Plumbing fixture with heating element

Information

  • Patent Grant
  • 10604919
  • Patent Number
    10,604,919
  • Date Filed
    Monday, March 26, 2018
    6 years ago
  • Date Issued
    Tuesday, March 31, 2020
    4 years ago
Abstract
A plumbing component includes a valve provided within a portion of the plumbing component and configured to control the flow of water through the plumbing component. The valve includes a body and at least one waterway within the body. An electric heater extends through at least a portion of the body of the valve and is configured to heat at least a portion of the body to an elevated temperature sufficient to kill organisms within the waterway.
Description
BACKGROUND

The present application relates to plumbing fittings and fixtures and water supply systems and installations for washing, showering, bathing and the like that employ such plumbing fittings and fixtures. The concepts disclosed herein have particular, but not exclusive, application to mixer valves (alternatively referred to as “mixing valves”), especially thermostatic mixer valves. More particularly, the present application relates to an arrangement for thermally disinfecting mixer valves.


Mixer valves that dispense blended fluids such as water (e.g., hot and cold supplies, mixing to a typical washing/showering temperature of around 40° C.) may be prone to harboring micro-organisms. Such micro-organisms can enter the valves either through the supply water or through splash back into the spout outlet. This problem is particularly problematic since micro-organisms are particularly prone to proliferation within a temperature range of 35 to 45° C. The presence of micro-organisms in waterways used for washing/showering can give rise to health risks where such micro-organisms may be contained in water discharged from the mixer valve. For example, when washing/showering, micro-organisms present in the water may enter the body through cuts and abrasions in the skin or may be inhaled.


These problems can be exacerbated by other factors, including the use in valve components of certain polymers or elastomers that provide a suitable habitat for sustaining micro-organisms in a living state and/or that encourage micro-organism growth and development, the existence of stagnant areas within the valve where water can be trapped in low circulation areas, high volumes of residual water contained within the valve once shut off, and large wetted areas within the valve, among others.


It is known to employ a thermal disinfection routine in which hot water is used to kill/remove micro-organisms in waterways used for washing/showering. Such disinfection routines involve flushing the waterways with water at an elevated temperature, typically at least 60° C., for a time sufficient to kill or remove micro-organisms from the valve.


The use of such hot water disinfecting/cleaning routines in waterways used for washing/showering can give rise to other issues, however. For example, in the event that a user comes into contact with the hot water being discharged, the user may suffer scalding of the exposed skin or physical discomfort from the high temperature water. Another issue relates to the cost and other difficulties associated with providing and maintaining high (above 60° C.) hot water temperatures for a sustained period of time sufficient to perform the cleaning routine. Such hot water may also undesirably generate excessive amounts of steam in the surrounding area, and the water flow/water noise may disturb room occupants (e.g., in hospital wards or other areas where people may be present in the vicinity of the waterways). Yet another issue relates to the fact that only areas of the waterway that are in contact with the hot water supply may be sufficiently cleaned or disinfected, with a result that other areas of the waterway that are only in contact with cold water may not be cleaned adequately.


It would be advantageous to provide an improved valve and/or cleaning method to address one or more of the aforementioned challenges.


SUMMARY

An exemplary embodiment relates to a valve for a plumbing fixture that includes an internal passageway configured to route fluid through the valve. The internal passageway includes a surface and at least a portion of the valve comprises a thermally-conductive material. The valve also includes an electric heating element configured to heat at least a portion of the thermally-conductive material to an elevated temperature sufficient to disinfect the surface.


Another exemplary embodiment relates to a mixer valve for a water delivery component. The mixer valve includes a body formed at least in part of a thermally-conductive material, a first inlet into the body that is configured to receive a first fluid from a first fluid source, and a second inlet into the body that is configured to receive a second fluid from a second fluid source. The mixer valve also includes a mixing chamber within the body that is configured to mix the first and second fluids and a heating element configured to heat at least a portion of the body to an elevated temperature sufficient to kill organisms that may be present within the body.


Another exemplary embodiment relates to a valve configured for use as part of a water delivery system. The valve includes a body formed at least in part of a thermally-conductive material and a waterway extending through the body and configured to route fluid through the body, wherein the waterway comprises a surface. The valve also includes an electric heater extending through at least a portion of the body and configured to heat at least a portion of the body to an elevated temperature sufficient to kill organisms that may be resident on the surface.





BRIEF DESCRIPTION OF THE DRAWINGS

Other features, benefits and advantages of the invention will be more readily understood from the following description of an exemplary embodiment with reference to the accompanying drawings, in which:



FIG. 1 is a perspective view of a mixer valve according to an exemplary embodiment;



FIG. 2 is a sectional view of the mixer valve shown in FIG. 1;



FIG. 3 is a sectional view of a plumbing fixture incorporating the mixer valve shown in FIGS. 1 and 2 according to an exemplary embodiment;



FIG. 4 is a sectional view of another plumbing fixture incorporating the mixer valve shown in FIGS. 1 and 2 according to an exemplary embodiment;



FIG. 5 is a perspective view of another exemplary embodiment of a mixer valve;



FIG. 6 is a perspective view of a showerhead according to an exemplary embodiment;



FIG. 7 is a cutaway perspective view of the showerhead shown in FIG. 6, illustrating the inclusion of a mixer valve having a heating element;



FIG. 8 is a perspective view of a faucet according to an exemplary embodiment;



FIG. 9 is a cutaway perspective view of the faucet shown in FIG. 8, illustrating the inclusion of a mixer valve having a heating element;



FIG. 10 is a schematic diagram of a system including a controller for controlling a plurality of valves according to an exemplary embodiment; and



FIG. 11 is a flow diagram illustrating steps in a method for performing a cleaning routine for valves according to an exemplary embodiment.





DETAILED DESCRIPTION

According to an exemplary embodiment, a plumbing fitting, valve (e.g., a flow control valve, a mixer valve, etc.), and/or a plumbing fixture associated with the plumbing fitting and/or valve include an electrical heating device for heating thermally-conductive water contact parts thereof. Each of these items include internal passages (e.g., waterways) that include walls or surfaces that may harbor bacteria or other micro-organisms. According to an exemplary embodiment, the heating elements described herein may be operable to heat the thermally-conductive portions of such components to an elevated temperature sufficient to kill or otherwise dispose of such undesired organisms.


According to one embodiment, a flow control valve (i.e., a valve that receives only a single source of fluid, such as a valve for use in an instantaneous hot water spout) includes an electrical heating device provided adjacent or in contact with the flow control valve to heat all or a portion of the flow control valve. It should be noted that although the present description references various components as being part of water delivery systems and components, it should be understood that the concepts discussed herein may have utility in other types of fluid delivery systems for fluids other than water.


According to another exemplary embodiment, a mixer valve (alternatively referred to as a mixing valve, and referring to a valve that receives multiple sources of fluid and provides a chamber for mixing the sources of fluid together) includes an electrical heating device provided adjacent or in contact with the valve to heat all or a portion of the valve.


According to yet another exemplary embodiment, a plumbing fitting or a plumbing fixture (e.g., a faucet, shower head, tub spout, or any other type of water delivery source or component) includes an electrical heating device provided adjacent or in contact with the plumbing fixture to heat all or a portion of the plumbing fixture. It should be understood that the plumbing fitting or fixture may include an associated valve (e.g., a flow control valve, a mixer valve, etc.) that may include its own associated electrical heating device, may share the electrical heating device with the one used for the plumbing fitting or fixture, or may not include an associated electrical heating device (e.g., the heat applied to the plumbing fitting or fixture may be sufficient to heat the valve by conduction or convection, as in the case where both the valve and a portion of the plumbing fitting or fixture are made from a thermally-conductive material such as a metal and the valve and the portion of the plumbing fixture are in contact with each other).


According to one exemplary embodiment, a combination of thermally-conductive water contact parts of a valve, plumbing fitting, and/or plumbing fixture in conjunction with electrical heating is used so that a controlled thermal disinfection can be carried out by heating the thermally-conductive water contact parts to a temperature sufficient to kill micro-organisms. Such thermal disinfection cycle may be carried out at a predetermined temperature for a predetermined amount of time sufficient to kill or otherwise dispose of micro-organisms that may be present.


The water contact parts (i.e., those parts that come into contact with water) may be made of thermally-conductive materials such as metals or alloys. According to an exemplary embodiment, the water contact parts may be formed either entirely or in part of a material that includes copper, such as copper, copper alloys (e.g., brass, bronze, etc.), and other alloys or materials that include copper. One advantageous feature of using copper-containing materials is that such materials are known to have good antimicrobial properties.


According to an exemplary embodiment, the valve, plumbing fixture, and/or the plumbing fitting may have waterways formed in a body of thermally-conductive material (e.g., a metal or metal-containing material, etc.). Alternatively or additionally, the waterways may be lined with thermally-conductive material.


The electrical heating may be provided by an electrical resistive heating element. Such a heating element may be of the relatively low power variety, such as, for example up to 50 watts. According to another exemplary embodiment, the heating element may have a power of up to 25 watts. According to yet another exemplary embodiment, the heating element may have a power of up to 10 watts. It may be that power consumption can be minimized by reducing the thermal mass of the part(s) to be heated and/or by insulating the part(s) to be heated from other parts of the valve, fitting, or plumbing fixture in which the valve or fitting may be employed. According to other exemplary embodiments, heating elements other than electrical resistive heating elements that may be now known or developed in the future may be employed in the context of the concepts described herein, and such other types of heating elements are intended to be within the scope of the present disclosure.


According to an exemplary embodiment, the plumbing fitting may be configured to mix supplies of hot and cold water and provide a source of blended water having a desired temperature for washing/showering. For example, the plumbing fitting may be a mixer valve.


According to yet another exemplary embodiment, a method of disinfecting a waterway in a valve, plumbing fitting, or plumbing fixture includes providing waterways in thermally-conductive parts of the valve, plumbing fitting, or plumbing fixture and providing an electrical heating device to heat the thermally-conductive parts. Such method may further include raising the temperature of the heating device to a predetermined temperature for a period of time sufficient to kill or otherwise dispose of micro-organisms that may be present.


Referring now to the accompanying drawings, FIGS. 1 and 2 show a mixer valve 1 and FIG. 3 shows a plumbing fixture 3 employing the mixer valve 1. In this embodiment, the plumbing fixture 3 is a faucet for delivery of water to a washbasin or sink (not shown), although it should be understood by those reviewing the present application that such a configuration is not intended as limiting and, for example, the mixer valve 1 may be employed in other plumbing fixtures such as shower heads, bath spouts, or other water delivery components.


The mixer valve 1 includes a body 5 having inlets 7, 9 for connection to supplies of hot and cold water and an outlet 11 for temperature controlled water. The body 5 includes a center section 5a and end sections 5b, 5c at opposite ends of the center section 5a.


The inlets 7, 9 are provided in the center section 5a and the outlet 11 is provided in the end section 5c. The sections 5a, 5b, 5c are made of a thermally-conductive material such as a metal or alloy, and, according to an exemplary embodiment, of a copper or copper alloy material such as brass. The sections 5a, 5b, 5c are secured together in a fluid tight manner according to an exemplary embodiment.


Housed within the center section 5a are two flow control valves 13 (of which only one is shown FIGS. 2 and 3). Each flow control valve 13 communicates with a respective inlet 7, 9 and is operable to provide a flow of water to a mixing chamber 15 within the center section 5a that communicates with the outlet 11 in the end section 5c.


Each flow control valve 13 is operable to adjust the flow of water admitted to the mixing chamber 15 from zero flow (valve closed) to maximum flow (valve fully open). In this embodiment, each flow control valve 13 is controlled by a motor 17, 19 such as a stepper motor mounted on the end section 5c of the valve body 5. The motors 17, 19 are operable to move each fluid control valve in a linear fashion so as to open or close the valve.


The flow of each of the hot and cold water admitted to the mixing chamber 15 may be infinitely variable throughout the range from zero flow to maximum flow to provide a desired outlet water temperature and flow rate.


The motors 17, 19 may be controlled by an electronic controller such as a microprocessor which may be provided by a control panel 21 such as a printed circuit board (see FIG. 3) incorporated into the plumbing fixture 3. In this embodiment, the plumbing fixture 3 has a body 23 with a recessed area in the base in which the mixer valve 1 and control panel 21 are received and the outlet 11 from the mixer valve 1 opens to an internal passageway 25 that extends within the body 23 to an outlet 27.


The controller may receive an input of desired outlet water temperature from a user interface (not shown) on or in the vicinity of the plumbing fixture 3 and an input of the actual outlet water temperature from a sensor 29 arranged in the outlet 11 of the mixer valve 1 to monitor the outlet water temperature flowing through the passageway 25 to the outlet 27 of the plumbing fixture 3. The motors 17, 19 may be controlled by the controller in response to the inputs to adjust the flow control valves 13 to achieve and maintain the desired outlet water temperature.


The controller may also receive an input of desired outlet water flow rate from the user interface and an input of the actual outlet water flow rate from a sensor (not shown) arranged to monitor the outlet water flow rate in the passageway 25. The motors 17, 19 may be controlled by the controller in response to the inputs to adjust the flow control valves 13 to achieve and maintain the desired outlet water flow rate.


By employing separate motors 17, 19 to control the flow control valves 13, the outlet water temperature and/or flow rate may be adjusted independently or in combination by appropriate control of each flow control valve 13 to provide any desired outlet water temperature and/or flow rate.


According to an exemplary embodiment, the plumbing fixture 3 is provided with a liner 31 that lines the passageway 25 and is made of thermally-conductive material, preferably a metal or alloy, especially copper or copper alloys such as brass similar to the body 5 of the mixer valve 1.


The liner 31 may be inserted into the body 23, for example via the recessed area prior to inserting the mixer valve 1 so that one end of the liner 31 seats against the body 5 of the mixer valve 1 and the outlet 11 of the mixer valve 1 seats against the other end of the liner 31 with appropriate seals such as O-rings (not shown) being provided between the adjacent faces to prevent leakage of water.


With this arrangement virtually all water contact surfaces of the mixer valve 1 and the plumbing fixture 3 are made of metal or alloy, in particular brass. The use of metals or alloys, especially brass can be beneficial in helping to control the growth of bacteria within the waterways of the mixer valve 1 and the plumbing fixture 3. Thus, bio-films form more readily on plastics than metal or alloy and bacteria are killed by contact with certain metals or alloys, especially metals or alloys containing copper such as brass.


However, the use of brass for the internal surface of the waterways may not prevent the growth of bacteria and other potentially harmful micro-organisms that may be discharged with the water flow from the plumbing fixture and present a health hazard to humans.


To further reduce and possibly eliminate the presence of bacteria and micro-organisms within the mixer valve 1 and plumbing fixture 3, it is preferred to carry out a thermal disinfection routine to kill any bacteria or micro-organisms within the waterways of the mixer valve 1 and plumbing fixture 3.


Thus, the mixer valve 1 is provided with an electrical heating element or heater 33 potted into a through bore 35 in the body 5 using thermally-conductive adhesive 37. The heater 33 may be in the form of a resistive wire heater and may be of low power, for example approximately 10 watts.


The body 23 may be made of thermally-insulating material, which advantageously may allow the thermal heating of the fluid to use less power and to provide a relatively cool outer surface for the spout.


The plumbing fixture 3 is also provided with an electrical heater 39 disposed on the outside of the liner 31. The heater 39 may be in the form of a resistive wire heater coil and may be of low power similar to the heater 33.


The electrical heaters 33 and 39 are sized and located to provide a heat source that is capable of elevating the temperature of the body 5 of the mixer valve 1 and body 23/liner 31 of the plumbing fixture 3 together with internal wetted surfaces and retained water to a temperature in excess of 60° C. for carrying out a thermal disinfection routine.


The electrical heaters 33, 39 may be controlled by the electronic controller that controls the motors 17, 19. The controller may receive feedback on the heating levels within the body 5 of the mixer valve 1 and the body 23/liner 31 of the plumbing fixture 3 via an input of the temperature from the temperature sensor 29 used to monitor outlet water temperature. According to another exemplary embodiment, a separate temperature sensor may be employed for the disinfection routine. According to another exemplary embodiment, more than one temperature sensor may be provided for monitoring and providing feedback of heating levels at different positions during the thermal disinfection cycle.


Monitoring the heating levels during the disinfection routine enables the disinfection routine to be fully managed to be safe. The temperature can be controlled to achieve and maintain an appropriate elevated temperature for a suitable period of time for effective disinfection of the waterways. Details of the temperature, time and date can be recorded and stored by the controller for recall later to check and confirm disinfection has been carried out properly.


The controller may be programmed to schedule disinfection routines at regular intervals and may initiate disinfection cycles for any time that is convenient, for example overnight when the plumbing fixture 3 may not be used. The disinfection routines may be initiated automatically. Alternatively, the controller may receive an input to initiate the disinfection routine. The input may be provided through the user interface. Alternatively, the input may be provided via a separate control to reduce the risk of inadvertent triggering of a disinfection routine.


By using electrical heaters 33, 39 to heat the body 5 of the mixer valve 1 and the body 23/liner 31 of the plumbing fixture 3, the temperature can be held at levels much higher than is normally achieved within hot water systems and so can be far more effective at eradicating micro-organisms compared to a disinfection routine that employs heating the body 5 of the valve 1 and the body 23/liner 31 of the plumbing fixture 3 with hot water.


Use of the mixer valve 1 can be disabled whilst a disinfection routine is taking place to prevent very hot water from being discharged, which might present a risk of scalding. The mixer valve 1 can be disabled for a period of time after the heating cycle has finished so as to allow the body 5 of the mixer valve 1 and the body 23 of the plumbing fixture 3 together with any water remaining in the waterways to cool down to a safe temperature for use of the mixer valve 1. This can be monitored by the temperature sensor 29 to ensure safety is maintained.


It is envisaged that power consumption can be reduced or minimized and excess heating of peripheral parts such as the control panel can be reduced or minimized by reducing the thermal mass of the part(s) to be heated and/or by insulating the outside of the valve body 5 and/or by insulating between the heater 39 and the outside surfaces of the plumbing fixture 3. FIG. 3 shows, for example, a layer of insulation 41 surrounding the heater 39.


The use of electrical heating to carry out the disinfection routine has a number of advantages over and above the current common practice of using hot water to thermally disinfect mixer valves and taps. For example, the use of electric heating elements allows the disinfection routine to be accomplished without the use of hot water, which reduces or eliminates the risk of scalding. It also eliminates the need to worry about maintaining high (above 60° C.) hot water temperatures, and also eliminates concerns over generating excessive amount of steam and water flow/water noise that may disturb room occupants, for example in hospital wards or other populated environments. Both hot and cold water supply areas may be simultaneously disinfected using the electric heating elements, so that all water-contacting areas of the components are disinfected.


Although the plumbing fitting described in the present application has been described as an electronically controlled mixer valve, according to other exemplary embodiments, it would be possible to apply the same principles to non-electronic mixer valves.


Although the plumbing fixture described herein has a liner of brass, the use of such a liner and/or material may not be essential. Thus, the liner may be omitted and the body of the plumbing fixture may be made of brass or another copper-containing material (or, as the case may be, other types of metals or thermally-conductive materials). In this form, the heating element may be built into the body similar to the heating element built into the body of the mixer valve. FIG. 4 shows the heating element 39 located in a channel 43 in the body 23 of the plumbing fixture.


Although the plumbing fixture described herein has a body made of metal or alloy, this may not be essential. Thus, the body of the plumbing fixture may be made of a material having a low thermal conductivity compared to the liner and the body of the mixer valve, for example certain plastics materials capable of withstanding the heat generated during the thermal disinfection routine.


Although the plumbing fixture described herein includes a plumbing fitting, this may not be essential. Thus, the plumbing fixture may have waterway(s) to receive water from a separate plumbing fitting with a heating device to disinfect the waterway(s).



FIG. 5 is a perspective view of another exemplary embodiment of a mixer valve 50 employing a heating element such as that described herein. The mixer valve 50 is enclosed within a valve housing 52. An aperture 53 in the housing 52 forms a first fluid inlet 54 for receiving a first fluid (cold water in this embodiment). Similarly, as shown in FIG. 2, the housing 52 includes a further aperture 55 similar to the aperture 53 in the opposite side that forms a second fluid inlet 56 for receiving a second fluid (hot water in this embodiment) and a still further aperture 57 in an end thereof that forms a fluid outlet for outputting the first fluid or the second fluid or a mixture thereof In contrast to the mixer valve 1 illustrated in FIG. 1, the inlets 54, 56 are not on the same face of the mixer valve 3 but are rather on opposed sides of the mixer valve 3.


As with the mixer valve 1 illustrated in FIG. 1, the mixer valve 50 is provided with an electrical heating element or heater 63 potted into a through bore 65 in the body 52 using a thermally-conductive adhesive (not shown, but similar to adhesive 37 illustrated in FIG. 2).


It should be understood that whether a mixer valve such as mixer valve 1 or mixer valve 50 is used may depend on various considerations such as the geometry of the component into which the mixer valve will be installed, the available space for routing fluid delivery tubes or hoses to the mixer valve, and other considerations as will be understood to those reviewing this disclosure.


It should also be noted that while mixer valves 1 and 50 are described as having an opening formed in the housing thereof through which a heating element (e.g., 33, 63) passes, other configurations may be possible according to other exemplary embodiments. For example, the heating element may be provided adjacent or in contact with an outer surface of the housing of the valve. In one example, the heating element may be provided in another component that is coupled to or in contact with an outer surface of the valve housing (e.g., a thermally-conductive component that is configured to transfer heat from the heating element to the valve body). The separate component may have a geometry that is the same as or that differs from the portion though which the heating element extends as shown in FIG. 1.


The particular location of the heating element relative to the rest of the valve body may differ as well. For example, while illustrated in FIGS. 1 and 5 as being provided adjacent the large face of the valve, a heating element may be provided adjacent one of the other sides of the valve. Additionally, while only one heating element has been shown for each of these valves, according to other exemplary embodiments, more than one heating element may be used (e.g., one on each side of the valve).


Referring to FIGS. 6 and 7, an embodiment of a plumbing fitting comprising a fluid delivery device such as a shower head 70 incorporating a mixer valve (such as mixer valve 1 shown in FIG. 1) is shown. The mixer valve 1 is similar to previous embodiments and like reference numerals are used to indicate corresponding parts.


The shower head 70 comprises a moveable handset and includes a stem 71 that can be inserted into a shower head dock within a shower enclosure (not shown). The shower head 70 could alternatively be a fixed shower head that is arranged to be fixed to and project from a wall.


The shower head 70 includes a spray head 73 that provides a plurality of outlets for discharge of water in use to provide a variety of different spray patterns. In one arrangement, the spray head 73 has outlets in opposite sides and optionally on one or more side edges. The spray head 73 can rotate within a substantially circular spray head mount 78 about diametrically opposed pivots 79 to select an outlet for use.


According to other exemplary embodiments, other types of spray heads may be used, including those that are configured to provide only a single spray pattern and those that operate differently than the spray head 73 shown in FIGS. 6 and 7 to provide multiple spray patterns.


The shower head stem 71 receives the mixer valve 1 together with the controller 75. The stem 71 includes two conduits—a cold water supply conduit 74 and a hot water supply conduit (not visible). The cold water conduit 74 connects to the first fluid inlet 4 and the hot water conduit connects to the second fluid inlet (not shown) of the mixer valve 1. The fluid outlet 8 of the mixer valve 1 is connected to the spray head 73 by an outlet conduit 76. The outlet conduit 76 extends through the spray head mount 78 and enters the spray head 73 through the pivots 79.


The controller 75 provides control signals to the mixer valve 1 for controlling the flow rate and temperature of the outlet water delivered to the spray head 73 according to the user selection via an interface (not visible). The interface may be arranged on the stem 71 to allow a user to select the flow rate and temperature of the outlet water they wish. The interface may be a physical interface including one or more rotatable knobs or linear sliders or push buttons for selecting flow rate and/or temperature. Alternatively, the interface may be a virtual interface that uses touch screen technology or the like. The interface may include a display for providing a visual indication of the flow rate and/or temperature. The display may be a digital display of numerical values and/or visual display such as an array of lights.


In other embodiments, the interface may be incorporated into a remote control that communicates with the controller 75 via a wired or wireless link. Thus, if the shower head 70 is of fixed type, then the controller 75 may receive control signals from an interface mounted remotely from the shower head 70.


Referring now to FIGS. 8 and 9, an embodiment of a plumbing fitting comprising a fluid delivery device such as a faucet 80 incorporating a mixer valve 1 having a heating element 33 is shown. The mixer valve 1 is similar to previous embodiments and like reference numerals are used to indicate corresponding parts.


The faucet 80 may be in the form of a tap and includes a base 81 by which it is secured to a support surface such as a sink or worktop (such as kitchen or bathroom worktop). The faucet 80 includes a perforated plate 83 that provides an outlet for the water for use. The faucet 80 receives the mixer valve 1 together with the controller (e.g., a controller such as the controller 75 discussed above). The faucet 80 has a stem portion (sometimes referred to as a “spout”) and two conduits—a cold water supply conduit 84 and a hot water supply conduit 85. The cold water conduit 84 connects to the first fluid inlet 4 and the hot water supply connects to the second fluid inlet (not visible) of the mixer valve 1. The fluid outlet 8 of the mixer valve 1 is connected to the plate 83 by an outlet conduit 86.


The controller (not shown) provides control signals to the mixer valve 1 for controlling the flow rate and temperature of the outlet water delivered to the plate 83 according to the user selection via an interface 87 on the base 81 to allow a user to select the flow rate and temperature they wish. The interface 87 includes a touch sensitive panel 87a for inputting settings and a display 89b which shows the water temperature. It will, be appreciated that the interface 87 can be of any suitable form for receiving user inputs for controlling the mixer valve 1. It should also be understood that similar types of user interfaces may be employed either as part of or adjacent to other plumbing fixtures and fitting discussed herein (e.g., on or adjacent to a showerhead or a stem thereof, on or adjacent to a tub spout, etc.).


Conventional faucets require a valve base that is secured to the support surface and the spout then extends from the valve base to channel the water to where it needs to be dispensed. The present embodiment is advantageous as the mixer valve, due to its ability to be miniaturized (i.e. reduced in size), can be incorporated into the spout without the need for the valve base. Also the rectangular shape of the housing 2 provides the designer with the opportunity to employ different configurations for the stem portion (spout) of the faucet.



FIG. 10 is a schematic diagram of a system 100 that includes a controller 110 for controlling a plurality of valves 120, 122, 124, and 126. While four valves are illustrated in FIG. 10, it should be noted that any number of valves can be connected to the controller 110, which may be located in the vicinity of or remote from one or more of the valves.


The valves 120, 122, 124, and 126 may be provided as mixing valves or as flow control valves, and may each optionally include a heating element such as the heating elements described herein. The valves 120, 122, 124, and 126 may be associated with a plumbing fixture or fitting, and may be provided within the housing of the plumbing fixture or fitting (e.g., within a handle, neck, or head of a shower head, within a spout or escutcheon of a faucet, within a tub spout, etc.) or may be separate therefrom and in fluid communication therewith.


Each of the valves 120, 122, 124, and 126 may include one or more associated controllers 121, 123, 125, and 127 (e.g., similar to the electronic controllers described above, which may include, for example, a microprocessor which may be provided by a control panel 21 such as a printed circuit board (see, e.g., FIG. 3)). The controllers 120, 122, 124, and 126 may be provided in close proximity or in contact with the associated valve or may be provided in a location remote from the valve (e.g., in another portion of the plumbing fitting or fixture, in a location outside of the plumbing fitting or fixture, etc.). The one or more controllers 121, 123, 125, and 127 associated with each valve 120, 122, 124, and 126 may be configured to operate motors associated with the valves and/or may control heating elements (e.g., on/off, temperature, etc.) associated with each valve to allow a cleaning cycle to be run for the valve. In instances where a separate or common heating element is used elsewhere in an associated fixture or fitting (e.g., as with a heater coupled to thermally-conductive water-contacting components in the fixture of fitting), the controller 110 and/or the controllers 121, 123, 125, and 127, or a separate controller, may be operable to turn the heating element on or off).


The one or more controllers 121, 123, 125, and 127 associated with each of the valves 120, 122, 124, and 126 may include a clock function that may be, for instance, programmable such that the motors and/or heating elements are turned on at predetermined intervals, at predetermined times, at predetermined times after the valves were last used (e.g., 15 minutes after a user takes a shower), or at any other desired time as will be appreciated by those reviewing the present disclosure. The clock function may be incorporated into the controllers or may be provided by a separate component in communication with the valves, heating elements, and/or controllers. According to other exemplary embodiments, the timing of the motor or heating element may be controlled remotely, such as by the controller 110. According to still other exemplary embodiments, the valves, motors, heating elements, etc. may be controlled manually in place of or in addition to the clock mechanisms (e.g., the valves may be scheduled to go through a heating cycle at 2 am, at 15 minutes after a user of the valve activates the valve, and a heating cycle may also be triggered manually either at the valve location or remotely, for example, by using the controller 110).


The controller 110 may be configured to send signals to each of the controllers 121, 123, 125, and 127121, 123, 125, and 127 to operate the valves, the motors, and/or the heating elements. As mentioned above, according to another exemplary embodiment, the controller 110 may be in direct communication with the valves, the motors, and/or the heating elements without the need for controllers associated with each of the valves. The controller 110 may communicate with the controllers (or directly with the valves, motors, and/or heating elements) via a wired or wireless communication method. For example, according to one exemplary embodiment, each of the controllers, valves, and/or motors may be in direct wired communication with a central controller 110 located remote from the various valves. In a specific example, a hospital, hotel, apartment complex, or other facility may have numerous valves throughout the building, and a central controller such as the controller 110 may be used to control the manual and/or timed actuation and/or the heating/cleaning cycles for all or for a subset of the valves. As mentioned above, the actuation of the valves may be accomplished manually and/or at scheduled times or time intervals, and may be controlled by the central controller and/or the individual controllers associated with each of the valves.



FIG. 11 illustrates a flow diagram illustrating a method 100 for performing a heating/cleaning cycle for a valve such as the valves described herein. In a first step 110, it is determined whether a cleaning cycle is necessary. Such determination may be made, for example, as part of a predetermined schedule or program (e.g., at preset times, at preset timing intervals, at some preset time after the valve is used, etc.), and may be determined either at controllers associated with each valve or may be determined at a central controller associated with a plurality of valves.


After it is determined that a heating/cleaning cycle is necessary, the heating/cleaning cycle is initiated in a step 220. The heating/cleaning cycle may involve, for example in a step 230, heating the heating element associated with the valve (and/or the fixture or fitting with which the valve is associated) to a desired temperature and holding it at that temperature for a desired amount of time or cycling the temperature between more than one temperature, ideally at temperatures/times sufficient to disinfect the water-contacting parts of the valve (and/or the fixture or fitting), such as to kill micro-organisms that may be present.


In addition to the heating component of the heating/cleaning cycle, the valves may optionally be operated to allow water to flow through the passageways of the valve and the associated fittings/fixtures so as to allow purging of materials or organisms that may be present. This actuation of the valves to allow water flow may also be directed by the controllers associated with the valve or by a remote controller in communication with the valve or associated controller, motor(s), etc.


Once the heating/cleaning cycle is completed, the cycle is terminated in a step 240. The termination may occur after a predetermined time, after a predetermined time at which the heating element and/or valve are at a desired temperature, or any other point at which it is desired to stop the heating/cleaning cycle.


It is also possible to manually perform a heating/cleaning cycle, either by initiating the heating/cleaning remotely (as from the controller 110) or by directly inputting a desired command at the location of the valve. For example, where the faucet includes a switch or user interface configured to allow the initiation of a cleaning cycle, a cycle at a predetermined time/temperature may be performed upon such initiation.


The control functions of the various controllers described herein can be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. The controls can be implemented as one or more computer programs, i.e., one or more modules of computer program instructions, encoded on one or more computer storage medium for execution by, or to control the operation of, data processing apparatus, such as a processing circuit. A processing circuit such as a CPU, for example, may comprise any digital and/or analog circuit components configured to perform the functions described herein, such as a microprocessor, microcontroller, application-specific integrated circuit, programmable logic, etc. Alternatively or in addition, the program instructions can be encoded on an artificially-generated propagated signal, e.g., a machine-generated electrical, optical, or electromagnetic signal, that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus.


A computer storage medium can be, or be included in, a computer-readable storage device, a computer-readable storage substrate, a random or serial access memory array or device, or a combination of one or more of them. Moreover, while a computer storage medium is not a propagated signal, a computer storage medium can be a source or destination of computer program instructions encoded in an artificially-generated propagated signal. The computer storage medium can also be, or be included in, one or more separate components or media (e.g., multiple CDs, disks, or other storage devices). Accordingly, the computer storage medium is both tangible and non-transitory.


The controls described in this specification can be implemented as operations performed by a data processing apparatus on data stored on one or more computer-readable storage devices or received from other sources. The term “data processing apparatus” or “computing device” encompasses all kinds of apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, a system on a chip, or multiple ones, or combinations, of the foregoing The apparatus can include special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). The apparatus can also include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, a cross-platform runtime environment, a virtual machine, or a combination of one or more of them. The apparatus and execution environment can realize various different computing model infrastructures, such as web services, distributed computing and grid computing infrastructures. External controllers discussed herein (such as controller 110) may be part of a larger building management system (BMS) that may control various features within a building, which may advantageously provide centralized control not only, for example, for the disinfecting routines, but also for other features such as lighting, air conditioning, and the like.


A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, object, or other unit suitable for use in a computing environment. A computer program may, but need not, correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub-programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.


The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform actions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit).


Processors suitable for the execution of the controls described herein may include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for performing actions in accordance with instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. However, a computer need not have such devices. Moreover, a computer can be embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a Global Positioning System (GPS) receiver, or a portable storage device (e.g., a universal serial bus (USB) flash drive), to name just a few. Devices suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.


To provide for interaction with a user, embodiments of the control programs can be implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and an I/O device, e.g., a mouse or a touch sensitive screen, by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input. In addition, a computer can interact with a user by sending documents to and receiving documents from a device that is used by the user; for example, by sending web pages to a web browser on a user's client device in response to requests received from the web browser.


Embodiments of the control program described in this specification can be implemented in a computing system that includes a back-end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front-end component, e.g., a client computer having a graphical user interface or a web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back-end, middleware, or front-end components. The components of the system can be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), an inter-network (e.g., the Internet), and peer-to-peer networks (e.g., ad hoc peer-to-peer networks).


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. In some embodiments, a server transmits data (e.g., an HTML page) to a client device (e.g., for purposes of displaying data to and receiving user input from a user interacting with the client device). Data generated at the client device (e.g., a result of the user interaction) can be received from the client device at the server.


As utilized herein, the terms “approximately,” “about,” “around,” “substantially,” and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.


It should be noted that the term “exemplary” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).


The terms “coupled,” “connected,” and the like as used herein mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.


References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” etc.) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.


It is important to note that the construction and arrangement of the mixer valves and related assemblies as shown in the various exemplary embodiments is illustrative only. Although only a few embodiments have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments.


Features of any of the embodiments may be employed separately or in combination with any other feature(s) of the same or different embodiments and the disclosure extends to and includes all such arrangements whether or not described herein.


Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the inventions described herein. Other modifications that can be made will be apparent to those skilled in the art and the invention extends to and includes all such modifications. Any of the features described herein may be employed separately or in combination with any other feature and the invention extends to and includes any such feature or combination of features.

Claims
  • 1. A faucet comprising: a base for mounting the faucet;a spout extending from the base and configured to discharge water;a valve housing located within the spout and comprising a first end section, a second end section having an outlet, and a center section provided between the first and second end sections, the center section including a first inlet configured to receive cold water and a second inlet configured to receive hot water;a first flow control valve located within a first waterway of the valve housing to control the flow of cold water from the first inlet to the outlet;a second flow control valve located within a second waterway of the valve housing to control the flow of hot water from the second inlet to the outlet;a first motor located within the spout and coupled to the first end section, wherein the first motor is configured to control movement of the first flow control valve to adjust a flow rate of cold water to the outlet;a second motor located within the spout and coupled to the first end section, wherein the second motor is configured to control movement of the second flow control valve to adjust a flow rate of hot water to the outlet; andan electric heater extending through at least a portion of the valve housing and configured to heat a surface defining at least part of one of the first or second waterways to an elevated temperature sufficient to kill organisms within the respective waterway.
  • 2. The faucet of claim 1, wherein the first and second flow control valves are housed within the center section of the valve housing.
  • 3. The faucet of claim 2, wherein both of the first and second inlets are provided on a first side of the center section of the valve housing.
  • 4. The faucet of claim 3, wherein the electric heater extends through a bore of the valve body located on a second side of the center section of the valve housing that is opposite to the first side.
  • 5. The faucet of claim 4, wherein the first motor translates the first flow control valve relative to the valve housing to adjust the flow rate of cold water to the outlet; andthe second motor translates the second flow control valve relative to the valve housing to adjust the flow rate of hot water to the outlet.
  • 6. The faucet of claim 5, further comprising: an electronic controller provided within the spout and configured to control operation of the first and second motors; anda user interface for communicating a selected flow rate and a selected temperature of the water discharged from the spout to the electronic controller via a control signal.
  • 7. The faucet of claim 6, further comprising a sensor located in the second end section and configured to monitor a temperature of the water flowing out of the outlet and communicating the temperature of the water flowing out of the outlet to the electronic controller.
  • 8. The faucet of claim 7, wherein the first end section, the second end section, and the center section are separate members that are coupled together in a fluid tight manner.
  • 9. The faucet of claim 7, wherein the electronic controller disables the first and second flow control valves in a closed position to prevent water flow to the outlet in response to the elevated temperature being at or above a predetermined threshold temperature.
  • 10. The faucet of claim 1, wherein the valve housing comprises a thermally-conductive material.
  • 11. The faucet of claim 10, wherein the spout comprises a thermally-insulating material and has a cross sectional shape that is uniform along a length of the spout.
  • 12. The faucet of claim 11, wherein the electric heater comprises a resistive wire heater coil that is powered with 50 watts or less.
  • 13. A faucet comprising: a structure comprising a mounting base and a spout extending from the mounting base that is configured to discharge water;a valve housing separate from the structure and located within the spout, the valve housing comprising a first end section, a cold water inlet, a hot water inlet, and a mixing chamber;a first flow control valve located within the valve housing to control the flow of cold water from the cold water inlet to the mixing chamber;a second flow control valve located within the valve housing to control the flow of hot water from the hot water inlet to the mixing chamber;a first motor located within the structure, coupled to the first end section, and configured to control movement of the first flow control valve;a second motor located within the structure, coupled to the first end section, and configured to control movement of the second flow control valve; andan electric heater located within the spout and configured to heat a surface defining a waterway to an elevated temperature sufficient to kill organisms within the waterway.
  • 14. The faucet of claim 13, wherein the electric heater is located within a body of the spout that is downstream from the mixing chamber, and wherein a liner is disposed in the body and defines the surface.
  • 15. The faucet of claim 14, wherein the electric heater is disposed between the liner and the body, the liner comprises a thermally conductive material, and the body comprises a thermally insulating material.
  • 16. The faucet of claim 13, wherein the electric heater is located within a bore of the valve housing, the valve housing comprises a thermally-conductive material, and the spout comprises a thermally-insulating material.
  • 17. The faucet of claim 16, wherein the housing comprises: a second end section having an outlet from the mixing chamber; anda center section provided between the first and second end sections, the center section including the cold water inlet and the hot water inlet;wherein the first end section, the second end section, and the center section are separate members that are coupled together in a fluid tight manner.
  • 18. A faucet comprising: an elongated spout having a cross sectional shape that is uniform along a length of the spout; a valve housing separate from the spout and located therein, the valve housing comprising a cold water inlet, a hot water inlet, and a mixing chamber; a cold water flow control valve configured to control the flow of cold water from the cold water inlet to the mixing chamber; a hot water flow control valve configured to control the flow of hot water from the hot water inlet to the mixing chamber; and an electric heater located within the spout and configured to heat a surface defining a waterway to an elevated temperature sufficient to kill organisms within the waterway, wherein the electric heater is located within a portion of the spout that is downstream of the mixing chamber.
  • 19. The faucet of claim 18, wherein a liner is disposed in the body and defines the surface, the electric heater is disposed between the liner and the body, the liner comprises a thermally conductive material, and the portion of the spout comprises a thermally insulating material.
  • 20. The faucet of claim 18, wherein the electric heater is located within a bore of the valve housing, the valve housing comprises a thermally-conductive material, and the spout comprises a thermally-insulating material.
Priority Claims (2)
Number Date Country Kind
1211098.7 Jun 2012 GB national
1211101.9 Jun 2012 GB national
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

The present application is a Continuation of U.S. patent application Ser. No. 15/009,325, filed on Jan. 28, 2016, which is a Continuation of U.S. patent application Ser. No. 13/797,225, filed on Mar. 12, 2013 and issued on Feb. 16, 2016 as U.S. Pat. No. 9,260,842, which is a Continuation of U.S. patent application Ser. No. 13/796,337 filed on Mar. 12, 2013 and issued on Mar. 1, 2016 as U.S. Pat. No. 9,273,450, which claims the benefit of and priority to United Kingdom Patent Application No. 1211098.7, filed on Jun. 22, 2012, and United Kingdom Patent Application No. 1211101.9, filed on Jun. 22, 2012. The entire disclosures of each of the foregoing applications are incorporated herein by reference.

US Referenced Citations (282)
Number Name Date Kind
1065615 Lawler Jun 1913 A
1258262 Shapley et al. Mar 1918 A
1291939 Laubach Jan 1919 A
1434945 Cooper Nov 1922 A
1476718 Leonard Dec 1923 A
1479546 Johnson Jan 1924 A
1500820 Jones Jul 1924 A
1740156 Crane et al. Dec 1929 A
1747640 Morris Feb 1930 A
1923711 Decker Aug 1933 A
1948971 Meyer Feb 1934 A
2044634 Reider Jun 1936 A
2146930 Bassett Feb 1939 A
2262290 Kuhnle Nov 1941 A
2399460 Britton Apr 1946 A
2427124 Dawson Sep 1947 A
2427128 Dawson Sep 1947 A
2449766 Brown Sep 1948 A
2452367 Gangloff Oct 1948 A
2508074 Miller May 1950 A
2591991 Young Apr 1952 A
2698029 Branson Dec 1954 A
2935079 Shelton May 1960 A
3012583 Gorgens et al. Dec 1961 A
3034138 Filliung May 1962 A
3087675 Honegger Apr 1963 A
3094139 Budde et al. Jun 1963 A
3116748 Wasson Jan 1964 A
3150687 Kalle Sep 1964 A
3152612 Avery Oct 1964 A
3206159 Anderson et al. Sep 1965 A
3319893 Rodgers et al. May 1967 A
3322342 Veale May 1967 A
3327729 Erickson Jun 1967 A
3475392 McCoy Oct 1969 A
3561481 Taplin Feb 1971 A
3561482 Taplin Feb 1971 A
3575208 Urban Apr 1971 A
3584784 Burhop Jun 1971 A
3587156 Sorrenson et al. Jun 1971 A
3633617 Stacey et al. Jan 1972 A
3651523 Miyahara et al. Mar 1972 A
3696836 Bauer Oct 1972 A
3706872 Trabilcy Dec 1972 A
3711028 Hengesbach Jan 1973 A
3758002 Doyle Sep 1973 A
3762443 Sorenson Oct 1973 A
3768513 Sauret-Ponsa Oct 1973 A
3784785 Noland Jan 1974 A
3799447 Beal Mar 1974 A
3896836 Labarre Jul 1975 A
3915193 Rutt Oct 1975 A
3938556 Hicks Feb 1976 A
3990477 Johnson Nov 1976 A
3998240 Liautaud Dec 1976 A
4074967 Fuchs et al. Feb 1978 A
4084271 Ginsberg Apr 1978 A
4175706 Gerstmann Nov 1979 A
4177970 Ring, Jr. Dec 1979 A
4220175 Keller et al. Sep 1980 A
4222410 Geimer Sep 1980 A
4253482 Stephens Mar 1981 A
4313469 Johnson Feb 1982 A
4324267 Bach Apr 1982 A
4407711 Baboian et al. Oct 1983 A
4420811 Tarnay Dec 1983 A
4422470 Jackson Dec 1983 A
4444357 Lynch Apr 1984 A
4448211 Yoshida May 1984 A
4541562 Zukausky Sep 1985 A
4558206 Ball Dec 1985 A
4611626 Logsdon Sep 1986 A
4618091 Buzzi Oct 1986 A
4696428 Shakalis Sep 1987 A
4711392 Kidouchi Dec 1987 A
4735357 Gregory Apr 1988 A
4738393 Bergmann et al. Apr 1988 A
4739798 Botnick Apr 1988 A
4745011 Fukuta May 1988 A
4762273 Gregory Aug 1988 A
4785845 Kochal Nov 1988 A
4863098 Kolze Sep 1989 A
4867375 Ueki Sep 1989 A
4873830 Blattler Oct 1989 A
4894520 Moran Jan 1990 A
4895126 Nishimiya et al. Jan 1990 A
4909435 Kidouchi Mar 1990 A
4928494 Glamm May 1990 A
4944049 Leonard Jul 1990 A
4953236 Lee et al. Sep 1990 A
4955535 Tsutsui et al. Sep 1990 A
4967794 Tsutsui et al. Nov 1990 A
4971106 Tsutsui et al. Nov 1990 A
4978058 Duncan Dec 1990 A
4986085 Tischer Jan 1991 A
5011112 Glamm Apr 1991 A
5033671 Shiba et al. Jul 1991 A
5050062 Hass Sep 1991 A
5058804 Yonekubo Oct 1991 A
5069186 Illien Dec 1991 A
5070552 Gentry et al. Dec 1991 A
5083745 Tischer Jan 1992 A
5085399 Tsutsui et al. Feb 1992 A
5090895 Jensen et al. Feb 1992 A
5093943 Wei Mar 1992 A
5123445 Chung-Shan Jun 1992 A
5152465 Calabro Oct 1992 A
5172713 Hall Dec 1992 A
5199790 Pawelzik et al. Apr 1993 A
5206963 Wiens May 1993 A
5234020 Orlandi Aug 1993 A
5313985 Donner May 1994 A
5351892 Conte Oct 1994 A
5353448 Lee Oct 1994 A
5358177 Cashmore Oct 1994 A
5390855 Mims Feb 1995 A
5417083 Eber May 1995 A
5504950 Natalizia Apr 1996 A
5524668 Matsuo et al. Jun 1996 A
5647531 Kline et al. Jul 1997 A
5718378 Dupre Feb 1998 A
5730167 Enoki et al. Mar 1998 A
5823441 Nicholson Oct 1998 A
5837970 Jilek Nov 1998 A
5853130 Ellsworth Dec 1998 A
5855356 Fait Jan 1999 A
5870302 Oliver Feb 1999 A
5873518 Richmond Feb 1999 A
5975119 Silva et al. Nov 1999 A
5979775 Raya Nov 1999 A
5979776 Williams Nov 1999 A
5993117 Lancaster et al. Nov 1999 A
6029094 Diffut Feb 2000 A
6056823 Sajoto et al. May 2000 A
6070615 Chen Jun 2000 A
6145538 Park Nov 2000 A
6157103 Ohta et al. Dec 2000 A
6219859 Derakhshan Apr 2001 B1
6237853 Bergmann May 2001 B1
6286550 Yamaki et al. Sep 2001 B1
6286764 Garvey et al. Sep 2001 B1
6317717 Lindsey Nov 2001 B1
6438770 Hed et al. Aug 2002 B1
6442775 Gransow et al. Sep 2002 B1
6446875 Brooks Sep 2002 B1
RE37888 Cretu-Petra Oct 2002 E
6473917 Mateina Nov 2002 B1
6536458 Kindermann Mar 2003 B1
6643862 Aitken Nov 2003 B2
6668854 Fukuda Dec 2003 B2
6688332 Liesenhoff Feb 2004 B2
6705534 Mueller Mar 2004 B1
6708721 Fukuda et al. Mar 2004 B2
6722575 Gagne Apr 2004 B1
6748969 Kanzaka et al. Jun 2004 B2
6805152 Kanzaka et al. Oct 2004 B2
6839509 Kuebler et al. Jan 2005 B2
6854658 Houghton et al. Feb 2005 B1
6860288 Uhler Mar 2005 B2
6892925 Interrante et al. May 2005 B2
6895995 Kirkman et al. May 2005 B2
6898467 Smith et al. May 2005 B1
6929188 Taylor Aug 2005 B2
6932112 Bradford et al. Aug 2005 B2
7000854 Malek et al. Feb 2006 B2
7010396 Ware Mar 2006 B2
7017884 Brinks et al. Mar 2006 B2
7124452 Bauza Oct 2006 B1
7124776 Hwang Oct 2006 B1
7147203 Terrell Dec 2006 B2
7171984 Pawelzik et al. Feb 2007 B2
7177725 Nortier et al. Feb 2007 B2
7228874 Bolderheij Jun 2007 B2
7286904 Graham Oct 2007 B2
7303151 Wu Dec 2007 B2
7360723 Lev Apr 2008 B2
7367352 Hagen et al. May 2008 B2
7372002 Nakamura May 2008 B2
7403839 Kaplan Jul 2008 B1
7406980 Pinette Aug 2008 B2
7445024 Paterson et al. Nov 2008 B2
7456374 Gerver et al. Nov 2008 B2
7458520 Belz et al. Dec 2008 B2
7475827 Schmitt Jan 2009 B2
7546848 Koenekamp Jun 2009 B2
7624757 Schmitt Dec 2009 B2
7657948 Tsai Feb 2010 B2
7665483 Sid Feb 2010 B1
7672576 Grossbach et al. Mar 2010 B2
7694359 Hall Apr 2010 B1
7726333 Hoshi et al. Jun 2010 B2
7814929 Yewdall et al. Oct 2010 B2
7819134 Izzy et al. Oct 2010 B2
7823603 Cochart et al. Nov 2010 B2
7857234 Daley et al. Dec 2010 B2
7889187 Freier et al. Feb 2011 B2
8028935 Leber Oct 2011 B2
8051507 Lin Nov 2011 B2
8118240 Rodenbeck Feb 2012 B2
8534318 Kanemaru Sep 2013 B2
8579206 Kline Nov 2013 B2
8702018 Rivera Apr 2014 B1
8950426 Yewdall et al. Feb 2015 B2
9243756 Davidson Jan 2016 B2
9260842 Peel Feb 2016 B2
9260844 Peel Feb 2016 B2
9273450 Peel Mar 2016 B2
9909288 Peel Mar 2018 B2
9957699 Peel May 2018 B2
9957700 Peel May 2018 B2
20020019709 Segal Feb 2002 A1
20020043281 Gloodt Apr 2002 A1
20030079507 Bruntz May 2003 A1
20030080194 O'Hara et al. May 2003 A1
20030088338 Phillips et al. May 2003 A1
20030168111 Koga Sep 2003 A1
20040000594 Beck Jan 2004 A1
20040016816 Ginter Jan 2004 A1
20040193326 Phillips et al. Sep 2004 A1
20050072850 Cornwall et al. Apr 2005 A1
20050076960 Luig et al. Apr 2005 A1
20050258258 Jonte Nov 2005 A1
20060059616 Grohe Mar 2006 A1
20060138246 Stowe Jun 2006 A1
20060144443 Yewdall et al. Jul 2006 A1
20060161270 Luskin et al. Jul 2006 A1
20060180212 Eriksen Aug 2006 A1
20060214016 Erdely Sep 2006 A1
20060231638 Belz et al. Oct 2006 A1
20060243813 Beck Nov 2006 A1
20070001018 Schmitt Jan 2007 A1
20070067902 Miller et al. Mar 2007 A1
20070080242 Wang Apr 2007 A1
20070119501 Pinette May 2007 A1
20070221744 Simon et al. Sep 2007 A1
20070246550 Rodenbeck et al. Oct 2007 A1
20080006707 Nobili Jan 2008 A1
20080099088 Boey May 2008 A1
20080112843 Peel et al. May 2008 A1
20080156889 Shapira Jul 2008 A1
20080156903 Leber Jul 2008 A1
20080167931 Gerstemeier Jul 2008 A1
20080196156 Brewin Aug 2008 A1
20080250556 Mang et al. Oct 2008 A1
20080271238 Reeder et al. Nov 2008 A1
20080302991 Tseng Dec 2008 A1
20090000024 Louis Jan 2009 A1
20090007330 Genord Jan 2009 A1
20090056011 Wolf Mar 2009 A1
20090119142 Yenni et al. May 2009 A1
20090119832 Conroy May 2009 A1
20090261282 Connors Oct 2009 A1
20090321335 Siemer et al. Dec 2009 A1
20100032500 Righini Feb 2010 A1
20100051719 Carlucci Mar 2010 A1
20100095443 Nishimura et al. Apr 2010 A1
20100116224 Leeland May 2010 A1
20100132803 Fima Jun 2010 A1
20100155505 Lopp et al. Jun 2010 A1
20100161144 Crist Jun 2010 A1
20100193039 Illingworth Aug 2010 A1
20100213279 Frederick Aug 2010 A1
20100213282 Peel et al. Aug 2010 A1
20110031331 Klicpera Feb 2011 A1
20110041561 Apel Feb 2011 A1
20110088799 Jung Apr 2011 A1
20110094481 Zui et al. Apr 2011 A1
20110108135 Zhong May 2011 A1
20110126919 Izzy et al. Jun 2011 A1
20110186138 Hanna et al. Aug 2011 A1
20110192476 Underwood et al. Aug 2011 A1
20110215163 Chang et al. Sep 2011 A1
20110284101 Thurau et al. Nov 2011 A1
20110289675 Dunki-Jacobs et al. Dec 2011 A1
20120012768 Yahr et al. Jan 2012 A1
20120079652 Lemire et al. Apr 2012 A1
20120175428 Jouneau et al. Jul 2012 A1
20120187200 Thurau Jul 2012 A1
20120330468 Lopez Dec 2012 A1
20130019977 Hung Jan 2013 A1
20130062422 Marty et al. Mar 2013 A1
20130075483 Marty et al. Mar 2013 A1
Foreign Referenced Citations (2)
Number Date Country
WO0049317 Aug 2000 WO
WO-2010060142 Jun 2010 WO
Related Publications (1)
Number Date Country
20180216323 A1 Aug 2018 US
Continuations (3)
Number Date Country
Parent 15009325 Jan 2016 US
Child 15935671 US
Parent 13797225 Mar 2013 US
Child 15009325 US
Parent 13796337 Mar 2013 US
Child 13797225 US