The present invention relates to a plate laminate type heat exchanger, such as an oil cooler and an EGR cooler.
Each of the core plates 53 and 54 has a substantially flat-plate shape. An inlet port for high temperature fluid 58a and an outlet port for low temperature fluid 59b are provided in each of the core plates 53 and 54 on one end side in the longitudinal direction thereof. On the other hand, an outlet port for high temperature fluid 58b and an inlet port for low temperature fluid 59a are provided in each of the core plates 53 and 54 on the other end side in the longitudinal direction thereof. The inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b, as well as the inlet port for low temperature fluid 59a and the outlet port for low temperature fluid 59b of each of the core plates 53 and 54 are disposed in the vicinity of the respective corners thereof, and the pair of the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b and the pair of the inlet port for low temperature fluid 59a and the outlet port for low temperature fluid 59b of each of the core plates 53 and 54 are located substantially on the respective diagonal lines thereof. Each of the pairs of core plates 53 and 54 form a core 55. A high temperature fluid compartment through which the high temperature fluid (oil or EGR gas, for example) flows is defined in each of the cores 55. On the other hand, a low temperature fluid compartment through which the low temperature fluid (cooling water, for example) flows is defined between cores 55. The high temperature fluid compartments and the low temperature fluid compartments communicate with the circulation pipes 56a, 56b and the circulation pipes 57a, 57b, respectively. The high temperature fluid and the low temperature fluid are introduced into the respective fluid compartments or discharged out of the respective fluid compartments via the circulation pipes 56a, 56b and the circulation pipes 57a, 57b. The high temperature fluid and the low temperature fluid, when flowing through the respective fluid compartments, exchange heat via the core plates 53 and 54.
As shown in
The present invention has been made in view of the problem described above. An object of the present invention is to provide a plate laminate type heat exchanger having high heat exchange efficiency.
To solve the problem described above, the present invention provides a plate laminate type heat exchanger comprising front and rear end plates; a plurality of pairs of core plates laminated therebetween; and high temperature fluid compartments through which high temperature fluid flows and low temperature fluid compartments through which low temperature fluid flows defined in the space surrounded by the end plates and the core plates by bonding peripheral flanges of each of the pairs of core plates to each other in a brazing process, each of the fluid compartments communicating with a pair of circulation pipes provided on the front or rear end plate in such a way that the circulation pipes jut therefrom. The plate laminate type heat exchanger is characterized by the following features: A plurality of groove-like protrusions is formed on one side of each of the flat core plates, and the protrusions are disposed substantially in parallel to the longitudinal direction of the plate. An inlet port for high temperature fluid and an outlet port for low temperature fluid are provided in each of the core plates on one end side in the longitudinal direction thereof, and an outlet port for high temperature fluid and an inlet port for low temperature fluid are provided in each of the core plates on the other end side in the longitudinal direction thereof. The pair of the inlet port for high temperature fluid and the outlet port for high temperature fluid and the pair of the inlet port for low temperature fluid and the outlet port for low temperature fluid are disposed substantially on the respective diagonal lines of each of the core plates. Both ends of each of the protrusions converge into the inlet port for high temperature fluid and the outlet port for high temperature fluid, respectively. Each of the pairs of core plates is assembled in such a way that the side of one of the two core plates that is opposite the one side faces the side of the other one of the two core plates that is opposite the one side and the protrusions formed on the respective core plates are paired but oriented in opposite directions, and the pair of core plates form a plurality of tubes surrounded by the walls of the protrusions formed on the respective core plates, and the tubes form the corresponding high temperature fluid compartments.
The present invention is also characterized in that each of the core plates has a substantially parallelogram shape when viewed in the laminate direction, and the inlet port for high temperature fluid and the outlet port for high temperature fluid are disposed at a pair of corners where the diagonal angles are larger, whereas the inlet port for low temperature fluid and the outlet port for low temperature fluid are disposed at a pair of corners where the diagonal angles are smaller.
The present invention is also characterized in that the tubes are configured in such a way that a tube having a shorter end-to-end length has a smaller cross-sectional area in the width direction of the core plates.
The present invention also provides a plate laminate type heat exchanger comprising front and rear end plates; a plurality of pairs of core plates laminated therebetween; and high temperature fluid compartments through which high temperature fluid flows and low temperature fluid compartments through which low temperature fluid flows defined in the space surrounded by the end plates and the core plates by bonding peripheral flanges of each of the pairs of core plates to each other in a brazing process, each of the fluid compartments communicating with a pair of circulation pipes provided on the front or rear end plate in such a way that the circulation pipes jut therefrom. The plate laminate type heat exchanger is characterized by the following features: A plurality of groove-like protrusions is formed on one side of each of the flat core plates, and the protrusions are disposed substantially in parallel to the longitudinal direction of the plate. Each of the plates is curved in such a way that ridges and valleys are formed in the direction in which the plates are laminated and the ridges and valleys are repeated along the longitudinal direction of the plates. An inlet port for high temperature fluid and an outlet port for low temperature fluid are provided in each of the core plates on one end side in the longitudinal direction thereof, and an outlet port for high temperature fluid and an inlet port for low temperature fluid are provided in each of the core plates on the other end side in the longitudinal direction thereof. The pair of the inlet port for high temperature fluid and the outlet port for high temperature fluid and the pair of the inlet port for low temperature fluid and the outlet port for low temperature fluid are disposed substantially on the respective diagonal lines of each of the core plates. Both ends of each of the protrusions converge into the inlet port for high temperature fluid and the outlet port for high temperature fluid, respectively. Each of the pairs of core plates is assembled in such a way that the side of one of the two core plates that is opposite the one side faces the side of the other one of the two core plates that is opposite the one side and the protrusions formed on the respective core plates are paired but oriented in opposite directions.
The present invention is also characterized in that each of the protrusions also has ridges and valleys formed in the width direction of the core plates perpendicular to the longitudinal direction of the core plates, and the ridges and valleys are repeated along the longitudinal direction of the core plates.
The present invention is also characterized in that the protrusions formed on each of the pairs of core plates are the same in terms of the period and the amplitude of the waves formed of the ridges and valleys formed in the width direction of the core plates.
The present invention is also characterized in that the protrusions meander in an in-phase manner along the longitudinal direction of the core plates.
The present invention is also characterized in that each of the pairs of core plates form a plurality of serpentine tubes surrounded by the walls of the protrusions, and the serpentine tubes form the corresponding high temperature fluid compartment.
The present invention is also characterized in that the protrusions meander in an anti-phase manner along the longitudinal direction of the core plates.
The present invention is also characterized in that second protrusions are formed on the walls that form the protrusions along the direction substantially perpendicular to the direction in which the high temperature fluid flows.
Embodiments of the present invention will be described below with reference to the accompanying drawings.
A first embodiment of the present invention will first be described with reference to
Each of the plate laminate type heat exchangers 100, 110, and 120 shown in
A plurality of groove-like protrusions 10 is formed on one side of each of the flat core plates 53 and 54, and the protrusions 10a to 10e are disposed substantially in parallel to the longitudinal direction of the plate. An inlet port for high temperature fluid 58a and an outlet port for low temperature fluid 59b are provided in each of the core plates 53 and 54 on one end side in the longitudinal direction thereof. On the other hand, an outlet port for high temperature fluid 58b and an inlet port for low temperature fluid 59a are provided in each of the core plates 53 and 54 on the other end side in the longitudinal direction thereof. The inlet port 58a and the outlet port 58b, as well as the inlet port 59a and the outlet port 59b of each of the core plates 53 and 54 are disposed in the vicinity of the respective corners thereof, and the pair of the inlet port 58a and the outlet port 58b and the pair of the inlet port 59a and the outlet port 58b of each of the core plates 53 and 54 are located substantially on the respective diagonal lines thereof. Both ends of each of the protrusions 10 converge into the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b, respectively. Specifically, both end portions of each of the protrusions 10a to 10e have substantially arcuate shapes and are connected to the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b. Each of the pairs of core plates 53 and 54 is assembled in such a way that the side of the core plate 53 that is opposite the one side described above faces the side of the core plate 54 that is opposite the one side described above and the protrusions 10 and 10 formed on the respective core plates are paired but oriented in opposite directions. The pair of core plates 53 and 54 form a plurality of tubes surrounded by the walls of the protrusions 10 and 10, and the tubes form the corresponding high temperature fluid compartments.
The core plate 53 shown in
In each of the core plates 53 shown in
The plurality of tubes formed in the plate laminate type heat exchangers 100 and 110 shown in
In the plate laminate type heat exchangers 100, 110, and 120, a pair of core plates 53 and 54 form a plurality of tubes surrounded by the walls of the protrusions 10 and 10, and the tubes form the corresponding high temperature fluid compartments. Further, both ends of each of the tubes are configured to converge into the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b, respectively. As a result, the high temperature fluid flows through the tube-shaped high temperature fluid compartment and flows in an arcuate and circular manner in the vicinity of the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b. In the flow process, the high temperature fluid thus comes into contact with a large area of the core plates 53 and 54. Consequently, the area of the core plates 53 and 54 that does not contribute to heat transfer decreases, and the core plates 53 and 54 have a large area that contributes to heat exchange between the high temperature fluid and the low temperature fluid. As a result, the effective heat transfer areas of the core plates 53 and 54 increase by approximately 10 to 15%. The heat exchange efficiency between the high temperature fluid and the low temperature fluid in the plate laminate type heat exchangers 100, 110, and 120 is therefore higher than that in the plate laminate type heat exchanger 500 of related art. Specifically, the heat exchange efficiency is improved by 5 to 10%.
In the plate laminate type heat exchangers 110 and 120, each of the core plates 53 and 54 has a substantially parallelogram shape, and the high temperature fluid flowing through the tubes disposed on the end sides in the width direction of the core plates 53 and 54 flows in a circular manner at a large radius in the vicinity of the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b. As a result, the area of the core plates 53 and 54 that does not contribute to heat transfer further decreases, and the core plates 53 and 54 have larger areas that contribute to heat exchange between the high temperature fluid and the low temperature fluid. The heat exchange efficiency in the plate laminate type heat exchangers 110 and 120 is therefore higher than that in the plate laminate type heat exchanger 100.
Further, in the plate laminate type heat exchanger 120, the tubes described above are configured in such a way that a tube disposed in a position closer to the center of the core plates 53 and 54 and farther apart from both ends in the width direction of the core plates 53 and 54 has a smaller cross-sectional area in the width direction of the core plates 53 and 54. Consequently, in the plate laminate type heat exchanger 120, the high temperature fluid flows through the tubes disposed on the end sides in the width direction of the core plates 53 and 54 at a flow volume rate similar to that flowing through the tubes disposed at the center of the core plates 53 and 54. As a result, the flow rate of the high temperature fluid flowing through the tubes disposed on the end sides in the width direction of the core plates 53 and 54 is substantially the same as the flow rate of the high temperature fluid flowing through the tubes disposed at the center of the core plates 53 and 54, whereby the flow rates of the high temperature fluid flowing through all the tubes are substantially the same. The heat exchange efficiency in the plate laminate type heat exchanger 120 is therefore higher than that in the plate laminate type heat exchanger 110.
A second embodiment of the present invention will be described with reference to
The plate laminate type heat exchanger 150 shown in
A plurality of groove-like protrusions 10 is formed on one side of each of the flat core plates 53 and 54, and the protrusions 10a to 10e are disposed substantially in parallel to the longitudinal direction of the plate. Each of the flat plates is curved in such a way that ridges and valleys are formed in the direction in which the plates are laminated and the ridges and valleys are repeated along the longitudinal direction of the plates. Each of the core plates 53 and 54 has a substantially rectangular shape when viewed in the direction in which the core plates 53 and 54 are laminated.
An inlet port for high temperature fluid 58a and an outlet port for low temperature fluid 59b are provided in each of the core plates 53 and 54 on one end side in the longitudinal direction thereof. On the other hand, an outlet port for high temperature fluid 58b and an inlet port for low temperature fluid 59a are provided in each of the core plates 53 and 54 on the other end side in the longitudinal direction thereof. In each of the core plates 54, attachment portions 60 are formed integrally therewith at the inlet port for low temperature fluid 59a and the outlet port for low temperature fluid 59b. The inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b, as well as the inlet port for low temperature fluid 59a and the outlet port for low temperature fluid 59b of each of the core plates 53 and 54 are disposed at the respective corners thereof, and the pair of the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b and the pair of the inlet port for low temperature fluid 59a and the outlet port for low temperature fluid 59b of each of the core plates 53 and 54 are located substantially on the diagonal lines thereof. Both ends of each of the protrusions 10 converge into the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b, respectively. Each of the pairs of core plates 53 and 54 is assembled in such a way that the side of the core plate 53 that is opposite the one side described above faces the side of the core plate 54 that is opposite the one side described above and the protrusions 10 and 10 formed on the respective core plates are paired but oriented in opposite directions.
In the plate laminate type heat exchanger 150, a pair of core plates 53 and 54 form a plurality of tubes surrounded by the walls of the protrusions 10 and 10, and the tubes form the corresponding high temperature fluid compartments. Both ends of each of the tubes are configured to converge into the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b, respectively. Further, ridges and valleys are formed in the direction in which the core plates 53 and 54 are laminated and the ridges and valleys are repeated along the longitudinal direction of the core plates 53 and 54. As a result, the high temperature fluid flows through the high temperature fluid compartment having the complex structure described above and flows in an arcuate and circular manner in the vicinity of the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b. In the flow process, the high temperature fluid thus comes into contact with a large area of the core plates 53 and 54. As a result, the area of the core plates 53 and 54 that does not contribute to heat transfer decreases, and the core plates 53 and 54 have a large area that contributes to heat exchange between the high temperature fluid and the low temperature fluid. Thus, the heat exchange efficiency in the plate laminate type heat exchanger 150 is higher than that in the plate laminate type heat exchanger 500 of related art and even higher than that in the plate laminate type heat exchanger 100 described above.
A third embodiment of the present invention will be described with reference to
In the plate laminate type heat exchanger 160 shown in
The protrusions 10 and 10 formed in a pair of core plates 53 and 54 are configured to meander along the longitudinal direction of the core plates 53 and 54 while being in phase with each other. A pair of core plates 53 and 54 form a plurality of serpentine tubes surrounded by the walls of the protrusions 10 and 10, and the serpentine tubes form the corresponding high temperature fluid compartments. The serpentine tubes are configured in such a way that a tube disposed in a position closer to the center of the core plates 53 and 54 and farther apart from both ends in the width direction of the core plates 53 and 54 has a smaller cross-sectional area. Specifically, the protrusions 10a to 10e that form the serpentine tubes have cross-sectional areas in the width direction of the core plates 53 and 54 that satisfy the following relationship: the cross-sectional area of the protrusion 10a=the cross-sectional area of the protrusion 10e>the cross-sectional area of the protrusion 10b=the cross-sectional area of the protrusion 10d>the cross-sectional area of the protrusion 10c.
In the plate laminate type heat exchanger 160, a pair of core plates 53 and 54 form a plurality of serpentine tubes surrounded by the walls of the protrusions 10 and 10, and the serpentine tubes form the corresponding high temperature fluid compartments. Both ends of each of the serpentine tubes are configured to converge into the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b, respectively. Further, ridges and valleys are formed in the direction in which the core plates 53 and 54 are laminated, and the ridges and valleys are repeated along the longitudinal direction of the core plates 53 and 54. Ridges and valleys are formed also in the width direction of the core plates 53 and 54, and the ridges and valleys are repeated along the longitudinal direction of the core plates 53 and 54. As a result, the high temperature fluid flows through the high temperature fluid compartment formed of the serpentine tubes and flows in an arcuate and circular manner in the vicinity of the inlet port for high temperature fluid 58a and the outlet port for high temperature fluid 58b. In the flow process, the high temperature fluid thus comes into contact with a large area of the core plates 53 and 54. As a result, the area of the core plates 53 and 54 that does not contribute to heat transfer decreases, and the core plates 53 and 54 have a large area that contributes to heat exchange between the high temperature fluid and the low temperature fluid. Thus, the heat exchange efficiency in the plate laminate type heat exchanger 160 is higher than that in the plate laminate type heat exchanger 500 of related art and even higher than that in the plate laminate type heat exchanger 150 described above.
Another embodiment of the present invention will be described with reference to
The plate laminate type heat exchanger 200 shown in
Each of the core plates 13 and 14 is an improved flat plate. Specifically, a plurality of corrugated protrusions 30 and 40 are formed on one side of each of the flat core plates 13 and 14, and the corrugated protrusions 30 and 40 continuously meander along the longitudinal direction of the plates. Each of the plates is curved in such a way that ridges and valleys are disposed in the direction in which the plates are laminated and the ridges and valleys are repeated along the longitudinal direction of the plates. The plurality of protrusions 30 and 40 are disposed in parallel to the longitudinal direction of the core plates 13 and 14 and equally spaced apart from each other. The protrusions 30 and 40 have ridges and valleys formed in the width direction of the core plates 13 and 14, and the ridges and valleys meander in such a way that they are alternately and periodically repeated along the longitudinal direction of the core plates 13 and 14. The protrusions 30 and 40 also have ridges and valleys formed in the direction in which the core plates 13 and 14 are laminated, and the ridges and valleys meander in such a way that they are alternately and periodically repeated along the longitudinal direction of the core plates 13 and 14. The ridges and valleys formed in the width direction of the core plates 13 and 14 are disposed in correspondence with the ridges and valleys formed in the direction in which the core plates 13 and 14 are laminated. The protrusions 30 and 40 are waved not only in the direction in which the core plates 13 and 14 are laminated but also in the width direction of the core plates 13 and 14. The protrusions 30 and 40 are the same in terms of the period, the phase, and the amplitude of the waves formed in the width direction of the core plates 13 and 14.
Each of the pairs of core plates 13 and 14 (cores 15) is assembled in such a way that the side of the core plate 13 that is opposite the one side on which the protrusions 30 and 40 are formed faces the side of the core plate 14 that is opposite the one side on which the protrusions 30 and 40 are formed and the protrusions 30 and 40 formed on the respective core plates are paired but oriented in opposite directions (see
The protrusions 30 and 40 oriented in vertically opposite directions are paired and form the serpentine tubes, and serpentine tubes adjacent in the width direction of the core plates 13 and 14 do not communicate with each other. The high temperature fluid therefore separately flows through each single serpentine tube substantially in the longitudinal direction, but does not flow into other adjacent serpentine tubes. The configuration of the present invention, however, is not limited to the configuration described above. For example, the protrusions 30 and 40 may be formed in such a way that they are out of phase by half the period in the longitudinal direction or the width direction of the core plates 13 and 14 so that they do not form serpentine tubes (not shown). In this configuration, the high temperature fluid flows into the portion between adjacent protrusions, whereby more complex high temperature fluid compartments are formed. Further, embossments 31 and 41 are preferably formed on the protrusions 30 and 40 at locations corresponding to the ridges and valleys formed in the direction in which the core plates 13 and 14 are laminated. In this case, when the pairs of core plates 13 and 14 are laminated, pairs of upper and lower embossments 31 and 41 abut each other and form cylindrical members in the low temperature fluid compartments (see
As shown in
According to the configuration described above, each of the pairs of core plates 13 and 14 form serpentine tubes that meander not only in the direction in which the core plates 13 and 14 are laminated but also in the width direction of the core plates 13 and 14. The high temperature fluid compartment is formed in each of the serpentine tubes, and the low temperature fluid compartment is formed in the area sandwiched between adjacent serpentine tubes. Since each of the serpentine tubes eliminates the need for fins but forms a complex flow path, the heat transfer area of the core plates 13 and 14 increases. Further, since the length from the inlet to the outlet of each of the fluid compartments (path length) increases, the heat exchange efficiency is improved by approximately 10 to 20%. The plate laminate type heat exchanger 200 without fins can therefore maintain heat exchange efficiency equivalent to that obtained when fins are provided. Further, fins can be completely omitted in each of the cores 15. Moreover, reducing the number of fins or omitting fins allows the number of part and hence the cost to be reduced.
The plate laminate type heat exchanger 200 is configured in such a way that the high temperature fluid flows through the serpentine tubes from one end to the other end in the longitudinal direction, and hence has a structure similar to that of a tube type heat exchanger. The plate laminate type heat exchanger 200, however, has complex flow paths and structurally differs from a tube type heat exchanger in this regard. That is, in a tube type heat exchanger, each fluid compartment is formed of a linear tube and it is structurally difficult to form a serpentine tube that meanders in the laminate and width directions. In a tube type heat exchanger, it is therefore significantly difficult to form complex flow paths in a tube and in the area sandwiched between tubes. In the plate laminate type heat exchanger 200 of the present invention, however, only laminating the core plates 13 and 14 allows formation of complex flow paths. The heat exchange efficiency between the high temperature fluid and the low temperature fluid can thus be significantly improved in the plate laminate type heat exchanger 200.
Other embodiments of the present invention will be described with reference to
As shown in
On the other hand, in the plate laminate type heat exchanger 400 shown in
According to the configuration described above, a pair of core plates 13 and 14 form complex flow paths formed by the walls of the protrusions 30 and 40, and the complex flow paths allow the high temperature fluid to be agitated at their intersections. As a result, the heat exchange efficiency between the high temperature fluid and the low temperature fluid is significantly improved. The plate laminate type heat exchangers 300 and 400 can therefore readily maintain heat exchange efficiency equivalent to that obtained when fins are provided. Further, fins can be completely omitted in each of the pairs.
The present invention can provide a plate laminate type heat exchanger having high heat exchange efficiency.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/064426 | 7/23/2007 | WO | 00 | 2/2/2010 |