conical region upon receiving power from a power supply, thereby producing an arc capable of fully vaporizing powders between the male electrode and the female electrode within the frusto-conical region of the internal chamber and producing a vortexing stream of plasma that flows into the isthmus region;a target region configured to act as lining for the female electrode in at least a portion of the frusto-conical region and in at least a portion of the isthmus region of the internal chamber, wherein the target region comprises a second material that is distinct from the first material and that is conductive, and the target region is configured to protect at least a portion of the female electrode from direct contact with the arc;a material delivery port configured to deliver powder into the isthmus region of the internal chamber at an angle counter to the flow of the vortexing stream of plasma; anda mouth flange cooling chamber disposed at the second end of the female electrode adjacent to the mouth, wherein the mouth flange cooling chamber is configured to permit circulation of cooling fluid around the longitudinal axis, thereby cooling the mouth when plasma exits the internal chamber.
  • 2. The vaporization chamber of claim 1, further comprising a housing supporting the male electrode and the female electrode.
  • 3. The vaporization chamber of claim 2, wherein the mouth flange cooling chamber is brazed onto the second end of the female electrode.
  • 4. The vaporization chamber of claim 3, further comprising a network of coolant channels disposed within the housing, wherein the network of coolant channels is configured to permit circulation of coolant around the female electrode and into the mouth flange cooling chamber.
  • 5. The vaporization chamber of claim 1, wherein the isthmus region has a maximum diameter of 0.500 of an inch.
  • 6. The vaporization chamber of claim 1, wherein the target region comprises tungsten.
  • 7. The vaporization chamber of claim 1, wherein the material delivery port is configured to deliver the powder into the isthmus region of the internal chamber at an angle pitched at least 20 degrees towards the entry region measured from a plane perpendicular to the flow of the vortexing stream of plasma.
  • 8. The vaporization chamber of claim 1, wherein the combustible gas comprises hydrogen.
  • 9. The vaporization chamber of claim 8, wherein a power supply is connected to the electrical connection point and configured to produce a vortexing stream of plasma having an electric current greater than 1000 amperes; and wherein the vaporization chamber further comprises a working gas supply system configured to supply the working gas at a flow rate greater than 5 liters per minute.
  • 10. The vaporization chamber of claim 1 further comprise a working gas supply system fluidly coupled to the vortexing gas injector, wherein the working gas supply system provides inert gas as at least a portion of the working gas to the vortexing gas injector.
  • 11. A vaporization chamber comprising: a male electrode;a female electrode comprising a first material, the female electrode having a first end, a second end opposite the first end, and an internal chamber formed within the female electrode in between the first end and the second end, wherein the internal chamber comprises an entry region, a frusto-conical region, and an isthmus region, the entry region being disposed at the first end and configured to receive a working gas, the frusto-conical region extending from the entry region to the isthmus region, wherein the isthmus region has a diameter of at least 0.400 of an inch and extends to the second end along a longitudinal axis of the female electrode, the second end forming a mouth through which a fluid can exit the internal chamber along the longitudinal axis;a gas inlet disposed proximate the first end and fluidly coupled to the entry region of the internal chamber, wherein the gas inlet is configured to receive a working gas and to supply the working gas to the frusto-conical region of the internal chamber;a hydrogen supply system fluidly coupled to the gas inlet, wherein the hydrogen supply system provides hydrogen gas as at least a portion of the working gas to the gas inlet;an electrical connection point disposed on at least one of the male electrode and the female electrode, wherein the electrical connection point is configured to deliver energy to the working gas in the frusto-conical region upon receiving power from a power supply, thereby producing an arc capable of fully vaporizing powders between the male electrode and the female electrode within the frusto-conical region of the internal chamber and producing a stream of plasma that flows into the isthmus region;a target region configured to act as lining for the female electrode in at least a portion of the frusto-conical region and in at least a portion of the isthmus region of the internal chamber, wherein the target region comprises a second material that is distinct from the first material and that is conductive, and the target region is configured to protect at least a portion of the female electrode from direct contact with the arc;a material delivery port configured to deliver powder into the isthmus region of the internal chamber to mix with the stream of plasma; anda mouth flange cooling chamber disposed at the second end of the female electrode adjacent to the mouth, wherein the mouth flange cooling chamber is configured to permit circulation of cooling fluid around the longitudinal axis, thereby cooling the mouth when plasma exits the internal chamber.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Application Ser. No. 60/928,946, filed May 11, 2007, entitled “MATERIAL PRODUCTION SYSTEM AND METHOD,” which is hereby incorporated by reference as if set forth herein. The co-pending U.S. patent application Ser. No. 11/110,341, filed on Apr. 10, 2005, entitled, “HIGH THROUGHPUT DISCOVERY OF MATERIALS THROUGH VAPOR PHASE SYNTHESIS” is incorporated by reference.

US Referenced Citations (454)
Number Name Date Kind
2284554 Beyerstedt May 1942 A
2419042 Todd Apr 1947 A
2519531 Worn Aug 1950 A
2562753 Trost Jul 1951 A
2689780 Rice Sep 1954 A
3001402 Koblin Sep 1961 A
3042511 Reding, Jr. Jul 1962 A
3067025 Chisholm Dec 1962 A
3145287 Seibein et al. Aug 1964 A
3178121 Wallace, Jr. Apr 1965 A
3179782 Matvay Apr 1965 A
3181947 Vordahl May 1965 A
3313908 Unger et al. Apr 1967 A
3401465 Larwill Sep 1968 A
3450926 Kiernan Jun 1969 A
3457788 Nobuo Miyajima Jul 1969 A
3537513 Austin et al. Nov 1970 A
3552653 Inoue Jan 1971 A
3617358 Dittrich Nov 1971 A
3667111 Chartet Jun 1972 A
3741001 Fletcher et al. Jun 1973 A
3752172 Cohen et al. Aug 1973 A
3761360 Auvil et al. Sep 1973 A
3774442 Gustavsson Nov 1973 A
3804034 Stiglich, Jr. Apr 1974 A
3830756 Sanchez et al. Aug 1974 A
3871448 Vann et al. Mar 1975 A
3892882 Guest et al. Jul 1975 A
3914573 Muehlberger Oct 1975 A
3959094 Steinberg May 1976 A
3959420 Geddes et al. May 1976 A
3969482 Teller Jul 1976 A
4008620 Narato et al. Feb 1977 A
4018388 Andrews Apr 1977 A
4021021 Hall et al. May 1977 A
4127760 Meyer et al. Nov 1978 A
4139497 Castor et al. Feb 1979 A
4157316 Thompson et al. Jun 1979 A
4171288 Keith et al. Oct 1979 A
4174298 Antos Nov 1979 A
4189925 Long Feb 1980 A
4227928 Wang Oct 1980 A
4248387 Andrews Feb 1981 A
4253917 Wang Mar 1981 A
4260649 Dension et al. Apr 1981 A
4284609 deVries Aug 1981 A
4315874 Ushida et al. Feb 1982 A
4344779 Isserlis Aug 1982 A
4369167 Weir Jan 1983 A
4388274 Rourke et al. Jun 1983 A
4419331 Montalvo Dec 1983 A
4431750 McGinnis et al. Feb 1984 A
4436075 Campbell et al. Mar 1984 A
4440733 Lawson et al. Apr 1984 A
4458138 Adrian et al. Jul 1984 A
4459327 Wang Jul 1984 A
4505945 Dubust et al. Mar 1985 A
4506136 Smyth et al. Mar 1985 A
4513149 Gray et al. Apr 1985 A
4523981 Ang et al. Jun 1985 A
4545872 Sammells et al. Oct 1985 A
RE32244 Andersen Sep 1986 E
4609441 Frese, Jr. et al. Sep 1986 A
4723589 Iyer et al. Feb 1988 A
4731517 Cheney Mar 1988 A
4751021 Mollon et al. Jun 1988 A
4764283 Ashbrook et al. Aug 1988 A
4765805 Wahl et al. Aug 1988 A
4824624 Palicka et al. Apr 1989 A
4836084 Vogelesang et al. Jun 1989 A
4855505 Koll Aug 1989 A
4866240 Webber Sep 1989 A
4885038 Anderson et al. Dec 1989 A
4921586 Molter May 1990 A
4983555 Roy et al. Jan 1991 A
4987033 Abkowitz et al. Jan 1991 A
5006163 Benn et al. Apr 1991 A
5015863 Takeshima et al. May 1991 A
5041713 Weidman Aug 1991 A
5043548 Whitney et al. Aug 1991 A
5070064 Hsu et al. Dec 1991 A
5073193 Chaklader et al. Dec 1991 A
5133190 Abdelmalek Jul 1992 A
5151296 Tokunaga Sep 1992 A
5157007 Domesle et al. Oct 1992 A
5192130 Endo et al. Mar 1993 A
5230844 Macaire et al. Jul 1993 A
5233153 Coats Aug 1993 A
5269848 Nakagawa Dec 1993 A
5330945 Beckmeyer et al. Jul 1994 A
5338716 Triplett et al. Aug 1994 A
5369241 Taylor et al. Nov 1994 A
5371049 Moffett et al. Dec 1994 A
5372629 Anderson et al. Dec 1994 A
5392797 Welch Feb 1995 A
5436080 Inoue et al. Jul 1995 A
5439865 Abe et al. Aug 1995 A
5442153 Marantz et al. Aug 1995 A
5460701 Parker et al. Oct 1995 A
5464458 Yamamoto Nov 1995 A
5485941 Guyomard et al. Jan 1996 A
5534149 Birkenbeil et al. Jul 1996 A
5534270 De Castro Jul 1996 A
5543173 Horn, Jr. et al. Aug 1996 A
5553507 Basch et al. Sep 1996 A
5562966 Clarke et al. Oct 1996 A
5582807 Liao et al. Dec 1996 A
5611896 Swanepoel et al. Mar 1997 A
5630322 Heilmann et al. May 1997 A
5652304 Calderon et al. Jul 1997 A
5714644 Irgang et al. Feb 1998 A
5723187 Popoola et al. Mar 1998 A
5726414 Kitahashi et al. Mar 1998 A
5749938 Coombs May 1998 A
5776359 Schultz et al. Jul 1998 A
5788738 Pirzada et al. Aug 1998 A
5804155 Farrauto et al. Sep 1998 A
5811187 Anderson et al. Sep 1998 A
5837959 Muehlberger et al. Nov 1998 A
5851507 Pirzada et al. Dec 1998 A
5853815 Muehlberger Dec 1998 A
5858470 Bernecki et al. Jan 1999 A
5884473 Noda et al. Mar 1999 A
5905000 Yadav et al. May 1999 A
5928806 Olah et al. Jul 1999 A
5935293 Detering et al. Aug 1999 A
5973289 Read et al. Oct 1999 A
5989648 Phillips Nov 1999 A
5993967 Brotzman, Jr. et al. Nov 1999 A
5993988 Ohara et al. Nov 1999 A
6004620 Camm Dec 1999 A
6012647 Ruta et al. Jan 2000 A
6033781 Brotzman, Jr. et al. Mar 2000 A
6045765 Nakatsuji et al. Apr 2000 A
6059853 Coombs May 2000 A
6066587 Kurokawa et al. May 2000 A
6084197 Fusaro, Jr. Jul 2000 A
6093306 Hanrahan et al. Jul 2000 A
6093378 Deeba et al. Jul 2000 A
6102106 Manning et al. Aug 2000 A
6117376 Merkel Sep 2000 A
6168694 Huang et al. Jan 2001 B1
6190627 Hoke et al. Feb 2001 B1
6213049 Yang Apr 2001 B1
6214195 Yadav et al. Apr 2001 B1
6228904 Yadav et al. May 2001 B1
6254940 Pratsinis et al. Jul 2001 B1
6261484 Phillips et al. Jul 2001 B1
6267864 Yadav et al. Jul 2001 B1
6322756 Arno et al. Nov 2001 B1
6342465 Klein et al. Jan 2002 B1
6344271 Yadav et al. Feb 2002 B1
6362449 Hadidi et al. Mar 2002 B1
6379419 Celik et al. Apr 2002 B1
6387560 Yadav et al. May 2002 B1
6395214 Kear et al. May 2002 B1
6398843 Tarrant Jun 2002 B1
6409851 Sethuram et al. Jun 2002 B1
6413781 Geis et al. Jul 2002 B1
6416818 Aikens et al. Jul 2002 B1
RE37853 Detering et al. Sep 2002 E
6444009 Liu et al. Sep 2002 B1
6475951 Domesle et al. Nov 2002 B1
6488904 Cox et al. Dec 2002 B1
6506995 Fusaro, Jr. et al. Jan 2003 B1
6517800 Cheng et al. Feb 2003 B1
6524662 Jang et al. Feb 2003 B2
6531704 Yadav et al. Mar 2003 B2
6548445 Buysch et al. Apr 2003 B1
6554609 Yadav et al. Apr 2003 B2
6562304 Mizrahi May 2003 B1
6562495 Yadav et al. May 2003 B2
6569393 Hoke et al. May 2003 B1
6569397 Yadav et al. May 2003 B1
6569518 Yadav et al. May 2003 B2
6572672 Yadav et al. Jun 2003 B2
6579446 Teran et al. Jun 2003 B1
6596187 Coll et al. Jul 2003 B2
6603038 Hagemeyer et al. Aug 2003 B1
6607821 Yadav et al. Aug 2003 B2
6610355 Yadav et al. Aug 2003 B2
6623559 Huang Sep 2003 B2
6635357 Moxson et al. Oct 2003 B2
6641775 Vigliotti et al. Nov 2003 B2
6652822 Phillips et al. Nov 2003 B2
6652967 Yadav et al. Nov 2003 B2
6669823 Sarkas et al. Dec 2003 B1
6682002 Kyotani Jan 2004 B2
6689192 Phillips et al. Feb 2004 B1
6699398 Kim Mar 2004 B1
6706097 Zomes Mar 2004 B2
6706660 Park Mar 2004 B2
6710207 Bogan, Jr. et al. Mar 2004 B2
6713176 Yadav et al. Mar 2004 B2
6716525 Yadav et al. Apr 2004 B1
6744006 Johnson et al. Jun 2004 B2
6746791 Yadav et al. Jun 2004 B2
6772584 Chun et al. Aug 2004 B2
6786950 Yadav et al. Sep 2004 B2
6813931 Yadav et al. Nov 2004 B2
6817388 Tsangaris et al. Nov 2004 B2
6832735 Yadav et al. Dec 2004 B2
6838072 Kong et al. Jan 2005 B1
6841509 Hwang et al. Jan 2005 B1
6855410 Buckley Feb 2005 B2
6855426 Yadav Feb 2005 B2
6855749 Yadav et al. Feb 2005 B1
6858170 Van Thillo et al. Feb 2005 B2
6886545 Holm May 2005 B1
6896958 Cayton et al. May 2005 B1
6902699 Fritzemeier et al. Jun 2005 B2
6916872 Yadav et al. Jul 2005 B2
6919065 Zhou et al. Jul 2005 B2
6919527 Boulos et al. Jul 2005 B2
6933331 Yadav et al. Aug 2005 B2
6972115 Ballard Dec 2005 B1
6986877 Takikawa et al. Jan 2006 B2
6994837 Boulos et al. Feb 2006 B2
7007872 Yadav et al. Mar 2006 B2
7022305 Drumm et al. Apr 2006 B2
7052777 Brotzman, Jr. et al. May 2006 B2
7073559 O'Larey et al. Jul 2006 B2
7081267 Yadav Jul 2006 B2
7101819 Rosenflanz et al. Sep 2006 B2
7147544 Rosenflanz Dec 2006 B2
7147894 Zhou et al. Dec 2006 B2
7166198 Van Der Walt et al. Jan 2007 B2
7166663 Cayton et al. Jan 2007 B2
7172649 Conrad et al. Feb 2007 B2
7172790 Koulik et al. Feb 2007 B2
7178747 Yadav et al. Feb 2007 B2
7208126 Musick et al. Apr 2007 B2
7211236 Stark et al. May 2007 B2
7217407 Zhang May 2007 B2
7220398 Sutorik et al. May 2007 B2
7255498 Bush et al. Aug 2007 B2
7265076 Taguchi et al. Sep 2007 B2
7282167 Carpenter Oct 2007 B2
7307195 Polverejan et al. Dec 2007 B2
7323655 Kim Jan 2008 B2
7384447 Kodas et al. Jun 2008 B2
7402899 Whiting et al. Jul 2008 B1
7417008 Richards et al. Aug 2008 B2
7494527 Jurewicz et al. Feb 2009 B2
7517826 Fujdala et al. Apr 2009 B2
7534738 Fujdala et al. May 2009 B2
7541012 Yeung et al. Jun 2009 B2
7541310 Espinoza et al. Jun 2009 B2
7557324 Nylen et al. Jul 2009 B2
7572315 Boulos et al. Aug 2009 B2
7576029 Saito et al. Aug 2009 B2
7576031 Beutel et al. Aug 2009 B2
7604843 Robinson et al. Oct 2009 B1
7611686 Alekseeva et al. Nov 2009 B2
7615097 McKechnie et al. Nov 2009 B2
7618919 Shimazu et al. Nov 2009 B2
7622693 Foret Nov 2009 B2
7632775 Zhou et al. Dec 2009 B2
7635218 Lott Dec 2009 B1
7674744 Shiratori et al. Mar 2010 B2
7678419 Kevwitch et al. Mar 2010 B2
7704369 Olah et al. Apr 2010 B2
7709411 Zhou et al. May 2010 B2
7709414 Fujdala et al. May 2010 B2
7745367 Fujdala et al. Jun 2010 B2
7750265 Belashchenko Jul 2010 B2
7803210 Sekine et al. Sep 2010 B2
7851405 Wakamatsu et al. Dec 2010 B2
7874239 Howland Jan 2011 B2
7875573 Beutel et al. Jan 2011 B2
7897127 Layman et al. Mar 2011 B2
7902104 Kalck Mar 2011 B2
7905942 Layman Mar 2011 B1
7935655 Tolmachev May 2011 B2
8051724 Layman et al. Nov 2011 B1
8076258 Biberger Dec 2011 B1
8080494 Yasuda et al. Dec 2011 B2
8089495 Keller Jan 2012 B2
8129654 Lee et al. Mar 2012 B2
8142619 Layman et al. Mar 2012 B2
8168561 Virkar May 2012 B2
8173572 Feaviour May 2012 B2
8211392 Grubert et al. Jul 2012 B2
8258070 Fujdala et al. Sep 2012 B2
8278240 Tange et al. Oct 2012 B2
8294060 Mohanty et al. Oct 2012 B2
8309489 Cuenya et al. Nov 2012 B2
8349761 Xia et al. Jan 2013 B2
8557727 Yin et al. Oct 2013 B2
20010004009 MacKelvie Jun 2001 A1
20010042802 Youds Nov 2001 A1
20010055554 Hoke et al. Dec 2001 A1
20020018815 Sievers et al. Feb 2002 A1
20020068026 Murrell et al. Jun 2002 A1
20020071800 Hoke et al. Jun 2002 A1
20020079620 DuBuis et al. Jun 2002 A1
20020100751 Carr Aug 2002 A1
20020102674 Anderson Aug 2002 A1
20020131914 Sung Sep 2002 A1
20020143417 Ito et al. Oct 2002 A1
20020182735 Kibby et al. Dec 2002 A1
20020183191 Faber et al. Dec 2002 A1
20020192129 Shamouilian et al. Dec 2002 A1
20030036786 Duren et al. Feb 2003 A1
20030042232 Shimazu Mar 2003 A1
20030047617 Shanmugham et al. Mar 2003 A1
20030066800 Saim et al. Apr 2003 A1
20030108459 Wu et al. Jun 2003 A1
20030110931 Aghajanian et al. Jun 2003 A1
20030129098 Endo et al. Jul 2003 A1
20030139288 Cai et al. Jul 2003 A1
20030143153 Boulos et al. Jul 2003 A1
20030172772 Sethuram et al. Sep 2003 A1
20030223546 McGregor et al. Dec 2003 A1
20040009118 Phillips et al. Jan 2004 A1
20040023302 Archibald et al. Feb 2004 A1
20040023453 Xu et al. Feb 2004 A1
20040077494 LaBarge et al. Apr 2004 A1
20040103751 Joseph et al. Jun 2004 A1
20040109523 Singh et al. Jun 2004 A1
20040119064 Narayan et al. Jun 2004 A1
20040127586 Jin et al. Jul 2004 A1
20040166036 Chen et al. Aug 2004 A1
20040167009 Kuntz et al. Aug 2004 A1
20040176246 Shirk et al. Sep 2004 A1
20040208805 Fincke et al. Oct 2004 A1
20040213998 Hearley et al. Oct 2004 A1
20040238345 Koulik et al. Dec 2004 A1
20040251017 Pillion et al. Dec 2004 A1
20040251241 Blutke et al. Dec 2004 A1
20050000321 O'Larey et al. Jan 2005 A1
20050000950 Schroder et al. Jan 2005 A1
20050066805 Park et al. Mar 2005 A1
20050070431 Alvin et al. Mar 2005 A1
20050077034 King Apr 2005 A1
20050097988 Kodas et al. May 2005 A1
20050106865 Chung et al. May 2005 A1
20050133121 Subramanian et al. Jun 2005 A1
20050163673 Johnson et al. Jul 2005 A1
20050199739 Kuroda et al. Sep 2005 A1
20050220695 Abatzoglou et al. Oct 2005 A1
20050227864 Sutorik et al. Oct 2005 A1
20050233380 Pesiri et al. Oct 2005 A1
20050240069 Polverejan et al. Oct 2005 A1
20050258766 Kim Nov 2005 A1
20050275143 Toth Dec 2005 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060068989 Ninomiya et al. Mar 2006 A1
20060094595 Labarge May 2006 A1
20060096393 Pesiri May 2006 A1
20060105910 Zhou et al. May 2006 A1
20060108332 Belashchenko May 2006 A1
20060153728 Schoenung et al. Jul 2006 A1
20060153765 Pham-Huu et al. Jul 2006 A1
20060159596 De La Veaux et al. Jul 2006 A1
20060166809 Malek et al. Jul 2006 A1
20060211569 Dang et al. Sep 2006 A1
20060213326 Gollob et al. Sep 2006 A1
20060222780 Gurevich et al. Oct 2006 A1
20060231525 Asakawa et al. Oct 2006 A1
20070048206 Hung et al. Mar 2007 A1
20070049484 Kear et al. Mar 2007 A1
20070063364 Hsiao et al. Mar 2007 A1
20070084308 Nakamura et al. Apr 2007 A1
20070084834 Hanus et al. Apr 2007 A1
20070087934 Martens et al. Apr 2007 A1
20070163385 Takahashi et al. Jul 2007 A1
20070173403 Koike et al. Jul 2007 A1
20070178673 Gole et al. Aug 2007 A1
20070221404 Das et al. Sep 2007 A1
20070253874 Foret Nov 2007 A1
20070292321 Plischke et al. Dec 2007 A1
20080006954 Yubuta et al. Jan 2008 A1
20080026041 Tepper et al. Jan 2008 A1
20080031806 Gavenonis et al. Feb 2008 A1
20080038578 Li Feb 2008 A1
20080045405 Beutel et al. Feb 2008 A1
20080047261 Han et al. Feb 2008 A1
20080057212 Dorier et al. Mar 2008 A1
20080064769 Sato et al. Mar 2008 A1
20080104735 Howland May 2008 A1
20080105083 Nakamura et al. May 2008 A1
20080116178 Weidman May 2008 A1
20080125308 Fujdala et al. May 2008 A1
20080125313 Fujdala et al. May 2008 A1
20080138651 Doi et al. Jun 2008 A1
20080175936 Tokita et al. Jul 2008 A1
20080187714 Wakamatsu et al. Aug 2008 A1
20080206562 Stucky et al. Aug 2008 A1
20080207858 Kowaleski et al. Aug 2008 A1
20080248704 Mathis et al. Oct 2008 A1
20080274344 Vieth et al. Nov 2008 A1
20080277092 Layman et al. Nov 2008 A1
20080277266 Layman Nov 2008 A1
20080277267 Biberger et al. Nov 2008 A1
20080277268 Layman Nov 2008 A1
20080277269 Layman et al. Nov 2008 A1
20080277270 Biberger et al. Nov 2008 A1
20080277271 Layman Nov 2008 A1
20080280049 Kevwitch et al. Nov 2008 A1
20080280751 Harutyunyan et al. Nov 2008 A1
20080280756 Biberger Nov 2008 A1
20080283411 Eastman et al. Nov 2008 A1
20080283498 Yamazaki Nov 2008 A1
20090010801 Murphy et al. Jan 2009 A1
20090054230 Veeraraghavan et al. Feb 2009 A1
20090088585 Schammel et al. Apr 2009 A1
20090092887 McGrath et al. Apr 2009 A1
20090098402 Kang et al. Apr 2009 A1
20090114568 Trevino et al. May 2009 A1
20090162991 Beneyton et al. Jun 2009 A1
20090168506 Han et al. Jul 2009 A1
20090170242 Lin et al. Jul 2009 A1
20090181474 Nagai Jul 2009 A1
20090200180 Capote et al. Aug 2009 A1
20090208367 Calio et al. Aug 2009 A1
20090209408 Kitamura et al. Aug 2009 A1
20090223410 Jun et al. Sep 2009 A1
20090253037 Park et al. Oct 2009 A1
20090274903 Addiego Nov 2009 A1
20090286899 Hofmann et al. Nov 2009 A1
20090324468 Golden et al. Dec 2009 A1
20100089002 Merkel Apr 2010 A1
20100092358 Koegel et al. Apr 2010 A1
20100124514 Chelluri et al. May 2010 A1
20100166629 Deeba Jul 2010 A1
20100180581 Grubert et al. Jul 2010 A1
20100180582 Mueller-Stach et al. Jul 2010 A1
20100186375 Kazi et al. Jul 2010 A1
20100240525 Golden et al. Sep 2010 A1
20100275781 Tsangaris Nov 2010 A1
20110006463 Layman Jan 2011 A1
20110052467 Chase et al. Mar 2011 A1
20110143041 Layman et al. Jun 2011 A1
20110143915 Yin et al. Jun 2011 A1
20110143916 Leamon Jun 2011 A1
20110143930 Yin et al. Jun 2011 A1
20110143933 Yin et al. Jun 2011 A1
20110144382 Yin et al. Jun 2011 A1
20110152550 Grey et al. Jun 2011 A1
20110158871 Arnold et al. Jun 2011 A1
20110174604 Duesel et al. Jul 2011 A1
20110243808 Fossey et al. Oct 2011 A1
20110245073 Oljaca et al. Oct 2011 A1
20110247336 Farsad et al. Oct 2011 A9
20110305612 Müller-Stach et al. Dec 2011 A1
20120023909 Lambert et al. Feb 2012 A1
20120045373 Biberger Feb 2012 A1
20120097033 Arnold et al. Apr 2012 A1
20120122660 Andersen et al. May 2012 A1
20120124974 Li et al. May 2012 A1
20120171098 Hung et al. Jul 2012 A1
20120308467 Carpenter et al. Dec 2012 A1
20130213018 Yin et al. Aug 2013 A1
Foreign Referenced Citations (46)
Number Date Country
1 134 302 Sep 2001 EP
1 619 168 Jan 2006 EP
1 307 941 Feb 1973 GB
56-146804 Nov 1981 JP
61-086815 May 1986 JP
62-102827 May 1987 JP
63-214342 Sep 1988 JP
1-164795 Jun 1989 JP
05-228361 Sep 1993 JP
05-324094 Dec 1993 JP
6-93309 Apr 1994 JP
6-135797 May 1994 JP
6-272012 Sep 1994 JP
H06-065772 Sep 1994 JP
7031873 Feb 1995 JP
07-256116 Oct 1995 JP
8-158033 Jun 1996 JP
10-130810 May 1998 JP
11-502760 Mar 1999 JP
2000-220978 Aug 2000 JP
2002-88486 Mar 2002 JP
2002-336688 Nov 2002 JP
2004-233007 Aug 2004 JP
2004-249206 Sep 2004 JP
2004-290730 Oct 2004 JP
2005-503250 Feb 2005 JP
2005-122621 May 2005 JP
2005-218937 Aug 2005 JP
2005-342615 Dec 2005 JP
2006-001779 Jan 2006 JP
2006-508885 Mar 2006 JP
2006-247446 Sep 2006 JP
2006-260385 Sep 2006 JP
2007-46162 Feb 2007 JP
2007-203129 Aug 2007 JP
493241 Mar 1976 SU
200611449 Apr 2006 TW
201023207 Jun 2010 TW
WO-9628577 Sep 1996 WO
WO 02092503 Nov 2002 WO
2004052778 Jun 2004 WO
WO-2005063390 Jul 2005 WO
WO 2006079213 Aug 2006 WO
WO-2008130451 Oct 2008 WO
WO-2008130451 Oct 2008 WO
WO-2011081833 Jul 2011 WO
Non-Patent Literature Citations (82)
Entry
Nagai, Yasutaka, et al., “Sintering Inhibition Mechanism of Platinum Supported on Ceria-based Oxide and Pt-oxide—support Interaction,”Journal of Catalysis 242 (2006), pp. 103-109, Jul. 3, 2006, Elsevier.
Kenvin et al. “Supported Catalysts Prepared from Monouclear Copper Complexes: Catalytic Properties”, Journal of Catalysis, pp. 81-91.
National Aeronautics and Space Administration, “Enthalpy”, http://www.grc.nasa.gov/WWW/K-12/airplane/enthalpy.html, Nov. 23, 2009, 1 page.
Hanet al., Deformation Mechanisms and Ductility of Nanostructured Al Alloys, Mat. Res. Soc. Symp. Proc. vol. 821, Jan. 2004, Material Research Society, http://www.mrs.org/s—mrs/bin.asp?CID=2670&DOC=FILE.PDF., 6 pages.
United States Patent and Trademark Office, Office Action, mailed Feb. 19, 2010, U.S. Appl. No. 12/152,109, filed May 9, 2008, First Named Inventor: Maximilian A. Biberger, 17 pages.
Derwent English Abstract for publication No. SU 193241 A, Application No. 1973SU1943286 filed on Jul. 2, 1973, published on Mar. 1, 1976, entitled“Catalyst for Ammonia Synthesis Contains Oxides of Aluminium, Potassium, Calcium, Iron and Nickel Oxide for Increased Activity,” 3 pgs.
J. Heberlein, “New Approaches in Thermal Plasma Technology”, Pure Appl. Chem., vol. 74, No. 3, 2002, pp. 327-335.
T. Yoshida, “The Future of Thermal Plasma Processing for Coating”, Pure & Appl. Chem., vol. 66, No. 6, 1994 pp. 1223-1230.
A. Gutsch et al., “Gas-Phase Production of Nanoparticles”, Kona No. 20, 2002, pp. 24-37.
Dr. Heike Mühlenweg et al., “Gas-Phase Reactions—Open Up New Roads to Nanoproducts”, Degussa ScienceNewsletter No. 08, 2004, pp. 12-16.
Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, M. Vardelle, A. Vardelle, K-I li, P. Fauchais, Universite de Limoges, 123 Avenue A. Thomas 87000, Limoges, F. , Pure & Chem, vol. 68, No. 5, pp. 1093-1099, 1996.
H. Konrad et al., “Nanostructured Cu-Bi Alloys Prepared by Co-Evaporation in a Continuous Gas Flow,” NanoStructured Materials, vol. 7, No. 6, Apr. 1996, pp. 605-610.
M.Vardelle et al., “Experimental Investigation of Powder Vaporization in Thermal Plasma Jets,” Plasma Chemistry and Plasma Processing, vol. 11, No. 2, Jun. 1991, pp. 185-201.
P. Fauchais et al., “Plasma Spray: Study of the Coating Generation,” Ceramics International, Elsevier, Amsterdam, NL, vol. 22, No. 4, Jan. 1996, pp. 295-303.
P. Fauchais et al., “Les Dépôts Par Plasma Thermique,” Revue Generale De L'Electricitie, RGE. Paris, FR, No. 2, Jan. 1993, pp. 7-12.
P. Fauchais et al, “La Projection Par Plasma: Une Revue,” Annales De Physique, vol. 14, No. 3, Jun. 1989, pp. 261-310.
Stiles, A. B. (Jan. 1, 1987). “Manufacture of Carbon-Supported Metal Catalysts,” in Catalyst Supports and Supported Catalysts, Butterworth Publishers, MA, pp. 125-132.
Bateman, J. E. et al. (Dec. 17, 1998). “Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes,” Angew. Chem Int. Ed. 37(19):2683-2685.
Carrot, G. et al. (Sep. 17, 2002). “Surface-Initiated Ring-Opening Polymerization: A Versatile Method for Nanoparticle Ordering,” Macromolecules 35(22):8400-8404.
Chen, H.-S. et al. (Jul. 3, 2001). “On the Photoluminescence of Si Nanoparticles,” Mater. Phys. Mech. 4:62-66.
Fojtik, A. et al. (Apr. 29, 1994). “Luminescent Colloidal Silicon Particles,”Chemical Physics Letters 221 :363-367.
Fojtik, A. (Jan. 13, 2006). “Surface Chemistry of Luminescent Colloidal Silicon Nanoparticles,” J. Phys. Chem. B. 110(5):1994-1998.
Hua, F. et al. (Mar. 2006). “Organically Capped Silicon Nanoparticles With Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation,” Langmuir 22(9):4363-4370.
Jouet, R. J. et al. (Jan. 25, 2005). “Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids,” Chem. Mater.17(11):2987-2996.
Kim, N. Y. et al. (Mar. 5, 1997). “Thermal Derivatization of Porous Silicon with Alcohols,” J. Am. Chem. Soc. 119(9):2297-2298.
Kwon, Y.-S. et al. (Apr. 30, 2003). “Passivation Process for Superfine Aluminum Powders Obtained by Electrical Explosion of Wires,” Applied Surface Science 211:57-67.
Langner, A. et al. (Aug. 25, 2005). “Controlled Silicon Surface Functionalization by Alkene Hydrosilylation,” J. Am. Chem. Soc. 127(37):12798-12799.
Li, D. et al. (Apr. 9, 2005). “Environmentally Responsive “Hairy” Nanoparticles: Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical Polymerization Techniques,” J. Am. Chem. Soc. 127(7):6248-6256.
Li, X. et al. (May 25, 2004). “Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching,” Langmuir 20(11):4720-4727.
Liao, Y.-C. et al. (Jun. 27, 2006). “Self-Assembly of Organic Monolayers on Aerosolized Silicon Nanoparticles,” J.Am. Chem. Soc. 128(28):9061-9065.
Liu, S.-M. et al. (Jan. 13, 2006). “Enhanced Photoluminescence from Si Nano-Organosols by Functionalization With Alkenes and Their Size Evolution,” Chem. Mater. 18(3):637-642.
Neiner, D. (Aug. 5, 2006). “Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles,” J. Am. Chem. Soc. 128:11016-11017.
Netzer, L. et al. (1983). “A New Approach to Construction of Artificial Monolayer Assemblies,” J. Am. Chem. Soc. 105(3):674-676.
Sailor, M. J. (1997). “Surface Chemistry of Luminescent Silicon Nanocrystallites,” Adv. Mater. 9(10):783-793.
Tao, Y.-T. (May 1993). “Structural Comparison of Self-Assembled Monolayers of n-Alkanoic Acids on the surfaces of Silver, Copper, and Aluminum,” J. Am. Chem. Soc. 115(10):4350-4358.
Zou, J. et al. (Jun. 4, 2004). “Solution Synthesis of Ultrastable Luminescent Siloxane-Coated Silicon Nanoparticles,” Nano Letters 4(7):1181-1186.
U.S. Appl. No. 12/001,602, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/001,643, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/001,644, filed Dec. 11, 2007, for Biberger et al.
U.S. Appl. No. 12/152,084, filed May 9, 2008, for Biberger.
U.S. Appl. No. 12/152,111, filed May 9, 2008, for Biberger et al.
U.S. Appl. No. 12/474,081, filed May 28, 2009, for Biberger et al.
U.S. Appl. No. 12/943,909, filed Nov. 10, 2010, for Layman.
U.S. Appl. No. 12/954,813, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 12/954,822, filed Nov. 26, 2010, for Biberger.
U.S. Appl. No. 12/961,030, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,108, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/961,200, filed Dec. 6, 2010, for Lehman.
U.S. Appl. No. 12/962,463, filed Dec. 7, 2010, for Leamon.
U.S. Appl. No. 12/962,523, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/962,533, filed Dec. 7, 2010, for Yin et al.
U.S. Appl. No. 12/968,235, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,239, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,241, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,245, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,248, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/968,253, filed Dec. 14, 2010, for Biberger.
U.S. Appl. No. 12/969,087, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/969,128, filed Dec. 15, 2010, for Biberger.
U.S. Appl. No. 12/969,306, filed Dec. 15, 2010, for Lehman et al.
U.S. Appl. No. 12/969,447, filed Dec. 15, 2010, for Biberger et al.
U.S. Appl. No. 12/969,457, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 12/969,503, filed Nov. 15, 2010, for Leamon et al.
U.S. Appl. No. 13/028,693, filed Feb. 16, 2011, for Biberger.
U.S. Appl. No. 13/033,514, filed Feb. 23, 2011, for Biberger et al.
U.S. Appl. No. 13/291,983, filed Nov. 8, 2011, for Layman et al.
Babin, A. et al. (1985). “Solvents Used in the Arts,” Center for Safety in the Arts: 16 pages.
Chen, W.-J. et al. (Mar. 18, 2008). “Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria,” Small 4(4): 485-491.
Faber, K. T. et al. (Sep. 1988). “Toughening by Stress-Induced Microcracking in Two-Phase Ceramics,” Journal of the American Ceramic Society 71: C-399-C401.
Gangeri, M. et al. (2009). “Fe and Pt Carbon Nanotubes for the Electrocatalytic Conversion of Carbon Dioxide to Oxygenates,” Catalysis Today 143: 57-63.
Ji, Y. et al. (Nov. 2002) “Processing and Mechanical Properties of Al2O3-5 vol. % Cr Nanocomposites,” Journal of the European Ceramic Society 22(12):1927-1936.
Luo, J. et al. (2008). “Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions,” Advanced Materials 20: 4342-4347.
Mignard, D. et al. (2003). “Methanol Synthesis from Flue-Gas CO2 and Renewable Electricity: A Feasibility Study,” International Journal of Hydrogen Energy 28: 455-464.
Park, H.-Y. et al. (May 30, 2007). “Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-Separation,” Langmuir 23: 9050-9056.
Park, N.-G. et al. (Feb. 17, 2004). “Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn-O Type Shell on SnO2 and TiO2 Cores,” Langmuir 20: 4246-4253.
“Plasma Spray and Wire Flame Spray Product Group,” located at http://www.processmaterials.com/spray.html, published by Process Materials, Inc., last accessed Aug. 5, 2013, 2 pages.
“Platinum Group Metals: Annual Review 1996” (Oct. 1997). Engineering and Mining Journal, p. 63.
Rahaman, R. A. et al. (1995). “Synthesis of Powders,” in Ceramic Processing and Sintering. Marcel Decker, Inc., New York, pp. 71-77.
Subramanian, S. et al. (1991). “Structure and Activity of Composite Oxide Supported Platinum-Iridium Catalysts,” Applied Catalysts 74: 65-81.
Ünal, N. et al. (Nov. 2011). “Influence of WC Particles on the Microstructural and Mechanical Properties of 3 mol% Y2O3 Stabilized ZrO2 Matrix Composites Produced by Hot Pressing,” Journal of the European Ceramic Society (31)13: 2267-2275.
U.S. Appl. No. 13/589,024, filed Aug. 17, 2012, for Yin et al.
U.S. Appl. No. 13/801,726, filed Mar. 13, 2013, for Qi et al.
Provisional Applications (1)
Number Date Country
60928946 May 2007 US