The present disclosure relates to the field of actuating devices. More specifically, the present disclosure relates to a pneumatic remote actuating device.
Our world is filled with a myriad of actuating devices, for example pushbuttons, that are used to initiate operation of various machines, electronic devices, apparatuses, and the like. Some machines and apparatuses may be put in operation by actuation of a single pushbutton; as an example, some doors can be opened manually in a normal manner, or electrically by actuation of a pushbutton accessible to persons having various disabilities. Other machines and apparatuses may be operated by action of a number of pushbuttons; as an example, an elevator may be called to a floor by use of a pair of buttons for going up or down, a plurality of pushbuttons being accessible inside the elevator for selecting one of a plurality of floors.
Many of these pushbuttons can be pressed by users using their fingers. Unfortunately, pushbuttons may become hosts to a variety of germs, viruses and bacteria, and become vectors for contamination. This is a particularly severe issue during the COVID-19 pandemic of early 2020. Other problems related to conventional actuating devices include the difficulty for persons with some disabilities to use them as designed.
Many machines and apparatuses and designed to operate with conventional electronic remote controls. Other machines and apparatuses can be retrofitted to operate with electronic remote controls. However, retrofitting existing equipment may be time consuming and cost prohibitive.
Therefore, there is a need for improvements that compensate for problems related to the lack of hygiene of conventional actuating devices and to the difficulties in retrofitting existing equipment with electronic remote controls.
According to the present disclosure, there is provided a pneumatic remote actuating device, comprising:
In some implementations of the present technology, the actuator block further comprises a pushbutton slidably mounted to the first enclosure, wherein an inward movement of the pushbutton from a resting position to an activated position into the first enclosure compresses the first compressible internal chamber and causes the air pressure variation in the first internal chamber.
In some implementations of the present technology, at least one of the actuator block and the actuated block includes a leak allowing a reduction of the air pressure variation when the pushbutton returns to the resting position.
In some implementations of the present technology, the tube is selected from a flexible tube and a rigid tube.
In some implementations of the present technology, the second enclosure of the actuated block includes a generally flat rear face adapted to be bonded to a receiving surface; and the displacement of the pusher extends from the generally flat rear face of the second enclosure.
In some implementations of the present technology, the first enclosure of the actuator block includes a generally flat rear face adapted to be bonded to a receiving surface; and an external face of the pushbutton extends away from the generally flat rear face of the first enclosure when in the resting position.
In some implementations of the present technology, the pushbutton is adapted to be foot-operated.
In some implementations of the present technology, the biasing element is located within the first enclosure and is positioned to be compressed when the pushbutton is moved from the resting position to the activated position.
In some implementations of the present technology, the biasing element comprises a coil spring.
In some implementations of the present technology, the pusher is unbiased.
In some implementations of the present technology, applying an external pressure on the pushbutton causes the inward movement of the pushbutton from a resting position to an activated position.
In some implementations of the present technology, the actuator block further comprises a biasing element adapted to cause the pushbutton to return to the resting position when no external pressure is applied on the pushbutton.
In some implementations of the present technology, the actuator block further comprises a first channel formed in the first enclosure, the first channel fluidly connecting the first internal channel to the tube to transmit the air pressure variation from the first enclosure to the tube.
In some implementations of the present technology, the actuated block further comprises a second channel formed in the second enclosure, a first end of the second channel fluidly connecting the tube to the second internal chamber to transmit the air pressure variation from the tube to the second internal chamber, the pusher being positioned at a second end of the second channel so that the air pressure variation transmitted by the tube to the second internal chamber causes the displacement of the pusher.
In some implementations of the present technology, the pusher is slidably mounted to the second enclosure, the pusher having a resting position and an activated position, the displacement of the pusher being obtained when the air pressure variation transmitted by the tube to the second internal chamber causes the pusher to move from the resting position to the activated position.
In some implementations of the present technology, the activated block comprises a pivot, the pusher being supported by the pivot, the displacement of the pusher being obtained when the air pressure variation transmitted by the tube to the second internal chamber causes pivoting of the pusher.
In some implementations of the present technology, the actuator block further comprises a first diaphragm fluidly connected to the first internal chamber, the inward movement of the pushbutton in the first enclosure causing a deflection of the first diaphragm and, in turn, causing the air pressure variation in the first internal chamber.
In some implementations of the present technology, the actuated block further comprises a second diaphragm fluidly connected to the second internal chamber, the air pressure variation transmitted by the tube to the second internal chamber causing a deflection of the diaphragm and, in turn, causing the displacement of the pusher.
In some implementations of the present technology, the air pressure variation is a variation in relation to an ambient atmospheric pressure.
In some implementations of the present technology, the air pressure variation is an increase of air pressure.
In some implementations of the present technology, the air pressure variation is a decrease of air pressure.
According to the present disclosure, there is also provided a pair of pneumatic remote actuating devices. A first actuated block of a first pneumatic remote actuating device is operable to cause a rocker switch to move from a first to a second position. A second actuated block of a second pneumatic remote actuating device is operable to cause the rocker switch to move from the second to the first position.
The present disclosure further provides a set comprising a plurality of pneumatic remote actuating devices. Each pusher of the set is operable to cause activation of a corresponding elevator button.
The foregoing and other features will become more apparent upon reading of the following non-restrictive description of illustrative embodiments thereof, given by way of example only with reference to the accompanying drawings.
Embodiments of the disclosure will be described by way of example only with reference to the accompanying drawings, in which:
Like numerals represent like features on the various drawings.
Various aspects of the present disclosure generally address one or more of the problems of the lack of hygiene of conventional actuating devices and to the difficulties in retrofitting existing equipment with electronic remote controls.
The present technology introduces a pneumatic remote actuating device that includes an actuator block, an actuated block and a tube connecting the actuator block to the actuated block. As viewed externally, the actuator block includes an enclosure that can be mounted on a generally flat surface, for example and without limitation using a double side adhesive tape to mount the actuator block, for example on a lower part of a wall or on a floor. A pushbutton protrudes in front of the actuator block. Depressing the pushbutton causes an air pressure variation (either an increase of air pressure or a vacuum) within an internal chamber contained in the enclosure. This air pressure variation is transmitted from the actuator block, via the tube, to the actuated block. The actuated block comprises its own enclosure that can be mounted on a generally flat surface, for example and without limitation using a double side adhesive tape, to place the actuated block in an overlapping position over an external pushbutton to be activated. The air pressure variation transmitted from the actuator block to the actuated block causes an displacement of a pusher mounted in the enclosure of the actuated block. As a result, the pusher presses on the external pushbutton.
In an embodiment, when the pushbutton of the actuator block is released, it returns to a resting position, for example by action of a biasing element such as a coil spring. This action tends to reduce the air pressure variation throughout the pneumatic remote actuating device, facilitating a return of the pusher to its own resting position. In many cases, the external pushbutton will also include its own biasing means that will further facilitate the return of the pusher to its resting position.
In a use case, the external pushbutton, which would normally be depressed by a finger of a user, is thus actuated by action of a foot of the user on the pushbutton of the actuator block and on the resulting pressure applied on the pusher. In this manner, both hands of the user may remain free, for example for holding bags, a box, and the like. The user may also avoid touching the external pushbutton with fingers, particularly when there is a reason to be concerned about the presence of germs, bacteria, or viruses on the external pushbutton. The pushbutton of the actuator block may also be pushed by the foot of a child who is not sufficiently tall to reach the external pushbutton.
In an embodiment, the pusher may be mounted on a pivot within the enclosure of the actuated block. In a non-limiting use case of this embodiment, two pneumatic remote actuating devices may be used to operate a rocker switch such as those that are commonly used to turn on and off residential lighting. A first pivoting pusher of a first pneumatic remote actuating device may be used to move the rocker switch from a first position to a second position, for example to turn on the lights. A second pivoting pusher of a second pneumatic remote actuating device may be used to move the rocker switch from the second position to the first position, for example to turn off the lights.
In another embodiment, a set comprising a plurality of pneumatic remote actuating devices may be assembled to control a plurality of corresponding external pushbuttons. In a non-limiting use case, such a set may be used to operate a number of pushbuttons of an elevator. For example, in a hospital where sanitary conditions are important, it becomes possible to select a floor or to cause opening and closing of the doors without touching any of the conventional external pushbuttons of the elevator with one's fingers.
In the same or other embodiments, the actuated block and the pusher may be sized and configured to apply pressure on an external pushbutton while leaving a sufficiently large area of the external pushbutton to allow conventional actuation with fingers of a user.
The present technology may be used in many more use cases, for example in industrial, commercial, transport or residential applications. One or more pneumatic remote actuating devices may be installed within a few minutes, using for example double side adhesive tape to mount the actuator and actuated blocks in desired positions. Use of magnets to mount the actuator and/or the actuated blocks on a metallic surface is also contemplated. The pneumatic remote actuating devices may be installed on a temporary basis. Alternatively, for more permanent uses, the actuator and actuated blocks may be mounted in desired positions using glue, screws, and the like, also using ordinary tools. The pneumatic remote actuating devices may also be dismounted by hand or using ordinary tools. In the particular case of a set comprising a plurality of pneumatic remote actuating devices, the actuator blocks may be mounted on a track and the actuated blocks may be mounted on another track. In turn, the tracks may be temporarily or permanently affixed on receiving surfaces. No modification of existing installations is required in most circumstances. The present technology does not require any electrical power or wiring.
Referring now to the drawings,
Although not shown various arrangements are provided to ensure that the pushbutton 114 is not dislodged from the actuator block 110 when no external pressure is applied thereon. These arrangements may include forming a lip on a back end of the pushbutton 114, the lip preventing removal of the pushbutton from the enclosure 112. Clips may also be used. The person of ordinary skill in the art will readily able to develop such arrangements.
As in the case of pushbutton 114 and the actuator block 110, various arrangements (not shown) are provided to ensure that the pusher 132 is not dislodged from the actuated block 130 when not in use or when in the resting position.
As shown on
Various mechanical devices having one or more external pushbuttons may be controlled in the same or equivalent manner.
Those of ordinary skill in the art will realize that the description of the pneumatic remote actuating device are illustrative only and are not intended to be in any way limiting. Other embodiments will readily suggest themselves to such persons with ordinary skill in the art having the benefit of the present disclosure. Furthermore, the disclosed pneumatic remote actuating device may be customized to offer valuable solutions to existing needs and problems the lack of hygiene of conventional actuating devices and to the difficulties in retrofitting existing equipment with electronic remote controls. In the interest of clarity, not all of the routine features of the implementations of the pneumatic remote actuating device are shown and described. In particular, combinations of features are not limited to those presented in the foregoing description as combinations of elements listed in the appended claims form an integral part of the present disclosure. It will, of course, be appreciated that in the development of any such actual implementation of the pneumatic remote actuating device, numerous implementation-specific decisions may need to be made in order to achieve the developer's specific goals, such as compliance with application-related, system-related, and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the field of actuating devices having the benefit of the present disclosure.
The present disclosure has been described in the foregoing specification by means of non-restrictive illustrative embodiments provided as examples. These illustrative embodiments may be modified at will. The scope of the claims should not be limited by the embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.
The present application claims priority from U.S. Provisional Application No. 63/000,797, filed on Mar. 27, 2020, and from U.S. Provisional Application No. 63/012,546, filed on Apr. 20, 2020, the entirety of both of which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2021/050386 | 3/25/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/189142 | 9/30/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3710571 | Tracey | Jan 1973 | A |
4413214 | Brown | Nov 1983 | A |
4754107 | Tracey | Jun 1988 | A |
4918920 | Duroux | Apr 1990 | A |
5861870 | Anderson | Jan 1999 | A |
5962826 | Bassin | Oct 1999 | A |
8220260 | Harris | Jul 2012 | B2 |
20060180407 | Lee | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
202181151 | Apr 2012 | CN |
0266242 | May 1988 | EP |
1931882 | Jun 2008 | EP |
2463303 | Feb 1981 | FR |
2079376 | Jan 1982 | GB |
2107406 | Apr 1983 | GB |
Entry |
---|
PCWorld—The Push by Naran is a connected home . . . finger. Youtube [online] [video]. PCWorld, Jan. 7, 2016, retrieved on 2021-05-271 from <https://www.youtube.com/watch?v=-Px73eACUal&list=RDCMUCDC1PaslaocEA5HB17jp0ew&start_radio=1&rv=-Px73eACUal>. |
International Search Report of PCT/CA2021/050386; Benoist Henrot; dated Jun. 2, 2021. |
Number | Date | Country | |
---|---|---|---|
20230137001 A1 | May 2023 | US |
Number | Date | Country | |
---|---|---|---|
63012546 | Apr 2020 | US | |
63000797 | Mar 2020 | US |