The present invention refers generally to plate heat exchangers allowing a heat transfer between two fluids at different temperature for various purposes. Specifically, the invention relates to a heat exchanger plate and to a gasket for the heat exchanger plate and a plate heat exchanger comprising the heat exchanger plate and the gasket according to the invention.
Plate heat exchangers provided with gaskets normally comprise a plate package of heat exchanger plates disposed adjacent to one another. Gaskets are disposed between the heat exchanger plates. The plate package may also formed by heat exchanger plates that are permanently joined together in pairs to form so-called cassettes, e.g. by welding or brazing, with gaskets placed between the respective cassettes. The gaskets are accommodated in gasket grooves formed during the form-pressing of the heat exchanger plates. Plate heat exchangers further comprise inlet and outlet ports, which extend through the plate package, for two or more media.
Heat exchanger plates are normally made by form-pressing of sheet metal and are disposed in the plate package in such a way as to form first plate intermediate spaces, which communicate with the first inlet port and the first outlet port, and second plate intermediate spaces which communicate with the second inlet port and the second outlet port. The first and second plate intermediate spaces are disposed alternately in the plate package.
The design of heat exchanger plate for plate heat exchangers aims to use as much as possible of heat transfer or heat exchange area for the heat exchange between two or more media, but it also needs take in account how the gasket can be applied on the heat exchanger plate to be securely fastened and to fulfil its seal functionality.
Different designs of the heat exchanger plate and the associated gasket are known in the art. E.g. is a plate heat exchanger known from U.S. Pat No. 5,070,939, where the heat exchanger plate is provided with a gasket groove having a corresponding gasket with nubs which glued to the gasket groove. The nubs serving as indicators of where the glue should applied. In another prior art document, GB-A-668905, the heat transfer area has been alternately retracted along the transport direction to create increased turbulence of the media. In U.S. Pat No. 5,927,395, WO-A1-00/77468 and WO-A1-2005/045346 are shown other solutions on how to fasten the gasket to the heat exchanger plate by clamping the gasket around the plate edge and by forming the gasket groove.
The drawbacks with the above solutions are that they require a lot area along the heat exchanger plate edges to be applied and thereby the potential heat exchange area is reduced. Further the design of the clamping means is rather complicated.
The object of the invention is to provide an improved heat exchanger plate and to prevent or at least reduce the disadvantages indicated above and to provide a better solution for a heat exchanger plate which comprises a gasket and a gasket groove. Particular aims are a new and better heat exchanger plate and a gasket which enables optimum utilisation of the plate's heat transfer region and thereby results in better plate heat exchanger performance with a given number of plates.
This object is achieved according to the invention by the heat exchanger plate for a plate heat exchanger as indicated in the introduction which is characterised in that the gasket groove includes at least an recess of the heat transfer region along each side of the heat transfer region and that the recess enables a clip-on tab to be secure fasten to edge region of the heat exchanger plate at the recess.
The invention makes it possible to provide a heat exchanger plate where a larger proportion of the plate's surface can be utilised for heat transfer.
According to an embodiment of the invention, the recesses along each side of the heat transfer region are arranged on corresponding locations and that the recesses along each side of the heat transfer region are arranged at equal distance relatively to each other, or at equal distance to a horizontal centre line.
According to a further embodiment of the invention, the edge region is broader at the recess along the heat transfer region than the remaining edge region along the heat transfer region.
According to yet an embodiment of the invention, the recess is provided with an upper clip-on tab position and a lower clip-on tab position to enable the clip-on tab to be alternatively received in two different positions of the recess.
According to still another embodiment of the invention, two heat exchanger plates are permanently joined together as a pair to form a cassette. The cassettes have gaskets disposed between them for sealing abutment against an adjacent cassette in the plate heat exchanger. The heat exchanger plates are joined together in pairs by welding to form cassettes.
Another object with the present invention is to provide a gasket adapted to the design of the heat exchanger plate according to the invention.
This object is achieved according to the invention by a gasket provided with clip-on tabs that is fasten the gasket to the heat exchanger plate at the recesses of the gasket groove, and also provided with clip-on tabs to fasten the gasket to the heat exchanger plate close to the ports of heat exchanger plate.
According to an embodiment of the invention, the clip-on tabs are arranged to be received alternately in the upper and lower clip-on tab positions, respectively, in corresponding recesses on each side of the heat exchanger plate. The gasket is made of a rubber or polymer material.
Yet another object with the present invention is to provide a plate heat exchanger including a package of heat exchanger plates and gaskets.
The invention makes it possible to produce a heat exchanger of increased performance. The number of plates can be reduced while maintaining the same capacity, resulting in cost savings on both material and space. Since many applications, e.g. those for aggressive media, involve very expensive material, the heat transfer capacity and hence the number of heat exchanger plates are of crucial cost significance. It is not unusual for a plate heat exchanger to comprise up to a thousand heat exchanger plates, which means that even a seemingly slight capacity improvement of a heat exchanger plate and a plate heat exchanger according to the invention may have a very large impact on profitability.
Further aspects of the invention are defined in the dependent claims.
The present invention is now to be explained more closely by means of a description of various embodiments and with reference to the drawings attached hereto.
Heat exchangers are used for transferring heat between two fluids separated by a solid body. Heat exchangers can be of several types, the most common are spiral heat exchangers, tubular heat exchangers and plate heat exchangers. Plate heat exchangers are used for transferring heat between a hot and a cold fluid that are flowing in alternate flow passages formed between a set of heat exchanger plates. The arrangement of heat exchanger plates defined above is enclosed between end plates that are relatively thicker than the heat exchanger plates. The inner surface of each end plate faces the heat transfer plates.
The plate heat exchanger 100 comprises a first inlet port and a first outlet port for a first medium, and a second inlet port and a second outlet port for a second medium. The inlet and outlet ports extend through the one end plate 4 and the plate package 2. It is of course also possible for the inlet and outlet ports to be disposed on both sides of the plate heat exchanger 100, i.e. on both end plates 4 and 5. The two medium may be led in the same or in opposite directions relative to one another.
The heat exchanger plate 1 is designed in such a way that one plate type is enough to assemble a plate heat exchanger 100. Thus, every other heat exchanger plate 1 is turned upside down with respect to a horizontal axis (B) in order to obtain the different flow channels when the plate heat exchanger 100 is assembled. In this way, the pattern of the heat exchanger plates will interact such that the pattern of one heat exchanger plate 1 will bear on the pattern of the other heat exchanger plate 1, creating a plurality of intermediate contact points.
All of said regions 12-15 are provided with a corrugation of ridges and valleys. The pattern of each region may vary depending on its particular purpose, i.e. whether it is a distribution region 12, a heat transfer region 13 or an adiabatic region 14, 15. One common pattern design is a so called chevron or fish-bone pattern, in which the corrugations display one or more direction changes. A simple form of the chevron shaped pattern is a V-shape. In the shown examples, the corrugated pattern comprises straight longitudinal corrugations. The pattern of the corrugated surface, i.e. the ridges and valleys, are angled with respect to a longitudinal axis of the heat exchanger plate 1. Depending on the used pattern, the pattern may or may not be mirror-inverted with respect to horizontal axis of the heat exchanger plate 1. The areas of the plate outside of the heat transfer region 13, i.e. the upper and lower distribution regions 12, is in the shown examples always mirror-inverted.
The heat exchanger plate 1 has in the shown embodiment four ports 8-11 extending through the heat exchanger plate 1. The ports 8-11 are normally each situated in the vicinity of their respective corner portion of the heat exchanger plate 1, but other positioning of the ports 8-11 is also possible within the scope of the invention.
The heat exchanger plates 1 in the shown embodiment are disposed in such a way in the plate package 2 as to form first plate intermediate spaces which communicate with the first inlet port 8 and the first outlet port 9, and second plate intermediate spaces, which communicate with the second inlet port 10 and the second outlet port 11. The first and second plate intermediate spaces are disposed alternately in the plate package 2. The separation of the plate intermediate spaces may be by gaskets 30 extending in gasket grooves 20, 22 formed during the form-pressing of the heat exchanger plates 1. The gasket 30 is usually made of a rubber or polymer material.
In
Another limiting factor that needs to take in account is how the gasket 30 can be applied on the heat exchanger plate 1 to be securely fastened and to fulfil its seal functionality. The best way of securely fastened the gasket 30 to the heat exchanger plate 1, but also enable easy replacement of the gasket 30, is to use clip-on tabs arranged along the gasket 30. An example of such a clip-on provided gasket is shown the design registration EU 000788674-0001. The clip-on tab is folded around the plate edge 21 to fasten the gasket to the heat exchanger plate 1. An alternative method to fasten the gasket 30 to heat exchanger plate 1 is to use glued gaskets. Many times a combination is used having a gasket provided with clip-on tabs which is glued onto the heat exchanger plate.
To achieve an optimized solution having as large heat transfer surface as possible and still having the stability of the plate edge and the possibility to fasten the gasket securely, the heat transfer region 13 has been provided with local indentation or recesses 40 of the gasket groove 20 into the heat transfer region 13, see
Since only one type of heat exchanger plate 1 is used in the plate heat exchanger 100, it is essential that the clip-on tabs 41 are not located on corresponding positions on the plate edge 21, i.e. clip-on tabs are not mirrored in respect of the longitudinal center line A of the heat exchanger plate 1. See
In
The distance between the recesses 40 along each side of the heat transfer region 13 is preferably equal as shown in
The capacity of the heat exchanger plate 1 and the plate heat exchanger 100 will thus be greater since the heat transfer region 13 can be enlarged and fewer plates need be used for achieving desired performance. The result is a great saving of material costs.
In
In the shown examples the gasket grooves and the local displacements of the gasket groove has been described in connection with heat exchanger plates that are arranged in a plate package having gaskets between every heat exchanger plate, but it is also arrange gasket groove displacement when two heat exchanger plates are joined together permanently as a pair to form a cassette, e.g. by welding. Gaskets are with advantage disposed between adjacent cassettes.
The invention is not limited to the embodiments described above and shown on the drawings, but can be supplemented and modified in any manner within the scope of the invention as defined by the enclosed claims.
Number | Date | Country | Kind |
---|---|---|---|
0850140 | Dec 2008 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2009/051340 | 11/26/2009 | WO | 00 | 7/7/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/071551 | 6/24/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2676000 | Ekwall | Apr 1954 | A |
2705617 | Ekwall | Apr 1955 | A |
4298061 | Hoeffken | Nov 1981 | A |
4377204 | Johansson | Mar 1983 | A |
4635715 | Andersson | Jan 1987 | A |
4995455 | Mathur | Feb 1991 | A |
5070939 | Mathur | Dec 1991 | A |
5178212 | Nakamura | Jan 1993 | A |
5727620 | Schaufele et al. | Mar 1998 | A |
5887650 | Yang | Mar 1999 | A |
5927395 | Damiani | Jul 1999 | A |
6935415 | Petersen et al. | Aug 2005 | B1 |
20080196873 | Svensson | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
2139257 | Jul 1993 | CN |
1145008 | Apr 2004 | CN |
830 454 | Feb 1952 | DE |
0 134 155 | Mar 1985 | EP |
450188 | Oct 1991 | EP |
668905 | Mar 1952 | GB |
678 333 | Sep 1952 | GB |
1 101 988 | Feb 1968 | GB |
64-28495 | Jan 1989 | JP |
04-217794 | Aug 1992 | JP |
06-040682 | May 1995 | JP |
2003-502611 | Jan 2003 | JP |
2008-528927 | Jul 2008 | JP |
71993 | Feb 1953 | NL |
1430716 | Oct 1988 | SU |
1726965 | Apr 1992 | SU |
WO9967589 | Dec 1999 | WO |
0077468 | Dec 2000 | WO |
WO0077468 | Dec 2000 | WO |
WO2005045346 | May 2005 | WO |
2006080874 | Aug 2006 | WO |
WO2007142592 | Dec 2007 | WO |
Entry |
---|
Official Grant on Decision for Russian Application No. 2011129630 dated Nov. 2, 2012 with English translation. |
Office Action for Japanese Patent Application No. 2011-542060 dated Nov. 13, 2012 (in English). |
English language Translation of First Office Action issued by Japanese Patent Office on Nov. 13, 2012 in Japanese Patent Application No. 2011-542060. (5 pages). |
PCT/ISA/210 for International Application No. PCT/SE2009/051340 dated Sep. 8, 2011. |
PCT/ISA/237 for International Application No. PCT/SE2009/051340 dated Sep. 8, 2011. |
English language Translation of First Office Action issued by the State Intellectual Property Office of the People's Republic of China on Nov. 21, 2012 in Chinese Patent Application No. 200980151599.6. (4 pages). |
International-Type Search Report issued by the Swedish Patent Office on Jun. 11, 2009 in National Application No. 0850140-5 (International-type Search Request No. ITS/SE08/00465). (5 pages). |
Number | Date | Country | |
---|---|---|---|
20110259561 A1 | Oct 2011 | US |