The invention relates to multistage emulsion polymers intended mainly for blending with hard and relatively brittle plastics in order to improve their toughness properties. They are frequently termed impact modifiers, although they can also be processed on their own as a moulding composition for producing impact-resistant mouldings, films, or the like.
Their fundamental structure made from a hard, non-elastomeric core, from an elastomeric intermediate stage and from a hard, non-elastomeric final stage is given in the precharacterizing clause of the patent claim. The polymers of the intermediate stage and of the final stage are assumed to have a shell-type arrangement around the core.
Many impact modifiers prepared by emulsion polymerization and made from an elastomeric core and from a hard, non-elastomeric shell are known from the prior art.
According to U.S. Pat. No 3,661,994, these emulsion polymers were improved by producing a hard core as first stage of the emulsion polymer and producing one elastomeric and one hard shell by way of two subsequent stages of polymerization. The elastomeric shell has crosslinking by divinyl monomers, such as divinylbenzene or butylene dimethacrylate.
According to U.S. Pat. No. 3,793,402, the emulsion polymers were further improved by using two different crosslinkers in the elastomeric phase. One type of crosslinker is termed “polymerization crosslinker” and contains two or more polymerizable double bonds which have the same polymerization rate as the monounsaturated main monomer which forms most of the elastomeric phase. The crosslinker brings about internal crosslinking of the elastomeric phase and has been completely consumed by the time that the polymerization of the elastomeric stage has been concluded. Examples mentioned are diacrylates and dimethacrylates of diols, and divinyl-and trivinylbenzene.
The second type of crosslinker which must be used simultaneously is termed “graft crosslinker”. It contains one polymerizable double bond whose polymerization rate is the same as that of the main monomer, and another polymerizable double bond whose polymerization rate is markedly lower. At least some of the last-named double bonds are retained unaltered when the polymerization of the main monomer has been completed, and they are gradually consumed during the continuation of the polymerization in the third stage. They therefore bring about crosslinking of the elastomeric second stage with the hard third stage.
This twofold crosslinking has proven important for avoiding what is known as “stress whitening”. This means lasting local whitening of an otherwise clear and transparent moulding at sites where it has been exposed to severe strain or impact. Stress whitening is interpreted as production of fissures or areas of break-away between the continuous hard phase of the moulding and the elastomeic phase phase embedded and finely distributed therein. In line with this interpretation, the crosslinking of the elastomeric phase with the hard phase eliminates areas of break-away of the two phases and therefore also eliminates undesirable stress whitening under tensile stress. However, if the proportion of the graft crosslinker can be increased until stress whitening completely disappears, a reduction in toughness, in particular in impact strength, can be observed.
The more recent Patent No. EP 0 828 772 “Impact modified (Meth)acrylic Polymers” claims impact modifiers identical with those in U.S. Pat. No. 3,793,402. The core/shell or core/shell particles claimed in the first claim have the following build:
In the examples, there is some incorporation of butyl acrylate (up to 8% by weight) in core and shell 2, besides MMA, but although this gives another formulation for the core (and the shell) it does not give any significant increase in the impact strength (increase of Izod notch impact strength from 7 (1% by weight of butyl acrylate) to a maximum of 8.3 kJ/m2).
Nor is the refractive index of the core matched to the matrix by way of other monomers (such as styrene).
In the article “Investigation of the Micromechanical Deformation Behavior of Transparent Toughened Poly(methylmethacrylate) Modified with Core-Shell Particles” in Polymers for Advanced Technologies, 9, 716-20 (1998), the authors J. Laatsch, G.-M. Kim, G. H. Michler, T. Arndt and T. Sufke discuss the micromechanical behaviour of impact-resistant PMMA, using electron micrographs. The content of impact-modifying rubber particles here is varied from 4 to 35% by volume, based on the PMMA matrix.
FIGS. 6 and 7 in the article are evidence that the impact-modifying particles deform only within the rubber phase, no deformation of the core occurring.
Object
The intention was then to find an effective modifier which improves the impact strength of PMMA moulding composition over prior-art impact-modified moulding compositions. However, there is to be no or very little resultant sacrifice of melt viscosity, die swell, modulus of elasticity or Vicat softening point of the moulding compositions concerned through using the nominal modifier.
Solution
A softer formulation for the cores in the C/S1/S2 modifiers can markedly raise the impact strength of the moulding compositions while using the same amounts of impact modifier in the moulding composition. This softer formulation is achieved by incorporating 7% by weight or more (based on core monomers) of a C2-C8-alkyl acrylate within the core. Optical properties may optionally be maintained at the same level by adjusting the refractive index within the core (by copolymerizing styrene).
The increased impact strength of the moulding compositions equipped with the novel C/S1/S2 modifiers comes about through the ability of the core (C) to undergo plastic deformation. The core is not elastomeric like the shell (S1) but deforms under high levels of mechanical stress.
The C/S1/S2 impact modifier is a polymer with the following monomer build:
The term alkyl methacrylates used above is taken to mean esters of methacrylic acid, for example methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, isooctyl methacrylate and ethylhexyl methacrylate, and also cycloalkyl methacrylates, such as cyclohexyl methacrylate.
The term alkyl acrylates used above is taken to mean esters of acrylic acid, for example methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, isooctyl acrylate and ethylhexyl acrylate, and also cycloalkyl acrylates, such as cyclohexyl acrylate.
Styrenes which may be used are styrene, substituted styrenes with an alkyl substituent in the side chain, e.g. α-methylstyrene and α-ethylstyrene, substituted styrenes with an alkyl substituent on the ring, such as vinyltoluene and p-methylstyrene, and halogenated styrenes, such as monochlorostyrenes, dichlorostyrenes, tribromostyrenes and tetrabromostyrenes.
Examples of crosslinkers used are the following compounds.
(a) Bifunctional (Meth)Acrylates
Compounds Of The General Formula
where R is hydrogen or methyl and n is a positive integer from 3 to 20, e.g. the di(meth)acrylate of propanediol, of butanediol, of hexanediol, of octanediol, of nonanediol, of decanediol or of eicosanediol;
compounds of the general formula:
where R is hydrogen or methyl and n is a positive integer from 1 to 14, e.g. the di(meth)acrylate of ethylene glycol, of diethylene glycol, of triethylene glycol, of tetraethylene glycol, of dodecaethylene glycol, of tetradecaethylene glycol, of propylene glycol, of dipropyl glycol, or tetradecapropylene glycol.
Other crosslinkers which may be used are glycerol di(meth)acrylate, 2,2′-bis[p-(γ-methacryloxy-β-hydroxypropoxy)phenylpropane] or bis-GMA, bis-phenol A dimethacrylate, neopentyl glycol di-(meth)acrylate, 2,2′-di(4-methacryloxypolyethoxy-phenyl)propane having from 2 to 10 ethoxy groups per molecule and 1,2-bis(3-methacryloxy-2-hydroxypropoxy)butane.
The chain lengths of the copolymers in S2 may be adjusted by polymerizing the monomer mixture in the presence of molecular weight regulators, in particular of the mercaptans known for this purpose, such as n-butyl mercaptan, n-dodecyl mercaptan, 2-mercaptoethanol or 2-ethylhexyl thioglycolate or pentaerythritol tetrathioglycolate; the amounts used of the molecular weight regulators generally being from 0.05 to 5% by weight, based on the monomer mixture, preferably from 0.1 to 2% by weight and particularly preferably from 0.2 to 1% by weight based on the monomer mixture (cf., for example, H. Rauch-Puntigam, Th. Völker, “Acryl-und Methacrylverbindungen” [Acrylic and methacrylic compounds], Springer, Heidelberg, 1967; Houben-Weyl, Methoden der organischen Chemie [Methods of organic chemistry], Vol. XIV/1, p. 66, Georg Thieme, Heidelberg, 1961 or Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 1, pp. 296 et seq., J. Wiley, New York, 1978). n-Dodecyl mercaptan is preferably used as molecular weight regulator.
Examples of polymerization initiators which should be mentioned are: azo compounds, such as 2,2′-azobis(isobutyronitrile) and 2,2′-azobis(2,4-di-methylvaleronitrile), redox systems, such as the combination of tertiary amines with peroxides or sodium disulphite and persulphates of potassium, sodium or ammonium or preferably peroxides (cf. in this connection, for example, H. Rauch-Puntigam, Th. Völker, “Acryl- und Methacrylverbindungen” [Acrylic and methacrylic compounds], Springer, Heidelberg, 1967 or Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 1, pp. 386 et seq., J. Wiley, New York, 1978). Examples of suitable peroxide polymerization initiators are dilauroyl peroxide, tert-butyl peroctoate, tert-butyl perisononanoate, dicyclohexyl peroxidicarbonate, dibenzoyl peroxide and 2,2-bis(tert-butylperoxy)butane.
Also preferred is to carry out the polymerization with a mixture of various polymerization initiators of differing half-life times, for example dilauroyl peroxide and 2,2-bis(tert-butylperoxy)butane, in order to hold the flow of free radicals constant during the course of the polymerization or else at various polymerization temperatures. The amounts used of polymerization initiator are generally from 0.01 to 2% by weight, based on the monomer mixture.
The monomer build selected within the core is generally such that the calculated glass transition temperature Tgcore, calculated by the Fox equation, is 30° C. to 105° C.
Calculation of glass transition temperature by the Fox equation.
The glass transition temperature of copolymers can be approximated from the glass transition temperature of the homopolymers with the aid of the Fox equation.
(Hans-Georg Elias, Polymere [Polymers], Hüthig, p. 263, 1996).
The following values were used for glass transition temperatures:
The values for the glass transition temperatures of the homopolymers are taken from the Polymer Handbook, 3rd edition, 1989.
The proportions by weight of the core and the shells are from 15 to 35% by weight of core material, from 5 to 30% by weight of material of shell 1 and from 10 to 40% by weight of material of shell 2, the proportions giving 100% by weight in total.
General preparation specification for core/shell 1/shell 2 particles:
1.) Seed Latex
The seed latex is prepared by emulsion polymerization and its monomer build is 98% by weight of ethyl acrylate and 2% by weight of allyl methacrylate. These particles, of size about 20 nm, have a concentration of about 10% by weight in water.
2.) Preparation of Impact Modifiers
Water is charged to the vessel at from 40 to 60° C., with stirring, and the seed latex is charged and the feed of emulsion 1 begun (feed duration: from 0.5 to 2 hours).
Once the feed has ended and after a waiting time of from 0.25 to 1 hour, the feed of emulsion 2 is begun. Feed duration: from 1.0 to 2.0 hours.
Once the feed has ended and after a waiting time of from 0.25 to 1 hour, the feed of emulsion 3 is begun. Feed duration: from 1.0 to 2.0 hours.
The emulsifiers used are the conventional prior-art mulsifiers, for example as described in EP 828 772.
To isolate the impact modifier, the dispersion is frozen at −20° C. for 2 d, then remelted, and the coagulated dispersion is separated off by way of a filter fabric. The solid is dried at 50° C. in a drying cabinet (duration: about 3 d)
Blending of Moulding Compositions
A standard PMMA-based moulding composition, PLEXIGLAS® 7 N, is blended with 39.3% by weight of the respective impact modifier (based on the entire system) by means of an extruder.
Testing of Moulding Compositions
Test specimens were produced from the blended moulding compositions. The following methods were used to test the moulding compositions or the corresponding test specimens:
Viscosity ηs (220° C./5 MPa):
Melt viscosity determination, test standard: DIN 54811: 1984
Die Swell B:
Die swell determination, test standard: DIN 54811: 1984
Mini-Vicat (16 h/80° C.):
Vicat softening point determination using mini-Vicat system, test standard DIN ISO 306: August 1994
NIS (Charpy 179/IeU):
Charpy notch impact strength determination, test standard: ISO 179: 1993
Modulus of Elasticity
Modulus of elasticity determination, test standard: ISO 527-2
Transmittance (D 65/10°)
Transmittance measured for D65 and 10°, test standard: DIN 5033/5036
Haze
Haze measured on the BYK Gardner Hazeguard-plus haze meter, test standard: ASTM D 1003: 1997
(The results of the tests on the blends can be seen in Appendix 2.)
Advantages of the moulding compositions of the invention
The impact modifiers of the invention may also be used for preparing transparent moulding compositions. The term transparent moulding compositions is taken to mean moulding compositions whose haze (at 23° C.) is less than 4.
Number | Date | Country | Kind |
---|---|---|---|
100 43 868 | Sep 2000 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3793402 | Owens | Feb 1974 | A |
4833221 | Albrecht | May 1989 | A |
5110877 | Hoess et al. | May 1992 | A |
5155172 | Siol et al. | Oct 1992 | A |
5219931 | Siol et al. | Jun 1993 | A |
5270397 | Rhein et al. | Dec 1993 | A |
5280073 | Siol et al. | Jan 1994 | A |
5286801 | Besecke et al. | Feb 1994 | A |
5548033 | Vetter et al. | Aug 1996 | A |
5652316 | May et al. | Jul 1997 | A |
5705189 | Lehmann et al. | Jan 1998 | A |
6040387 | Albrecht et al. | Mar 2000 | A |
6287470 | Vetter et al. | Sep 2001 | B1 |
6355712 | Schultes et al. | Mar 2002 | B1 |
6576255 | Petereit et al. | Jun 2003 | B1 |
6613871 | Hoess et al. | Sep 2003 | B2 |
6765046 | Numrich et al. | Jul 2004 | B1 |
6803416 | Schultes et al. | Oct 2004 | B2 |
6809163 | Schultes et al. | Oct 2004 | B2 |
6890993 | Schultes et al. | May 2005 | B2 |
6998140 | Meier et al. | Feb 2006 | B2 |
7046952 | Kurotori et al. | May 2006 | B2 |
7179852 | Schultes et al. | Feb 2007 | B2 |
20020160042 | Petereit et al. | Oct 2002 | A1 |
20030031847 | Numrich et al. | Feb 2003 | A1 |
20040104501 | Petereit et al. | Jun 2004 | A1 |
20040116567 | Schmitt et al. | Jun 2004 | A1 |
20050065224 | Menzler et al. | Mar 2005 | A1 |
20050080188 | Schultes et al. | Apr 2005 | A1 |
20050152977 | Petereit et al. | Jul 2005 | A1 |
20050164007 | Numrich et al. | Jul 2005 | A1 |
20050267250 | Theil et al. | Dec 2005 | A1 |
20060052515 | Schultes et al. | Mar 2006 | A1 |
20060121248 | Lorenz et al. | Jun 2006 | A1 |
20060147714 | Schultes et al. | Jul 2006 | A1 |
20060175735 | Hoess et al. | Aug 2006 | A1 |
20070055017 | Schultes et al. | Mar 2007 | A1 |
20070066708 | Goldacker et al. | Mar 2007 | A1 |
20070112135 | Wicker et al. | May 2007 | A1 |
20070122624 | Schultes et al. | May 2007 | A1 |
20070197703 | Neuhäuser et al. | Aug 2007 | A1 |
20070222117 | Hoess et al. | Sep 2007 | A1 |
20070276093 | Schultes et al. | Nov 2007 | A1 |
20080242782 | Hager et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
195 23 465 | Jan 1997 | DE |
0 113 924 | Jul 1984 | EP |
0 512 333 | Nov 1992 | EP |
0 745 622 | Dec 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20070123610 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10363319 | US | |
Child | 11562669 | US |