1. Field of the Invention
The present invention relates to a plasma display device and a control method thereof.
2. Description of the Related Art
A plasma display device conducts the power constant control, in which the number of sustain pulses that the plasma display device can emit is determined according to the display load factor. Besides, the actual number of gradations of the plasma display device is determined by the sum of weights of all of subfields which is not dependent on the display load factor. Therefore, in a video with a smaller display load factor, that is, a darker video, the total number of sustain pulses is larger, leading to a larger number of emitted sustain pulses per gradation. On the other hand, in a video with a larger display load factor, that is, a brighter video, the total number of sustain pulses is smaller, leading to a smaller number of emitted sustain pulses per gradation. In particular, a subfield with the smallest weight is used for an error diffusion processing bits in which the luminance of the error diffusion bits varies depending on a video scene which is recognized as flicker. On the other hand, the dark video with a smaller display load factor has suffered from insufficient expressiveness at a lower gradation value part. This is because a dark video has a larger difference between gradation values than that of a bright video.
In Patent Reference 1 described later, the peak luminance in one field is changed according to the average luminance level (APL) of video data. However, the APL does not always match with the number of sustain pulses when the following controls are performed: control of the amount of power supplied; control of the number of sustain pulses according to the display load factor of each subfield to improve the peak luminance; and control to reduce the number of sustain pulses to keep heat of a plasma display panel and circuit components and so on at a fixed temperature or lower, and so on. Therefore, a non-negligible difference may appear between the number of gradations and the number of sustain pulses which can be inputted. For example, when the number of sustain pulses is too large with respect to the number of gradations, the number of sustain pulses to be allocated to the minimum subfield is not constant, causing diffusion error and flicker (occurring due to variation in luminance of the minimum subfield) at the lower gradation value part. For example, where the number of gradations is 256, when the number of sustain pulses which can be inputted is 1000, the number of sustain pulses to be allocated to the minimum subfield is four, while when the number of sustain pulses which can be inputted is 768, the number of sustain pulses to be allocated to the minimum subfield is three. The number of sustain pulses which can be inputted varies depending on a video, with which the number of sustain pulses to be allocated to the minimum subfield also varies. Conversely, when the number of sustain pulses is too small with respect to the number of gradations, the ratio at which the numbers of sustain pulses to be allocated to subfields is different from the luminance ratio represented by the subfield array, resulting in an image with insufficient gradations. This occurs particularly in a subfield with a smaller weight, so that noise occurs in a contour form at a lower gradation value part of a video.
(Patent Document 1)
Japanese Patent Application Laid-open No. 2003-29704
An object of the present invention is to provide a plasma display device which can select the number of gradations suitable for the number of sustain pulses varying according to the display load factor and a control method thereof.
According to one aspect of the present invention, a plasma display device is provided which expresses a video with gradations by selecting each of a plurality of subfields forming one field, each of the subfields having a weighted number of sustain pulses. A sustain pulse number calculation unit calculates a display load factor of an input video signal and calculates a total number of sustain pulses of one field according to the display load factor. A gradation number selection unit selects a gradation number being a sum of weights of all of the subfields according to the calculated total number of sustain pulses.
A Y electrode control unit 123 supplies a predetermined voltage to Y electrodes Y1, Y2, and so on. Hereinafter, each of the Y electrodes Y1, Y2, and so on or their generic name is a Y electrode Yi, i representing a suffix.
An X electrode control unit 122 supplies a predetermined voltage to X electrodes X1, X2, and so on. Hereinafter, each of the X electrodes X1, X2, and so on or their generic name is an X electrode Xi, i representing a suffix.
Within a display region 124, the Y electrodes Yi and the X electrodes Xi form rows extending in parallel in the horizontal direction, and the address electrodes Aj form columns extending in the vertical direction. The Y electrodes Yi and the X electrodes Xi are arranged alternately in the vertical direction.
The Y electrodes Yi and the address electrodes Aj form a two-dimensional matrix with i rows and j columns. A display cell Cij is formed of an intersection of the Y electrode Yi and the address electrode Aj and the X electrode Xi correspondingly adjacent thereto. This display cell Cij corresponds to a pixel, so that the display region 124 can display a two-dimensional image. The X electrode Xi and the Y electrode Yi within display cell Cij have a space therebetween to form a capacitive load.
On the other hand, the address electrode Aj is formed on a rear glass substrate 214 which is disposed to oppose the front glass substrate 211, a dielectric layer 215 is deposited thereon, and further phosphors are deposited on the dielectric layer 215. In the discharge space 217 between the MgO protective film 213 and the dielectric layer 215, a Ne+Xe Penning gas or the like is sealed.
Each subfield SF is composed of a reset period Tr, an address period Ta, and a sustain period (sustain discharge) period Ts. During the reset period Tr, the display cell is initialized. During the address period Ta, emission or non-emission of each display cell can be selected by address discharge between the address electrode Aj and the Y electrode Yi. During the sustain period Ts, sustain discharge is performed between the X electrode Xi and the Y electrode Yi of the selected display cell to emit light. The number of light emission times (the duration of the sustain period Ts) by sustain pulses between the X electrode Xi and the Y electrode Yi is different in each subfield SF. This can determine a gradation value.
Selection from among the subfields SF1 to SF10 allows a video to be expressed with gradations. For example, selection and display of the subfield SF1 results in the gradation value 1, selection and display of the subfield SF2 results in the gradation value 2, and selection and display of the subfields SF1 and SF2 results in the gradation value 3.
The sum of weights of all of the subfields SF1 to SF10 is the gradation number. In the six selectable gradation numbers, the subfield SF1 with the smallest weight (and the subfields SF2 to SF4) of each gradation number is the same in weight as the subfields SF1 with the smallest weight (and the subfields SF2 to SF4) of the other gradation numbers, while the subfield SF10 with the largest weight (and the subfields SF9 to SF7) of each gradation number is different in weight from the subfields SF10 with the largest weight (and the subfields SF9 to SF7) of the other gradation numbers.
In all of the six gradation numbers in
More specifically, in the six selectable gradation numbers, all of the selection patterns of the subfields for expressing the gradation values of the 192-gradation being the minimum gradation number are included in the selection patterns of the subfields for expressing the gradation values of the other gradation numbers (the 512-gradation, 448-gradation, 384-gradation, 320-gradation, and 256-gradation).
Further, in this example, where the gradation number is increased from the 192-gradation, other selection patterns are inserted between the selection pattern “0000111111” and the selection pattern “0001011010”. All of the inserted selection patterns are patterns in each of which the seventh subfield SF7 is selected.
In other words, the selection patterns of the subfields for expressing the gradation values of the other gradation numbers (the 512-gradation, 448-gradation, 384-gradation, 320-gradation, and 256-gradation) are formed by inserting selection patterns of other subfields between the gradation value where a specific subfield (for example, the subfield SF7) is first selected and the preceding gradation value when the gradation values of the 192-gradation being the minimum gradation number are arranged in an ascending order.
It is not always necessary to store, in a memory, all of the subfield selection patterns for each of the six gradation numbers in
The configuration in
A sustain pulse number prediction unit 110 includes a gain control unit 111, an error diffusion processing unit 112, a subfield conversion processing unit 113, an every-subfield display load factor measurement unit 114, and a first sustain pulse number calculation processing unit 115 and predicts the number of sustain pulses.
The gain control unit 111 gain-controls the output signal from the inverse γ conversion processing unit 101 and outputs the gain-controlled signal to the error diffusion processing unit 112. The error diffusion processing unit 112 performs error diffusion processing so that the video signal has the minimum gradation number (the 192-gradation) of the above-described six gradation numbers. In other words, where an error in a decimal fraction part arises when the number of gradations of the inputted video signal is converted into the minimum gradation number, the error in the decimal fraction part is spatially diffused into adjacent pixels. The subfield conversion processing unit 113 performs subfield conversion according to the selection patterns of the minimum gradation number (the 192-gradation) in
The every-subfield display load factor measurement unit 114 calculates the display load factor for every subfield. The display load factor is detected based on the number of emitting pixels and the gradation values of the emitting pixels. For example, when all of the pixels of one field image are displayed at the maximum gradation value, the display load factor is 10%. When all of the pixels of one field image are displayed at half the maximum gradation value, the display load factor is 50%. When only half (50%) of the pixels of one field image are displayed at the maximum gradation value, the display load factor is also 50%.
The first sustain pulse number calculation processing unit 115 calculates the total number of sustain pulses in one field by power constant control and load correction processing according to the display load factor. In the power constant control, as shown in
The aforementioned load correction processing will be described. The effective brightness of the display in each subfield is determined by the luminance by sustain discharge and the number of sustain pulses (the sustain discharge period). The number of sustain pulses in each subfield is the proportion of a predetermined weight. If the display load factors of subfields are the same, the luminances by sustain discharges are also the same, so that brightnesses of displays are in the same ratio as that of the numbers of sustain pulses. However, when the display load factors of subfields are different, the luminance by sustain discharge is different for every subfield, so that brightnesses of displays by the subfields are not in the predetermined ratio. If such a thing happens, the gradation values displayed by combination of subfields are not accurately displayed. In an extreme case, there is a problem of brightness inversion occurring between gradation values. To solve this problem, the number of sustain pulses of each subfield is corrected according to the display load factor of each subfield. The first sustain pulse number calculation processing unit 115 calculates the total number of sustain pulses in one field after the correction.
A gradation number selection unit 116 selects a gradation number being the sum of the weights of all of the subfields according to the total number of sustain pulses calculated in the first sustain pulse number calculation processing unit 115. For example, the gradation number selection unit 116 selects the most suitable gradation number from among the above-described six gradation numbers. The gradation number selection unit 116 selects a larger gradation number for the larger total number of sustain pulses. What is obtained by dividing the total number of sustain pulses by the gradation number is the gradation step, and the gradation step preferably has a fixed value.
When the gradation number which is the value obtained by dividing the calculated total number of sustain pulses by a predetermined number of gradation steps lies between a plurality of selectable gradation numbers, the gradation number selection unit 116 selects either of preceding and subsequent selectable gradation numbers to the gradation number being the aforementioned dividing value. In this event, the gradation number selection unit 116 selects, from among the aforementioned preceding and subsequent selectable gradation numbers, the gradation number having the number of sustain pulses of the subfield with a small weight closer to that of the gradation number selected at the preceding time.
The gradation step conversion processing unit 104 converts the video signal outputted from the gain control unit 103 to one having the aforementioned selected gradation number. Specifically, the gradation step conversion processing unit 104 performs gradation number conversion by dividing the dynamic range of the input video signal by the aforementioned selected gradation number into equal steps. For example, when converting a 256-gradation signal to a 512-gradation signal, the gradation step conversion processing unit 104 performs calculation of 256-512. In this case, 256÷512□0.5, so that the video signal is outputted, by a step width of 0.5 gradation, to a nonlinear gain control processing unit 105 at the subsequent stage.
The nonlinear gain control processing unit 105 and an error diffusion processing unit 106, similarly to the above-described gain control unit 111 and error diffusion processing unit 112, spatially diffuse the error in the decimal fraction due to the gradation number conversion as well as perform dynamic false contour prevention processing. The subfield selection pattern of a specific gradation value together with the subfield patterns of pixels adjacent thereto appears, to the human eye, as if a false contour of a large gradation value exists in the moving image. This phenomenon is the dynamic false contour. To prevent the dynamic false contour, the nonlinear gain control processing unit 105 and error diffusion processing unit 106 perform the error diffusion processing by replacing the specific gradation value with another gradation value to prevent use of the specific gradation value.
The nonlinear gain control processing unit 105 performs gain processing suitable for the aforementioned selected gradation number to maintain the linearity of the input video signal and the output signal as well as performs nonlinear gain processing to generate a new gradation value by performing error diffusion processing for the gradation value which is prone to cause the dynamic false contour. The error diffusion processing unit 106 can reduce the dynamic false contour by performing the error diffusion processing for the output signal from the nonlinear gain control processing unit 105. Details of the nonlinear gain control processing unit 105 and the error diffusion processing unit 106 will be described later with reference to
A linearity compensation processing unit 107 converts the gradation value to a subfield selection pattern according to the selection pattern of the subfields corresponding to the selected gradation number. A subfield conversion processing unit 108 performs subfield conversion processing for the output signal from the linearity compensation processing unit 107 to convert the signal to subfield data. The address control unit 121 generates, according to the subfield data, a voltage for the address electrode Aj for selecting a subfield during which each pixel lights.
A second sustain pulse number calculation processing unit 117 corrects, as necessary, the total number of sustain pulses calculated by the first sustain pulse number calculation processing unit 115 and outputs the total number of sustain pulses. That correction is correction to decrease the total number of sustain pulses so as to keep heat at a fixed temperature or lower or to reduce the power by external operation.
A sustain pulse signal generation unit 118 divides the total number of sustain pulses to correspond to the weight ratio among the subfields of the aforementioned selected gradation number, thereby generating a sustain pulse signal for display. The X electrode control unit 122 and the Y electrode control unit 123 generate voltages for the X electrode Xi and the Y electrode Yi according to the sustain pulse signal. The display cell selected by the address electrode Aj sustain-discharges between the X electrode Xi and the Y electrode Yi to emit light.
The error diffusion processing unit 106 includes a diffusion filter 1301 and an adding unit 1302. The adding unit 1302 adds the output signal from the nonlinear gain control processing unit 105 and the output signal from the diffusion filter 1301 and outputs them. The output includes an integer part S1311 and a decimal fraction part S1312. The integer part S1311 is outputted to the linearity compensation processing unit 107. The diffusion filter 1301 can filter the decimal fraction part S1312 to spatially diffuse the error in the decimal fraction part. As a result, the selection pattern P1 displays the luminance L1, the selection pattern P1+α displays the luminance L2, the selection pattern P1+β displays the luminance L3, and the selection pattern P4 displays the luminance L4.
The error diffusion processing unit 106 performs the error diffusion processing by replacing a specific gradation value with another gradation value to prevent use of the specific gradation value in gradation values after the gradation number conversion. The aforementioned specific gradation value includes the gradation value (for example, the gradation value 64 in
As described above, according to the first and second embodiments, the first characteristic is to measure the display load factor in one field of the input signal using the minimum gradation number, perform a predetermined calculation, and select a gradation number using the result of calculating the total number of sustain pulses. This allows an appropriate total number of sustain pulses to be determined according to the display load factor and an appropriate gradation number to be selected according to the total number of sustain pulses. This enables prevention of flicker when the display load factor is large and prevention of insufficient expressiveness at a low gradation value part when the display load factor is small. In addition, it is also possible to prevent the flicker when the total number of sustain pulses is too large with respect to the gradation number and to prevent noise due to insufficient gradations when the total number of sustain pulses is too small with respect to the gradation number.
The second characteristic is that the subfield selection patterns associated with the minimum gradation number are included in the subfield selection patterns of the other gradation numbers, so that increase in size of the memory to store the subfield selection patterns is suppressed as much as possible. The case of a method including a look-up table of the selection patterns for each average luminance level (APL) incurs a significant increase in size of memory. In this embodiment, however, the look-up tables to be stored in the memory are only those for the selection patterns for the maximum gradation number, and only the selection patterns not for use in the look-up tables need to be stored in the memory for the switch of the gradation number.
The third characteristic is that where the subfield selection patterns are arranged such that the gradation values are in an ascending order, the subfield selection patterns of the other gradation numbers different from the selection patterns of the minimum gradation number are inserted between the gradation value where a subfield with a large weight in the subfield selection pattern of the minimum gradation number is first selected after continuous non-selection and the preceding gradation value, thereby solving level difference in luminance due to increase in the difference in weight between the subfields and reducing as much as possible occurrence of the dynamic false contour.
The fourth characteristic is that in the selection patterns of a large gradation number, preceding and subsequent gradation values to the gradation value where a subfield with a larger weight is first selected are expressed by diffusion processing. This further reduces the dynamic false contour which cannot be reduced by the third characteristic.
The fifth characteristic is that a larger number of gradation values are expressed by diffusion processing on the higher gradation value side, and no or a smaller number of gradation values are expressed by diffusion processing on the lower gradation value side. The purpose of expressing a larger number of gradation values by diffusion processing on the higher gradation value side is to reduce the dynamic false contour as described in the fourth characteristic, and the purpose of expressing no or a smaller number of gradation values by diffusion processing on the lower gradation value side is to display the low gradation value part by lighting pixels in a high density. To reduce the dynamic false contour in all of the gradation values, gradation values for which diffusion processing is performed are allowed even on the low gradation value side. Therefore, the weighting of the subfields on the lower side is not always limited to binary numbers.
It is possible to determine an appropriate number of sustain pulses according to the display load factor and to select an appropriate gradation number according to the total number of sustain pulses. It is also possible to prevent flicker when the display load factor is large and to prevent insufficient expressiveness at a low gradation value part when the display load factor is small. Further, it is also possible to prevent flicker when the total number of sustain pulses is too large with respect to the gradation number and to prevent noise due to insufficient gradations when the total number of sustain pulses is too small with respect to the gradation number.
The present embodiments are to be considered in all respects as illustrative and no restrictive, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof.
Number | Date | Country | Kind |
---|---|---|---|
2004-358502 | Dec 2004 | JP | national |
This application is a continuation of U.S. application Ser. No. 11/297,638, filed Dec. 9, 2005, claiming the benefit of priority from prior Japanese Patent Application No. 2004-358502, filed Dec. 10, 2004, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11297638 | Dec 2005 | US |
Child | 12222800 | US |