PLASMINOGEN ACTIVATOR INHIBITOR-1 (PAI-1) HAPLOTYPES USEFUL AS INDICATORS OF PATIENT OUTCOME

Information

  • Patent Application
  • 20110104683
  • Publication Number
    20110104683
  • Date Filed
    October 07, 2010
    14 years ago
  • Date Published
    May 05, 2011
    13 years ago
Abstract
The invention provides methods and kits for obtaining a prognosis for a patient having or at risk of developing an inflammatory condition. The method generally comprises determining a Plasminogen Activator Inhibitor-1 (PAI-1) genotype of a patient for one or more polymorphisms in the PAI-1 gene of the patient, comparing the determined genotype with known genotypes for the polymorphism that correspond with the ability of the patient to recover from the inflammatory condition and identifying patients based on their prognosis. PAI-1 genotype screening may be useful in identifying patients who would benefit from increased monitoring by healthcare professionals, and/or possible therapeutic intervention, if the patient were to develop inflammation due to systemic inflammation response syndrome (SIRS), bacterial infection, bacteraemia, sepsis, septic shock, organ dysfunction, and trauma. The invention also provides for methods of identifying other polymorphisms that correspond with the ability of the patient to recover from the inflammatory condition.
Description
FIELD OF THE INVENTION

The present invention relates to the field of assessment and treatment of patients and more specifically, to the determination of a patients genotype for one or more polymorphisms to determine the patient's prognosis and to determine therapy.


BACKGROUND OF THE INVENTION

Systemic inflammatory response syndrome (SIRS) is characterized by increased inflammation (anti-inflammatory processes), increased coagulation (anti-coagulant processes), and decreased fibrinolysis (Suffredini A F et al., New Engl J Med (1989) 320(18):1165-72; Hesselvik J F et al., Critical Care Medicine (1989) 17(8):724-33; Philippe J et al., Thrombos Haemosta (1991) 65(3):291-5; Lorente J A et al., Chest (1993) 103(5):1536-42; Fourrier F et al., Chest (1992) 101(3):816-23; Mesters R M et al., (1996) 88(3):881-6.). Septic and non-septic stimuli such as bacterial endotoxin and cardiopulmonary bypass (CPB), are implicated in the activation of the coagulation system and trigger a systemic inflammatory response syndrome (SIRS). Plasminogen-activator-inhibitor-1 (PAI-1) is associated with decreased fibrinolysis (Binder B R et al., News in Physiological Sciences (2002) 17:56-61). PAI-1 levels are reported increased in patients with sepsis (Mesters R M et al., Thrombos. Haemostas (1996) 75(6):902-7; Pralong G et al., Thrombos. Haemostas (1989) 61(3):459-62), in meningococcemia (Hermans P W et al., Lancet. (1999) 354(9178):556-60), and in trauma (Menges T et al., Lancet (2001) 357(9262):1096-7). Furthermore, increased PAI-1 levels are associated with decreased survival and increased organ dysfunction (Mesters R M et al., (1996); Pralong G et al., (1989)).


The human PAI-1 gene maps to chromosome 7 q21-q22 and extends over about 12 kb. A representative Homo sapiens PAI-1 gene sequence is listed in GenBank under accession number AF386492 (shown herein as SEQ ID NO:1). Dawson et al., J. Biol. Chem. (1993) 268(15):10739-45, identified an insertion/deletion polymorphism (4G/5G) at position −675 of the PAI-1 promoter sequence, which corresponds to position 837 of SEQ ID NO:1. The 4G allele is a single base pair deletion promoter polymorphism of the PAI-1 gene and is associated with increased protein levels of PAI-1 (Dawson S J et al., supra; Dawson S J et al., Arterioscler. Thromb. (1991) 11(1):183-90). The 4G allele of this single nucleotide polymorphism (SNP) is associated with increased risk of deep venous thrombosis (Segui R et al., Brit J. Haematol. (2000) 111(1):122-8), stroke (Hindorff L A et al., J Cardiovasc Risk (2002) 9(2):131-7), acute myocardial infarction (Boekholdt S M et al., Circulation (2001) 104(25):3063-8; Eriksson P et al., Proc Natl Acad Sci USA (1995) 92(6):1851-5.), late lumen loss after coronary artery stent placement (ORTLEPPG J R et al., Clin Cardiol (2001) 24(9):585-91), and sudden cardiac death (Anvari A et al., Thrombos Res (2001) 103(2):103-7; Mikkelsson J et al., Thrombos. Haemostas. (2000) 84(1):78-82). In the critically ill, the 4G allele is also associated with decreased survival in patients who have had severe trauma (Menges T et al., Lancet, supra) and patients who had meningococcemia (Hermans P W et al., supra) as well as increased risk of shock in patients who had meningococcemia (Westendorp R G et al., Lancet (1999) 354:561-3). The PAI-1 4G genotype has also been associated with adverse patient outcomes ((Menges et al., supra HERMANS et al., supra; Westendorp R G et al., supra; Endler G et al., Brit J. Haematol. (2000) 110(2):469-71; Gardemann A et al., Thrombos. Haemostas. (1999) 82(3):1121-6; Hooper W C et al., Thrombos Res (2000) 99(3):223-30; JONES K et al., Eur J Vasc Endovasc Surg (2002) 23(5):421-5; Haralambous E. et al., Crit. Care Med (2003) 31(12):2788-93; and Roest M et al., Circulation (2000) 101(1):67-70). The 4G/4G genotype of PAI-1 was associated with PAI-1 levels in patients suffering from acute lung injury (Russell J A Crit. Care Med. (2003) 31(4):5243-5247).


SUMMARY OF THE INVENTION

This invention is based in part on the surprising discovery that the Plasminogen-Activator-Inhibitor-1 (PAI-1) 4G/5G promoter polymorphism is not as accurate a predictor of patient outcome as the SNP at position 12580 of SEQ ID NO:1. Furthermore, various other PAI-1 polymorphisms in total linkage disequilibrium (LD) with SNP 12580 are identified as being useful for patient screening, as an indication of patient outcome, or for prognosis for recovery from an inflammatory condition or to tailor therapy for patients with inflammatory conditions or for the selection of therapies for patients based on their PAI-1 12580 genotype and haplotype. Surprisingly, the SNPs identified herein as predictors of patient outcome also correspond with lower PAI-1 levels.


In accordance with one aspect of the invention, methods are provided for obtaining a prognosis for a patient having or at risk of developing an inflammatory condition, the method comprising determining a genotype including one or more polymorphism sites in the PAI-1 gene for the patient, wherein said genotype is indicative of an ability of the patient to recover from an inflammatory condition and provided the genotype selected does not correspond to only the 837 position of SEQ ID NO:1.


In accordance with another aspect of the invention, methods are provided for obtaining a prognosis for a patient having or at risk of developing an inflammatory condition, the method comprising determining a genotype of one or more polymorphism sites in the PAI-1 gene for the patient selected from the polymorphism sites corresponding to positions 664, 2037, 2362, 2852, 5834, 5878, 7343, 13605, 7365, 7729, 7771, 12750, 4588, 5404, 5686, 5984, 11312, 2846, 6821, 9759, 10381, 7365, 7729, 7771, 12750, 4588, 5404, 5686, 5984, 11312, 5645, 7121, 7437, 8070, 8406, 9463, 9466, 12219, 12580, 13889, 14440, wherein said genotype is indicative of an ability of the patient to recover from an inflammatory condition.


In accordance with one aspect of the invention, methods are provided for obtaining a prognosis for a patient having or at risk of developing an inflammatory condition, the method comprising determining a genotype including one or more polymorphism sites in the PAI-1 gene for the patient, wherein said genotype is indicative of an ability of the patient to recover from an inflammatory condition and the polymorphism is selected from the region defined by positions 1581 to 14544 of SEQ ID NO:1.


The polymorphism site may correspond to position 12580 of SEQ ID NO:1 or a polymorphism site linked thereto. Alternatively, the polymorphism site may correspond to positions 5645, 7121, 7437, 8070, 8406, 9463, 9466, 12219, 13889 or 14440 in SEQ ID NO:1.


Genotype may also be determined at a combination of multiple polymorphism sites, the combination being selected from the group of positions corresponds to SEQ ID NO:1 consisting of:




















664 and 2037;







664 and 2362;







664 and 2852;







664 and 5834;







837 and 2037;







837 and 2362;







837 and 2852;







837 and 5834;






one of
5878
and one of
7365
and one of
4588



7343

7729

5404



13605

7771

5686





12750

5984







11312;







and


one of
2846 and 10381
and one of
7365
and one of
4588



6821

7729

5404



9759

7771

5686





12750

984







11312.









Alternatively, genotypes may be determined for polymorphism located within the 1581-14544 of SEQ ID NO:1, to exclude polymorphisms within the promoter region. Preferably, genotypes would be determined for polymorphisms selected from the group consisting of 5645, 7121, 7437, 8070, 8406, 9463, 9466, 12219, 12580, 13889, or 14440 or SEQ ID NO:1.


In accordance with another aspect of the invention, methods are provided for further comparing the genotype so determined with known genotypes, which are indicative of a prognosis for recovery from the same inflammatory condition as for the patient or another inflammatory condition.


The genotype of the patient may be indicative of a decreased likelihood of recovery from an inflammatory condition or indicative of a prognosis of severe cardiovascular or respiratory dysfunction in critically ill patients. Furthermore, such a genotype may be selected from the group of single polymorphism sites and combined polymorphism sites consisting of:


5645 T;


7121 G;


7437 T;


8070 A;


8406 C;


9463 G;


9466 T;


12219 C;


12580 G;


13889 C;


14440 A;


664 A and 2037 T;


664 A and 2362-;


664 A and 2852 A;


664 A and 5834 A;


837- and 2037 T;


837- and 2362-;


837- and 2852 A; and


837- and 5834 A.


The genotype of the patient may be indicative of an increased likelihood of recovery from an inflammatory condition or indicative of a prognosis of less severe cardiovascular or respiratory dysfunction in critically ill patients. Furthermore, such a genotype may be selected from the group of single polymorphism sites and combined polymorphism sites consisting of:





















5645 C;







7121 A;







7437 C;







8070 G;







8406 T;







9463 A;







9466 C;







12219 T;







12580 T;







13889 T;







14440 G;





one of
5878 G
and one of
7365 T
and one of
4588 T



7343 G

7729 +

5404 G



13605 A

7771 A

5686 A





12750 A

5984 A







11312 A;







and


one of
2846 A and
and one of
7365 T
and one of
4588 T



10381 T

7729 +

5404 G



6821 T

7771 A

686 A



759 G

12750 A

5984 A







11312 A.









In accordance with another aspect of the invention, methods are provided for identifying a polymorphism in a PAI-1 gene sequence that correlates with patient prognosis. Where the method comprises obtaining PAI-1 gene sequence information from a group of patients, identifying a site of at least one polymorphism in the PAI-1 gene, determining genotypes at the site for individual patients in the group, determining an ability of individual patients in the group to recover from the inflammatory condition and correlating genotypes determined with patient with potential therapies.


The correlation procedure may be repeated on a patient population of sufficient size to achieve a statistically significant correlation.


The methods may further comprise steps of obtaining PAI-1 gene sequence of the patient or obtaining a nucleic acid sample from the patient. The determining of genotype may be performed on a nucleic acid sample from the patient.


Where the genotype of the patient corresponding to the nucleotide in position 12580, is G, the prognosis may be indicative of a decreased likelihood of recovery from an inflammatory condition or of severe cardiovascular or respiratory dysfunction in critically ill patients.


Where the genotype of the patient corresponding to the nucleotide in position 12580, is T, the prognosis may be indicative of a increased likelihood of recovery from an inflammatory condition or of less severe cardiovascular or respiratory dysfunction in critically ill patients.


The inflammatory condition may be selected from the group consisting of: sepsis, septicemia, pneumonia, septic shock, systemic inflammatory response syndrome (SIRS), Acute Respiratory Distress Syndrome (ARDS), acute lung injury, infection, pancreatitis, bacteremia, peritonitis, abdominal abscess, inflammation due to trauma, inflammation due to surgery, chronic inflammatory disease, ischemia, ischemia-reperfusion injury of an organ or tissue, tissue damage due to disease, tissue damage due to chemotherapy or radiotherapy, and reactions to ingested, inhaled, infused, injected, or delivered substances, glomerulonephritis, bowel infection, opportunistic infections, and for patients undergoing major surgery or dialysis, patients who are immunocompromised, patients on immunosuppressive agents, patients with HIV/AIDS, patients with suspected endocarditis, patients with fever, patients with fever of unknown origin, patients with cystic fibrosis, patients with diabetes mellitus, patients with chronic renal failure, patients with bronchiectasis, patients with chronic obstructive lung disease, chronic bronchitis, emphysema, or asthma, patients with febrile neutropenia, patients with meningitis, patients with septic arthritis, patients with urinary tract infection, patients with necrotizing fasciitis, patients with other suspected Group A streptococcus infection, patients who have had a splenectomy, patients with recurrent or suspected enterococcus infection, other medical and surgical conditions associated with increased risk of infection, Gram positive sepsis, Gram negative sepsis, culture negative sepsis, fungal sepsis, meningococcemia, post-pump syndrome, cardiac stun syndrome, myocardial infarction, stroke, congestive heart failure, hepatitis, epiglotittis, E. coli 0157:H7, malaria, gas gangrene, toxic shock syndrome, mycobacterial tuberculosis, Pneumocystic carinii, pneumonia, Leishmaniasis, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura, Dengue hemorrhaigic fever, pelvic inflammatory disease, Legionella, Lyme disease, Influenza A, Epstein-Barr virus, encephalitis, inflammatory diseases and autoimmunity including Rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, inflammatory bowel disease, idiopathic pulmonary fibrosis, sarcoidosis, hypersensitivity pneumonitis, systemic vasculitis, Wegener's granulomatosis, transplants including heart, liver, lung kidney bone marrow, graft-versus-host disease, transplant rejection, sickle cell anemia, nephrotic syndrome, toxicity of agents such as OKT3, cytokine therapy, and cirrhosis.


The determining of a genotype may comprise one or more of: restriction fragment length analysis; sequencing; hybridization; oligonucleotide ligation assay; ligation rolling circle amplification; 5′ nuclease assay; polymerase proofreading methods; allele specific PCR; and reading sequence data.


In accordance with another aspect of the invention, there is provided a kit for determining a genotype at a defined nucleotide position within a polymorphism site in a PAI-1 gene sequence from a patient to provide a prognosis of the patient's ability to recover from an inflammatory condition, the kit comprising, in a package a restriction enzyme capable of distinguishing alternate nucleotides at the polymorphism site or a labeled oligonucleotide having sufficient complementary to the polymorphism site and capable of distinguishing said alternate nucleotides.


The alternate nucleotides may correspond to position 12580 of SEQ ID NO:1, position 10 of SEQ ID NO:2 or to a polymorphism linked thereto. The alternate nucleotides may also correspond to one or more of positions 5645, 7121, 7437, 8070, 8406, 9463, 9466, 12219, 13889 or 14440 of SEQ ID NO:1.


The kit comprising a restriction enzyme may also comprise an oligonucleotide or a set of oligonucleotides suitable to amplify a region surrounding the polymorphism site, a polymerization agent and instructions for using the kit to determine genotype.


In accordance with another aspect of the invention, methods are provided for determining patient prognosis in a patient having or at risk of developing an inflammatory condition, the method comprising detecting the identity of one or more polymorphisms in the PAI-1 promoter region, wherein the identity of said one or more polymorphisms is indicative of the ability of the patient to recover from the inflammatory condition.


In accordance with another aspect of the invention, methods are provided for patient screening, comprising the steps of (a) obtaining PAI-1 gene sequence information from a patient, and (b) determining the identity of one or more polymorphisms in the promoter region, wherein the one or more polymorphisms may be indicative of the ability of a patient to recover from an inflammatory condition.


In accordance with another aspect of the invention methods are provided for patient screening whereby the method includes the steps of (a) selecting a patient based on risk of developing an inflammatory condition or having an inflammatory condition, (b) obtaining PAI-1 gene sequence information from the patient and (c) detecting the identity of one or more polymorphisms in the PAI-1 gene, wherein the polymorphism is indicative of the ability of a patient to recover from an inflammatory condition.


In accordance with another aspect of the invention methods are provided for selecting a group of patients to determine the efficacy of a candidate drug known or suspected of being useful for the treatment of an inflammatory condition, the method including determining a genotype for one or more polymorphism sites in the plasminogen-activator-inhibitor-1 gene for each patient, wherein said genotype is indicative of the patient's ability to recover from the inflammatory condition and sorting patients based on their genotype, provided that the polymorphism site is not solely a polymorphism at a site corresponding to position 837 of SEQ ID NO:1.


The method may include the additional step of comparing patient response to the candidate drug based on genotype of the patient. Response to the candidate drug may be decided by determining each patient's ability to recover from the inflammatory condition.


The above sequence positions refer to the sense strand of the PAI-1 gene. It will be obvious to a person skilled in the art that analysis could be conducted on the anti-sense strand to determine patient outcome.


More severe patient outcome or prognosis may be correlated with lower PAI-1 expression or conversely an indication of less severe patient outcome or prognosis may be correlated with higher PAI-1 expression, which is the opposite of what would be expected.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a haplotype map of plasminogen activator inhibitor-1 (PAI-1) in Caucasians, where the columns indicate polymorphic loci and rows indicate distinct haplotypes. Light cells represent rare alleles, and dark cells represent common alleles. Polymorphisms that provide the same information as the 12580G allele were chosen based on this haplotype map. These polymorphisms provide the same information as the 12580G allele.



FIG. 2 shows the PAI-1 haplotype clades in an unrooted phylogenetic tree indicating the positions of haplotypes from FIG. 1. FIG. 2 was drawn using MEGA II where line length reflects relative evolutionary distance and each clade is circled.



FIG. 3 shows hospital survival for each of the haplotype clades of the PAI-1 gene. Error bars indicate 95% confidence intervals. Haplotypes containing the 4G allele are made up of 2 separate haplotype clades defined by: the 13985 T allele and the 12580 G allele. The group mean, excluding the 4G haplotype clade containing the 12580 G allele, is illustrated by the horizontal line. The mean and 95% confidence interval for the haplotype clade defined by the 12580 G allele falls below the mean of the rest of the group. In contrast, the 4G haplotype clade containing the 13985 T allele has the highest hospital survival of any haplotype. Data from patients were included twice, once for each haplotype that they possessed (homozygotes for a haplotype were included twice in that haplotype), so that the number of haplotypes (numbers within the data bars) add up to 2 times the total number of patients (235).



FIG. 4 shows Days Alive and Free (DAF) of organ system failure over the 28 day study period by geneotype for the PAI-1 12580 allele.



FIG. 5 shows days alive and free of fulfillment of 2, 3 or 4 out of 4 (2/4, 3/4 or 4/4) systemic inflammatory response syndrome (SIRS) criteria by PAI-1 12580 geneotype. The SIRS criteria are: 1) tachycardia (heart rate>100 bpm in the absence of beta blockers), 2) tachypnea (respiration rate>20 breaths/min) or mechanically ventilated, 3) fever (temperature>38° C.) or hypothermia (temperature<35.5° C.), and 4) leukocytosis (total leukocyte count>11,000/L), using the guidelines established in the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis (Critical Care Medicine. (1992) 20(6):864-74). Each day that a patient was in the ICU the presence or absence of each SIRS criteria was scored, such that the total number of SIRS criteria fulfilled on each day in the ICU was tallied. Since fulfillment of SIRS criteria indicates poor outcome, more days alive and free of fulfillment of SIRS criteria indicates a better outcome.



FIG. 6 shows the occurrence of Sepsis, and Septic Shock by geneotype for the PAI-1 12580 allele.



FIG. 7A shows days alive and free of respiratory dysfunction and mechanical ventilation by PAI-1 12580 genotype (GG, GT and TT separately) in 587 critically ill Caucasians with the systemic inflammatory response syndrome (SIRS).



FIG. 7B shows days alive and free of respiratory dysfunction and mechanical ventilation by PAI-1 12580 genotype (GG/GT vs TT) in 587 critically ill Caucasians with SIRS.



FIG. 8A shows days alive and free of respiratory dysfunction and mechanical ventilation by PAI-1 4G/5G (837) genotype (4G/4G, 4G/5G and 5G/5G separately) in 314 critically ill Caucasians with the systemic inflammatory response syndrome (SIRS).



FIG. 8B shows days alive and free of respiratory dysfunction and mechanical ventilation by PAI-1 4G/5G (837) allele (any 4G vs 5G/5G) in 314 critically ill Caucasians with SIRS.



FIG. 9A shows days alive and free of acute lung injury (ALI) and PaO2/FiO2 (P/F) ratio greater than 300 mmHg by PAI-1 12580 genotype (GG, GT and TT separately) in 587 critically ill Caucasians with SIRS.



FIG. 9B shows days alive and free of acute lung injury and PaO2/FiO2<300 mmHg by PAI-1 12580 genotype (GG/GT vs TT) for 587 Caucasians with SIRS.



FIG. 10A shows days alive and free of acute lung injury (ALI) and PaO2/FiO2 (P/F) ratio greater than 300 mmHg by PAI-1 4G/5G/(837) genotype (4G/4G, 4G/5G and 5G/5G separately) in 314 critically ill Caucasians with SIRS.



FIG. 10B shows days alive and free of acute lung injury and PaO2/FiO2<300 mmHg by PAI-1 4G/5G allele (any 4G vs 5G/5G) in 314 critically ill Caucasians with SIRS.



FIG. 11A shows days alive and free of steroid use by PAI-1 12580 genotype in 587 critically ill Caucasians with SIRS. Patients with 2 copies of the 12580G allele (N=98) had the fewest days alive and free of steroid use (15 days).



FIG. 11B shows days alive and free of steroid use by PAI-1 12580 genotype (GG/GT vs TT) for 587 critically ill Caucasians with SIRS.



FIG. 12B shows days alive and free of steroid use by PAI-1 4G/5G (837) genotype in critically ill Caucasians with SIRS.



FIG. 12B shows days alive and free of steroid use by PAI-1 4G/5G (837) allele in 314 critically ill Caucasians with SIRS.



FIG. 13A shows mean pre-operative PAI-1 serum levels in 24 Caucasians who underwent on-pump cardiopulmonary bypass surgery grouped by PAI-1 12580 genotype (GG, GT and TT separately).



FIG. 13B shows mean pre-operative serum PAI-1 levels in 24 Caucasians who underwent on-pump cardiopulmonary bypass surgery grouped by PAI-1 12580 genotype (GG/GT vs TT).



FIG. 14A shows serum PAI-1 levels measured 4 hours post-operatively in 55 Caucasians patients who underwent cardiopulmonary bypass surgery grouped by PAI-1 4G/5G.



FIG. 14B shows serum PAI-1 levels measured 4 hours post-operatively in 55 Caucasians who underwent on-pump cardiopulmonary bypass surgery grouped by PAI-1 4G/5G.



FIG. 15A shows mean serum PAI-1 levels of 67 Caucasians who underwent on-pump cardiopulmonary bypass surgery collected at 3 hours post surgery grouped by PAI-1 12580 genotype (TT, GT and GG separately).



FIG. 15B shows mean serum PAI-1 levels of 67 Caucasians who underwent on-pump cardiopulmonary bypass surgery collected 3 hours post-operatively grouped by 12580 GG/GT vs. TT.



FIG. 16 shows mean differences in serum PAI-1 levels from pre-operative to 3 hours post-operative in 24 Caucasians who underwent on-pump cardiopulmonary bypass surgery grouped by PAI-1 12580 GG, GT, and TT.



FIG. 17A shows systemic vascular resistance index (SVRI) 4 hours post-operatively in 66 Caucasians undergoing on-pump cardiopulmonary bypass surgery grouped by PAI-1 12580 genotype (GG, GT and TT separately).



FIG. 17B shows Systemic vascular resistance index (SVRI) 4 hours post-operatively in 66 Caucasians undergoing on-pump cardiopulmonary bypass surgery grouped by PAI-1 12580 genotype (GG/GT vs TT).



FIG. 18A shows the systemic vascular resistance index (SVRI) 4 hours post-operatively in 364 Caucasians undergoing on-pump cardiopulmonary bypass surgery grouped by PAI-1 4G/5G (837) genotype (4G/4G, 4G/5G and 5G/5G separately).



FIG. 18B shows the systemic vascular resistance index (SVRI) 4 hours post-operatively in 364 Caucasians undergoing on-pump cardiopulmonary bypass surgery grouped by PAI-1 4G/5G (837) allele (any 4G vs 5G/5G).





DETAILED DESCRIPTION OF THE INVENTION
Definitions

In the description that follows, a number of terms are used extensively, the following definitions are provided to facilitate understanding of the invention.


“Genetic material” includes any nucleic acid and can be a deoxyribonucleotide or ribonucleotide polymer in either single or double-stranded form.


A “purine” is a heterocyclic organic compound containing fused pyrimidine and imidazole rings, and acts as the parent compound for purine bases, adenine (A) and guanine (G). “Nucleotides” are generally a purine (R) or pyrimidine (Y) base covalently linked to a pentose, usually ribose or deoxyribose, where the sugar carries one or more phosphate groups. Nucleic acids are generally a polymer of nucleotides joined by 3′ 5′ phosphodiester linkages. As used herein “purine” is used to refer to the purine bases, A and G, and more broadly to include the nucleotide monomers, deoxyadenosine-5′-phosphate and deoxyguanosine-5′-phosphate, as components of a polynucleotide chain.


A “pyrimidine” is a single-ringed, organic base that forms nucleotide bases, cytosine (C), thymine (T) and uracil (U). As used herein “pyrimidine” is used to refer to the pyrimidine bases, C, T and U, and more broadly to include the pyrimidine nucleotide monomers that along with purine nucleotides are the components of a polynucleotide chain.


A “polymorphic site” or “polymorphism site” or “polymorphism” or “single nucleotide polymorphism site” (SNP site) as used herein is the locus or position with in a given sequence at which divergence occurs. A “Polymorphism” is the occurrence of two or more forms of a gene or position within a gene (allele), in a population, in such frequencies that the presence of the rarest of the forms cannot be explained by mutation alone. The implication is that polymorphic alleles confer some selective advantage on the host. Preferred polymorphic sites have at least two alleles, each occurring at frequency of greater than 1%, and more preferably greater than 10% or 20% of a selected population. Polymorphism sites may be at known positions within a nucleic acid sequence or may be determined to exist using the methods described herein. Polymorphisms may occur in both the coding regions and the noncoding regions (for example, upstream promoters) of genes.


A “clade” is a group of haplotypes that are closely related phylogenetically. For example, if haplotypes are displayed on an phylogentic (evolutionary) tree a clade includes all haplotypes contained within the same branch.


As used herein “haplotype” is a set of alleles of closely linked loci on a chromosome that tend to be inherited together; commonly used in reference to the linked genes of the major histocompatibility complex.


As used herein “linkage disequilibrium” is the occurrence in a population of certain combinations of linked alleles in greater proportion than expected from the allele frequencies at the loci.


Numerous other sites have been identified as polymorphisms in the PAI-1 gene, where those polymorphisms are linked to the polymorphism at position 12580 of SEQ. ID NO: 1 and may therefore be indicative of patient prognosis. The following single polymorphism sites and combined polymorphism sites are linked to 12580 of SEQ. ID NO.: 1:


5645;


7121;


7437;


8070;


8406;


9463;


9466;


12219;


13889;


14440;


664 and 2037;


664 and 2362;


664 and 2852;


664 and 5834;


837 and 2037;


837 and 2362;


837 and 2852; and


837 and 5834.


It will be appreciated by a person of skill in the art that further linked single polymorphism sites and combined polymorphism sites could be determined. The haplotype of PAI-1 can be created by assessing the SNP's of PAI-1 in normal subjects using a program that has an expectation maximization algorithm (i.e. PHASE). A constructed haplotype of PAI-1 may be used to find combinations of SNP's that are in total linkage disequilibrium (LD) with 12580. Therefore, the haplotype of an individual could be determined by genotyping other SNP's that are in total LD with 12580. Linked single polymorphism sites or combined polymorphism sites may also be genotyped for assessing patient prognosis.


The following genotypes for single polymorphism sites and combined polymorphism sites may be indicative of a decreased likelihood of recovery from an inflammatory condition or indicative of severe cardiovascular or respiratory dysfunction in critically ill patients:


5645 T;


7121 G;


7437 T;


8070 A;


8406 C;


9463 G;


9466 T;


12219 C;


12580 G;


13889 C;


14440 A;


664 A and 2037 T;


664 A and 2362-;


664 A and 2852 A;


664 A and 5834 A;


837- and 2037 T;


837- and 2362-;


837- and 2852 A; and


837- and 5834 A.


Whereas the following genotypes for single polymorphism sites and combined polymorphism sites may be indicative of a increased likelihood of recovery from an inflammatory condition or indicative of less severe cardiovascular or respiratory dysfunction in critically ill patients:




















5645 C;







7121 A;







7437 C;







8070 G;







8406 T;







9463 A;







9466 C;







12219 T;







12580 T;







13889 T;







14440 G;






one of
5878 G
and one of
7365 T
and one of
4588 T



7343 G

7729 +

5404 G



13605 A

7771 A

5686 A





12750 A

5984 A







11312 A;







and


one of
2846 A and
and one of
7365 T
and one of
4588 T



10381 T

7729 +

5404 G



6821 T and

7771 A

5686 A



10381 T

12750 A

5984 A



9759 G and



11312 A.



10381 T





(wherein a “+” represents an insertion and a “−” represents a deletion)







(wherein a “+” represents an insertion and a “−” represents a deletion)


It will be appreciated by a person of skill in the art, that the numerical designations of the positions of polymorphisms within a sequence are relative to the specific sequence. Also the same positions may be assigned different numerical designations depending on the way in which the sequence is numbered and the sequence chosen, as illustrated by the alternative numbering of equivalent polymorphism in Dawson et al., (1993, supra). Furthermore, sequence variations within the population, such as insertions or deletions, may change the relative position and subsequently the numerical designations of particular nucleotides at and around a polymorphism site.


TABLE 1A below is representative of a Homo sapiens Plasminogen Activator Inhibitor-1 (PAI-1) or Serine-cysteine Proteinase Inhibitor clade E member 1 (SERPINE1)


gene sequence and comprises a sequence as listed in GenBank under accession number AF386492. The 4G/5G polymorphism of PAI-1 corresponds to the SNP described as −675 G/-using the numbering system of DAWSON et al., (1993), which corresponds to position 837 in TABLE 1A (SEQ ID NO:1). Polymorphism sites shown below in TABLE 1A are bolded and underlined. The polymorphism sites are represented by their major allele (dark cells in FIG. 1). The major and minor alleles for each of the primary polymorphism sites of the PAI-1 gene are as follows:


at position 5445 the most common nucleotide (major allele) is g and the minor allele is a;


at position 837 the most common nucleotide (major allele) is g and the minor allele is −;


at position 5445 the most common nucleotide (major allele) is c and the minor allele is t;


at position 7121 the most common nucleotide (major allele) is a and the minor allele is g;


at position 7437 the most common nucleotide (major allele) is c and the minor allele is t;


at position 8070 the most common nucleotide (major allele) is g and the minor allele is a;


at position 8406 the most common nucleotide (major allele) is t and the minor allele is c;


at position 9463 the most common nucleotide (major allele) is a and the minor allele is g;


at position 9466 the most common nucleotide (major allele) is c and the minor allele is t;


at position 12219 the most common nucleotide (major allele) is t and the minor allele is c;


at position 12580 the most common nucleotide (major allele) is t and the minor allele is g;


at position 13889 the most common nucleotide (major allele) is t and the minor allele is c;


at position 14440 the most common nucleotide (major allele) is g and the minor allele is a.










TABLE 1A







1
cgtactggtc catagcctgt taggaaccag gctgcataac aggaggtgag tggcaggtga





61
gtgaaatttc atctgtagtt acagccactc ctcatcactc gcattaccac cagagctcca





121
ctccctgtca gatcagcggc ggcattagat tctcatagga gctcgaaccc tattctaaac





181
tgttcatgtg agggatctag gttgcaagct ccctatgaga atctaatgcc tgatgatctg





241
tcacggtctc ccatcacccc tagatgggac catctagttg caggaaaaca agctcagggc





301
tcccactgat tctacacgat ggtgaattgt ggaattattt cattatatat attacaatgt





361
aataataata gaaataaagc acacaataaa tgtaatgtgc ttgaatcatc ccgaaaccat





421
cccaccctgg tctgtgaaaa aattgtcttc catgaaacca gtccctggtg ccaaaaacgt





481
gaggaccac tgctccacag aatctatcgg tcactcttcc tcccctcacc cccttgccct





541
aaaagcacac cctgcaaacc tgccatgaat tgacactctg tttctatccc ttttcccctt





601
gtgtctgtgt ctggaggaag aggataaagg acaagctgcc ccaagtccta gcgggcagct





661
cgaggaagtg aaacttacac gttggtctcc tgtttcctta ccaagctttt accatggtaa





721
cccctggtcc cgttcagcca ccaccacccc acccagcaca cctccaacct cagccagaca





781
aggttgttga cacaagagag ccctcagggg cacagagaga gtctggacac gtgggggagt





841
cagccgtgta tcatcggagg cggccgggca catggcaggg atgagggaaa gaccaagagt





901
cctctgttgg gcccaagtcc tagacagaca aaacctagac aatcacgtgg ctggctgcat





961
gccctgtggc tgttgggctg ggcccaggag gagggagggg cgctctttcc tggaggtggt





1021
ccagagcacc gggtggacag ccctggggga aaacttccac gttttgatgg aggttatctt





1081
tgataactcc acagtgacct ggttcgccaa aggaaaagca ggcaacgtga gctgtttttt





1141
ttttctccaa gctgaacact aggggtccta ggctttttgg gtcacccggc atggcagaca





1201
gtcaacctgg caggacatcc gggagagaca gacacaggca gagggcagaa aggtcaaggg





1261
aggttctcag gccaaggcta ttggggtttg ctcaattgtt cctgaatgct cttacacacg





1321
tacacacaca gagcagcaca cacacacaca cacacacatg cctcagcaag tcccagagag





1381
ggaggtgtcg agggggaccc gctggctgtt cagacggact cccagagcca gtgagtgggt





1441
ggggctggaa catgagttca tctatttcct gcccacatct ggtataaaag gaggcagtgg





1501
cccacagagg agcacagctg tgtttggctg cagggccaag agcgctgtca agaagaccca





1561
cacgcccccc tccagcagct gaattcctgc agctcagcag ccgccgccag agcaggacga





1621
accgccaatc gcaaggcacc tctgagaact tcaggtagga gaaaagcaaa ctccctccaa





1681
cctcttactt cgggcttaag gcagagaact cgcctcccca gaatctcctc cctccatgat





1741
cccccgctat tcctctattt tcttttcctc ggacctgcag ccttgggtcg accctgccct





1801
aggggtgact gcaggagagc agggaggatg gtcaggcgtc accaacaacc ccatcaccca





1861
gtaacaagaa ccttgactct ctcagtccct ctgcatcaag acacttaccc atttcccacc





1921
tcatgcctgc taacttgaat gaaacaatcg ctgggaaagc attaagagaa ttaaggctgg





1981
gcactgtggc tcatgcctgt aatcccagca ctttgtgagg ctgaggcagg cagataactt





2041
gagcccagga gtttgagacc agcctgggca acatggcaaa accctgctct cccaaaaaaa





2101
tacaaaaatt agctgggcgt gctggtgtgc ctgtattccc agctacttgg gaggctgagg





2161
tgggaggatt gcttcagctg gggaggcgga ggctgcaggg agccaagact gagccattgc





2221
acccagcctg ggtgacagag caagaccctg tctctaaaaa tgaatgaaag gaaggaagaa





2281
agagagagaa agagagagag gaaagaagga aggaagtaaa gaagaaagaa agaaagaaag





2341
aggaaagagg aagaaagaaa gaaaagaaag aaaagaaaag aaagcaaatt taaagcttat





2401
gcaaatcaaa gatgttgtga taattgataa ttgagtctgg gctaaattcc ccctgggctg





2461
caaaggcaga gagtggtaat gacttctcac ctgcttttct tctaaggctt ttttacggga





2521
cacagaggga agggagatgg actggattcc aagattccca cagggcaaga tgggcgaaga





2581
ctccctgcca ctgcccgggg ataagtcagt ctgagtgaga cggagtggga tgggcttaga





2641
acctgaacat gtcatggtct cttcctgcac cttgccctag tgttcactta ccacctgctt





2701
gcaggaaaca agaagagcag ggcccacagc tggccagctc ccctcccctc ccgcctgtct





2761
tccagaacga ttccttcacc agccctcttt ccattgctct aggatgcaga tgtctccagc





2821
cctcacctgc ctagtcctgg gcctggccct tgtctttggt gaagggtctg ctgtgcacca





2881
tcccccatcc tacgtggccc acctggcctc agacttcggg gtgagggtgt ttcagcaggt





2941
ggcgcaggcc tccaaggacc gcaacgtggt tttctcaccc tatggggtgg cctcggtgtt





3001
ggccatgctc cagctgacaa caggaggaga aacccagcag cagattcaag cagctatggg





3061
attcaagatt gatggtgagc cacgggacac caggggaggt gggtggcatg cagaacagac





3121
ctaccagaag ccaaggaaag gctggctctg gcttagccga gccaagcccc atacagctgt





3181
gctgcagggg ccaccccatc ttcttcccac tacactccaa gtcactggac ccttgaatct





3241
ccaagggtgt ctgaccagta gatttaccgc ttattcacca ccgtgtgatc ttaacctcgt





3301
taagtttgcc catctacaaa atgaggatta tttgctgtcc taaagaattc atgagccggg





3361
cgcggtggct caaacgcctg taatcccagc actttgggag gccaaggcgg gcggatcatg





3421
aggtcaggag atcaagacca tcctggctaa cacagtgaaa ctccatctct actaaaaata





3481
caaaaaaaat tagccaggcg tggtggcagg cgcctgtagt cccagctact cgggaggctg





3541
aggcaggaga atggcatgaa cccaggaggc agagcttgca gtgagctgag atcgtgccac





3601
tgcactccag cctgggcgac agagagagac tccgtctcaa aaaaaaaaat taaaagaatt





3661
catggaatta cacttgtgaa atacttagca tagccatcac tataggaaaa aaatctaagg





3721
ccaggcacag tgcctcatgc ctgtaatctc agcactttcg gagtttgagg caggaggatc





3781
acccaaggct aggagttcaa ggccagcctg ggcaatacgg tgaaaccccg tctctaataa





3841
aaatataaaa attagtctga tgaggtggtg cacctgtaat cccagctact caggaagctg





3901
agacacaaga atcactttaa cccgggaggt ggaggtggca gtgagctgag atcacaccat





3961
tgcactccag cctgggtgac agagtgagac ctgtcaaaaa aaagaaaaga aagagagaga





4021
gagagagaag agagagaaag aaagaagaag aaagaaagaa agagagagag agaaagaaag





4081
aaagaaacaa agaaacaaag aaagaaagga aaagaaaaaa aaaactaagg ccaggcaagg





4141
tggcttatga ctgtaatttc agcactttgg aagattgagg caggaggatc acttgaggcc





4201
agaagttcga gacaagactg agcaacaggg agacccctgc ctctacaaaa aaatttacaa





4261
attagccaga tgtggtgaca catacctgta gtcccaacta ctcaggaggc tgaggtggga





4321
ggatggcttg agcccaggag ctggaggctg cagtgagcta tgattgtacc actgcacttc





4381
agcctgggca acaaagggaa gccctgtctg aaaaaaaaaa aaaaagaaaa agaagaagaa





4441
agaaaatatt tagggttcat ccaggaggca gaggttgcag taagctgaca tcgcgccatt





4501
gcactccagc ctgggagaca agagcaaaac tccaactcaa aaaaaaaaaa aaaaaaaaaa





4561
caggaagaaa atatttaggg ttcataactt aagaacagag aaaaatattc tagcccaaag





4621
aaagggttgg gatctgagac ttttgaagaa aggaaggaga tacagaaaag agatttcatc





4681
ctggaatgaa atctccctcc agagagccct gggaaagcac ggtagccccc atccatcaga





4741
gtggagcccc ttgtggggga agtgggctcg gctgggaacc ctcaattcag cataagcctc





4801
acatgtcctc tcctctctgt cccggtgcag acaagggcat ggcccccgcc ctccggcatc





4861
tgtacaagga gctcatgggg ccatggaaca aggatgagat cagcaccaca gacgcgatct





4921
tcgtccagcg ggatctgaag ctggtccagg gcttcatgcc ccacttcttc aggctgttcc





4981
ggagcacggt caagcaagtg gacttttcag aggtggagag agccagattc atcatcaatg





5041
actgggtgaa gacacacaca aaaggtgagc aggcagggaa aggaaaccca tttcctgggc





5101
ctcaagagaa agggaatttg gaaataaatc cacatatccc agttgggtgc agtagttcac





5161
acctgtaatc ccagcccaac actttgggag gtctaggcga gaggaaggct tgaggcctgg





5221
agtttgagac cagcctggcc aacataacaa gacctcatct cttcaaaaaa tttaaaaacc





5281
agccgggcat ggtggtgcac acctgtagtc ccagctactt gggaggctga ggtgggagga





5341
tcacttgagt ccagcagttc aaggctgcag tgagctatgt ttgcaccacc acactccagc





5401
ctgagtcaca gaacaagacc tcatctctaa aaaacaaaca aaaaccaaat ccacatatcc





5461
taaaaaatgc tccttttcag cattctcttc tctatggaca aagggctgga tgctttaaga





5521
accaaatctt aggctgggca cggtggctca cgcctctaat cctagcactt tgagaggcca





5581
aggcgggcag attgcctgag cacaggagtt cgagaccagc ctggccaaca tggtgaaacc





5641
ctgtctctgt caaaaataca aaaaattagc caggtgtgtt ggcgcgtgcc tataatccca





5701
gctgctcggg aggatgaggt tcaaagaatc acttgaaccc gggaggcaga ggctgcagtg





5761
agctgagatc atgccactgc actccagcct gggtgacaga gcaagacttt gtctccaaaa





5821
aaaggaacta gacgggttca tttaaacccc tgactgcagc cctttgacat acatccaatt





5881
gaggactggg gactccggga aacatctaaa aggcttaaaa actttgtcta acttcagccg





5941
ggcatggtgg ctcacacctg taatcccagc actttgggag gctgaggcag gtggatcaca





6001
aggtcaggag tttgagacga gcctgaccaa catggtgaaa ccccgtctct actaaaaata





6061
caaaaattag ccaggcatgg tggcaggcgc ctgtaatccc agctattcgg gaggctgagg





6121
caggagaatt gcttgaaccc cggagacaga ggttgcagcg agccgagatc gcgccactgc





6181
actccagcct ggcaatagag tgagactcca tctcaaaaca acaacaacaa caacaacaac





6241
aacaaaatcg tctaacttcc tgatcttcct gatcattgat tttcccatag gtatgatcag





6301
caacttgctt gggaaaggag ccgtggacca gctgacacgg ctggtgctgg tgaatgccct





6361
ctacttcaac ggccagtgga agactccctt ccccgactcc agcacccacc gccgcctctt





6421
ccacaaatca gacggcagca ctgtctctgt gcccatgatg gctcagacca acaagttcaa





6481
ctatagtaag tccaagagcc ccttccccac agcccacagc aactgcatct cattcctggg





6541
gtctcccaag gaatacccaa aatgtcaccc tctgagggag gaagaccaca gggaatgctc





6601
ccctttaagg gaggagagac cctagaatat actccagctt tgacaaagat ttcccaagca





6661
ggagacatca ggataatggg aacagaagac aggaggttta tcccatgaag gatgaagaag





6721
ctgaaatcca gagattccct cagggccaca tttgtccacc tgactccagg gtctcatctt





6781
cgtgtgttgc tagtgtgatt acctggggat gagaaatcct gctgggggag ttgaggttaa





6841
gaggatgagg actccaggtg ctgtggctca cgcctgtaat cccagcactt tgggaggcca





6901
aggcaggtgg atcaggagtt tgaggtcagg agtttgagac cagcctggcc aacatggtga





6961
aaccctgtct ctactaaaaa tgcaaaaatt agccaggtgt ggtggcaggc gcctgtaatc





7021
ccagctactc gggaggctga ggcaggagaa tcacttgagc ccgggaggtg gaggttgcag





7081
tgagccgaac gaaattgagc cacttcaccc cagcctgggc aaaagagtga aattccattc





7141
aaaaaaaaaa aaaaaaaaaa aaggatgagg actgggatga actggtggct gggtgtgggg





7201
aaaatggaag tgaaggaagg ccaaaagaga cagagaaggc ctggcgcggc gactcacgcc





7261
tataatccca gcactttggg aggctgagaa gggggattgc ttgaggccag aagttgaata





7321
ccagtctggg cagcatagca agaccctgcc tctacaaaaa aaaaattttt tttaattagc





7381
caggcttggt gacatgcatc tgtagtctac tcaagaagct gaggtgaggc caggcacggt





7441
ggctcacgcc tgtattccca gcactttggg aggtcaaggc gggtggatga cctgaggtca





7501
ggagttcaag accagcctgg ccaacatggt gaaaccccat ctgtataaaa atacaaaaat





7561
tagctgggca tgatagcagg tgcctgtaat tccagctact caggaggctg aggtgggaga





7621
atctattgaa cccgggaggg ggaggttgca gtgagccgag atcatgccat tgcactccag





7681
cctgggcgac agagtgagac tccttctcaa aacaaacaaa caaacaaaca aacaaaatac





7741
agaagctgag gcgggaggaa catttgaacc qgattcggag gctgcagtga gctatqattg





7801
caccactgcg ctccagtctg tgtgacagtg agaccctgtc tcttacacac acacacacac





7861
acacacacac acatgcacac acacagagag agagaaatta gaagatactg aattggcaga





7921
agagaaggga aatagaaatt aaaatactga ataggggagc agtgaacagg ggatacccaa





7981
aagccaagag cgagagagag cctggcttcc agaaatagtg gagaagccag gagaactagg





8041
tgaaaaccca gtgctgggtt gccatcagcg agagctggag ccatttccaa cgaaccatct





8101
tgtcgtcttc acagctgagt tcaccacgcc cgatggccat tactacgaca tcctggaact





8161
gccctaccac ggggacaccc tcagcatgtt cattgctgcc ccttatgaaa aagaggtgcc





8221
tctctctgcc ctcaccaaca ttctgagtgc ccagctcatc agccactgga aaggcaacat





8281
gaccaggctg ccccgcctcc tggttctgcc caagtaagcc accccgctat ctccccgacc





8341
taccaacccc tctctcctgg ctccctaaag tcaccgcccc caggttgaat ttcccagatc





8401
tgtgatgctt gcaggacatg catgtgtggg aggctgatgg gaaactgtgg cctgggtttg





8461
attatgagtc ttgcaatcat ccctccccct gtttctgctg gagggcaggg gacagctctt





8521
cctgaccaca cccccacatt gactatcccc agaataccca gcaaaagccc ccaaaaggag





8581
agtcagagaa atgagggagg tgggggccca atcagtccac atctacttag ggtcgcccca





8641
tcagcacttc catccccaac cctttcaagt caacatccaa acaaaagaaa tcacttccaa





8701
ggacggagca gctcaaagcg cagcttctag ctggggttcc aagaaagcag atttttcgaa





8761
atccttctgc agaaggaagc aaagagattt tttgaaatct ttctgcagaa ggagaaggct





8821
ggagctgggg aactccagaa ttatagggaa gcctcccacc acgctcatcc caaatttccg





8881
gatgctataa tgccaggctt ggggaaagag gagaatttag ttggttagct ggtgcgtgct





8941
ctcacttgca tcctctctct tcctcttttt tttttttctc ctctctctct ggctcataaa





9001
aatggaggta attagttgtg ccctggtgag aagcagagag tgcacaaagg ccccctgctt





9061
gagtcctctt cagggttagc tctcagaaac acaatctgca gaacagattt ttgttccaac





9121
atccttgcag gagaatttgc ccttagcttc ccccacccca gccaggctga ataaaattat





9181
gctgaaacta ctgtcttatt tgaggaaagt aattagteat aggtgggagg gggtggggag





9241
attgeagaag aatgttcatg aatattagga ttttcagctc taagggggga ctttgtaaac





9301
agctttagaa gaagaaccag gccggctggg tgtggtggct catgcctgta atctcagcat





9361
ttggggaggc caaggeggge ggatcacttg aggtcaggag tttgagacca gcctggccaa





9421
catggtgaaa ccctgtctct attaaaaata caaaaattag ccagccgtgg tagegagege





9481
ctatgatccc agctactccg gaggctgagg ccagagaatc acatgaacct gggaggtgga





9541
ggctgcagtg agecgagate acgccactgc actccagcct gggggacaga gcaagaatct





9601
gtttcaaaaa aaaaaaaaga aaaataggaa ggaaggaagg aaaggaaagg aaagaagaga





9661
gagagaaaga aagagagaga gagagagaga aagaaagaaa gaaagaaaga aagaaagaaa





10021
actttccttt gcattttctc accccagtgg actgcggggg cccctaagag gaaaaaggaa





10081
cctctccttg agagcggcag ctgatctaat cctgtatcca catctgtttc agaccaagag





10141
cctctccacg tcgcgcaggc gctgcagaaa gtgaagatcg aggtgaacga gagtggcacg





10201
gtggcctcct catccacagg tgagtctggc tcaggtgagg ctccacgggt gtcgcctcca





10261
tcgcccttca ggataactgg tccccagacc cggaaaggac cccgcagccc tctcggcaca





10321
gagcagctct gtctgtgctc agccatcacc cactccccac ctgtttctca gcctggaaaa





10381
cgggcttggg accatggaac cctgtttcct cgcctgatgg ctcctaagtt ccctgactgt





10441
gaaaaggcct cctaaagaaa aacccaagtt gttcccacag tgggaagtaa acttaagaaa





10501
catgcttatc aggctgggca tggtggctcc cacctgtaat cccagcgctt tgggggacca





10561
aggcaggtgg atcacttgag gtcaggaatt cgagaccagc ctgggcaaca tggcaaaacc





10621
ctatctctac taaaaataca aaaattaggc aggcgtggtg gcatgtgcct gtagtcccag





10681
ctacttggga ggctgaggca ggagaatcac ttgaatccag gaggcagagg ttgcagtgag





10741
ccgagatcac gctgctgcac tccagcctgg gcaatagagc atgactctga agaaaagaaa





10801
gaaagaaaga gagagagaga gaaaagaaag aaagaaagaa agaaagaaag aaagaaagaa





10861
agaaagaaag aaagaaagaa agagaaagaa agagaagaaa agaaaagaaa gagettatea





10921
ataagecett aaaggattta gataaatgtg tgtaagggaa gagetgatec attgetacca





10981
agctcctgga ggaaaccagg tctcagagga tgtccctaaa cttttaaggt tcatattcag





11041
gaaaacaaac aacttccagc tgggcttagt ggctcacacc tgtaatccca gcactttggg





11101
aggccgaggc aggaggatcg cttgagccca ggaatttgag accagcctgg gcaatataat





11161
gagactgtgc tctacaaaaa ttagaaaaaa attagccagg catggtggca tgcacctgta





11221
gccccagtta cttgggagac tgaggtggga ggatcacttg agcccatgag ttcaaggctg





11281
cagtgagcca tgaaggtgcc actgcactcc cgcctgggcg acagagggag accctgtctc





11341
taagaaaaac ggcgggggtg ggggtggtgc cagtgccagc atccctctgt tctaagacat





11401
tgtcccttct cttgcagctg tcatagtctc agcccgcatg gcccccgagg agatcatcat





11461
ggacagaccc ttcctctttg tggtccggca caaccccaca ggtgagcctg gaacccatca





11521
cgttccacat cctcccaccc attctttctc tcaggaacta gtcccgacag atgcagacat





11581
ccctctatcc ctgagagggc tctgggcagg gaaccataac cctaccctgc ttcctgtccc





11641
aagaggaggc taccttctat cacccacaga cagtgccggg tccccgctct gtgactcagg





11701
cagctgcgac tccagacagc tcactcatct gcctagatct cagtccttcc acccacatcc





11761
agcctgatga gctgtcccac tccttctgct tctcaacccc catggttctt ccaccctcag





11821
gaacagtcct tttcatgggc caagtgatgg aaccctgacc ctggggaaag acgccttcat





11881
ctgggacaaa actggagatg catcgggaaa gaagaaactc cgaagaaaag aattttagtg





11941
ttaatgactc tttctgaagg aagagaagac atttgccttt tgttaaaaga tggtaaacca





12001
gatctgtctc caagaccttg gcctctcctt ggaggacctt taggtcaaac tccctagtct





12061
ccacctgaga ccctgggaga gaagtttgaa gcacaactcc cttaaggtct ccaaaccaga





12121
cggtgacgcc tgcgggacca tctggggcac ctgcttccac ccgtctctct gcccactcgg





12181
gtctgcagac ctggttccca ctgaggccct ttgcaggatg gaactacggg gcttacagga





12241
gcttttgtgt gcctggtaga aactatttct gttccagtca cattgccatc actcttgtac





12301
tgcctgccac cgcggaggag gctggtgaca ggccaaaggc cagtggaaga aacacccttt





12361
catctcagag tccactgtgg cactggccac ccctccccag tacaggggtg ctgcaggtgg





12421
cagagtgaat gtcccccatc atgtggccca actctcctgg cctggccatc tccctcccca





12481
gaaacagtgt gcatgggtta ttttggagtg taggtgactt gtttactcat tgaagcagat





12541
ttctgcttcc ttttattttt ataggaatag aggaagaaat gtcagatgcg tgcccagctc





12601
ttcacccccc aatctcttgg tggggagggg tgtacctaaa tatttatcat atccttgccc





12661
ttgagtgctt gttagagaga aagagaacta ctaaggaaaa taatattatt taaactcgct





12721
cctagtgttt ctttgtggtc tgtgtcaccg tatctcagga agtccagcca cttgactggc





12781
acacacccct ccggacatcc agcgtgacgg agcccacact gccaccttgt ggccgcctga





12841
gaccctcgcg ccccccgcgc cccccgcgcc cctctttttc cccttgatgg aaattgacca





12901
tacaatttca tcctccttca ggggatcaaa aggacggagt ggggggacag agactcagat





12961
gaggacagag tggtttccaa tgtgttcaat agatttagga gcagaaatgc aaggggctgc





13021
atgacctacc aggacagaac tttccccaat tacagggtga ctcacagccg cattggtgac





13081
tcacttcaat gtgtcatttc cggctgctgt gtgtgagcag tggacacgtg aggggggggg





13141
tgggtgagag agacaggcag ctcggattca actaccttag ataatatttc tgaaaaccta





13201
ccagccagag ggtagggcac aaagatggat gtaatgcact ttgggaggcc aaggcgggag





13261
gattgcttga gcccaggagt tcaagaccag cctgggcaac ataccaagac ccccgtctct





13321
ttaaaaatat atatatttta aatatactta aatatatatt tctaatatct ttaaatatat





13381
atatatattt taaagaccaa tttatgggag aattgcacac agatgtgaaa tgaatgtaat





13441
ctaatagaag cctaatcagc ccaccatgtt ctccactgaa aaatcctctt tctttggggt





13501
ttttctttct ttcttttttg attttgcact ggacggtgac gtcagccatg tacaggatcc





13561
acaggggtgg tgtcaaatgc tattgaaatt gtgttgaatt gtatgctttt tcacttttga





13621
taaataaaca tgtaaaaatg tttcaaaaaa ataataaaat aaataaatac gaagaatatg





13681
tcaggacagt cactgccttc accttctcca tttcacaccg gtggtacaag aaatcagaag





13741
cctaggccag gtgtggtggt tcatgcctgt aatcccagca ctttgggaag ccgaggtggg





13801
tggatcacct aaggtcagga gtttgagacc agcctggaca acatggtgaa accccgtctc





13861
tactaaaaat acaaaaatta gccgggcgtg gtggctggcg cctgtaatcc cagctactcg





13921
ggaggctgag gcaggagaat cacttgaagc caggaggcag aggttgcagt gagctgagat





13981
tgcaccactg aactccaggc tgggtggcag agcgagactc cctctcaaaa aacaacaact





14041
acaaagacaa caacaaaccc agaatcaaaa tcctgttggt ccatagacct catgggtgga





14101
agagaccttc ctacatccag gttggcccaa catgggggag tccatgaaat ggtcacctca





14161
gctctgccac aagccccaag gataagttga ttctgcccct gggaatcatc ctcaaaaagg





14221
aaaaaaatgt tcccctgcca taaactttcc acttatgcag atgggcctgc tcgtaagtca





14281
ctgtcactgt gggttcccaa ctctgttcat gacacttcct tccagcacca aatgcttccc





14341
acccctctac tcccactccc cattcttcaa acccagctca agttccagtt cctccaccta





14401
ggacttccca tggatccagc caatatcact ctcaggtccg gcgcagtggc ccacgcctgt





14461
aatctcagca ctttgggagg ccggggcagg aagattgctt gaggccagga gtttcagacc





14521
agcctggaca acatagtgag actc









The sequences shown in TABLE 1B, are sequence fragments taken from the PAI-1 sequence shown in TABLE 1A above. Furthermore, SEQ ID NO:2 corresponds to positions 12571-12590 in TABLE 1A above. The nucleotide t, at position 10 in SEQ ID NO:2 corresponds to the nucleotide found at position 12580 of SEQ ID NO:1.


In all of the sequences found in TABLE 1B below the polymorphism represented by the bold and underlined t may be substituted by a g. In SEQ ID NOs.: 3-11 in TABLE 2B, the bold and underlined t corresponds to the nucleotide found at position 12580 of SEQ ID NO:1. Due to the potential variability in PAI-1 sequence, the sequence motifs below may be useful in identifying PAI-1 sequences from a patient for use in genotype determination. For Example, patient sequences that form alignments with the below motifs (SEQ ID NO:3-11) may indicate that the patient sequence is a PAI-1 sequence and that nucleotide found at the position occupied by the bold and underlined t corresponds to the polymorphism at position 12580 of SEQ ID NO:1 and is therefore suitable for genotype determination. A similar strategy may be applied to the other polymorphism sites identified herein.












TABLE 1B







SEQ ID NO:
SEQUENCE









SEQ ID NO: 2
aggaagaaat gtcagatgcg







SEQ ID NO: 3
aggaatagag gaagaaatgt







SEQ ID NO: 4


t
gtcagatgc gtgcccagct








SEQ ID NO: 5
aggaagaaat gtcagatgcg




tgcccagctc







SEQ ID NO: 6
ataggaatag aggaagaaat







SEQ ID NO: 7
ttttattttt ataggaatag




aggaagaaat







SEQ ID NO: 8
ttctgcttcc ttttattttt




ataggaatag aggaagaaat







SEQ ID NO: 9
ttctgcttcc ttttattttt




ataggaatag aggaagaaat




gtcagatgcg tgcccagctc







SEQ ID NO: 10
gaagaaatgt cagatg







SEQ ID NO: 11
aagaaatgtc ag










An “allele” is defined as any one or more alternative forms of a given gene. In a diploid cell or organism the members of an allelic pair (i.e. the two alleles of a given gene) occupy corresponding positions (loci) on a pair of homologous chromosomes and if these alleles are genetically identical the cell or organism is said to be “homozygous”, but if genetically different the cell or organism is said to be “heterozygous” with respect to the particular gene.


A “gene” is an ordered sequence of nucleotides located in a particular position on a particular chromosome that encodes a specific functional product and may include untranslated and untranscribed sequences in proximity to the coding regions. Such non-coding sequences may contain regulatory sequences needed for transcription and translation of the sequence or introns etc.


A “genotype” is defined as the genetic constitution of an organism, usually in respect to one gene or a few genes or a region of a gene relevant to a particular context (i.e. the genetic loci responsible for a particular phenotype).


A “phenotype” is defined as the observable characters of an organism.


A “single nucleotide polymorphism” (SNP) occurs at a polymorphic site occupied by a single nucleotide, which is the site of variation between allelic sequences. The site is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of the populations). A single nucleotide polymorphism usually arises due to substitution of one nucleotide for another at the polymorphic site. A “transition” is the replacement of one purine by another purine or one pyrimidine by another pyrimidine. A “transversion” is the replacement of a purine by a pyrimidine or vice versa. Single nucleotide polymorphisms can also arise from a deletion (represented by “−” or “del”) of a nucleotide or an insertion (represented by “+” or “ins”) of a nucleotide relative to a reference allele. Furthermore, it would be appreciated by a person of skill in the art, that an insertion or deletion within a given sequence could alter the relative position and therefore the position number of another polymorphism within the sequence.


A “systemic inflammatory response syndrome” or (SIRS) is defined as including both septic (i.e. sepsis or septic shock) and non-septic systemic inflammatory response (i.e. post operative). “SIRS” is further defined according to ACCP (American College of Chest Physicians) guidelines as the presence of two or more of A) temperature>38° C. or <36° C., B) heart rate>90 beats per minute, C) respiratory rate>20 breaths per minute, and D) white blood cell count>12,000 per mm3 or <4,000 mm3. In the following description, the presence of two, three, or four of the “SIRS” criteria were scored each day over the 28 day observation period.


“Sepsis” is defined as the presence of at least two “SIRS” criteria and known or suspected source of infection. Septic shock was defined as sepsis plus one new organ failure by Brussels criteria plus need for vasopressor medication.


Patient outcome or prognosis as used herein refers the ability of a patient to recover from an inflammatory condition. An inflammatory condition, may be selected from the group consisting of: sepsis, septicemia, pneumonia, septic shock, systemic inflammatory response syndrome (SIRS), Acute Respiratory Distress Syndrome (ARDS), acute lung injury, infection, pancreatitis, bacteremia, peritonitis, abdominal abscess, inflammation due to trauma, inflammation due to surgery, chronic inflammatory disease, ischemia, ischemia-reperfusion injury of an organ or tissue, tissue damage due to disease, tissue damage due to chemotherapy or radiotherapy, and reactions to ingested, inhaled, infused, injected, or delivered substances, glomerulonephritis, bowel infection, opportunistic infections, and for patients undergoing major surgery or dialysis, patients who are immunocompromised, patients on immunosuppressive agents, patients with HIV/AIDS, patients with suspected endocarditis, patients with fever, patients with fever of unknown origin, patients with cystic fibrosis, patients with diabetes mellitus, patients with chronic renal failure, patients with bronchiectasis, patients with chronic obstructive lung disease, chronic bronchitis, emphysema, or asthma, patients with febrile neutropenia, patients with meningitis, patients with septic arthritis, patients with urinary tract infection, patients with necrotizing fasciitis, patients with other suspected Group A streptococcus infection, patients who have had a splenectomy, patients with recurrent or suspected enterococcus infection, other medical and surgical conditions associated with increased risk of infection, Gram positive sepsis, Gram negative sepsis, culture negative sepsis, fungal sepsis, meningococcemia, post-pump syndrome, cardiac stun syndrome, myocardial infarction, stroke, congestive heart failure, hepatitis, epiglotittis, E. coli 0157:H7, malaria, gas gangrene, toxic shock syndrome, mycobacterial tuberculosis, Pneumocystic carinii, pneumonia, Leishmaniasis, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura, Dengue hemorrhaigic fever, pelvic inflammatory disease, Legionella, Lyme disease, Influenza A, Epstein-Barr virus, encephalitis, inflammatory diseases and autoimmunity including Rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, inflammatory bowel disease, idiopathic pulmonary fibrosis, sarcoidosis, hypersensitivity pneumonitis, systemic vasculitis, Wegener's granulomatosis, transplants including heart, liver, lung kidney bone marrow, graft-versus-host disease, transplant rejection, sickle cell anemia, nephrotic syndrome, toxicity of agents such as OKT3, cytokine therapy, and cirrhosis.


Assessing patient outcome or prognosis may be accomplished by various methods. For Example, an “APACHE II” score is defined as Acute Physiology And Chronic Health Evaluation and herein was calculated on a daily basis from raw clinical and laboratory variables. (VINCENT et al., Scoring systems for assessing organ dysfunction and survival. Critical Care Clinics. 16:353-366, 2000) summarize APACHE score as follows “First developed in 1981 by KNAUS W A et al., (Chest (1991) 100(6):1619-36), the APACHE score has become the most commonly used survival prediction model in ICUs worldwide. The APACHE II score, a revised and simplified version of the original prototype, uses a point score based on initial values of 12 routine physiologic measures, age, and previous health status to provide a general measure of severity of disease. The values recorded are the worst values taken during the patient's first 24 hours in the ICU. The score is applied to one of 34 admission diagnoses to estimate a disease-specific probability of mortality (APACHE II predicted risk of death). The maximum possible APACHE II score is 71, and high scores have been well correlated with mortality. The APACHE II score has been widely used to stratify and compare various groups of critically ill patients, including patients with sepsis, by severity of illness on entry into clinical trials.”


A “Brussels score” score is a method for evaluating organ dysfunction as compared to a baseline. If the Brussels score is 0 (ie. moderate, severe, or extreme), then organ failure was recorded as present on that particular day (see TABLE 1C below). In the following description, to correct for deaths during the observation period, days alive and free of organ failure (DAF) were calculated as previously described. For example, acute lung injury was calculated as follows. Acute lung injury is defined as present when a patient meets all of these four criteria. 1) Need for mechanical ventilation, 2) Bilateral pulmonary infiltrates on chest X-ray consistent with acute lung injury, 3) PaO2/FiO2 ratio is less than 300, 4) No clinical evidence of congestive heart failure or if a pulmonary artery catheter is in place for clinical purposes, a pulmonary capillary wedge pressure less than 18 mm Hg (1). The severity of acute lung injury is assessed by measuring days alive and free of acute lung injury over a 28 day observation period. Acute lung injury is recorded as present on each day that the person has moderate, severe or extreme dysfunction as defined in the Brussels score. Days alive and free of acute lung injury is calculated as the number of days after onset of acute lung injury that a patient is alive and free of acute lung injury over a defined observation period (28 days). Thus, a lower score for days alive and free of acute lung injury indicates more severe acute lung injury. The reason that days alive and free of acute lung injury is preferable to simply presence or absence of acute lung injury, is that acute lung injury has a high acute mortality and early death (within 28 days) precludes calculation of the presence or absence of acute lung injury in dead patients. The cardiovascular, renal, neurologic, hepatic and coagulation dysfunction were similarly defined as present on each day that the person had moderate, severe or extreme dysfunction as defined by the Brussels score. Days alive and free of steroids are days that a person is alive and is not being treated with exogenous corticosteroids (e.g. hydrocortisone, prednisone, methylprednisolone). Days alive and free of pressors are days that a person is alive and not being treated with intravenous vasopressors (e.g. dopamine, norepinephrine, epinephrine, phenylephrine). Days alive and free of an International Normalized Ratio (INR)>1.5 are days that a person is alive and does not have an INR>1.5.









TABLE 1C







Brussels Organ Dysfunction Scoring System










Free of Organ
Clinically Significant



Dysfunction
Organ Dysfunction












ORGANS
Normal
Mild
Moderate
Severe
Extreme












DAF ORGAN
1
0


DYSFUNCTION




SCORE














Cardiovascular
>90
≦90
≦90
≦90 plus
≦90 plus


Systolic BP (mmHg)

Responsive to
Unresponsive to
pH ≦17.3
pH ≦7.2




fluid
fluid




Pulmonary
>400
400-301
300-201
200-101
≦100


PaO2/FIO2 (mmHg)


Acute lung
ARDS
Severe ARDS





injury




Renal
<1.5
1.5-1.9
2.0-3.4
3.5-4.9
≧5.0


Creatinine (mg/dL)







Hepatic
<1.2
1.2-1.9
2.0-5.9
 6.0-11.9
≧12


Bilirubin (mg/dL)







Hematologic
>120
120-81 
80-51
50-21
≦20


Platelets (×105/mm3)







Neurologic
15
14-13
12-10
9-6
≦5


(Glascow Score)





Round Table Conference on Clinical Trials for the Treatment of Sepsis, Brussels, Mar. 12-14, 1994.






Analysis of variance (ANOVA) is a standard statistical approach to test for statistically significant differences between sets of measurements.


The Fisher exact test is a standard statistical approach to test for statistically significant differences between rates and proportions of characteristics measured in different groups.


General Methods

One aspect of the invention may involve the identification of patients or the selection of patients that are either at risk of developing and inflammatory condition or the identification of patients who already have an inflammatory condition. For example, patients who have undergone major surgery or scheduled for or contemplating major surgery may be considered as being at risk of developing an inflammatory condition. Furthermore, patients may be determined as having an inflammatory condition using diagnostic methods and clinical evaluations known in the medical arts. An inflammatory condition, may be selected from the group consisting of: sepsis, septicemia, pneumonia, septic shock, systemic inflammatory response syndrome (SIRS), Acute Respiratory Distress Syndrome (ARDS), acute lung injury, infection, pancreatitis, bacteremia, peritonitis, abdominal abscess, inflammation due to trauma, inflammation due to surgery, chronic inflammatory disease, ischemia, ischemia-reperfusion injury of an organ or tissue, tissue damage due to disease, tissue damage due to chemotherapy or radiotherapy, and reactions to ingested, inhaled, infused, injected, or delivered substances, glomerulonephritis, bowel infection, opportunistic infections, and for patients undergoing major surgery or dialysis, patients who are immunocompromised, patients on immunosuppressive agents, patients with HIV/AIDS, patients with suspected endocarditis, patients with fever, patients with fever of unknown origin, patients with cystic fibrosis, patients with diabetes mellitus, patients with chronic renal failure, patients with bronchiectasis, patients with chronic obstructive lung disease, chronic bronchitis, emphysema, or asthma, patients with febrile neutropenia, patients with meningitis, patients with septic arthritis, patients with urinary tract infection, patients with necrotizing fasciitis, patients with other suspected Group A streptococcus infection, patients who have had a splenectomy, patients with recurrent or suspected enterococcus infection, other medical and surgical conditions associated with increased risk of infection, Gram positive sepsis, Gram negative sepsis, culture negative sepsis, fungal sepsis, meningococcemia, post-pump syndrome, cardiac stun syndrome, myocardial infarction, stroke, congestive heart failure, hepatitis, epiglotittis, E. coli 0157:H7, malaria, gas gangrene, toxic shock syndrome, mycobacterial tuberculosis, Pneumocystic carinii, pneumonia, Leishmaniasis, hemolytic uremic syndrome/thrombotic thrombocytopenic purpura, Dengue hemorrhaigic fever, pelvic inflammatory disease, Legionella, Lyme disease, Influenza A, Epstein-Barr virus, encephalitis, inflammatory diseases and autoimmunity including Rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, inflammatory bowel disease, idiopathic pulmonary fibrosis, sarcoidosis, hypersensitivity pneumonitis, systemic vasculitis, Wegener's granulomatosis, transplants including heart, liver, lung kidney bone marrow, graft-versus-host disease, transplant rejection, sickle cell anemia, nephrotic syndrome, toxicity of agents such as OKT3, cytokine therapy, and cirrhosis.


Once a patient is identified as being at risk for developing or having an inflammatory condition, then genetic sequence information may be obtained from the patient. Or alternatively genetic sequence information may already have been obtained from the patient. For example, a patient may have already provided a biological sample for other purposes or may have even had their genetic sequence determined in whole or in part and stored for future use. Genetic sequence information may be obtained in numerous different ways and may involve the collection of a biological sample that contains genetic material. Particularly, genetic material, containing the sequence or sequences of interest. Many methods are known in the art for collecting bodily samples and extracting genetic material from those samples. Genetic material can be extracted from blood, tissue and hair and other samples. There are many known methods for the separate isolation of DNA and RNA from biological material. Typically, DNA may be isolated from a biological sample when first the sample is lysed and then the DNA is isolated from the lysate according to any one of a variety of multi-step protocols, which can take varying lengths of time. DNA isolation methods may involve the use of phenol (SAMBROOK, J. et al., “Molecular Cloning”, Vol. 2, pp. 9.14-9.23, Cold Spring Harbor Laboratory Press (1989) and Ausubel, F M. et al., Current Protocols in Molecular Biology, Vol. 1, pp. 2.2.1-2.4.5, John Wiley & Sons, Inc. (1994)). Typically, a biological sample is lysed in a detergent solution and the protein component of the lysate is digested with proteinase for 12-18 hours. Next, the lysate is extracted with phenol to remove most of the cellular components, and the remaining aqueous phase is processed further to isolate DNA. In another method, described in VAN NESS et al., (U.S. Pat. No. 5,130,423), non-corrosive phenol derivatives are used for the isolation of nucleic acids. The resulting preparation is a mix of RNA and DNA.


Other methods for DNA isolation utilize non-corrosive chaotropic agents. These methods, which are based on the use of guanidine salts, urea and sodium iodide, involve lysis of a biological sample in a chaotropic aqueous solution and subsequent precipitation of the crude DNA fraction with a lower alcohol. The final purification of the precipitated, crude DNA fraction can be achieved by any one of several methods, including column chromatography (Analects, (1994) Vol 22, No. 4, Pharmacia Biotech), or exposure of the crude DNA to a polyanion-containing protein as described in Koller (U.S. Pat. No. 5,128,247).


Yet another method of DNA isolation, which is described by Botwell DDL (Anal Biochem (1987) 162:463-465) involves lysing cells in 6M guanidine hydrochloride, precipitating DNA from the lysate at acid pH by adding 2.5 volumes of ethanol, and washing the DNA with ethanol.


Numerous other methods are known in the art to isolate both RNA and DNA, such as the one described by Chomczynski (U.S. Pat. No. 5,945,515), whereby genetic material can be extracted efficiently in as little as twenty minutes. EVANS and HUGH (U.S. Pat. No. 5,989,431) describe methods for isolating DNA using a hollow membrane filter.


Once a patient's genetic sequence information has been obtained from the patient it may then be further analyzed to detect or determine the identity or genotype of one or more polymorphisms in the PAI-1 gene. Provided that the genetic material obtained, contains the sequence of interest. Particularly, a person may be interested in determining the PAI-1 promoter genotype of a patient of interest, where the genotype includes a nucleotide corresponding to position 12580 or SEQ ID NO:1 or position 8 of SEQ ID NO:2. The sequence of interest may also include other PAI-1 gene polymorphisms or may also contain some of the sequence surrounding the polymorphism of interest. Detection or determination of a nucleotide identity or the genotype of the single nucleotide polymorphism(s) or other polymorphism, may be accomplished by any one of a number methods or assays known in the art, including but not limited to the following:


Restriction Fragment Length Polymorphism (RFLP) strategy—An RFLP gel-based analysis can be used to distinguish between alleles at polymorphic sites within a gene. Briefly, a short segment of DNA (typically several hundred base pairs) is amplified by PCR. Where possible, a specific restriction endonuclease is chosen that cuts the short DNA segment when one variant allele is present but does not cut the short DNA segment when the other allele variant is present. After incubation of the PCR amplified DNA with this restriction endonuclease, the reaction products are then separated using gel electrophoresis. Thus, when the gel is examined the appearance of two lower molecular weight bands (lower molecular weight molecules travel farther down the gel during electrophoresis) indicates that the initial DNA sample had the allele which could be cut by the chosen restriction endonuclease. In contrast, if only one higher molecular weight band is observed (at the molecular weight of the PCR product) then the initial DNA sample had the allele variant that could not be cut by the chosen restriction endonuclease. Finally, if both the higher molecular weight band and the two lower molecular weight bands are visible then the initial DNA sample contained both alleles, and therefore the patient was heterozygous for this single nucleotide polymorphism;


Sequencing—For example the Maxam-Gilbert technique for sequencing (Maxam A M. and Gilbert W., Proc. Natl. Acad. Sci. USA (1977) 74(4):560-564) involves the specific chemical cleavage of terminally labelled DNA. In this technique four samples of the same labeled DNA are each subjected to a different chemical reaction to effect preferential cleavage of the DNA molecule at one or two nucleotides of a specific base identity. The conditions are adjusted to obtain only partial cleavage, DNA fragments are thus generated in each sample whose lengths are dependent upon the position within the DNA base sequence of the nucleotide(s) which are subject to such cleavage. After partial cleavage is performed, each sample contains DNA fragments of different lengths, each of which ends with the same one or two of the four nucleotides. In particular, in one sample each fragment ends with a C, in another sample each fragment ends with a C or a T, in a third sample each ends with a G, and in a fourth sample each ends with an A or a G. When the products of these four reactions are resolved by size, by electrophoresis on a polyacrylamide gel, the DNA sequence can be read from the pattern of radioactive bands. This technique permits the sequencing of at least 100 bases from the point of labeling. Another method is the dideoxy method of sequencing was published by Sanger et al., (Proc. Natl. Acad. Sci. USA (1977) 74(12):5463-5467). The Sanger method relies on enzymatic activity of a DNA polymerase to synthesize sequence-dependent fragments of various lengths. The lengths of the fragments are determined by the random incorporation of dideoxynucleotide base-specific terminators. These fragments can then be separated in a gel as in the Maxam-Gilbert procedure, visualized, and the sequence determined. Numerous improvements have been made to refine the above methods and to automate the sequencing procedures. Similarly, RNA sequencing methods are also known. For example, reverse transcriptase with dideoxy-nucleotides have been used to sequence encephalomyocarditis virus RNA (Zimmern D. and Kaesberg P., Proc. Natl. Acad. Sci. USA (1978) 75(9):4257-4261). Mills D R. and Kramer F R. (Proc. Natl. Acad. Sci. USA (1979) 76(5):2232-2235) describe the use of Q.beta. replicase and the nucleotide analog inosine for sequencing RNA in a chain-termination mechanism. Direct chemical methods for sequencing RNA are also known (Peattie D A., Proc. Natl. Acad. Sci. USA (1979) 76(4):1760-1764). Other methods include those of Donis-Keller et al., (1977, Nucl. Acids Res. 4:2527-2538), Simoncsits A. et al., (Nature (1977) 269(5631):833-836), Axelrod V D. et al., Nucl. Acids Res. (1978) 5(10):3549-3563), and Kramer F R. and Mills D R. (Proc. Natl. Acad. Sci. USA (1978) 75(11):5334-5338, which are incorporated herein by reference). Nucleic acid sequences can also be read by stimulating the natural fluoresce of a cleaved nucleotide with a laser while the single nucleotide is contained in a fluorescence enhancing matrix (U.S. Pat. No. 5,674,743);


Hybridization methods for the identification of SNPs using hydridization techniques are described in the U.S. Pat. Nos. 6,270,961 & 6,025,136;


A template-directed dye-terminator incorporation with fluorscent polarization-detection (TDI-FP) method is described by Freeman B D. et al., (J Mol Diagnost (2002) 4(4):209-215) is described for large scale screening;


Oligonucleotide ligation assay (OLA)—is based on ligation of probe and detector oligonucleotides annealed to a polymerase chain reaction amplicon strand with detection by an enzyme immunoassay (Villahermosa M L. J Hum Virol (2001) 4(5):238-48; Rumppanen E L. Scand J Clin Lab Invest (2001) 61(2):123-9; Iannone M A. et al., Cytometry (2000) 39(2):131-40);


Ligation-Rolling Circle Amplification (L-RCA) has also been successfully used for genotyping single nucleotide polymorphisms as described in Qi, X. et al., Nucl Acids Res (2001) 29(22):E116;


5′ nuclease assay has also been successfully used for genotyping single nucleotide polymorphisms (Aydin A. et al., Biotechniques (2001) (4):920-2, 924, 926-8.);


Polymerase proofreading methods are used to determine SNPs identities, as described in WO 0181631;


Detection of single base pair DNA mutations by enzyme-amplified electronic transduction is described in Patolsky F et al., Nat. Biotech. (2001) 19(3):253-257; or


Allele specific PCR methods have also been successfully used for genotyping single nucleotide polymorphisms (Hawkins J R. et al., Hum Mutat (2002) 19(5):543-553).


Alternatively, if a patient's sequence data is already known, then obtaining may involve retrieval of the patients nucleic acid sequence data from a database, followed by determining or detecting the identity of a nucleic acid or genotype at a polymorphism site by reading the patient's nucleic acid sequence at the polymorphic site.


Once the identity of a polymorphism(s) is determined or detected an indication may be obtained as to patient outcome or prognosis based on the genotype (the nucleotide identity at a position) of the polymorphism of interest. In the present invention, polymorphisms in the PAI-1 gene, are used to obtain a prognosis or to determine patient outcome or selection of therapies. Methods for obtaining patient outcome or prognosis or for patient screening may be useful to determine the ability of a patient to recover from an inflammatory condition. Alternatively, single polymorphism sites or combined polymorphism sites may be used as an indication of a patient's ability to recover from an inflammatory condition, if they are linked to a polymorphism determined to be indicative of a patient's ability to recover from an inflammatory condition.


Once patient outcome or a prognosis is determined, such information may be of interest to physicians and surgeons to assist in deciding between potential treatment options, to help determine the degree to which patients are monitored and the frequency with which such monitoring occurs. Ultimately, treatment decisions may be made in response to factors, both specific to the patient and based on the experience of the physician or surgeon responsible for a patient's care. Treatment options that a physician or surgeon may consider in treating a patient with an inflammatory condition may include, but are not limited to the following:

    • use of anti-inflammatory therapy;
    • use of steroids;
    • use of activated Protein C (drotrocogin alpha or Xigris™ from Lilly);
    • use of modulators of the coagulation cascade (such as various versions of heparin) use of antibody to tissue factor;
    • use of anti-thrombin or anti-thrombin III;
    • streptokinase;
    • use of antiplatelet agents such as clopidegrel; and
    • Surfactant.


Alternative treatments currently in development and potentially useful in the treatment of an inflammatory condition may include, but are not limited to the following: antibodies to tumor necrosis factor (TNF) or even antibody to endotoxin (i.e. lipopolysaccharide, LPS); tumor necrosis factor receptor (TNF); tissue factor pathway inhibitors (Tifacogin™ alpha from Chiron); platelet activating factor hydrolase (PAFase™ from ICOS); antibodies to IL-6; antibodies, antagonists or inhibitors to high mobility group box 1 (HMGB-1 or HMG-1 tissue plasminogen activator; bradykinin antagonists; antibody to CD-14; interleukin-10; Recombinant soluble tumor necrosis factor receptor-immunoglobulin G1(Roche); Procysteine; Elastase Inhibitor; and human recombinant interleukin 1 receptor antagonist (IL-1 RA).


Alternatively, similar methods may be employed to identify new polymorphisms in PAI-1 sequence that correlate with patient outcome or prognosis.


As described above genetic sequence information or genotype information may be obtained from a patient wherein the sequence information contains one or more single nucleotide polymorphism sites in the PAI-1 gene. Also, as previously described the sequence identity of one or more single nucleotide polymorphisms in the PAI-1 gene of one or more patients may then be detected or determined. Furthermore, patient outcome or prognosis may be assessed as described above, for example the APACHE II scoring system or the Brussels score may be used to assess patient outcome or prognosis by comparing patient scores before and after treatment. Once patient outcome or prognosis has been assessed, patient outcome or prognosis may be correlated with the sequence identity of a single nucleotide polymorphism(s). The correlation of patient outcome or prognosis may further include statistical analysis of patient outcome scores and polymorphism(s) for a number of patients.


Clinical Phenotype

The primary outcome variable was survival to hospital discharge. Secondary outcome variables were days alive and free of cardiovascular, respiratory, renal, hepatic, hematologic, and neurologic organ system failure as well as days alive and free of SIRS (Systemic Inflammatory Response Syndrome), occurrence of sepsis, and occurrence of septic shock. SIRS was considered present when patients met at least two of four SIRS criteria. The SIRS criteria were 1) fever (>38° C.) or hypothermia (<35.5° C.), 2) tachycardia (>100 beats/min in the absence of beta blockers, 3) tachypnea (>20 breaths/min) or need for mechanical ventilation, and 4) leukocytosis (total leukocyte count>11,000/μL) (Anonymous. Critical Care Medicine (1992) 20(6):864-74). Patients were included in this cohort on the calendar day on which the SIRS criteria were met.


A patients' baseline demographics that were recorded included age, gender, whether medical or surgical diagnosis for admission (according to APACHE III diagnostic codes (Knaus W A et al., Chest (1991) 100(6):1619-36)), and admission APACHE II score. The following additional data were recorded for each 24 hour period (8 am to 8 am) for 28 days to evaluate organ dysfunction, SIRS, sepsis, and septic shock.


Clinically significant organ dysfunction for each organ system was defined as present during a 24 hour period if there was evidence of at least moderate organ dysfunction using the Brussels criteria (Table 1C) (Russell J A et al., Crit. Care Med (2000) 28(10):3405-11). Because data were not always available during each 24 hour period for each organ dysfunction variable, we used the “carry forward” assumption as defined previously (Anonymous. New Engl J Med (2000) 342(18):1301-8). Briefly, for any 24 hour period in which there was no measurement of a variable, we carried forward the “present” or “absent” criteria from the previous 24 hour period. If any variable was never measured, it was assumed to be normal.


To further evaluate cardiovascular, respiratory, and renal function we also recorded, during each 24 hour period, vasopressor support, mechanical ventilation, and renal support, respectively. Vasopressor use was defined as dopamine>5 μg/kg/min or any dose of norepinephrine, epinephrine, vasopressin, or phenylephrine. Mechanical ventilation was defined as need for intubation and positive airway pressure (i.e. T—piece and mask ventilation were not considered ventilation). Renal support was defined as hemodialysis, peritoneal dialysis, or any continuous renal support mode (e.g. continuous veno-venous hemodialysis).


To assess duration of organ dysfunction and to correct organ dysfunction scoring for deaths in the 28-day observation period, calculations were made of days alive and free of organ dysfunction (DAF) as previously reported (Bernard G R et al., New Engl J Med (1997) 336(13):912-8). Briefly, during each 24-hour period for each variable, DAF was scored as 1 if the patient was alive and free of organ dysfunction (normal or mild organ dysfunction, Table 1). DAF was scored as 0 if the patient had organ dysfunction (moderate, severe, or extreme) or was not alive during that 24-hour period. Each of the 28 days after ICU admission was scored in each patient in this fashion. Thus, the lowest score possible for each variable was zero and the highest score possible was 28. A low score is indicative of more organ dysfunction as there would be fewer days alive and free of organ dysfunction.


Similarly, days alive and free of SIRS (DAF SIRS) were calculated. Each of the four SIRS criteria were recorded as present or absent during each 24 hour period. Presence of SIRS during each 24 hour period was defined by having at least 2 of the 4 SIRS criteria. Sepsis was defined as present during a 24 hour period by having at least two of four SIRS criteria and having a known or suspected infection during the 24 hour period (Anonymous. Critical Care Medicine (1992) 20(6):864-74). Cultures that were judged to be positive due to contamination or colonization were excluded. Septic shock was defined as presence of sepsis plus presence of hypotension (systolic blood pressure<90 mmHg or need for vasopressor agents) during the same 24 hour period.


Haplotypes and Selection of htSNPs


Using unphased Caucasian genotypic data (from pga.mbt.washington.edu (Rieder M J et al., Accession AF386492. Vol. 2001: SeattleSNPs. NHLBI Program for Genomic Applications, UW-FHCRC, Seattle, Wash. (2001)) haplotypes were inferred using PHASE software (FIG. 1). MEGA 2 was then used to infer a phylogenetic tree to identify major haplotype clades (FIG. 2). Haplotypes were sorted according to the phylogenetic tree and haplotype structure was inspected to choose haplotype tag SNPs (htSNPs). It was found that 4 htSNPs uniquely identified the major haplotype clades (FIGS. 1 and 2). The 4G/5G polymorphism, which corresponds to −675 in Dawson et al., (1993, supra) and position 837 of SEQ ID NO:1 (NCBI ID: rs1799889) and four htSNPs: 11312 (9732) G/A, 12580 (11000) T/G; 12750 (11170) G/A; 13985 (12405) C/T) (bracketed positions numbered according to the start (1581) of the PAI-1 protein coding region—unbracketed positions numbered according of the sequence represented by accession number AF386492) were then genotyped in the patient cohort. Finally, PHASE was used to infer haplotypes from the genotyped htSNPS in each patient in the critically ill cohort with SIRS.


Genotyping

DNA was extracted from peripheral blood samples using a QIAamp DNA Blood Maxi Kit (Qiagen). The 4G/5G polymorphism was genotyped using a restriction fragment length strategy. The htSNPs were genotyped using Masscode tagging (Qiagen Genomics, Inc) (Kokoris M et al., Molec Diag (2000) 5(4):329-40). The genotyping success rate was >99% for all SNPs.


EXAMPLES
Patient Cohort for Examples 1 and 2

Data were collected for 235 consecutive patients who were admitted to the Intensive Care Unit (ICU) of St. Paul's Hospital. This ICU is a mixed medical—surgical ICU in a tertiary care, university-affiliated teaching hospital of the University of British Columbia. Results are reported for only the Caucasian patients (78.6% of all admissions) who were successfully genotyped (n=223) in order to decrease the potential confounding influence of population admixture secondary to ethnic diversity, on associations between genotype and phenotype. These 235 patients make up the cohort of this study.


Example 1
Haplotype Clade Deduction

First haplotypes of the PAI-1 gene (FIG. 1) were deduced, the major haplotype clades were identified (FIGS. 1 and 2), and a minimum set of htSNPs defining the major haplotype clades (FIG. 1) were selected. The htSNPs and the 4G/5G polymorphism were in Hardy-Weinberg equilibrium (Table 2). Furthermore, it was found that haplotypes containing the 4G allele could be grouped into the allele that contained the minor T allele of a C/T polymorphism at position 13985 and the allele that contained the minor G allele of a T/G polymorphism at position 12580 (FIGS. 1 and 2). The haplotype map in FIG. 1, shows PAI-1 gene haplotypes in Caucasians. Haplotypes were inferred using PHASE from available data, and represented in the style of PATIL et al., (Science (2001) 294(5547):1669-70). Columns indicate polymorphic loci and rows indicate distinct haplotypes inferred in Caucasian individuals. Light cells indicate rare alleles, and dark cells indicate common alleles. The map was generated from genotype data (available publicly at http://pga.mbt.washington.edu/) of 23 unrelated Caucasians from the Coriell registry of patients. Haplotypes were inferred using the statistical program PHASE 2.0 (Stephens M and Donnelly P, Amer J Hum Genet. (2003) 73(6):1162-1169). Polymorphisms that provide the same information as the 12580G allele were chosen based on this haplotype map. These polymorphisms provide the same information as the 12580G allele. One method is to positively identify the 12580G allele (section A) either directly or in combination. Another method is to positively identify the 12580T allele (section B), either directly or in combination, and thereby negatively identify the 12580G allele. Haplotypes within each clade are very similar, while clades differ substantially from each other. MEGA II was used to sort haplotypes into clades separated by heavier lines.


An unrooted phylogenetic tree of PAI-1 haplotype clades identified in FIG. 1, is shown in FIG. 2. FIG. 2 was drawn using MEGA II where line length reflects relative evolutionary distance. Each clade, shown with circles, is identified by haplotype tag SNPs (htSNPs) which are representative of specific clades. Recombination of the 4G allele from its ancestral clade (htSNP allele 12580 G) appears to have occurred with an evolutionarily very distant clade (htSNP allele 13985 T).









TABLE 2







Genotype and Allele Frequencies for 4G/5G and Four htSNPS in a


Cohort of Critically Ill Adults who had SIRS











Allele



Genotype Frequencies
Frequencies













4G/4G
4G/5G
5G/5G
4G
5G





837 (4G/5G)
0.27
0.53
0.20
0.53
0.47



GG
GA
AA
G
A


11312 G/A (9732)
0.77
0.21
0.02
0.88
0.13



TT
TG
GG
T
G


12580 T/G (11000)
0.35
0.49
0.16
0.59
0.41



GG
GA
AA
G
A


12750 G/A (11170)
0.63
0.34
0.03
0.80
0.20



CC
CT
TT
C
T


13985 C/T (12405)
0.81
0.17
0.02
0.90
0.10









Example 2
Haplotype Clade Patient Outcome 4G Allele v. PAI-1 Clades

As shown in FIG. 3, two of the six haplotype clades, D and F, are combined to make up the 4G allele and defined by: the 13985 T and the 12580 G minor alleles respectively. It was found that patients having both of the 4G haplotype clades did not demonstrate decreased hospital survival (FIG. 3). In fact, the clade containing the 13985 T allele had the highest survival of all clades—in direct contrast to reported results for the 4G allele (Hermans (supra); Menges (2001, supra; and Westendorp (1999, supra)). The 4G (875) allele was similarly not associated with altered survival, organ dysfunction, SIRS, sepsis, or septic shock. In contrast, those patients having 12580 G allele had markedly decreased hospital survival compared to the 13985 T allele (p<0.01) and compared to all other haplotype clades (p<0.03) (FIG. 3).


Example 3
Patient Outcomes for G4/G5 Genotypes

When only the 4G/5G polymorphism was examined, intermediate results reflecting the addition of the increased survival of the haplotype clade, containing 13985 T allele, to the decreased survival of the haplotype clade, containing the 12580 G allele, were found. The frequency distribution of the 4G/4G, 4G/5G and 5G/5G genotypes were 26.6%, 52.1% and 20.1% which is similar to the frequencies reported in other critically ill Caucasians (MENGES T et al., Lancet (2001) 357(9262):1096-7). Hospital survival rates were 54% for 4G/4G, 61% for 4G/5G, and 74% for 5G/5G groups, which were not statistically significantly different (p=0.09). However, the 4G allele remained associated with significantly fewer days alive and free of respiratory dysfunction (p<0.05), hepatic dysfunction (p<0.05), and neurologic dysfunction (p<0.05) (Table 3). Cardiovascular, renal, and coagulation DAF scores were not significantly different between 4G/5G genotypes (Table 3). These results were supported by the findings of no difference in DAF vasopressors (additional measurement of cardiovascular function) but significantly fewer DAF ventilator (additional measurement of respiratory function) in patients who had the 4G allele (Table 3). Those patients who had the 4G allele were found to have a significantly increased duration of SIRS (DAF SIRS: 19.8 out of 28 for 4G/4G, 20.8 for 4G/5G, 23.4 for 5G/5G), a trend to increased occurrence of sepsis (94% for 4G/4G, 99% for 4G/5G, 74% for 5G/5G, p=0.08) and a significant increase in occurrence of septic shock (94% for 4G/4G, 99% for 4G/5G, 74% for 5G/5G, p=0.04) during the 28 day study period.









TABLE 3







Days Alive and Free of Organ Failure (out of a possible 28) for


PAI-1 4G/5G Polymorphism Genotypes in a Cohort of Critically Ill


Adults who had SIRS












4G/4G
4G/5G
5G/5G
p





Cardiovascular
18.5 ± 2.6
19.7 ± 1.8
22.3 ± 2.7
0.07


Vasopressors (marker of
17.2 ± 2.6
18.6 ± 1.9
21.0 ± 2.8
0.08


Cardiovascular dysfunction)






Respiratory
 7.2 ± 2.1
5.9 ± 1.4
12.3 ± 2.9
0.02


Ventilator (marker of
12.7 ± 2.8
13.9 ± 1.9
17.0 ± 2.9
0.04


Respiratory dysfunction)






Renal
16.5 ± 2.7
16.3 ± 2.0
18.0 ± 3.3
0.52


Renal Support
18.7 ± 2.7
18.1 ± 2.0
19.4 ± 3.2
0.85


(marker of Renal dysfunction)






Hepatic
18.0 ± 2.8
19.0 ± 1.9
23.0 ± 2.8
0.02


Hematologic






Neurologic
18.4 ± 2.6
19.5 ± 1.9
22.8 ± 2.6
0.04





Mean ± 95% Confidence Interval






Example 4
Patient Outcomes for PAI-1 12580 Genotypes v. 4G/5G Genotypes

To assess duration of organ dysfunction and to correct organ dysfunction scoring for deaths in the 28-day observation period, days alive and free of organ dysfunction (DAF) were calculated. During each 24-hour period for each variable, DAF was scored as “1” if the patient was alive and free of organ dysfunction (normal or mild organ dysfunction—TABLE 1C). DAF was scored as “0” if the patient had organ dysfunction (moderate, severe, or extreme—TABLE 1C) or was not alive during that 24-hour period. Each of the 28 days after ICU admission was scored in each patient in this fashion. Thus, the lowest score possible for each variable was zero and the highest score possible was 28. A low score is indicative of more organ dysfunction as there would be fewer days alive and free of organ dysfunction. There were no significant differences for the PAI-1 12580 genotypes between groups (either GG/GT vs TT or GG, GT and TT separately as shown in TABLES 4A and 4B below) with respect to age, sex, APACHE II score and percent of patients admitted with surgical diagnosis. Similary, there were no significant differences for the PAI-1 4G/5G genotypes between groups (either 5G/5G vs 5G/4G and 4G/4G or any 4G separately as shown in TABLES 5A and 5B below).









TABLE 4A







Baseline statistics of 587 Caucasian patients with SIRS


grouped by PAI-1 12580 genotype.















% Surgical



Age
% Female
APACHE II Score
Diagnosis





GG
58 ± 2
38
24 ± 1
27


GT
57 ± 1
35
23 ± 1
20


TT
57 ± 1
41
23 ± 1
28


p Value
NS
NS
NS
NS





No significant differences in age, sex, APACHE II score or surgical diagnosis on admit were observed between PAI-1 12580 genotype groups (GG, GT or TT).













TABLE 4B







Baseline statistics of 587 Caucasians with SIRS


grouped by PAI-1 12580 genotype (GG/GT vs TT).















% Surgical



Age
% Female
APACHE II Score
Diagnosis





GG/GT
58 ± 1
36
23 ± 1
22


TT
57 ± 1
41
23 ± 1
28


p Value
NS
NS
NS
NS





No significant differences in age, sex, APACHE II score or surgical diagnosis on admit were observed between groups.













TABLE 5A







Baseline statistics of 314 Caucasians with SIRS


grouped by PAI-1 4G/5G (837) genotype (5G/5G, 5G/4G and 4G/4G)















% Surgical



Age
% Female
APACHE II Score
Diagnosis





5G/5G
59 ± 2
42
22 ± 1
29


5G/4G
57 ± 1
34
22 ± 1
26


4G/4G
61 ± 2
33
21 ± 1
37


p Value
NS
NS
NS
NS





No significant differences in baseline statistics were observed.













TABLE 5B







Baseline statistics of 314 Caucasians with SIRS


grouped by PAI-1 4G/5G (837) allele (any 4G vs 5G/5G).















% Surgical



Age
% Female
APACHE II Score
Diagnosis





Any 4G
58 ± 1
34
22 ± 1
29


5G/5G
59 ± 2
42
22 ± 1
29


p Value
NS
NS
NS
NS





No significant differences were observed in baseline statistics.






Patients having haplotypes containing the 12580 G allele had marked organ dysfunction of respiratory (p<0.05), renal (p<0.05), hepatic (p<0.05), and neurologic (p<0.05) organ systems over the 28 day study period (FIG. 4). Days alive and free of all organ dysfunction for 12580 GG was 1.8, GT 4.6, and TT 8.2 (p<0.01). Thus, the 12580 G allele was associated with markedly worse overall organ failure. In addition, the 12580 G allele was associated with more SIRS (p<0.05), more sepsis (p<0.05), and more septic shock (p<0.05) (FIGS. 5 and 6). Thus, the 12580 G allele was associated with markedly adverse clinical phenotype expressed as decreased survival, worse organ dysfunction, and worse SIRS.


It was found that there was no statistically significant difference or trend in DAF when grouped by PAI-1 4G/5G (837) genotype (FIGS. 8 A, 8B, 10 A, 10 B, 12 A, and 12 B). However, when patients were grouped by PAI-1 12580 genotype distinct trends in DAF were associated with increased numbers of the 12580G allele.


In FIG. 7A, days alive and free of respiratory dysfunction and mechanical ventilation by PAI-1 12580 genotype (GG, GT and TT separately) in 587 critically ill Caucasians with the systemic inflammatory response syndrome (SIRS) is shown. Those patients possessing the 12580G allele had a strong trend toward fewer days alive and free of respiratory dysfunction and mechanical ventilation based on the number of copies of the 12580G allele they had. Those patients with 2 copies of the 12580G allele (N=98) had the fewest days alive and free of respiratory dysfunction (13 days) and mechanical ventilation (12 days). Patients with only one copy of the 12580G allele (N=284) had intermediate values for days alive and free of respiratory dysfunction (13 days) and mechanical ventilation (13 days). Patients with 0 copies of the 12580 G allele (i.e. TT homozygotes; N=205) had the greatest number of days alive and free of respiratory dysfunction (15 days) and mechanical ventilation (14 days).


Similarly, FIG. 7B, shows days alive and free of respiratory dysfunction and mechanical ventilation by PAI-1 12580 genotype (GG/GT vs TT) in 587 critically ill Caucasians with SIRS. Those patients with either 1 or 2 copies of the 12580G allele (GG or GT, N=382) had a strong trend toward fewer days alive and free of respiratory dysfunction (p=0.057) and mechanical ventilation (p=0.077) compared to those patients having 0 copies of the G allele (i.e. 12580 TT homozygotes, N=205).



FIGS. 8A and 8B show days alive and free of respiratory dysfunction and mechanical ventilation by PAI-1 4G/5G (837) genotype (showing 4G/4G, 4G/5G and 5G/5G separately and any 4G vs 5G/5G) in 314 critically ill Caucasians with the systemic inflammatory response syndrome (SIRS). No significant differences or trends in DAF respiratory dysfunction or mechanical ventilation were observed based on PAI-1 4G/5G genotype.


In FIG. 9A, days alive and free of acute lung injury (ALI) and PaO2/FiO2 (P/F) ratio greater than 300 mmHg by PAI-1 12580 genotype (GG, GT and TT separately) in 587 critically ill Caucasians with SIRS are shown. Those patients having the 12580G allele had a trend toward fewer days alive and free of ALI and P/F<300 based on the number of copies of the 12580G allele they had. Patients with 2 copies of the 12580G allele (N=98) had the fewest days alive and free of ALI (16 days) and P/F<300 (5 days). Patients with 1 copy of the 12580G allele (N=284) had intermediate values for days alive and free of ALI (16 days) and P/F<300 (5 days). Patients with 0 copies of the 12580G allele had the greatest number of days alive and free of ALI (17 days) and P/F<300 (7 days).


Similarly, FIG. 9B, shows days alive and free of acute lung injury and PaO2/FiO2<300 mmHg by PAI-1 12580 genotype (GG/GT vs TT) for 587 Caucasians with SIRS. Those patients with either 1 or 2 copies of the 12580G allele (GG or GT, N=382) had a trend toward fewer days alive and free of acute lung injury (16 days) and PaO2/FiO2<300 mmHg (5 days) compared to those patients with 0 copies of the 12580G allele (17 and 7 days, resp; N=205).



FIG. 10A shows days alive and free of acute lung injury (ALI) and PaO2/FiO2 (P/F) ratio greater than 300 mmHg by PAI-1 4G/5G/(837) genotype (showing 4G/4G, 4G/5G and 5G/5G separately) in 314 critically ill Caucasians with SIRS. No significant differences or trends in DAF ALI or P/F<300 were observed based on PAI-1 4G/5G genotype. Similarly, FIG. 10B shows days alive and free of acute lung injury and PaO2/FiO2<300 mmHg by PAI-1 4G/5G allele (any 4G vs 5G/5G) in 314 critically ill Caucasians with SIRS. No significant difference or trend in DAF ALI was observed based upon PAI-1 4G/5G allele. A trend toward fewer DAF P/F<300 in the group “any 4G” was observed, but this trend was not as significant as that observed based on the PAI-1 12580 allele (FIG. 9B).


In FIG. 11A, days alive and free of steroid use by PAI-1 12580 genotype in 587 critically ill Caucasians with SIRS is shown. Patients with 2 copies of the 12580G allele (N=98) had the fewest days alive and free of steroid use (15 days). Patients with 1 copy of the 12580G allele (N=284) had similar values for days alive and free of steroid use (15 days). Patients with 0 copies of the 12580G allele (N=205) had the greatest number of days alive and free of steroid use (17 days). Similarly, FIG. 11B, shows days alive and free of steroid use by PAI-1 12580 genotype (GG/GT vs TT) for 587 critically ill Caucasians with SIRS. Those patients having either 1 or 2 copies of the 12580G allele (i.e. GG or GT; N=382) had a strong trend toward fewer days alive and free of steroid use (15 days) compared to those patients with 0 copies (17 days; N=205).



FIG. 12A show days alive and free of steroid use by PAI-1 4G/5G (837) genotype in critically ill Caucasians with SIRS (grouped 4G/4G, 4G/5G and 5G/5G separately). No significant difference or trend in DAF steroid use was observed based on the PAI-1 4G/5G genoytpe. Similarly, FIG. 12B shows days alive and free of steroid use by PAI-1 4G/5G (837) were the same patients in 12A are grouped as any 4G vs 5G/5G. Again, no significant difference or trend was observed in DAF steroid use based on PAI-1 4G/5G allele.


Example 5
Patient Outcomes for PAI-1 12580 Genotypes v. 4G/5G Genotypes in Surgery Patients

Plasminogen activator inhibitor-1 (PAI-1) levels were measured in 67 Caucasian cardiovascular surgery patients who had cardiopulmonary bypass. Serum levels were measured by enzyme-linked immunosorbent assay (ELISA) (Immulyse PAI-1, BioPool International) and presented based on PAI-1 12580 genotype (FIGS. 13A/B, 15A/B, 16 and 17A/B). No significant differences were observed between PAI-1 12580 genotype groups based on age or sex (as shown in TABLES 6A and 6B below).









TABLE 6A







Baseline statistics for 67 Caucasians who underwent on-pump


cardiopulmonary bypass surgery and had PAI-1 serum levels measured.












Age
% Female






GG
74 ± 5
60



GT
62 ± 2
27



TT
68 ± 2
33



p Value
NS
NS





No significant differences in age or sex were observed between PAI-1 12580 genotype groups (GG, GT and TT).













TABLE 6B







Baseline statistics for 67 Caucasians who underwent on-pump


cardiopulmonary bypass surgery and had PAI-1 serum levels measured.










Age
% Female














GG/GT
64 ± 2
31



TT
68 ± 2
33



P Value
NS
NS





No significant differences in age or sex were observed between PAI-1 12580 genotype groups (GG/GT vs TT).






Similarly, PAI-1 levels were also measured in 55 Caucasian cardiovascular surgery patients who had cardiopulmonary bypass and for comparison purposes serum levels were presented based on PAI-1 4G/5G (837) genotype (FIGS. 14A/B and 18A/B). A significant difference in proportion of female patients was observed (shown in Tables 7A and 7B below), and this was accounted for in later analyses.









TABLE 7A







Baseline statistics for 55 Caucasians who underwent on-pump


cardiopulmonary bypass surgery and had PAI-1 serum levels measured










Age
% Female














4G/4G
68 ± 2
53



4G/5G
64 ± 2
15



5G/5G
68 ± 2
36



p Value
NS
0.037





No significant difference in age was observed between PAI-1 4G/5G groups (4G/4G, 4G/5G and 5G/5G). A significant difference in proportion of female patients was observed, and this was accounted for in later analyses.













TABLE 7B







Baseline statistics for 55 Caucasians who underwent on-pump


cardiopulmonary bypass surgery and had PAI-1 serum levels measured










Age
% Female














Any 4G
66 ± 2
29



5G/5G
68 ± 2
36



p Value
NS
NS





No significant differences in age or sex were observed between PAI-1 4G/5G genotype groups (any 4G vs 5G/5G).






Surprisingly, it was found that there was no statistically significant difference (or even a trend) in PAI-1 serum levels and systemic vascular resistance index (SVRI) in patients 4 hours post-operatively after cardiopulmonary bypass surgery when grouped by PAI-1 4G/5G (837) genotype. However, when patients were grouped by PAI-1 12580 genotype a statistically significant decrease in PAI-1 serum levels was associated with increased numbers of the 12580G allele, both post and pre operatively. Similarly, the PAI-1 12580 genotype showed a statistically significant decrease in SVRI associated with the 12580G allele post-operatively. Thus, the PAI-1 12580 G allele was associated with more vasodilation (as shown by lower SVRI), and lower PAI-1 levels after cardiac surgery than PAI-1 12580 T. This represents independent confirmation in an independent cohort of patients who had cardiac surgery of the findings of PAI-1 12580 G in the ICU cohort in that PAI-1 12580 G was associated with worse survival and organ dysfunction in the ICU cohort and lower SVRI and lower PAI-1 levels in the cardiac surgery cohort.


In FIG. 13A, mean pre-operative PAI-1 serum levels in 24 Caucasians who underwent on-pump cardiopulmonary bypass surgery grouped by PAI-1 12580 genotype (GG, GT and TT separately) are shown. The 12580 TT (N=3) homozygotes had a mean pre-operative PAI-1 serum level of 146.9 ng/mL, the GT heterozygotes (N=14) had a mean pre-operative PAI-1 serum level of 102.2 ng/mL, and the GG homozygotes (N=7) had a mean pre-operative serum PAI-1 level of 84.5 ng/mL. A statistically significant trend toward lower serum PAI-1 levels with increasing copy number of the 12580G allele is present (p=0.044). Statistics were performed on log transformed data since levels were not normally distributed.


In FIG. 13B, mean pre-operative serum PAI-1 levels in 24 Caucasians who underwent on-pump cardiopulmonary bypass surgery grouped by PAI-1 12580 genotype (GG/GT vs TT) are shown. Here as before the TT homozygotes (N=3) had higher mean pre-operative serum PAI-1 levels of 154.4 ng/mL compared to those patients with either the GG or GT genotypes (N=21, mean serum PAI-1 level of 94.5 ng/mL). Statistical significance is not reached (p=0.077), but a value indicating a trend is observed. Statistics were performed on log transformed data.


In FIG. 14A, serum PAI-1 levels measured 4 hours post-operatively in 55 Caucasians patients who underwent cardiopulmonary bypass surgery are shown. No significant difference was observed in serum PAI-1 level based on 4G/5G (837) genotype, and neither was there any trend in PAI-1 levels based on these genotypes. The difference in sex was included in a linear regression model and had no effect on lack of statistical significance. Similarly, FIG. 14B shows serum PAI-1 levels measured 4 hours post-operatively in 55 Caucasians who underwent on-pump cardiopulmonary bypass surgery by any 4G vs. 5G/5G. Again, no significant difference in serum PAI-1 levels was observed based on 4G/5G (837) allele (any 4G vs 5G/5G), and neither was any significant trend observed. Statistics were performed on log-transformed data.


In FIGS. 15A and 15B, mean serum PAI-1 levels of 67 Caucasians who underwent on-pump cardiopulmonary bypass surgery collected at 4 hours post surgery grouped by PAI-1 12580 genotype (TT, GT and GG separately and GG/GT vs TT) are shown. This group includes as a subset those patients (N=24) for whom data was collected at the pre-operative time-point, and therefore represents a confirmation of the trends observed in the aforementioned group (i.e. 12580G allele associated with lower serum PAI-1 levels) in a group with a larger sample size. The 12580 TT homozygotes (N=21) had the highest mean serum PAI-1 levels at 195.1 ng/mL, followed by the GT heterozygotes with 130.3 ng/mL and the GG homozygotes with 111.3 ng/mL. In FIG. 15B, the 12580 TT homozygotes had statistically significantly higher mean serum PAI-1 levels post-operatively (195.1 ng/mL) compared to those patients with either the GT or GG genotypes (126.0; p=0.042). A clear trend once again emerges wherein lower serum PAI-1 levels are associated with increasing numbers of the 12580G allele. Statistics were performed on log transformed data.


In FIG. 16 mean differences in serum PAI-1 levels from pre-operative to 4 hours post-operative in 24 Caucasians who underwent on-pump cardiopulmonary bypass surgery is shown. Those patients who were homozygous for the 12580T allele had the greatest increase in PAI-1 levels pre-operative to post-operative (208.0 ng/mL). Heterozygous patients had an intermediate increase in PAI-1 levels (158.9 ng/mL), and those patients who were homozygous for the 12580G allele had the lowest mean increase in serum PAI-1 levels pre-operative to post-operative (43.6 ng/mL). Although statistical significance was not achieved, a clear trend is visible indicating a smaller increase in PAI-1 levels following cardiopulmonary bypass surgery with increasing copy number of the PAI-1 12580 G allele.


In FIG. 17A, systemic vascular resistance index (SVRI) is shown 4 hours post-operatively in 66 Caucasians undergoing on-pump cardiopulmonary bypass surgery grouped by PAI-1 12580 genotype (GG, GT and TT separately). SVRI is calculated as SVRI=(mean arterial pressure−central venous pressure)/cardiac index, and expressed as dynes/s·cm−5. The PAI-1 12580 G allele is associated with a statistically significant trend toward lower mean SVRI 4 hours post-operatively based on the allele copy number: GG homozygotes have the lowest SVRI values (1493.9±144.8 dynes/s·cm−5), GT heterozygotes have intermediate SVRI values (1629.7±61.5 dynes/s·cm−5), and TT homozygotes have the highest SVRI values (1780.4±64.6 dynes/s·cm−5). This trend is significant at the α level 0.05 (p=0.028).


Similarly, in FIG. 17B, systemic vascular resistance index (SVRI) is shown 4 hours post-operatively in 66 Caucasians undergoing on-pump cardiopulmonary bypass surgery grouped by PAI-1 12580 genotype (GG/GT vs TT). SVRI was calculated as described above for FIG. 17A. The PAI-1 12580 G allele (here as GG homozygotes or GT heterozygotes) is shown to be significantly associated with lower mean SVRI 4 hours post-operatively than the T allele (1604.4±57.8 dynes/s·cm−5 vs 1780.4±64.6 dynes/s·cm−5 respectively; p=0.050).



FIG. 18A shows the systemic vascular resistance index (SVRI) 4 hours post-operatively in 364 Caucasians undergoing on-pump cardiopulmonary bypass surgery grouped by PAI-1 4G/5G (837) genotype (4G/4G, 4G/5G and 5G/5G separately). SVRI is calculated as SVRI=(mean arterial pressure−central venous pressure)/cardiac index, and expressed as dynes/s·cm−5. No significant difference or trend in 4 hour post-operative SVRI was observed based upon the PAI-1 4G/5G genotype. Similarly, in FIG. 18B in which patients were grouped by PAI-1 4G/5G (837) allele (any 4G vs 5G/5G). SVRI is calculated as above for 18A and again no significant difference or trend in 4 hour post-operative SVRI was observed based on the PAI-1 4G/5G allele.


Statistical Analysis

We compared measures of disease severity using dominant and co-dominant models. We tested for differences between genotype groups using ANOVA for continuous data and a Fisher exact test for discrete data. When appropriate Student's t-test and linear regression were also used.


The sample size described herein (260), compares with sample sizes in trauma of 61 (MENGES T et al., Lancet (2001) 357(9262):1096-7), in pediatric meningococcemia of 175 (DAWSON et al., (1993)), and adult meningococcal septic shock of 50 (WESTENDORP R G et al., Lancet (1999) 354(9178):561-3). Another possible source of error in association studies is population admixture (CARDON LR and BELL JI Nature Reviews Genetics (2001) 2:91-9). This issue was addressed by limiting the analysis to Caucasians and also because this group comprised the majority of our patients available for study.


SUMMARY

The PAI-1 12580 G allele is associated with greater evidence of SIRS and severe cardiovascular and respiratory dysfunction in a critically ill SIRS population and in a post CPB SIRS population. The critically ill SIRS population demonstrates that severe SIRS in the patients with the GG genotype was associated with more severe SIRS and more cardiovascular and respiratory failure (including more acute lung injury, more use of vasopressors, more use of steroids), but also in trends to additional organ system dysfunction and importantly, to decreased survival. These observations were confirmed in an analogous but completely independent SIRS population of critically ill patients who had CPB. In the CPB population SIRS was induced by cardiac surgery and the cardiopulmonary bypass procedure itself without evidence of infection. Evidence for increased SIRS in those patients having the GG genotype in this population is provided by the observation of greater reduction in systemic vascular resistance index (SVRI).


Critically ill patients with the 12580 G allele had significantly worse outcomes as indicated by lower survival, more SIRS, more severe cardiovascular and respiratory failure, and strong trends to more severe hepatic renal, neurologic, and coagulation dysfunction. The poor clinical phenotype of the patients who had the 12580 G allele was also associated with greater use of corticosteroids. It is suspected that the reason for increased use of corticosteroids (see FIGS. 11A and B), is that the clinicians judged that there was a greater need for steroid treatment for severe shock and possibly prolonged respiratory failure.


Described herein are haplotypes that are novel in their ability to predict patient outcome due to inflammation, and haplotypes that are much more functional in describing patient risk than the previously described 4G/5G polymorphism. As a result, provided herein is a better strategy of predicting which patients are at greatest risk of an adverse outcome.


The PAI-1 4G allele is shown here to be divided into two distinct haplotype clades as a result of a remote recombination event. Inspection indicates that a recombinant event occurred between the 4G/5G site (position 837) in the promoter region and position 4588 (see FIG. 1). In essence, a “natural experiment” occurred in which the promoter region containing the 4G allele in question, was recombined with a completely different haplotype clade (FIG. 2). Pan troglodytes (chimpanzee) genotyping (FIG. 2) suggests that 4G originated with the ancestral clade F (defined by the 12580 G allele) and recombined with the evolutionarily most distant haplotype clade D (defined by the 13985 T allele) of the PAI-1 gene (FIG. 2). This “natural experimental design” therefore directly tests the hypothesis that the promoter region containing 4G is causal because the 4G allele is distributed into two different haplotype clades that can then be compared. It was found that the two 4G haplotype clades (F and D) were associated with very different outcomes. The 12580 G haplotype clade was associated with significantly reduced hospital survival and organ dysfunction while the 13985 haplotype clade was not. Thus, this “natural experiment” has lead to the conclusion that 4G is not associated with patient outcome or not strongly so.


From our results the 4G allele of PAI-1 is not associated with poor prognosis. As described herein a SNP within the 12580 G haplotype clade (clade F) is a better candidate for predicting patient outcome, because the 12580 G haplotype clade was strongly associated with adverse outcomes. In the haplotype map (FIG. 1), the PAI-1 4G allele (837-) and 12580 G allele are linked by some measure of linkage disequilibrium, though not complete LD (estimated to be about r2≈0.2 calculated using the Visual Genotype2 program available at http://droog.gs.washington.edu/pga/VG2.html). As a result the 12580G allele is proposed herein as a better predictor of patient outcome than the 4G allele.


In a cohort of critically ill patients, 95% having SIRS, analysis based on the haplotype structure of the PAI-1 gene suggested that the 4G/5G polymorphism was not associated with adverse outcome. Rather, a polymorphism contained within the haplotype clade defined by the minor G allele of the 12580 T/G polymorphism, was a better candidate. The 12580 G haplotype clade was associated with decreased survival and increased organ dysfunction, severity of SIRS, and occurrence of sepsis and septic shock. The association of the 12580 G haplotype clade with adverse outcome is important because it shows that the very commonly reported 4G/5G SNP is not the best predictor of patient outcome. This has implications for critically ill patients who have SIRS and possibly for patients having other diseases (e.g. stroke, myocardial infarction) in which 4G/5G has been reported as associated with adverse outcomes.


The PAI-1 12580 G allele was associated with lower serum PAI-1 levels (FIGS. 13A/B and 15A/B) and with fewer days alive and free of organ dysfunction (respiratory, acute lung injury), support (mechanical ventilation and steroid use) and is associated with significantly lower systemic vascular resistance index in cardiac surgical patients. Therefore, the 12580 G allele is a novel indicator of poor outcome (survival and days alive and free of organ dysfunction as described above) and lower serum PAI-1 levels.


In conclusion, the 4G/5G polymorphism of PAI-1 is not as good a predictor of outcome in patients with SIRS, but rather, a polymorphism contained within the haplotype clade defined by the minor G allele of the 12580 T/G polymorphism, is a better candidate.

Claims
  • 1. A method for making a prognosis for a patient, the patient having, or being at risk of developing, systemic inflammatory response syndrome (SIRS), sepsis, or septic shock, the method comprising determining, in a nucleic acid sample from the patient, a genotype for one or more of the following polymorphic sites in the plasminogen-activator-inhibitor-1 (PAI-1) gene of the patient: positions 5645, 7121, 7437, 8070, 8406, 9463, 9466, 12219, 12580, 13889 or 14440 of SEQ ID NO:1,
  • 2. The method of claim 1, wherein one or more of the following alleles at said positions is associated with a decreased likelihood of recovery from SIRS, sepsis, or septic shock: 5645 T; 7121 G; 7437 T; 8070 A; 8406 C; 9463 G; 9466 T; 12219 C; 12580 G; 13889 C; and 14440 A.
  • 3. The method of claim 1, wherein one or more of the following alleles at said positions is associated with an increased likelihood of recovery from SIRS, sepsis, or septic shock: 5645 C; 7121 A; 7437 C; 8070 G; 8406 T; 9463 A; 9466 C; 12219 T; 12580 T; 13889 T; and 14440 G.
  • 4. The method of claim 1, further comprising comparing the genotype so determined with known genotypes, which are indicative of a prognosis for recovery from SIRS, sepsis, or septic shock.
  • 5. The method of claim 1, further comprising obtaining a PAI-1 gene sequence of the patient.
  • 6. The method of claim 1, further comprising obtaining a nucleic acid sample from the patient.
  • 7. The method of claim 1, wherein said determining of genotype comprises one or more of: (a) restriction fragment length analysis;(b) sequencing;(c) hybridization;(d) oligonucleotide ligation assay;(e) ligation rolling circle amplification;(f) 5′ nuclease assay;(g) polymerase proofreading methods; and(h) allele specific PCR.
  • 8. The method of claim 2, wherein the decreased likelihood of recovery from SIRS, sepsis, or septic shock is associated with severe cardiovascular or respiratory dysfunction in critically ill patients.
  • 9. The method of claim 3, wherein the increased likelihood of recovery from SIRS, sepsis, or septic shock is associated with less severe cardiovascular or respiratory dysfunction in critically ill patients as compared to patients not having the allele associated with said increased likelihood of recovery.
  • 10. The method of claim 1, wherein the prognosis is for the patient having, or being at risk for developing, SIRS.
RELATED APPLICATION DATA

This application relates to U.S. provisional application No. 60/455,550 filed Mar. 19, 2003, which is incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60455550 Mar 2003 US
Divisions (1)
Number Date Country
Parent 10549804 Mar 2006 US
Child 12900387 US