The present invention relates generally to phase locked loops used as frequency synthesizers, and more particularly, to a system and method for switching the phase locked loop's operating parameters to reduce acquisition time.
More and more communication systems support multiple standards and protocols. These systems rely on compressed operating modes that divide timing frames into sub periods and assign these periods to different protocols. The sub periods allow probing and setting up of new communication links. These require an advanced radio transceiver and, more often than not, duplicate frequency synthesizers to support fast switching.
Frequency synthesizers based on phase-locked loops (PLL) use a feedback loop to create an agile, low-noise signal. The feedback loop helps to minimize noise in track mode but tends to increase the switching time in acquisition mode, making it difficult to optimize the phase-locked loop's overall performance. As such, it would therefore be advantageous to adjust the parameters associated with the phase-locked loop and optimize them according to its mode of operation.
The present invention advantageously enables the switching and settling time of a phase-locked loop, thereby optimizing its performance for a variety of applications.
In one aspect the invention relates to an apparatus for configuring operational parameters of a phase-locked loop. The apparatus includes a mode detection circuit for generating a detection signal to switch the phase-locked loop from a first mode to a second mode of operation. The apparatus also includes a parameter-switching network that operates to change certain circuit values from first to second states.
In another aspect the invention pertains to a phase-locked loop frequency synthesizer which includes a phase-locked loop disposed to function in a first mode and in a second mode. The synthesizer also includes a mode detection circuit for generating a first detection signal to initiate transition of the phase-locked loop from the first mode to the second mode. A switching network operates to change, at least in part in response to the first detection signal, values of one or more operating parameters of the phase-locked loop.
The present invention also generally relates to a method of operating a phase-locked loop frequency synthesizer. The method includes defining a first set of operating parameters applicable to operation of a phase-locked loop of the synthesizer in a first mode and defining a second set of operating parameters applicable to operation of the phase-locked loop in a second mode. A first detection signal is generated so as to initiate transition of the phase-locked loop into the second mode. The method further includes configuring, at least in part in response to the first detection signal, the phase-locked loop to operate in accordance with the second set of operating parameters.
Another aspect of the invention is directed to an apparatus for configuring operational parameters of a phase locked loop. The apparatus includes a mode detection circuit for generating a first detection signal to transition the phase-locked loop from a first operative mode to a second operative mode. A parameter switching network is operative to switch, at least in part in response to the first detection signal, values of one or more operating parameters of the phase-locked loop from a first state to a second state.
In yet another aspect the present invention pertains to a phase-locked loop module which includes a voltage-controlled oscillator for generating an output signal of a frequency determined by a control voltage. A divider circuit divides the output signal to produce a frequency-divided signal. The module also includes a phase/frequency detector disposed to compare phases between an input reference signal and the frequency-divided signal and to produce a first phase error signal and a second phase error signal. A charge pump circuit produces a charge pump signal in response to the first phase error signal and the second phase error signal. A loop filter produces the control voltage in response to the charge pump signal wherein the loop filter and the charge pump circuit are characterized by one or more operating parameters. The module further includes a parameter switching arrangement for changing values of the one or more operating parameters subsequent to transition of the phase-locked loop from a first operative mode to a second operative mode.
An additional aspect of the invention is directed to a phase-locked loop frequency synthesizer including a phase-locked loop disposed to function in a first operative mode and in a second operative mode. A parameter switching arrangement switches values of one or more operating parameters of the phase-locked loop from a first state to a second state subsequent to transition of the phase-locked loop from the first operative mode into the second operative mode.
For a better understanding of the nature of the features of the invention, reference should be made to the following detailed description taken in conjunction with the accompanying drawings, in which:
a and 5b illustrate respectively the phase/frequency detector and an associated timing diagram;
a and 8b illustrate respectively a detailed diagram of the lock-detect circuit loop in accordance with the present invention and an associated timing diagram;
a and 10b illustrate respectively the time response of a PLL with set and switched parameters.
A conventional phase-locked loop (PLL) used to synthesize signals at radio frequencies is shown in
The phase-locked loop incorporates feedback that minimizes the phase difference between a very accurate reference signal and the output signal. It operates to generate an output signal at a frequency given by
fVCO=NfREF
where fvco is the frequency of the output signal produced by the VCO, N is the value of the feedback counter, and fREF is the frequency of the reference signal.
A mathematical model of the PLL is shown in
vout(t)=Ac cos(ωfreet+Kvco∫vctrl(t)dt)
where ωfree is the free-running frequency of the oscillator and Kvco is its associated gain.
The gain Kvco describes the relationship between the excess phase of the carrier Φout(s) and the control voltage vctrl
where Kvco is in rads/V. The N counter simply divides the output phase Φout(s) by N.
When the phase-locked loop is locked, the phase detector and charge pump circuits generate an output signal iCP(s) that is proportional to the phase difference Δθ between its two input signals (the reference signal REF and the divider output signal DIV). The signal iCP(s) shifts positive to advance the VCO frequency and phase while it shifts negative to slow the VCO signal. The output signal iCP(s) can therefore be expressed as
where Kpd is in A/radians and Δθ is in radians. A simple integration filter, consisting of resistor R1 and capacitors C1-C2 as shown in
where a zero (at 1/R1C1) has been added to stabilize the second order system and the capacitor C2 has been included to reduce any ripple on the output voltage. Combining the above relations yields the composite open-loop transfer function
which has two poles at the origin (due to the voltage-controlled oscillator and the integration filter). This system is referred to as a type II phase-locked loop.
The open-loop transfer function GH(s) is used to analyze the stability of the feedback loop. Its magnitude and phase response—shown in FIG. 4—indicate the phase margin of the system. Ideally, the phase margin approaches 45°, providing a loop with adequate stability while minimizing acquisition time.
The closed-loop response of the system is simply
which shows the zero and two complex poles. Not surprisingly, both the open-loop and closed-loop responses of the phase-locked loop depend on the integration filter components (R1, C1-C2), the charge pump current ICP, and the gain of the voltage-controlled oscillator, Kvco. Mapping the denominator of the above expression to the characteristic equation of a second order system reveals
s2NR1C1C2+s[N(C1+C2)+KPDKVCOR1C]+KPDKVCO=s2+2ζωns+ωn2
with the critical frequency ωn equal to
and the damping factor ζ given by
Note that the damping factor is usually set to 0.707—the condition for critical damping and 45° phase margin.
The step response of the PLL second order system in essence determines the acquisition time tacq of the frequency synthesizer. As such, it depends on the above PLL parameters (ωn and ζ) as well as the programmed step size (Δf) and required settling accuracy (α), with
where fVCO is the initial frequency. From this relationship, it is clear that the critical frequency ωn sets the PLL's settling time. It follows then that to reduce settling time, the critical frequency must be increased. This can be accomplished by increasing the charge pump current iCP, reducing the R1C1 product, reducing N, or any combination thereof.
The step response of the phase-locked loop and the corresponding switching behavior are both dynamic and discrete. This is primarily due to the phase/frequency detector. It compares the reference signal REF and divider output signal DIV. The phase/frequency detector operates on the leading edges of these signals to generate an output signal proportional to their phase difference Δθ. This is accomplished with a simple digital circuit such as the one shown in
The UP and DN pulses drive the charge pump circuit and feed the integration filter shown in
The charge pump sources or sinks charge (iCPΔt) to or from the integration filter. The charge tends to be discrete and aligns with the UP and DN pulses produced by the phase/frequency detector. By design, these pulses disturb the control voltage vctrl.
It is important that the output of the integration filter vctrl be well behaved—especially in track mode. This is because transient signals affect the output phase of the VCO and can potentially unlock the phase-locked loop. If this occurs, the phase-locked loop will be forced back to acquisition mode. And, this unfortunately increases the PLL switching time.
The inventive system shown in
The lock-detect circuit shown in
Recall that the RESET pulse toggles the UP and DN signals produced by the phase/frequency detector to logic LO. As such, its rising edge occurs just before (and almost coincident with) the falling edges of these signals. However, to operate properly, the RESET signal must actually trigger the lock detect circuit at an earlier time—a time equal to the minimum pulsewidth for phase-lock tPW. In this way, the flip-flops of the phase/frequency detector can store the state of the charge pump at time tRESET−tPW and can thereby capture any pulses wider than tPW. In practice, this is implemented instead by delaying the UP and DN signals. This is shown in the timing diagram of
Note that it's also possible to use the REF and DIV signals instead of the UP and DN charge pump pulses in the lock detector. Although this requires a longer delay to the trigger signal (to cover the flip-flop delay in the phase/frequency detector), it may prove easier to implement.
The lock detect circuit examines sequential charge pump pulses until it identifies L consecutive pulses narrower than tPW. When this occurs, the lock detector generates a LOCK signal. A practical value of L is four.
The phase/frequency detector provides two outputs, which map to four states: UP, DN, reset, and tri-state. UP and DN are fairly obvious. Reset occurs when both UP and DN are active, while tri-state corresponds to when these signals are inactive. In practice, the phase/frequency detector is usually tri-state right up to the leading edges of the REF and DIV signals. In fact, it is usually tri-state much of the time when the phase-locked loop is locked. Furthermore, the leading edges that trigger the phase/frequency detector occur at the zero value of the counters and produce narrow charge pump pulses. As a result, the phase/frequency detector should be tri-state at small, non-zero counter values—for example a counter value of 32. The decoder within the PLL system senses this state of the counter.
The PLL system recognizes the lock detect state and counter value 32 to trigger the signal SW of
The SW signal directs the circuit of
iCP=I1+I2 and R1=R1B
The larger charge pump current iCP and the lower value of R1 increase the loop bandwidth of the PLL and thereby reduce its acquisition time. After lock detect, the SW signal toggles (at counter value 32) to the logic LO level. This opens the three switches and resets the PLL parameters
iCP=I1 and R1=R1A+R1B
to achieve minimum phase noise.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. In other instances, well-known circuits and devices are shown in block diagram form in order to avoid unnecessary distraction from the underlying invention. Thus, the foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the following Claims and their equivalents define the scope of the invention.
This application claims priority under 35 U.S.C. §119(e) to U.S. provisional application Ser. No. 60/657,869, entitled PLL WITH SWITCHED PARAMETERS, filed Mar. 1, 2005, which is hereby incorporated by reference. This application is also related to U.S. Pat. No. 6,856,205, entitled VCO WITH AUTOMATIC CALIBRATION, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4263560 | Ricker | Apr 1981 | A |
4430627 | Machida | Feb 1984 | A |
4769588 | Panther | Sep 1988 | A |
4816772 | Klotz | Mar 1989 | A |
4926135 | Voorman | May 1990 | A |
4965531 | Riley | Oct 1990 | A |
5006818 | Koyama et al. | Apr 1991 | A |
5015968 | Podell et al. | May 1991 | A |
5030923 | Arai | Jul 1991 | A |
5289136 | DeVeirman et al. | Feb 1994 | A |
5331292 | Worden et al. | Jul 1994 | A |
5399990 | Miyake | Mar 1995 | A |
5491450 | Helms et al. | Feb 1996 | A |
5508660 | Gersbach et al. | Apr 1996 | A |
5548594 | Nakamura | Aug 1996 | A |
5561385 | Choi | Oct 1996 | A |
5581216 | Ruetz | Dec 1996 | A |
5631587 | Co et al. | May 1997 | A |
5648744 | Prakash et al. | Jul 1997 | A |
5677646 | Entrikin | Oct 1997 | A |
5739730 | Rotzoll | Apr 1998 | A |
5767748 | Nakao | Jun 1998 | A |
5818303 | Oishi et al. | Oct 1998 | A |
5834987 | Dent | Nov 1998 | A |
5862465 | Ou | Jan 1999 | A |
5878101 | Aisaka | Mar 1999 | A |
5880631 | Sahota | Mar 1999 | A |
5939922 | Umeda | Aug 1999 | A |
5945855 | Momtaz | Aug 1999 | A |
5949286 | Jones | Sep 1999 | A |
5990740 | Groe | Nov 1999 | A |
5994959 | Ainsworth | Nov 1999 | A |
5999056 | Fong | Dec 1999 | A |
6011437 | Sutardja et al. | Jan 2000 | A |
6018651 | Bruckert et al. | Jan 2000 | A |
6031425 | Hasegawa | Feb 2000 | A |
6044124 | Monahan et al. | Mar 2000 | A |
6052035 | Nolan et al. | Apr 2000 | A |
6057739 | Crowley et al. | May 2000 | A |
6060935 | Shulman | May 2000 | A |
6091307 | Nelson | Jul 2000 | A |
6100767 | Sumi | Aug 2000 | A |
6114920 | Moon et al. | Sep 2000 | A |
6163207 | Kattner et al. | Dec 2000 | A |
6173011 | Rey et al. | Jan 2001 | B1 |
6191956 | Foreman | Feb 2001 | B1 |
6204728 | Hageraats | Mar 2001 | B1 |
6211737 | Fong | Apr 2001 | B1 |
6229374 | Tammone, Jr. | May 2001 | B1 |
6246289 | Pisati et al. | Jun 2001 | B1 |
6255889 | Branson | Jul 2001 | B1 |
6259321 | Song et al. | Jul 2001 | B1 |
6288609 | Brueske et al. | Sep 2001 | B1 |
6298093 | Genrich | Oct 2001 | B1 |
6333675 | Saito | Dec 2001 | B1 |
6370372 | Molnar et al. | Apr 2002 | B1 |
6392487 | Alexanian | May 2002 | B1 |
6404252 | Wilsch | Jun 2002 | B1 |
6476660 | Visocchi et al. | Nov 2002 | B1 |
6515553 | Filiol et al. | Feb 2003 | B1 |
6559717 | Lynn et al. | May 2003 | B1 |
6560448 | Baldwin et al. | May 2003 | B1 |
6571083 | Powell, II et al. | May 2003 | B1 |
6577190 | Kim | Jun 2003 | B2 |
6583671 | Chatwin | Jun 2003 | B2 |
6583675 | Gomez | Jun 2003 | B2 |
6639474 | Asikainen et al. | Oct 2003 | B2 |
6664865 | Groe et al. | Dec 2003 | B2 |
6683509 | Albon et al. | Jan 2004 | B2 |
6693977 | Katayama et al. | Feb 2004 | B2 |
6703887 | Groe | Mar 2004 | B2 |
6711391 | Walker et al. | Mar 2004 | B1 |
6724235 | Costa et al. | Apr 2004 | B2 |
6734736 | Gharpurey | May 2004 | B2 |
6744319 | Kim | Jun 2004 | B2 |
6751272 | Burns et al. | Jun 2004 | B1 |
6753738 | Baird | Jun 2004 | B1 |
6763228 | Prentice et al. | Jul 2004 | B2 |
6774740 | Groe | Aug 2004 | B1 |
6777999 | Kanou et al. | Aug 2004 | B2 |
6781425 | Si | Aug 2004 | B2 |
6795843 | Groe | Sep 2004 | B1 |
6798290 | Groe et al. | Sep 2004 | B2 |
6801089 | Costa et al. | Oct 2004 | B2 |
6845139 | Gibbons | Jan 2005 | B2 |
6856205 | Groe | Feb 2005 | B1 |
6870411 | Shibahara et al. | Mar 2005 | B2 |
6917791 | Chadwick | Jul 2005 | B2 |
6940356 | McDonald et al. | Sep 2005 | B2 |
6943600 | Craninckx | Sep 2005 | B2 |
6975687 | Jackson et al. | Dec 2005 | B2 |
6985703 | Groe et al. | Jan 2006 | B2 |
6990327 | Zheng et al. | Jan 2006 | B2 |
7062248 | Kuiri | Jun 2006 | B2 |
7065334 | Otaka et al. | Jun 2006 | B1 |
7088979 | Shenoy et al. | Aug 2006 | B1 |
7123102 | Uozumi et al. | Oct 2006 | B2 |
7142062 | Vaananen et al. | Nov 2006 | B2 |
7148764 | Kasahara et al. | Dec 2006 | B2 |
7171170 | Groe et al. | Jan 2007 | B2 |
7215215 | Hirano et al. | May 2007 | B2 |
20020071497 | Bengtsson et al. | Jun 2002 | A1 |
20020193009 | Reed | Dec 2002 | A1 |
20030078016 | Groe et al. | Apr 2003 | A1 |
20030092405 | Groe et al. | May 2003 | A1 |
20030118143 | Bellaouar et al. | Jun 2003 | A1 |
20030197564 | Humphreys et al. | Oct 2003 | A1 |
20040017862 | Redman-White | Jan 2004 | A1 |
20040051590 | Perrott et al. | Mar 2004 | A1 |
20050093631 | Groe | May 2005 | A1 |
20050099232 | Groe et al. | May 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
60657869 | Mar 2005 | US |