The field of the present invention relates to devices and methods for generating light, and more particularly to electrodeless plasma lamps.
Electrodeless lamps may be used to provide point-like, bright, white light sources. Because electrodes are not used, they may have longer useful lifetimes than other lamps. Some plasma lamps direct microwave energy into an air cavity, with the air cavity enclosing a bulb containing a mixture of substances that can ignite, form a plasma, and emit light. However, for many applications, light sources that are brighter, smaller, less expensive, more reliable, and have longer lifetimes are desired.
Plasma lamps have been proposed that use a dielectric waveguide body to reduce the size of the lamp. An amplifier circuit may be used to provide power to the waveguide body to excite a plasma in a bulb positioned within a lamp chamber in the waveguide body.
What is desired are lamps with improved brightness and efficiency which can serve as a light source in products such as large-screen television sets and digital light processing projection systems. What is also desired are improved methods for production of plasma lamps, including manufacture of key components and overall lamp assembly.
All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
While the present invention is open to various modifications and alternative constructions, the embodiments shown in the drawings will be described herein in detail. It is to be understood, however, there is no intention to limit the invention to the particular forms disclosed. On the contrary, it is intended that the invention cover all modifications, equivalences and alternative constructions falling within the spirit and scope of the invention as described herein and as expressed in the appended claims.
As shown in
The size of the waveguide body required to achieve resonance at a desired frequency generally scales inversely with the square root of the dielectric constant of the material used. As a result, materials with a higher dielectric constant may be used to reduce the size of the lamp. In an example embodiment, the waveguide body 132 has a dielectric constant greater than 1, which is the dielectric constant of air. For example, alumina, a ceramic having a dielectric constant of about 9, may be used. In some embodiments, the dielectric material may have a dielectric constant in the range of from 2 to 10 or any range subsumed therein, or a dielectric constant in the range from 2 to 20 or any range subsumed therein, or a dielectric constant in the range from 2 to 100 or any range subsumed therein, or an even higher dielectric constant. In some embodiments, the waveguide body may include more than one such dielectric material resulting in an effective dielectric constant for the body within any of the ranges described above.
In this example embodiment, the waveguide body forms a lamp chamber 140 with a tapered wall that reflects light out of the lamp chamber. In some embodiments, the wall may taper to a vertex and form a shape having a focal point in the lamp chamber. For example, the lamp chamber 140 may have a paraboloidal or ellipsoidal shape. The walls of the lamp chamber may comprise a reflective dielectric materials (such as alumina) and/or be coated with a reflective coating such as a thin film, multi-layer dielectric coating. In this example, the reflective surface is not made from a conductive material that would prevent or substantially attenuate the transmission of power from the waveguide body 132 into the lamp chamber 140. In one example embodiment, a thin film, multi-layer dielectric coating of multiple layers of silicon dioxide (SiO2) may be used. Another example embodiment uses layers of titanium dioxide (TiO2). Typically, coatings used in the present invention have approximately 10 to 100 layers with each layer having a thickness in a range between 0.1 micron and 10 microns or any range subsumed therein.
In example embodiments, a bulb 146 is positioned completely or partially in the lamp chamber. The bulb contains a fill that forms a plasma and emits light when power is provided from the waveguide body to the bulb. The light is reflected from the walls of the lamp chamber 140 out the front of the lamp. The position of the bulb and the shape of the lamp chamber may be selected to provide a desired ray divergence out the front of the lamp. In example embodiments, the bulb may be positioned above the vertex of the lamp chamber such that the arc formed in the bulb is near the focal point of the lamp chamber. In example embodiments, the rays exiting the lamp chamber may be convergent, parallel or have some other ray divergence that matches an optical system used with the lamp. For instance, an optical system with lenses, reflectors and/or light pipes may be used in a projection display system to provide light from the light source to a spatial light modulator (SLM). In an example embodiment, the position of the bulb and the shape of the lamp chamber may match the ray divergence required by the optical system used with the lamp (e.g., the optical system for a projection display). The surface shape may be optimized for the desired ray divergence using commercial ray-tracing software, taking into account the finite emission volume of the plasma in the bulb, geometric constraints imposed by the bulb support structure, and constraints imposed by manufacturing processes. Suitable software products include ZEMAX™, available from Zemax Development Corporation of San Diego, Calif., and CODE-V™, available from Optical Research Associates of Pasadena, Calif. In example embodiments, the lamp chamber may provide a reflective surface that approximates a paraboloidal or ellipsoidal shape and the center of the bulb may be positioned at or near a focal point for the particular shape. In example embodiments, the arc length of the plasma is relatively small and the arc may be centered at or near the focal point of the reflective lamp chamber.
In the example shown in
Other bulb configurations may be used in other embodiments. For example, the bulb may be cylindrical with a planar top and bottom or hemisphere top and bottom; or the bulb may be spherical; or the bulb may have an oval cross section with curved top and bottom surfaces. These shapes are examples only and other shapes may be used as well such as parabolically contoured bulbs or irregularly shaped bulbs (e.g., hourglass shaped bulbs).
Each of the above bulbs has a length L between the inside walls of the bulb and an outer length OL. Each of the bulbs also has a width W between the inside walls of the bulb and an outer width OW. In bulbs with circular cross sections, the width W is equal to the inner diameter of the bulb and the outer width OW is equal to the outer diameter of the bulb. In a spherical bulb, the length and width are both equal to the diameter. For irregular shaped bulbs, the inner width may be determined by using the largest interior width in the region where power is predominantly coupled into the bulb and the inner length may be determined using the greatest length between distal ends of the bulb.
In example embodiments, the bulb may be in any of the above shapes or other shapes and have, for example, an outer width OW in a range between 2 and 35 mm or any range subsumed therein, an inner width W in a range between 1 and 25 mm or any range subsumed therein, a wall thickness in a range between 0.5 and 5 mm or any range subsumed therein, an inner length L between 3 and 20 mm or any range subsumed therein. In example embodiments, the bulb volume may be between 10.47 mm3 and 750 mm3 or any range subsumed therein. The above dimensions are examples only and bulbs with other dimensions may also be used in embodiments of the present invention.
Example bulbs in any of the above configurations may comprise an envelope of transmissive material such as quartz, sapphire or other solid dielectric. In some embodiments, the bulb envelope may be formed from a monolithic material. In other embodiments, bulbs may also be formed by a combination of materials forming an envelope. For example, a reflective body of ceramic may have an opening covered by a transmissive window of quartz, sapphire or other transmissive material. Some bulbs may also be formed in part by surfaces of the waveguide body and/or other surfaces of a lamp body. For example, a lamp chamber may be formed in the waveguide body and covered by a transmissive window of quartz, sapphire or transmissive material.
Some bulbs may be filled through a small opening that is then sealed. This can form a surface irregularity, called a “tip” or “tubulation”, where the bulb is sealed. In particular, some bulbs may be filled through a side wall of the bulb and an irregular side tubulation may be formed. With high temperatures and high pressures in an electrodeless bulb, a side tubulation that is too thin may be susceptible to failure and a side tubulation that is too thick may introduce optical distortions. Non-uniformities may also cause localized hot spots that can cause failure. For example, the pressure inside an electrodeless plasma bulb may be in the range of from 50 atmospheres to 250 atmospheres or more, or any range subsumed therein, and the temperature may be greater than 800 degrees Celsius.
In example embodiments, the bulb may be fabricated from a tube of dielectric material such as quartz using a tipless method that does not form side tubulation irregularities. The tube is sealed at one end and a fill is provided through the other end of the tube. The other end of the tube is then closed with a torch at a point about one inch longer than the desired inner length. A bulb of this type can be fabricated with a relatively thick, uniform wall to withstand the plasma environment and a relatively small interior volume to confine the plasma arc. Since the surface irregularities of a tip are avoided, more uniform heat dissipation and more uniform optical surface for light collection may be achieved. In example embodiments, this process may be used to form a relatively thick bulb wall that has a substantially uniform thickness. For example, the wall thickness may be in the range of about 2.5 mm to 5 mm or any range subsumed therein and the uniformity of the wall thickness may be within ±5-20% of the wall thickness or any range subsumed therein. In some example embodiments, the uniformity of the wall thickness may be within ±0.25 mm.
The bulb may be positioned in the lamp chamber using a pedestal or other support. In one example embodiment, a tipless bulb is used and tubing below the bulb is retained to act as a support for the bulb. The support may be attached to the wall of the lamp chamber or may pass through a hole in the waveguide body and be attached to a separate support. The bulb may be positioned in the lamp chamber spaced apart from the wall of the lamp chamber and below the opening at the top of the lamp chamber. As described above, the bulb may be at or near a focal point for the lamp chamber. In some embodiments, the distance from the interior of the bulb to the bottom of the lamp chamber may range from about half the inner length of the bulb to twice the inner length of the bulb or more. In some example embodiments, this distance may range from 2 mm to 25 mm or more, or any range subsumed therein. In some embodiments, the closest distance from the interior of the bulb to the walls of the lamp chamber may also be from 2 mm to 25 mm or more, or any range subsumed therein. In some embodiments, the distance from the interior of the bulb to the top of the lamp chamber may range from about half the inner length of the bulb to three times the inner length of the bulb or more. In some example embodiments, this distance may range from 2 mm to 40 mm or more, or any range subsumed therein. In some embodiments, the focal point and position of the bulb arc is closer to the bottom vertex of the lamp chamber than to the top opening. The above dimensions are examples only and bulb configurations with other dimensions may also be used in embodiments of the present invention.
A power source, such as amplifier 138, may be coupled to the waveguide body to provide power at a frequency in the range of 50 MHz to 30 GHz or any range subsumed therein. The amplifier 138 may be coupled to a drive probe 134 to provide power to the waveguide body. The drive probe may be inserted into an opening formed in the waveguide body and may be in direct contact with the waveguide body to effectively couple power into the waveguide body. A feedback probe 136 may be coupled to the waveguide body and the amplifier to obtain feedback from the waveguide body and provide it to the amplifier. The feedback probe may be inserted into an opening formed in the waveguide body and may be in direct contact with the waveguide body to effectively obtain feedback from the waveguide body.
The outer surfaces of the waveguide body 132 may be coated with a conductive material. In example embodiments, the coating may be metallic electroplating. In other embodiments, the coating may be silver paint or other metallic paint. The paint may be brushed or sprayed onto the waveguide body and may be fired or cured at high temperature. In an example embodiment, the holes where the probes are inserted are not coated with the conductive coating in order to allow power to be effectively coupled into the waveguide body and similarly the walls of the lamp chamber are not coated to allow power to be coupled from the waveguide body into the lamp chamber 140. Since the lamp chamber 140 may be substantially larger than the bulb 146 in order to provide the desired reflective properties, some embodiments may use conductive material adjacent to the bulb to concentrate radio frequency power near the bulb. As shown at 142 and 144 in
In the example embodiment of
Additional details regarding example embodiments will now be described with reference to
Plasma lamp 20 further includes a metallic top adapter plate 34 having a lower surface 34L to which is electrically grounded an electromagnetic field-concentrating antenna 40, and a metallic bottom adapter plate 36 having upper and lower surfaces 36U, 36L. A generally cylindrical, metallic holder 38 having a lip 38L is attached to surface 36U. A bulb assembly 50 having upper and lower ends 50U, 50L is positioned symmetrically along the common longitudinal axis of waveguide body 22 and lamp chamber 32. As described above, the bulb assembly may be formed from a tube of dielectric material sealed near one end to form a bulb 56 within the bulb assembly. The other end may comprise a length of tube that supports the bulb assembly. The tube is inserted through holes 25H and 31H to position the bulb in the lamp chamber 32. Antenna 40 is proximate to but does not touch bulb assembly upper end 50U. Bulb assembly end 50L is closely received within and bonded to holder 38. Surface 36L is attached to a housing 60 including a circuit board 62 including a microwave amplifier 63 and associated circuitry, and a heatsink-radiator 64. Adapter plates 34 and 36 are bolted to housing 60. Coaxial feeds leading to drive probe 66 and feedback probe 68 extend through circuit board 62 and are received within holes 66H, 68H, respectively, in surface 22L of waveguide body 22. The adapter plate holds the bulb assembly 50 in position relative to the through holes for the probes and acts as a convenient mechanism for aligning the bulb assembly and probes with the waveguide body 22 and dielectric sleeve 30. Thus, plasma lamp 20 is a single unit integrating the waveguide body 22, lamp chamber 32, antenna 40, bulb assembly 50, circuit board 62, and heatsink-radiator 64.
Still referring to
Alternatively, a one-piece waveguide body and lamp chamber can be used.
A plasma bulb must operate at elevated wall temperatures (>800° C.) and internal pressures (between 50 and 250 atmospheres). Fabrication methods which use a separate fill-tube (“tip”) to introduce light-emitting material into a bulb made from tubing stock, may result in a very thin closure where the fill-tube was attached to the tubing, typically 1-1.5 mm in thickness, or other surface irregularities. A bulb with such a “thin spot” may have reliability problems at such high temperatures and pressures and could potentially rupture. Also, using a tip may leave an optical blemish on the bulb surface which decreases light throughput. Also, thermal asymmetries may develop which can affect consistent evaporation of halides (and therefore consistent color and lumens as well as consistent warm-up time to full brightness) from bulb to bulb.
In some example lamps, the waveguide body may be narrowed in the region adjacent to the bulb to limit the length of the plasma region. In the example embodiments shown in
In some example lamps, the waveguide body may also provide a heatsink to avoid excessive bulb temperatures. In the example embodiments shown in
An example bulb 56, shown in
The bulb assembly may be mounted to a structure exterior to the dielectric waveguide body, such as adapter plate 36 in
In example embodiments, the dielectric waveguide body 22 has one or more resonant modes each manifested as a certain spatial-intensity distribution of radio frequency (RF) field confined within the body. A suitably designed antenna within the lamp can intercept the RF field in the lamp chamber to create AC currents therein. The AC current in the antenna can in turn radiate into a partially enclosed space in which the bulb is closely received. The dimensions of this space must be small compared to the RF field wavelength; the net effect is a concentration of RF field in the enclosed space, i.e., space proximate to the bulb. A conductive material adjacent to the bulb may be used to form an antenna of this type and thereby concentrate the RF field near the bulb.
Referring to
A bulb assembly such as bulb assembly 100 can be fabricated either according to the “one-piece” method described above for bulb assembly 50, or by presealing the antenna elements in separate stems which are then fused to the bulb. The following summarizes example bulb assembly fabrication processes for both one- and two-stem/antenna configurations:
This application is a continuation of U.S. application Ser. No. 11/619,989, filed on Jan. 4, 2007, and issued as U.S. Pat. No. 7,719,195 on May 18, 2010 entitled “PLASMA LAMP WITH FIELD-CONCENTRATING ANTENNA,” which claims benefit of priority to U.S. Provisional Application No. 60/756,087, filed on Jan. 4, 2006 entitled “PLASMA LAMP WITH FIELD-CONCENTRATING ANTENNA AND IMPROVED BULB, AND METHOD THEREFOR,” which applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3787705 | Bolin et al. | Jan 1974 | A |
3826950 | Hruda et al. | Jul 1974 | A |
4001631 | McNeill et al. | Jan 1977 | A |
4206387 | Kramer et al. | Jun 1980 | A |
4485332 | Ury et al. | Nov 1984 | A |
4498029 | Yoshizawa et al. | Feb 1985 | A |
4633140 | Lynch et al. | Dec 1986 | A |
RE32626 | Yoshizawa et al. | Mar 1988 | E |
4749915 | Lynch et al. | Jun 1988 | A |
4795658 | Kano et al. | Jan 1989 | A |
4887192 | Simpson et al. | Dec 1989 | A |
4950059 | Roberts | Aug 1990 | A |
4975625 | Lynch et al. | Dec 1990 | A |
4978891 | Ury | Dec 1990 | A |
5039903 | Farrall | Aug 1991 | A |
5070277 | Lapatovich | Dec 1991 | A |
5072157 | Greb et al. | Dec 1991 | A |
5084801 | El-Hamamsy et al. | Jan 1992 | A |
5086258 | Mucklejohn et al. | Feb 1992 | A |
5113121 | Lapatovich et al. | May 1992 | A |
5361274 | Simpson et al. | Nov 1994 | A |
5438242 | Simpson | Aug 1995 | A |
5448135 | Simpson | Sep 1995 | A |
5498937 | Korber et al. | Mar 1996 | A |
5525865 | Simpson | Jun 1996 | A |
5545953 | Lapatovich et al. | Aug 1996 | A |
5594303 | Simpson et al. | Jan 1997 | A |
5786667 | Simpson et al. | Jul 1998 | A |
5841244 | Hamilton et al. | Nov 1998 | A |
5910710 | Simpson | Jun 1999 | A |
5910754 | Simpson et al. | Jun 1999 | A |
5923116 | Mercer et al. | Jul 1999 | A |
6020800 | Arakawa et al. | Feb 2000 | A |
6031333 | Simpson | Feb 2000 | A |
6049170 | Hochi et al. | Apr 2000 | A |
6137237 | MacLennan et al. | Oct 2000 | A |
6246160 | MacLennan et al. | Jun 2001 | B1 |
6252346 | Turner et al. | Jun 2001 | B1 |
6265813 | Knox et al. | Jul 2001 | B1 |
6291936 | MacLennan et al. | Sep 2001 | B1 |
6313587 | MacLennan et al. | Nov 2001 | B1 |
6326739 | MacLennan et al. | Dec 2001 | B1 |
6424099 | Kirkpatrick et al. | Jul 2002 | B1 |
6518703 | Hochi et al. | Feb 2003 | B1 |
6566817 | Lapatovich | May 2003 | B2 |
6617806 | Kirkpatrick et al. | Sep 2003 | B2 |
6621195 | Fuji et al. | Sep 2003 | B2 |
6666739 | Pothoven et al. | Dec 2003 | B2 |
6737809 | Espiau et al. | May 2004 | B2 |
6856092 | Pothoven et al. | Feb 2005 | B2 |
6922021 | Espiau et al. | Jul 2005 | B2 |
7012489 | Sherrer et al. | Mar 2006 | B2 |
7034464 | Izadian et al. | Apr 2006 | B1 |
7291985 | Espiau et al. | Apr 2007 | B2 |
7348732 | Espiau et al. | Mar 2008 | B2 |
7358678 | Espiau et al. | Apr 2008 | B2 |
7362054 | Espiau et al. | Apr 2008 | B2 |
7362055 | Espiau et al. | Apr 2008 | B2 |
7362056 | Espiau et al. | Apr 2008 | B2 |
7372209 | Espiau et al. | May 2008 | B2 |
7391158 | Espiau et al. | Jun 2008 | B2 |
7429818 | Chang et al. | Sep 2008 | B2 |
7719195 | DeVincentis et al. | May 2010 | B2 |
20010035720 | Guthrie et al. | Nov 2001 | A1 |
20020105274 | Pothoven et al. | Aug 2002 | A1 |
20020180356 | Kirkpatrick et al. | Dec 2002 | A1 |
20030193299 | Choi et al. | Oct 2003 | A1 |
20050212456 | Espiau et al. | Sep 2005 | A1 |
20050286263 | Champion et al. | Dec 2005 | A1 |
20060250090 | Guthrie et al. | Nov 2006 | A9 |
20070109069 | Espiau et al. | May 2007 | A1 |
20070171006 | DeVincentis | Jul 2007 | A1 |
20070211991 | Espiau et al. | Sep 2007 | A1 |
20070217732 | Chang et al. | Sep 2007 | A1 |
20070236127 | DeVincentis et al. | Oct 2007 | A1 |
20080054813 | Espiau et al. | Mar 2008 | A1 |
20080203922 | Guthrie et al. | Aug 2008 | A1 |
20080211971 | Pradhan | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
8148127 | Jun 1996 | JP |
1020050018587 | Feb 2005 | KR |
WO-2006070190 | Jul 2006 | WO |
WO-2006129102 | Dec 2006 | WO |
WO-2007079496 | Jul 2007 | WO |
WO-2007079496 | Jul 2007 | WO |
WO-2007138276 | Dec 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100315000 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
60756087 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11619989 | Jan 2007 | US |
Child | 12755650 | US |