Our invention relates to plasma electrode, plasma processing electrode and CVD electrode used for surface treatment and film deposition on the substrate.
It is generally known that surfaces of substrates can be reformed with plasma and that function film can be formed on the surface of substrates with a film depositing means using plasma. To provide plasma used for these technologies, various plasma electrodes have been developed and put into practical use. From a viewpoint of efficiency, the electrode technology for generating plasma on both sides of an electrode has been developed.
Patent document 1 discloses an electrode having two magnetic circuits back to back to generate plasma on both sides of the electrode so that a sputtering film deposition can be performed on both sides at the same time. With this technology, the sputtering film deposition can be performed on both sides of cathode comprising two cathodes integrated back to back, and the film deposition can be performed efficiently by feeding substrates in each film depositing zone.
Patent document 2 discloses an electrode structure having a magnetic circuit without yokes to generate magnetic field at both sides of the electrode for magnetron electric discharge. With this electrode, sputtering film deposition can be performed on both sides of cathode. This electrode doesn't have a yoke so that the magnetic flux density is distributed equally at the electric discharge surface side and its opposite side although conventional one has a yoke to induce the magnetic flux at the opposite side. This electrode makes it possible to perform two passes of sputtering film deposition per one electrode because another target surface can be provided at the opposite side of the electric discharge surface side to perform sputtering film deposition on both sides.
Patent document 3 discloses an electrode structure having a magnet unit to generate magnetic field at both sides for magnetron electric discharge so that sputtering film deposition can be performed on both sides of cathode. With this electrode having a magnetic circuit with a yoke to actively induce the magnetic flux for optimizing the magnetic flux density distribution, sputtering film deposition can be performed on both sides of cathode in the same way as in Patent document 2.
Patent documents 1-3 have suggested sputtering electrodes having an electrode structure capable of generating plasma on both sides of cathode for efficient sputtering film deposition. However, there hasn't been any efficient plasma source suggested suitably for a use such as plasma processing and plasma CVD, other than the sputtering film deposition. When the sputtering electrodes disclosed in Patent documents 1-3 are used for plasma processing or plasma CVD, generated plasma might have different intensities between both sides of cathode or plasma might be generated on one side only, and therefore electric discharge might not be achieved stably and equally on both sides. Although that may not be a big problem on a sputtering device to form one layer of film on one electric discharge surface, it could cause a poor controllability, on a plasma processing or plasma CVD electrode which generates two kinds of plasma for a single processing.
To solve the above-described problem, our plasma electrode comprises an electrode main body and ground members, the electrode main body having a discharge surface on an outer circumference surface thereof and a magnet disposed therein for forming a tunnel-shaped magnetic field on the discharge surface, the ground members facing at least a portion of the discharge surface with a gap therebetween and facing each other so as to sandwich the electrode main body therebetween, the discharge surface surrounding the outer circumference surface of the electrode main body, either with or without a gap interposed therebetween.
To solve the above-described problem, our plasma processing electrode comprises said plasma electrode and a gas nozzle introducing a gas in a direction parallel to the electric discharge surface into an electric discharge space between the ground member and the electric discharge surface facing the ground member.
Our CVD electrode comprises said plasma processing electrode and a source gas nozzle introducing a CVD source gas into a neighborhood of the electrode main body, wherein a film is deposited on a substrate placed in a position which is distant from the electrode main body and is downstream in a flow direction of the gas discharged from the gas nozzle.
Our plasma CVD device comprises said CVD electrode and a supporting mechanism of the substrate in a vacuum chamber.
Our manufacturing process of a substrate with a thin film comprises: a plasma generation step to generate a plasma with the plasma electrode of said CVD electrode; a gas feeding step to resolve the gas introduced through the plasma from the gas nozzle and feed a radical generated onto the substrate; a CVD source gas feeding step to feed the CVD source gas introduced from the source gas nozzle onto the substrate to form a thin film on the substrate.
Our invention can provide a plasma source efficient in terms of installation space and productivity to achieve high-speed plasma processing and plasma CVD film deposition relative to conventional technologies.
Hereinafter, embodiments of our invention will be explained with reference to the figures, although our invention should not be limited to any embodiment.
The plasma electrode comprises a ground member (not shown) facing cathode 103 with interval. High-density plasma is generated on the surface of cathode 103 by applying electric field between cathode 103 and ground member. The plasma is generated to surround the main body of electrode since the magnetic field for magnetron formed on the electric discharge surface of cathode 103 is generated continuously to surround the main body of electrode as described above. Such a plasma stably connected continuously can prevent troubles, such as plasma generation failure at one side and unbalanced intensity of plasma generated at both sides of the main body of electrode. The ground member may not be disposed to face all cathodes 103, and may be disposed to face some cathodes 103 beyond the main body of electrode. It is preferable that the ground member is disposed to surround the main body of electrode so that plasma generated to surround the main body of electrode is more stable.
The plasma electrode may have refrigerant flow path 104 as a space surrounded by magnetic field generation means 101, yoke 102 and cathode 103. Refrigerant flow path 104 can be cooled off by flowing refrigerant therein to prevent magnet 101 and cathode 103 from being heat damaged with discharge.
Magnet 101 may be designed appropriately in kind and shape so that tunnel-shaped magnetic flux develops on the surface of cathode 103 with sufficient intensity. It is preferable that magnet 101 is a ferrite magnet, a samarium cobalt magnet or a neodymium magnet. Magnet 101 can be formed into a shape corresponding to the shape of electrode. For example, it is preferable that a round-shaped magnet is provided in a small round-shaped electrode. A rectangular magnet may generally be provided in the rectangular electrode. A large magnet with which a wide electrode is provided might have a poor handling ability in assembly work because of its strong magnetic force. In such a case, it is generally preferable that a plurality of rectangular magnets are disposed in a line to form a group of magnets.
The layout of magnet 101 and yoke 102 can be designed appropriately according to configuration of the magnetic circuit. In a case of magnetic circuit shown in
Cathode 103 may be made of a material selected appropriately according to the use of electrode. For example, when the plasma electrode is intended to be used for a sputtering equipment, it is preferable that cathode 103 has an outermost layer containing a sputtering target material at the electric discharge side. Alternatively, when the plasma electrode is used as a plasma generation source such as ion source, it is preferable that cathode 103 is made of a material such as aluminum and titanium having a low sputtering rate to prevent cathode 103 from eroding with plasma. In both cases, it is preferable that cathode 103 is cooled off with any cooling means, and it is more preferable that cathode 103 in itself is cooled directly with refrigerant.
As shown in
Gas nozzle 204 is provided to introduce gas directly into a space ionized by electrode 201 so that the introduced gas is ionized efficiently. In addition, it can orient the gas introduction flow so that ion and radical generated in the ionized space are utilized efficiently. It is therefore preferable that the plasma processing electrode is provided in a plasma processing device such as ion source and radical source, and is preferably provided in a plasma CVD electrode.
The plasma CVD electrodes shown in
To remove charged particles damaging the substrate and deposited film, it is preferable that an electrically-grounded mesh conductor is provided between electrode 201 and a position to place substrate 203. To prevent the film depositing ability from deteriorating by blocking the passage of products other than the charged particles, it is preferable that the mesh opening rate is 50% or more.
Hereinafter, magnetic circuit analysis results of the plasma electrode described above will be shown as follows.
The main body of electrode shown in
Our invention is applicable to plasma CVD electrode, plasma processing electrode, and plasma electrode as ion source or radical source, although these applications do not limit our invention.
Number | Date | Country | Kind |
---|---|---|---|
2013-241641 | Nov 2013 | JP | national |
This is the U.S. National Phase application of PCT International Application No. PCT/JP2014/079940, filed Nov. 12, 2014, and claims priority to Japanese Patent Application No. 2013-241641, filed Nov. 22, 2013, the disclosures of each of these applications being incorporated herein by reference in their entireties for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/079940 | 11/12/2014 | WO | 00 |