Plug connector

Information

  • Patent Grant
  • 9093803
  • Patent Number
    9,093,803
  • Date Filed
    Tuesday, September 11, 2012
    12 years ago
  • Date Issued
    Tuesday, July 28, 2015
    9 years ago
Abstract
Disclosed are plug connector assemblies having external contacts formed on only one surface of a connector body of the assembly. In some embodiments, the connector body includes a plastic tip integrally formed within a ground ring that is otherwise made from metal. Additionally, in some embodiments, the plug connector has a base portion with feet on opposing sides of the plug that each includes a hole that can be used to attach the plug connector to an encasing or other structure of a base electronic device it is incorporated into. In some embodiments, the plug connector extends upwardly away from the base at a predetermined angle such that the contacts are located on the side of the plug connector that forms an acute angle with the base.
Description
BACKGROUND OF THE INVENTION

The present invention generally relates to electrical connectors and in particular to connector modules that can be readily incorporated into electronic devices and docking stations.


A wide variety of electronic devices are available for consumers today. Many of these devices have connectors that facilitate communication with and/or charging of a corresponding device. Typically these connectors are part of a male plug connector and female receptacle connector system in which the plug connector can be inserted into and mated with the receptacle connector so that digital and analog signals can be transferred between the contacts in each connector. More often than not, the female connector in the connector system is included in a host electronic device such as a portable media player, a smart phone, a tablet computer, a laptop computer, a desktop computer or the like. The plug connector in the connector system is often included in an accessory device such as a charging cable, a docking station, an audio sound system or the like. In some instances, however, devices, for example cable adapters, include both receptacle and plug connectors. Also, in some instances, the plug connector/receptacle connector pairing can be part of a large ecosystem of products that includes both host electronic devices and accessory devices designed to work together. Thus, the same general format plug connector can be incorporated into many different accessories, which in turn can be designed to operate with multiple different host devices that include the corresponding receptacle connector.


BRIEF SUMMARY OF THE INVENTION

Embodiments of the invention pertain to plug connectors that can function within an ecosystem of products, many of which are adapted to work with dual orientation (also referred to as “reversible”) connectors. Some embodiments of the invention pertain to plug connectors with contacts formed on a single side of the connector that are configured to mate with a receptacle connector in a host device that often mates with a reversible connector. Such a connector may be particularly useful when incorporated into an accessory in which the insertion orientation of the plug connector and the receptacle connector are known. One example of such an accessory is a docking station in which a host electronic device with the receptacle connector is always docked in the same orientation with respect to the docking station.


Plug connectors according to certain embodiments of the present invention have a reduced plug length and thickness as compared to currently available electronic connectors, and a smooth consistent feel when inserted and extracted from a corresponding receptacle connector.


Other embodiments of the invention pertain to plug connectors with external contacts that include a plastic tip integrally formed within a ground ring that is otherwise made from metal. The plastic tip is positioned at the distal tip of the ground ring and helps ensure that if the plug connector comes in contact with a metal enclosure of a host electronic device, the enclosure is less likely to be scratched or otherwise marred or damaged. As one example, consider a user trying to dock a host tablet computer that is relatively heavy in a docking station having a plug connector extending from a docking bay. The tablet computer has a receptacle connector configured to mate with the plug connector but if in the act of docking the tablet computer, the user “misses” so that the receptacle connector and plug connector are not properly aligned, the enclosure of the tablet computer may contact the plug connector, which partly because of the weight of the tablet computer, may result in a scratch or mark on the enclosure if the plug connector has a metal tip.


Still other embodiments of the invention include both a plastic tip and contacts on a single side. Additionally, in some embodiments, the plug connector has a base portion with feet on opposing sides of the plug that each includes a hole that can be used to attach the plug connector to an encasing or other structure of the host electronic device it is incorporated into. The plug connector can extend upwardly away from the base at a predetermined angle such that the contacts are located on the side of the plug connector that forms an acute angle with the base. In one embodiment, the angle of the plug connector with respect to vertical is between 10-25 degrees and in some cases is between 14-15 degrees with respect to vertical.


Still another embodiment of the invention pertains to a plug connector that includes a plug connected to a base and extending away from the base. The plug includes first and second major opposing surfaces along with third and fourth minor opposing surfaces that extend between the first and second major surfaces. A contact region that includes eight sequentially numbered external contacts spaced apart along a first row is formed on the first major surface of the plug.


To better understand the nature and advantages of the present invention, reference should be made to the following description and the accompanying figures. It is to be understood, however, that each of the figures is provided for the purpose of illustration only and is not intended as a definition of the limits of the scope of the present invention. Also, as a general rule, and unless it is evident to the contrary from the description, where elements in different figures use identical reference numbers, the elements are generally either identical or at least similar in function or purpose.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a rendering of one particular electronic media device;



FIG. 2 is a simplified perspective view of a plug connector according to one embodiment of the invention that includes contacts on a single side of the connector that can be incorporated into a docking station or similar accessory;



FIG. 3 is a simplified bottom plan view of the plug connector in FIG. 2;



FIG. 4 is a simplified perspective view of a metal frame that makes up a portion of a plug connector shown in FIG. 2 without the front side of the frame; and



FIGS. 5-6 are various simplified views of a plug connector having a plastic tip according to embodiments of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention will now be described in detail with reference to certain embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known details have not been described in detail in order not to unnecessarily obscure the present invention.


As discussed earlier, the invention may apply to a variety of plug connectors which use a variety of different connector technologies. Accordingly, this invention may be used with many electronic devices that mate with a variety of electrical connectors in order to receive and provide power and data. One example of an electronic device that may be used with embodiments of the present invention is shown in FIG. 1.



FIG. 1 depicts an illustrative rendering of one particular electronic media device 10. Device 10 includes a multipurpose button 15 as an input component, a touch screen display 20 as both an input and output component, and a speaker 25 as an output component, all of which are housed within a device housing 30. Device 10 also includes a primary receptacle connector 35 and an audio plug receptacle 40 within device housing 30. Each of the receptacle connectors 35 and 40 can be positioned within housing 30 such that the cavity of the receptacle connectors into which a corresponding plug connector is inserted is located at an exterior surface of the device housing. In some embodiments, the cavity opens to an exterior side surface of device 10. For simplicity, various internal components, such as the control circuitry, graphics circuitry, bus, memory, storage device and other components are not shown in FIG. 1. Embodiments of the invention disclosed herein are particularly suitable for use with plug connectors that are configured to mate with primary receptacle connector 35, but in some embodiments can also be used with audio plug receptacle 40. Additionally, in some embodiments, electronic media device 10 has only a single receptacle connector 35 that is used to physically interface and connect the device (as opposed to a wireless connection which can also be used) to the other electronic devices.


Although device 10 is described as one particular electronic media device, embodiments of the invention are suitable for use with a multiplicity of electronic devices that include a receptacle connector that corresponds to a plug connector including a frame. For example, any device that receives or transmits audio, video or data signals may be used with the invention. In some instances, embodiments of the invention are particularly well suited for use with portable electronic media devices because of their potentially small form factor. As used herein, an electronic media device includes any device with at least one electronic component that may be used to present human-perceivable media. Such devices may include, for example, portable music players (e.g., MP3 devices and Apple's iPod devices), portable video players (e.g., portable DVD players), cellular telephones (e.g., smart telephones such as Apple's iPhone devices), video cameras, digital still cameras, projection systems (e.g., holographic projection systems), gaming systems, PDAs, desktop computers, as well as tablet (e.g., Apple's iPad devices), laptop or other mobile computers. Some of these devices may be configured to provide audio, video or other data or sensory output.


In order to better appreciate the features and aspects of plug connectors according to the present invention, further context for the invention is provided in the following section by discussing one particular implementation of a plug connector according to the present invention.



FIG. 2 is a perspective view depicting an eight contact plug connector assembly 100 that may include a ground ring or frame 102 according to embodiments of the present invention. As shown in FIG. 2, plug connector assembly 100 includes a connector body 104 that extends longitudinally away from a base portion 106. Connector body 104 is sized to be inserted into a corresponding receptacle connector, such as connector 35, during a mating event. Connector body 104 includes a contact region 108 formed on a first major surface 110 that is opposite second major surface 112 of connector body 104. Surfaces 110, 112 extend from the base portion 106 to a distal tip 118 of connector body 104. When connector body 104 is inserted into a corresponding receptacle connector, major surfaces 110, 112 abut a housing of the receptacle connector or host device into which the receptacle connector is incorporated.


Connector body 104 includes third and fourth opposing minor surfaces 114, 116 that extend between the first and second major surfaces 110, 112. Minor surfaces 114, 116 extend from the base portion 106 to distal tip 118, forming the side walls of connector body 104. When connector body 104 is inserted into a corresponding receptacle connector, minor surfaces 114, 116 may abut inner walls of a housing of a corresponding receptacle connector of a host device. In some embodiments, connector body 104 is between 4 and 7 mm wide, between 1 and 2 mm thick and has an insertion depth (the distance from distal tip 118 to proximal end 120) between 5 and 10 mm. In one particular embodiment, connector body 104 is 6.7 mm wide in the width dimension, 1.5 mm thick in the height dimension and has an insertion depth (the distance from distal tip 118 to proximal end 120) in the length dimension of 6.6 mm. In other embodiments, body 104 has the same 6.7 mm width and 1.5 mm height but has a length of, for example, between 6.5-8.0 mm.


In some embodiments, connector body 104 extends away from base portion 106 at a predetermined angle. In certain embodiments, connector body 104 extends upwardly from base portion 106 at an angle of between approximately 10 and 25 degrees, and in some cases at an angle between approximately 14-15 degrees, with respect to vertical V. In other embodiments, body 104 extends perpendicularly away from base 106.


According to certain embodiments of the invention, the structure and shape of connector body 104 is defined by ground ring 102, which can be made from stainless steel or another hard conductive material. Connector body 104 includes an opening 136 on first major surface 112 that makes up contact region 108. As shown in FIG. 2, opening 136 may be rectangular with rounded corners. In other embodiments, opening 136 may be otherwise shaped, e.g., the opening may be triangular, circular or irregularly shaped.


In some embodiments, base portion 106 of plug connector assembly 100 has a pair of feet, with one foot 130 located on either side of connector body 104. Each foot 130 has a hole or cavity 132 passing through the foot. Holes 132 may be threaded, which allows the plug connector assembly 100 to be fastened to a device, such as a docking station or some other surface, as desired by using screws or other fastening devices.


In certain embodiments, distal tip 118 of connector body 104 may have a curved distal end or leading edge 134. The leading edge may be rounded for approximately 1 mm of its length at each of its ends, and in some embodiments is rounded for between 0.5 mm and 1.5 mm at each end. Rounded leading edge 134 may make it easier to insert connector body 104 into a corresponding receptacle connector when the connector body is rotated off axis, that is, when the connector body is inserted at an incorrect pitch angle.


Contact region 108 includes a plurality of external contacts, such as contacts 126(1) . . . 126(8) (labeled in FIG. 2 as 126(i)). Contacts 126(i) can be made from copper, nickel, brass, stainless steel, a metal alloy or any other appropriate conductive material or combination of conductive materials. In some embodiments, contacts 126(i) can be printed using techniques similar to those used to print contacts on printed circuit boards. In some other embodiments, contacts 126(i) can be stamped from a lead frame, positioned within contact region 108 and surrounded by dielectric material.


As shown in FIG. 2, plug connector assembly 100 is particularly well suited for inclusion in a docking station, clock radio, or other device in which a host electronic device having a corresponding plug connector will always connect in a particular orientation. Thus, connector body 104 according to certain embodiments and as shown in FIG. 2 only includes contacts 126(i) on a single surface of the connector as opposed to both major surfaces.


As shown in FIG. 2, eight external contacts 126(1) . . . 126(8) are spaced apart along a single row in contact region 108 of first major surface 110. Contacts 126(1) . . . 126(8) can be used to carry a wide variety of signals including digital signals and analog signals as well as power and ground as discussed below. In some embodiments, contact region 108 is located towards distal tip 118 of connector body 104 and/or on the minor surfaces 114, 116 of connector body 104. Embodiments that employ ground contacts at one or more positions along the minor surfaces and/or tip surfaces of connector body 104 instead of within the contact region may enable the overall footprint of connector plug to be smaller than a similar connector that includes ground contacts within the contact region. In other embodiments, contact region 108 may occupy a different location or even the entirety of connector body 104.


The contacts may be spaced apart along a single or multiple rows. Although eight external contacts are shown in FIG. 2, contact region 108 may include any number of external contacts, from one to twenty or more arranged in a variety of different patterns. In some embodiments, individual contacts may be sized differently. This may be particularly useful, for example, where one or more contacts are dedicated to carry high power or high current.


Contacts 126(1) . . . 126(8) can be used to carry a wide variety of signals including digital signals and analog signals as well as power and ground as previously discussed. In one embodiment, each contact 126(1) . . . 126(8) have an elongated contact surface. In one embodiment, the overall width of each contact is less than 1.0 mm at the surface, and in another embodiment the width is between 0.75 mm and 0.25 mm. In one particular embodiment, a length of each contact 126(i) is at least 3 times as long at the surface as its width, and in another embodiment a length of each individual contact 126(i) is at least 5 times as long at the surface as its width.


Examples of analog contacts that may be included in contact region 108 include contacts for separate left and right channels for both audio out and audio in signals as well as contacts for video signals, such as RGB video signals, YPbPr component video signals and others. Similarly, many different types of digital signals can be carried by contacts 126(i) in contact region 108 including data signals such as USB signals (including USB 1.0, 2.0 and 3.0), FireWire (also referred to as IEEE 1394) signals, UART signals, Thunderbolt signals, SATA signals and/or any other type of high speed serial interface signal or other type of data signal. Digital signals within contact region 108 may also include signals for digital video such as DVI signals, HDMI signals and Display Port signals, as well as other digital signals that perform functions that enable the detection and identification of devices or accessories to the plug connector.


In some embodiments, the sequentially numbered contacts 126(1) . . . 126(8) include first and second contacts designated for data signals at locations 2 and 3, a power contact designated for power at location 5, third and fourth contacts designated for data signals at locations 6 and 7 and a ground contact at location 126(1). In some embodiments connector body 104 further includes an accessory power contact at location 4 and an ID contact at location 8.


Power contact 106(5) may carry signals of any voltage and, as an example, may carry signals between 2-30 volts. In some embodiments, multiple power contacts are included in contact region 108 to carry power signals of different voltages levels that can be used for different purposes. For example, the accessory power contact may deliver low current power at 3.3 volts that can be used to power accessory devices connected to plug connector assembly 100 can be included in contact region 108, while power contact 106(5) may deliver high current power at 5 volts for charging portable media devices coupled to plug connector assembly 100. In some embodiments, one or more power contacts within the region can be larger than other contacts to more efficiently enable the larger contacts to carry high power and/or high current. In other embodiments, multiple contacts can be electrically coupled together to provide one or more “larger contacts” for carrying high power and/or high current.


Accessory power contact 126(4) can be used for an accessory power signal that provides power from the host to an accessory. The accessory power signal is typically a lower voltage signal than the power in signal received over contact 106(5), for example, 3.3 volts as compared to 5 volts or higher. The accessory ID contact provides a communication channel that enables the host device to authenticate the accessory and enables the accessory to communicate information to the host device about the accessory's capabilities such as the communication interface that is used for each of pair of the data contacts.


Data contacts 126(2), 126(3), 126(6) and 126(7) can be used to enable communication between the host and accessory using one or more of several different communication protocols. In some embodiments, data contacts 126(2) and 126(3) operate as a first pair of data contacts and data contacts 126(6), 126(7) operate as a second pair of data contacts allowing two different serial communication interfaces to be implemented over the data contacts as discussed below. In one embodiment, data contacts 126(2), 126(3) are positioned between the accessory power contact and ground, while data contacts 126(6) and 126(7) are positioned between the power contact and the accessory ID contact. The data contacts can be high speed data contacts that operate at rate that is at least two orders of magnitude faster than any signals sent over the accessory ID contact which makes the accessory ID signal look essentially like a DC signal to the high speed data lines. The accessory power, ground and charging power contacts are all DC contacts. Thus, positioning the data contacts as just described improves signal integrity by sandwiching the data contacts between contacts designated for either DC signals or essentially DC signals.


As shown in FIGS. 2-3, a substrate 128, such as a printed circuit board (PCB), is housed within connector body 104. As shown in FIGS. 2-3, a portion of substrate 128 extends past proximal end 120 of connector body 104. Substrate 128 includes a plurality of contact bonding pads (not shown) that can correspond in number to the plurality of contacts 126(i) and that are positioned directly beneath contacts 126(i) in contact region 108. Substrate 128 also includes one or more electronic components, such as integrated circuits, a plurality of conductor bonding pads and ground pads. Each conductor bonding pad can be connected to one or more contact bonding pads by electrical traces that run along substrate 128 (not shown).



FIG. 3 is a bottom plan view of plug connector assembly 100 illustrating how the substrate 128 is positioned with respect to connector body 104. As shown in FIG. 3, second major surface 112 of connector body 104 includes internal ribs 124. Ribs 124 help center substrate 128, which rests on top of ribs 124. Specifically, because contacts only exist on one surface of the substrate (such as first major surface 110), ribs 124 help bias substrate 124 (and thus the contacts bonding pads included on substrate 124) into proper position.


As illustrated, minor surfaces 114, 116 of connector body 104 may include cutouts 122 that align with a feature on a corresponding receptacle connector. Cutouts 122 may engage with corresponding features disposed in a receptacle connector of a host device and aid in holding connector body within the receptacle connector. Cutouts can also be located at a variety of positions along the connector body 104 including along the minor surfaces 114, 116 and/or distal tip 118 and/or bottom surfaces of the connector body. In some embodiments, cutouts 122 are not utilized.



FIG. 4 illustrates a ground ring 202 according to an embodiment of the present invention that in some embodiments corresponds to ground ring 102 shown in FIG. 2. In some embodiments, ground ring 202 can be made from stainless steel or another hard conductive material. As shown in FIG. 2, ground ring 202 comprises a first major surface 210 and a second opposing major surface 212. Ground ring also includes opposing minor surfaces 214, 216. First major surface 210 includes a cavity 218 that extends generally from a proximal end 220 of ground ring 202 to a distal end 204 in length and the width of cavity 218 is defined by the distance between the two minor surfaces 214, 216. When ground ring 202 is inserted into a corresponding receptacle connector, surfaces 210, 212, 214, 216 may abut inner walls of a housing of a corresponding receptacle connector of a host device. In one particular embodiment, ground ring 202 is 6.7 mm wide in the width dimension, 1.5 mm thick in the height dimension and has an insertion depth (the distance from distal end 204 to proximal end 220) in the length dimension of between 6.5-8.0 mm.


Ground ring 202 may optionally include cutouts 222 that are formed as curved recesses on surfaces 214, 216, respectively, proximate distal end 204. If utilized, in some embodiments these cutouts may be retention features (e.g., curved recesses or pockets) that engage with corresponding features disposed in a receptacle connector of a host device and aid in holding connector body within the receptacle connector. In other embodiments, cutouts 222 are elongated slots that extend from distal end 204 along a portion of the length of each side surface 214, 216. The slots may align with retention features in the receptacle connector but not be a retention feature themselves.


Cavity 218 includes ledges 224, 226 that extend from proximal end 220 toward distal end 204 of ground ring 202. In some embodiments, ledges 224, 226 are undercuts that help retain a plastic cover (not shown) in position. In particular, after metal ground ring 202 has been formed and after the appropriate substrate has been positioned within ground ring 202, plastic may be introduced by injection molding to form a cover that is flush with first major surface 210 to cover the entire face of cavity 218. In this way, contacts positioned within ground ring 202 before the plastic is introduced become embedded within the plastic cover after the plastic is introduced. Ledges 224, 226 interlock with the injection-molded plastic so that the plastic cover does not detach from metal ground ring 202.


Also shown in FIG. 4 are interlocks 228, 230, which may further define cavity 218 of ground ring 202. Interlocks 228, 230 may be disposed on inner end surface 232 and may assist in preventing material overmolded around contacts assembled with ground ring 202 from dislodging and moving in the height dimension. Accordingly, interlocks may prevent displacement of the overmolded contact assemblies when forces are applied to the contacts assemblies in the direction of the height dimension. These forces may be caused by users pressing down on the contact assemblies or otherwise subjecting the contact assemblies to forces, e.g., dropping or hitting the contact assemblies of the plug connector.



FIG. 4 also illustrates internal ribs 234 that help center substrate (not pictured) within ground ring 202 as explained above.



FIGS. 5 and 6 pertain to other embodiments of the invention that include a plastic tip at the distal end of the connector. FIGS. 5A-5F illustrates a connector body 304 and a connector body 404. Connector body 304 has a first major surface 310 and an opposing second major surface 312. Similarly, connector body 404 has a first major surface 410 and an opposing second major surface 412. Connector bodies 304 and 404 each include a tip portion 302 that is formed from a plastic material instead of metal This can be done, for example, by forming a ground ring without a metal tip and adding tip portion 302 in an injection molding process that flows injection molding material into the frame using an appropriately shaped mold. In this way, plastic tip portion may be integral with the ground ring. The injection molding process may also fill in spaces between the ground ring and substrate and between individual contacts in contacts 106(1) . . . 106(8) and the ground ring.



FIGS. 5A-5C disclose various configurations of tip portion 302 disposed along distal tip 318 and, in some embodiments, at least partially along second major surface 312. FIG. 5D illustrates one of many configurations of tip portion 302 as it extends along first major surface 310. In some embodiments, tip portion 302 does not extend along first major surface 310 or second major surface 312 at all and instead is disposed only along distal tip 318 of connector body 304. In some variations, connector body 304 also includes metal regions 320 that, while not shown in the figures, can correspond to recesses that engage with retention features of the corresponding receptacle connector and/or provide a side ground contact to help ensure proper functioning of connector body 304. Although not pictured, first major surface 310 may include contacts, such as contacts 126(i) described above.



FIG. 5E discloses one non-limiting configuration of tip portion 402 along distal tip 418 and second major surface 412 of connector body 404, while FIG. 5F shows first major surface 410 of the embodiment shown in FIG. 5E. In this particular embodiment, tip portion 402 is disposed along distal tip 418 and extends partially along first major surface 410 and second major surface 412. Connector body 404 also includes metal regions 420 that are similar to regions 320. Although not pictured, first major surface 410 may include contacts such as contacts 126(i) described above.


Tip portions 302 and 402 may be any size and any configuration and may extend in any direction and distance along distal tip and along one or more of the major surfaces. In some embodiments, the tip portion extends only partially along the one or more major surfaces, while in other embodiments, the tip portion extends further away from the distal tip along the one or more major surfaces. In some embodiments, the tip portion only extends along the distal tip and does not extend along either of the major surfaces. In some embodiments, the tip portion extends at least partially along the minor surfaces as well as the distal tip and/or the major surfaces.


Plastic tip portions 302 or 402 may be integrally formed within ground ring, which as described is otherwise made from metal. Because the plastic tip portion is positioned at the distal tip 318, 418 of the ground ring, it helps ensure that if the connector body comes in contact with a metal enclosure of a host electronic device, the enclosure is less likely to be scratched or otherwise marred or damaged.


In some versions of the embodiments discussed above with respect to FIGS. 2-6, the plug connector according to the invention may have a form factor that enables mating with receptacle connector 140 disclosed in concurrently filed U.S. patent application Ser. No. 13/607,366, which is herein incorporated by reference in its entirety, or with a receptacle connector such as receptacle connector 35 in FIG. 1.


Embodiments of the present invention may provide a plug connector ground ring or frame that may be easily manufactured. For example, techniques such as a metal injection modeling (MIM) in combination with machining and finishing operations may be used to form frames or ground rings of the invention.


With one exemplary, non-limiting process, a method of manufacture includes three general steps. At the first step, a MIM process is performed to form a metal part. At the second step, select surfaces of the metal part are machined. Lastly, at the third step, finishing operations are performed on the metal part to complete the manufacture of a ground ring or frame. These steps may be used to form embodiments of connector bodies 104, 204, 304, and 404 described above.


In some embodiments, sub-steps are performed. At a first sub-step, a green part or green frame is molded. To produce the green part, a MIM feedstock is blended and injected into a molding machine in molten form. Once the liquefied feedstock cools, it may be de-molded in the molding machine. The feedstock may include a variety of elements chosen to produce a metal part with particular characteristics. In one embodiment, a feedstock for use with the invention may include atomized metal powder, a thermoplastic polymer and wax based plastic. The atomized metal powder may be an atomized steel powder, e.g., atomized steel 630 powder. The thermoplastic polymer may provide the plastic binding agent for the MIM process and the wax based plastic may provide the wax binding agent for the MIM process.


At a second sub-step, the binders are removed (de-binded) from the green part to produce a brown part or brown frame. The binding material may be removed using heat, solvents (e.g., nitric acid), and/or other methods or a combination thereof.


At a third sub-step, the brown part is sintered to produce a MIM part or frame and the MIM process is completed. The sintering process includes subjecting the brown part to temperatures that cause the atomized metal powders to bind together and form the MIM part or frame.


Although a particular method of manufacturing a frame according to the invention is discussed above, embodiments of the invention may include manufacturing the frame by other methods, including pressed powder sintering, investment casting, and simply computer numerical control (CNC) machining.


As will be understood by those skilled in the art, the present invention may be embodied in many other specific forms without departing from the essential characteristics thereof. Also, while a number of specific embodiments were disclosed with specific features, a person of skill in the art will recognize instances where the features of one embodiment can be combined with the features of another embodiment. Also, those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the inventions described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. A plug connector assembly comprising: a base comprising a first foot extending from a first end of the base and a second foot extending from an opposite end of the base;a connector body extending upwardly from the base, the connector body comprising front and rear opposing outside surfaces; anda plurality of external contacts exposed only on the front outside surface of the connector body.
  • 2. The plug connector assembly set forth in claim 1 wherein the plurality of contacts comprises a pair of data contacts.
  • 3. The plug connector assembly set forth in claim 1 wherein the connector body comprises one or more ground contacts.
  • 4. The plug connector assembly set forth in claim 1 wherein the structure and shape of the connector body comprises a metal ground ring.
  • 5. The plug connector assembly set forth in claim 1 further comprising a first side wall extending upwardly from the first end of the base and between the front and rear surfaces and a second side wall extending upwardly from the opposite end of the base and between the front and rear surfaces.
  • 6. The plug connector assembly set forth in claim 5 further comprising a cutout adapted to engage with a retention feature on a corresponding receptacle connector.
  • 7. The plug connector assembly set forth in claim 6, wherein the cutout comprises a first cutout formed on the first side wall and a second cutout formed on the second side wall.
  • 8. The plug connector assembly set forth in claim 1 wherein the plurality of contacts includes a power contact.
  • 9. The plug connector assembly set forth in claim 5, further comprising a first channel in the first side wall and a second channel in the second side wall to facilitate placement in a corresponding receptacle connector.
  • 10. The plug connector assembly set forth in claim 1, further comprising a threaded cavity located and passing through each of the first and second feet.
  • 11. The plug connector assembly set forth in claim 1, wherein the distal end of the connector body comprises plastic.
  • 12. The plug connector assembly set forth in claim 11, wherein the distal end of the connector body comprises a molded plastic leading edge.
  • 13. The plug connector assembly set forth in claim 1, wherein the connector body extends upwardly from the base at a predetermined angle between approximately 10 degrees and approximately 25 degrees from vertical.
  • 14. The plug connector assembly set forth in claim 1, wherein the connector body extends upwardly from the base at a predetermined angle between approximately 14 degrees and approximately 15 degrees from vertical.
  • 15. The plug connector assembly set forth in claim 1, wherein a cavity of the connector body comprises retention ledges.
  • 16. The plug connector assembly set forth in claim 1, wherein the rear surface comprises one or more ribs adjacent to a substrate containing the plurality of external contacts.
  • 17. An electrical connector assembly comprising: a frame made of a hard conductive material and comprising two major surfaces, two minor surfaces, and a distal end, wherein the frame extends upwardly from a base portion of the assembly at an angle of approximately 10 degrees to approximately 25 degrees from vertical;a plastic tip integrally formed with the frame and that extends at least partially across the distal end of the frame; anda plurality of external contacts formed on one of the two major surfaces of the frame.
  • 18. The assembly set forth in claim 17 wherein the plurality of external contacts are formed on only one of the two major surfaces.
  • 19. The assembly set forth in claim 17 wherein the base portion further comprises two feet that each extend in opposite directions from a proximal end of the ground ring.
  • 20. The assembly set forth in claim 17 wherein each of the feet comprises a cavity that extends through each foot.
  • 21. The assembly set forth in claim 17 wherein the base portion extends upwardly from the base portion at an angle between approximately 14 degrees and approximately 15 degrees from the vertical.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 61/698,538 filed Sep. 7, 2012 titled “Plug Connector,” the contents of which are hereby incorporated by reference.

US Referenced Citations (213)
Number Name Date Kind
2380994 Pummill Aug 1945 A
2564029 Petersen Aug 1951 A
2564550 Tichenor Aug 1951 A
2792557 Dowick May 1957 A
2892990 Werndl Jun 1959 A
3760335 Roberts Sep 1973 A
3793614 Tachick et al. Feb 1974 A
3795037 Luttmer Mar 1974 A
4361375 Bailey et al. Nov 1982 A
4558912 Coller et al. Dec 1985 A
4621882 Krumme Nov 1986 A
4711506 Tanaka Dec 1987 A
5040994 Nakamoto et al. Aug 1991 A
5256074 Tan Oct 1993 A
5295843 Davis et al. Mar 1994 A
5380179 Nishimura et al. Jan 1995 A
5380225 Imaoka Jan 1995 A
5387110 Kantner et al. Feb 1995 A
5413442 Grey May 1995 A
5442243 Bailey Aug 1995 A
5518421 Davis May 1996 A
5554042 Denninger Sep 1996 A
5594284 Hill et al. Jan 1997 A
5785557 Davis Jul 1998 A
5959848 Groves et al. Sep 1999 A
5967723 Duran Oct 1999 A
5967833 Cachina Oct 1999 A
6074225 Wu et al. Jun 2000 A
6086421 Wu et al. Jul 2000 A
6113427 Wu Sep 2000 A
6179627 Daly et al. Jan 2001 B1
6231396 Huang May 2001 B1
6322394 Katoh et al. Nov 2001 B1
6364699 Hwang et al. Apr 2002 B1
6410857 Gonya Jun 2002 B1
6482028 Kumamoto et al. Nov 2002 B2
6482045 Arai Nov 2002 B2
6488520 Hayes et al. Dec 2002 B1
6530793 Eichhorn et al. Mar 2003 B2
6692311 Kamei et al. Feb 2004 B1
6716058 Youn Apr 2004 B2
6776665 Huang Aug 2004 B2
6786763 Wu Sep 2004 B2
6846202 Schmidt et al. Jan 2005 B1
6869320 Haas et al. Mar 2005 B2
6902432 Morikawa et al. Jun 2005 B2
6948965 Kumamoto et al. Sep 2005 B2
6948983 Peng Sep 2005 B1
6948984 Chen et al. Sep 2005 B2
6962510 Chen et al. Nov 2005 B1
6964582 Zhuang et al. Nov 2005 B2
6981887 Mese et al. Jan 2006 B1
6994575 Clark et al. Feb 2006 B1
7021971 Chou et al. Apr 2006 B2
7040919 Yao May 2006 B2
7074052 Ni et al. Jul 2006 B1
7094086 Teicher Aug 2006 B2
7094089 Andre et al. Aug 2006 B2
7160125 Teicher Jan 2007 B1
7175444 Lang et al. Feb 2007 B2
7192313 Sai Mar 2007 B2
7198522 Ho et al. Apr 2007 B1
7249978 Ni Jul 2007 B1
7361059 Harbarki et al. Apr 2008 B2
7363947 Teicher Apr 2008 B2
7364445 Ni et al. Apr 2008 B1
7387539 Trenne Jun 2008 B2
7396257 Takahashi Jul 2008 B2
7407416 Rogers et al. Aug 2008 B1
7435107 Matsumoto et al. Oct 2008 B2
7440286 Hiew et al. Oct 2008 B2
7442091 Salomon et al. Oct 2008 B2
7458825 Atsmon et al. Dec 2008 B2
7500861 Harbarki et al. Mar 2009 B2
7537471 Teicher May 2009 B2
7549896 Zhang et al. Jun 2009 B2
7553172 Chiu et al. Jun 2009 B2
7559805 Yi et al. Jul 2009 B1
7572153 Trenne Aug 2009 B2
7591657 Teicher Sep 2009 B2
7594827 Takamoto et al. Sep 2009 B2
7695318 Wang et al. Apr 2010 B1
7716400 Raines May 2010 B2
7717717 Lai May 2010 B1
7722409 Takamoto et al. May 2010 B2
7727027 Chiang et al. Jun 2010 B2
7740498 Orsley Jun 2010 B1
7841894 Gong et al. Nov 2010 B2
7865629 Tantos et al. Jan 2011 B1
7872873 Hiew et al. Jan 2011 B2
7892014 Amidon et al. Feb 2011 B2
7918685 Kruckenberg Apr 2011 B1
8007309 Fan Aug 2011 B2
8062073 Szczesny et al. Nov 2011 B1
8162696 Elbaz et al. Apr 2012 B2
8246388 Chen et al. Aug 2012 B2
8277258 Huang et al. Oct 2012 B1
8282417 Xiao Oct 2012 B2
8287299 Ray et al. Oct 2012 B2
8342863 Kondo et al. Jan 2013 B2
8461465 Golko et al. Jun 2013 B2
8478913 Terlizzi et al. Jul 2013 B2
8517751 Golko et al. Aug 2013 B1
8517766 Golko et al. Aug 2013 B2
8535075 Golko et al. Sep 2013 B1
8545269 Ore-Yang Oct 2013 B2
8545275 Wang et al. Oct 2013 B2
8561879 Jol et al. Oct 2013 B2
8573995 Golko et al. Nov 2013 B2
8647156 Golko et al. Feb 2014 B2
8686600 Terlizzi et al. Apr 2014 B2
8688876 Fritchman et al. Apr 2014 B1
8708745 Golko et al. Apr 2014 B2
8762605 Terlizzi et al. Jun 2014 B2
8777666 Golko et al. Jul 2014 B2
8882524 Golko et al. Nov 2014 B2
8911260 Golko et al. Dec 2014 B2
8931962 Jol et al. Jan 2015 B2
8998632 Golko et al. Apr 2015 B2
20010046809 Chiran et al. Nov 2001 A1
20020081880 Eichhorn et al. Jun 2002 A1
20030012677 Senini Jan 2003 A1
20030016509 Tsukamoto Jan 2003 A1
20030207606 Ho Nov 2003 A1
20040229515 Kaneda et al. Nov 2004 A1
20040259423 Elbaz et al. Dec 2004 A1
20050032426 Tanaka Feb 2005 A1
20050042930 Harkabi et al. Feb 2005 A1
20050079738 Ahn Apr 2005 A1
20050085136 Zhang Apr 2005 A1
20050124217 Zhuang et al. Jun 2005 A1
20050124218 Chen et al. Jun 2005 A1
20050124219 Chen et al. Jun 2005 A1
20050202727 Andre et al. Sep 2005 A1
20060019545 Moriyama et al. Jan 2006 A1
20060024997 Teicher Feb 2006 A1
20060040549 Yao Feb 2006 A1
20060148300 Huang et al. Jul 2006 A1
20060216991 Boutros Sep 2006 A1
20060250764 Howarth et al. Nov 2006 A1
20060289201 Kim et al. Dec 2006 A1
20070010115 Teicher Jan 2007 A1
20070010116 Teicher Jan 2007 A1
20070037452 Martin et al. Feb 2007 A1
20070049100 Tsai Mar 2007 A1
20070072442 DiFonzo Mar 2007 A1
20070082701 Seil et al. Apr 2007 A1
20070178771 Goetz et al. Aug 2007 A1
20070202725 Teicher Aug 2007 A1
20070243726 Trenne Oct 2007 A1
20080032562 McHugh et al. Feb 2008 A1
20080067248 Hiew et al. Mar 2008 A1
20080090465 Matsumoto et al. Apr 2008 A1
20080119076 Teicher May 2008 A1
20080119291 Takamoto et al. May 2008 A1
20080167828 Terlizzi et al. Jul 2008 A1
20080200069 Hankey et al. Aug 2008 A1
20080274633 Teicher Nov 2008 A1
20080309313 Farrar et al. Dec 2008 A1
20090004923 Tang et al. Jan 2009 A1
20090108848 Lundquist Apr 2009 A1
20090117768 Liao May 2009 A1
20090149049 Harkabi et al. Jun 2009 A1
20090156027 Chen Jun 2009 A1
20090180243 Lynch et al. Jul 2009 A1
20090291576 Johansson et al. Nov 2009 A1
20100009575 Crooijmans et al. Jan 2010 A1
20100062656 Lynch et al. Mar 2010 A1
20100080563 DiFonzo et al. Apr 2010 A1
20100104126 Greene Apr 2010 A1
20100118932 Luo et al. May 2010 A1
20100171465 Seal et al. Jul 2010 A1
20100173533 Yang et al. Jul 2010 A1
20100221936 Zhao et al. Sep 2010 A1
20100248544 Xu et al. Sep 2010 A1
20100254602 Yoshino Oct 2010 A1
20100254662 He et al. Oct 2010 A1
20100262744 Deva et al. Oct 2010 A1
20100267261 Lin et al. Oct 2010 A1
20100267262 Lin et al. Oct 2010 A1
20110136381 Cho Jun 2011 A1
20110159719 Takahashi et al. Jun 2011 A1
20110201213 Dabov et al. Aug 2011 A1
20110250786 Reid Oct 2011 A1
20110263141 Ko Oct 2011 A1
20110294354 Chen et al. Dec 2011 A1
20110312200 Wang et al. Dec 2011 A1
20120028495 Su et al. Feb 2012 A1
20120149244 Zheng et al. Jun 2012 A1
20130075149 Golko et al. Mar 2013 A1
20130078869 Golko et al. Mar 2013 A1
20130089291 Jol et al. Apr 2013 A1
20130095701 Golko et al. Apr 2013 A1
20130095702 Golko et al. Apr 2013 A1
20130115821 Golko et al. May 2013 A1
20130117470 Terlizzi et al. May 2013 A1
20130122754 Golko et al. May 2013 A1
20130149911 Golko et al. Jun 2013 A1
20130217253 Golko et al. Aug 2013 A1
20130244489 Terlizzi et al. Sep 2013 A1
20130244491 Sarwar et al. Sep 2013 A1
20130244492 Golko et al. Sep 2013 A1
20130337698 Little et al. Dec 2013 A1
20140004741 Jol et al. Jan 2014 A1
20140057496 Siahaan et al. Feb 2014 A1
20140068933 Brickner et al. Mar 2014 A1
20140069709 Schmidt et al. Mar 2014 A1
20140073170 Golko et al. Mar 2014 A1
20140073183 Golko et al. Mar 2014 A1
20140170907 Golko et al. Jun 2014 A1
20140206209 Kamei et al. Jul 2014 A1
20140294656 Brickner et al. Oct 2014 A1
20140329416 Golko et al. Nov 2014 A1
Foreign Referenced Citations (50)
Number Date Country
1397804 Feb 2003 CN
1830122 Sep 2006 CN
1905286 Jan 2007 CN
101116227 Jan 2008 CN
201256225 Jun 2009 CN
201402871 Feb 2010 CN
201509210 Jun 2010 CN
101782888 Jul 2010 CN
101783466 Jul 2010 CN
201533091 Jul 2010 CN
196 09 571 Nov 1995 DE
20 2004 021354 Sep 2007 DE
81372 Jun 1983 EP
1684391 Jul 2006 EP
1717910 Nov 2006 EP
2169774 Mar 2010 EP
2373131 Oct 2011 EP
2138961 Jan 1973 FR
2 078171 Mar 1990 JP
H06231821 Aug 1994 JP
H06250103 Sep 1994 JP
8321360 Dec 1996 JP
2001223057 Aug 2001 JP
2003-217728 Jul 2003 JP
2004-079491 Mar 2004 JP
2004319371 Nov 2004 JP
2008041656 Feb 2008 JP
2008508694 Mar 2008 JP
2008210674 Sep 2008 JP
2009117128 May 2009 JP
2010067459 Mar 2010 JP
M318831 Sep 2007 TW
M350153 Feb 2009 TW
0208872 Jan 2002 WO
2004097995 Nov 2004 WO
2005013436 Feb 2005 WO
2005124932 Dec 2005 WO
2006013553 Feb 2006 WO
2006074348 Dec 2006 WO
2007090069 Aug 2007 WO
2008065659 Jun 2008 WO
2009069969 Jun 2009 WO
2009140992 Nov 2009 WO
2011043488 Apr 2011 WO
2011150403 Dec 2011 WO
2011163256 Dec 2011 WO
2011163260 Dec 2011 WO
2012086145 Jun 2012 WO
2013070767 May 2013 WO
2013082175 Jun 2013 WO
Non-Patent Literature Citations (13)
Entry
International Search Report and Written Opinion for International PCT Application No. PCT/US2013/037233, mailed on Oct. 1, 2013, 14 pages.
Hewlett-Packard Company, “An Overview of Current Display Interfaces,” Nov. 2007, p. 12, http://isvpatch.external.hp.com/HPPTF2/drvlib/docs/DisplayInterfacesOverview.pdf, 14 pages.
Extended European Search Report, EP App. No. 13165270.3, Mailed Nov. 28, 2014, 12 pages.
Flipper Press Release (Jun. 25, 2012) and Data Sheet: http://www.flipperusb.com/images/flipperUSB-brochure.pdf, http://www.flipperusb.com/images/flipperUSB-brochure.pdf.
International Search Report for International PCT Application No. PCT/US2011/038452, mailed on Oct. 26, 2011, 7 pages.
International Search Report and Written Opinion for International PCT Application No. PCT/US2011/041286, mailed on Oct. 20, 2011, 18 pages.
International Search Report and Written Opinion for International PCT Application No. PCT/US2011/041127, mailed on Dec. 29, 2011, 17 pages.
International Search Report and Written Opinion for International PCT Application No. PCT/US2011/041290, mailed on Nov. 21, 2011, 21 pages.
Non-Final Office Action for U.S. Appl. No. 13/679,991, mailed Apr. 5, 2013, 19 pages.
Non-Final Office Action for U.S. Appl. No. 13/679,992, mailed Apr. 9, 2013, 18 pages.
Notice of Allowance for U.S. Appl. No. 13/679,996, mailed Apr. 12, 2013, 30 pages.
Notice of Allowance for U.S. Appl. No. 13/720,822, mailed Apr. 8, 2013, 30 pages.
International Preliminary Report on Patentability for International PCT Application No. PCT/US2013/037233, mailed Mar. 19, 2015, 6 pages.
Related Publications (1)
Number Date Country
20140073193 A1 Mar 2014 US
Provisional Applications (1)
Number Date Country
61698538 Sep 2012 US