This application claims priority on Japanese Patent Applications No. 2004-232185 filed on Aug. 9, 2004 and No. 2005-123360 filed on Apr. 21, 2005, the entire contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a pneumatic tire. More particularly, the present invention relates to an improvement in a tread of a tire.
2. Description of the Related Art
On snowy and icy road surfaces, a spike tire has been used for a long time. In recent years, a studless tire is a mainstream. In the studless tire, a braking performance on the snowy and icy road surfaces is important. In order to enhance the braking performance, a tire obtained by blending a glass fiber with a tread has been put on the market. The glass fiber has a higher hardness than ice. In the tire obtained by blending the glass fiber with the tread, the glass fiber scratches the snowy and icy road surfaces. By the scratch, the braking performance of the tire can be enhanced.
In the vulcanization of the tire, the tread abuts on the cavity surface of a mold. By the abutment, a skin layer is formed on the tread. The surface of the skin layer has a mirror finished surface. A short fiber is not exposed from the surface of the skin layer. When the tire is used, the skin layer is worn out at a comparatively early stage. By the wear-out, the glass fiber is exposed from the surface of the tread. By the exposure, the braking performance can be exhibited.
There have been made various proposals intended for enhancing the braking performance in a state in which the skin layer remains. For example, Japanese Laid-Open Patent Publication No. Hei 7-186633 has disclosed a tire in which a fine rib is formed on the surface of a tread. Japanese Laid-Open Patent Publication No. Hei 9-323511 has disclosed a tire comprising a siping having a small depth on a tread thereof.
The braking performance at the start of use in the conventional tire is still insufficient. A user has desired a further enhancement in the braking performance. It is an object of the present invention to provide a pneumatic tire having an excellent braking performance.
A pneumatic tire according to the present invention comprises a tread portion. A large number of small grooves are formed on the surface of the tread portion. The small groove has such a shape as to constitute a whole or part of a wavy curve.
It is preferable that a width of the small groove should be equal to or greater than 0.1 mm and be equal to or smaller than 2.0 mm, and a depth of the small groove should be equal to or greater than 0.1 mm and be equal to or smaller than 1.0 mm. It is preferable that a pitch of the small groove should be equal to or greater than 0.5 mm and be equal to or smaller than 5.0 mm.
It is preferable that the wavy curve should be extended in an axial direction of the tire. The number of cycles of a wavy curve from one of tread ends to the other tread end is equal to or larger than 1.0 and is equal to or smaller than 7.0.
The tread portion has a vertical groove, a lateral groove and a large number of blocks partitioned by the vertical groove and the lateral groove. A large number of small grooves are formed on surfaces of the blocks. It is preferable that the block should further include a siping taking a zigzag shape on the surface. The small groove and the siping are inclined reversely to each other in an axial direction. It is preferable that the block should be formed by crosslinking a rubber composition having a short fiber dispersed therein.
The blocks include a center block positioned in the vicinity of an equator plane and a shoulder block positioned in the vicinity of a tread end. It is preferable that a density Dc of small grooves in the center block should be higher than a density Ds of small grooves in the shoulder block. It is preferable that a ratio (Dc/Ds) should be equal to or higher than 1.5 and be equal to or lower than 5.0.
The tread portion may have a plurality of vertical grooves and a plurality of ribs partitioned by the vertical grooves. A large number of small grooves are formed on surfaces of the ribs.
The ribs include a center rib positioned in the vicinity of an equator plane and a shoulder rib positioned in the vicinity of a tread end. It is preferable that a density Dc of small grooves in the center rib should be higher than a density Ds of small grooves in the shoulder rib. It is preferable that a ratio (Dc/Ds) should be equal to or higher than 1.5 and be equal to or lower than 5.0.
In the tire according to the present invention, the direction of the extension of the small groove is variously changed. The tire is excellent in a braking performance at time of the start of use.
The present invention will be described below in detail based on preferred embodiments with reference to the drawings.
In
The tread portion 4 includes a first vertical groove 10, a second vertical groove 12, a subvertical groove 14, a first lateral groove 16, a second lateral groove 18, and a third lateral groove 20 on a surface thereof. The first vertical groove 10 and the second vertical groove 12 are extended wholly in the circumferential direction. The first lateral groove 16 couples a tread end Ea to the first vertical groove 10. The second lateral groove 18 couples the first vertical groove 10 to the second vertical groove 12. The third lateral groove 20 couples the second vertical groove 12 on the right side (see
The tread portion 4 includes a first block 24, a second block 26, a third block 28 and a fourth block 30. The contour of each of the blocks 24, 26, 28 and 30 substantially takes a square shape. A block taking another contour shape may be provided. The first block 24 is positioned on the outside of the first vertical groove 10. The first block 24 is partitioned by the first vertical groove 10 and the two first lateral grooves 16. The second block 26 is positioned between the first vertical groove 10 and the subvertical groove 14. The second block 26 is partitioned by the first vertical groove 10, the subvertical groove 14 and the two second lateral grooves 18. The third block 28 is positioned between the subvertical groove 14 and the second vertical groove 12. The third block 28 is partitioned by the subvertical groove 14, the second vertical groove 12 and the two second lateral grooves 18. The fourth block 30 is provided across the equator plane CL. The fourth block 30 is positioned between the second vertical groove 12 on the right side and the second vertical groove 12 on the left side. The fourth block 30 is partitioned by the two second vertical grooves 12 and the two third lateral grooves 20.
Each of the blocks 24, 26, 28 and 30 has a siping S. The siping S takes a zigzag shape. The siping S is formed by the knife blade of a mold. By the edge effect and dewatering function of the siping S, the braking performance of the tire 2 can be enhanced.
Each of the blocks 24, 26, 28 and 30 has a large number of small grooves G. When a wavy curve is assumed on the surface of the tread portion 4, the small groove G is formed along a portion included in the blocks 24, 26, 28 and 30 in the wavy curve. In other words, the shape of the small groove G takes a part of the wavy curve. As is apparent from
The small groove G has an edge. Consequently, a coefficient of friction of a road surface and the tire 2 can be enhanced by the small groove G. In the small groove G using the wavy curve, a large number of edge components are present. As compared with grooves on a straight line, therefore, the coefficient of friction can be enhanced. The small groove G also contributes to a dewatering function. The small groove G enhances the braking performance of the tire 2. The tangential direction of the wavy curve is varied depending on a point. The small groove G having such a shape as to constitute a whole or part of the wavy curve is formed so that the braking performance in every direction can be enhanced. Furthermore, the small groove G also contributes to an air vent in the vulcanization of the tire 2.
It is preferable that the width of the small groove G should be equal to or greater than 0.1 mm and be equal to or smaller than 2.0 mm. In some cases in which the width is smaller than the range, the dewatering function is insufficient. From this viewpoint, it is more preferable that the width should be equal to or greater than 0.3 mm. In some cases in which the width is greater than the range, the braking performance is insufficient due to a decrease in a contact area. From this viewpoint, it is more preferable that the width should be equal to or smaller than 0.5 mm.
It is preferable that the depth of the small groove G should be equal to or greater than 0.1 mm and be equal to or smaller than 1.0 mm. In some cases in which the depth is smaller than the range, the dewatering function is insufficient. From this viewpoint, it is more preferable that the depth should be equal to or greater than 0.2 mm. If the depth exceeds the range, the blocks 24, 26, 28 and 30 are easily deformed due to a low block rigidity. The excessive deformation of the blocks 24, 26, 28 and 30 induces a reduction in a dewatering property. From this viewpoint, it is more preferable that the depth should be equal to or smaller than 0.5 mm.
It is preferable that the pitch of the small groove G should be equal to or greater than 0.5 mm and be equal to or smaller than 5.0 mm. If the pitch is smaller than the range, the blocks 24, 26, 28 and 30 are easily deformed due to a low block rigidity. The excessive deformation of the blocks 24, 26, 28 and 30 induces a reduction in the dewatering property. Form this viewpoint, it is more preferable that the pitch should be equal to or greater than 1.0 mm. In some cases in which the pitch exceeds the range, the braking performance is insufficient. From this viewpoint, it is more preferable that the pitch should be equal to or smaller than 4.5 mm. The pitch is measured in a perpendicular direction to the direction of the extension of the wavy curve. In the tire 2 shown in
In the case in which the wavy curve is extended in the axial direction of the tire 2, the number C of cycles of the wavy curve from the tread end Ea to the tread end Eb is preferably equal to or greater than 1.0 and is more preferably equal to or greater than 2.0. When the number of the blocks 24, 26, 28 and 30 from one of the tread ends to the other tread end is set to be N, the number C of cycles is preferably equal to or smaller than N and is more preferably equal to or smaller than (N/2). More specifically, the number C of cycles is preferably equal to or smaller than 7 and is more preferably equal to or smaller than 3.5. The number of cycles of the wavy curve shown in
The blocks 24, 26, 28 and 30 are formed of a crosslinked rubber. It is preferable that a short fiber should be blended with a rubber composition to be used in the blocks 24, 26, 28 and 30. The short fiber is dispersed into the blocks 24, 26, 28 and 30. The short fiber scratches snowy and icy road surfaces. The short fiber contributes to the braking performance of the tire 2. The surfaces of the blocks 24, 26, 28 and 30 abut on the cavity surface of the mold. Therefore, a skin layer is formed. The skin layer rarely contains the short fiber. In the tire 2 in a brand-new stage, the short fiber is not exposed from the surfaces of the blocks 24, 26, 28 and 30. At time of the start of the use of the tire 2, the siping S and the small groove G mainly contribute to the braking performance. With the use of the tire 2, the surfaces of the blocks 24, 26, 28 and 30 are gradually worn out. By the wear-out, the small groove G becomes gradually shallower so that the short fiber is gradually exposed. When the wear-out progresses, the short fiber contributes to the braking performance in place of the small groove G. In the tire 2, an excellent braking performance can be exhibited for a long duration from the start of the use.
The short fiber to be blended may be an inorganic fiber or an organic fiber. Specific examples of the inorganic fiber include a glass fiber and a carbon fiber. Specific examples of the organic fiber include a nylon fiber, a polyester fiber and a polyethylene fiber. Plural kinds of fibers may be used together. In respect of the braking performance, the glass fiber is preferable. The glass fiber and other fibers may be used together. It is preferable that the diameter of the short fiber should be equal to or greater than 1 μm and be equal to or smaller than 100 μm. It is preferable that the length of the short fiber should be equal to or greater than 0.1 mm and be equal to or smaller than 5.0 mm. It is preferable that the amount of the short fiber should be equal to or larger than 1 part by weight and be equal to or smaller than 50 parts by weight with respect to 100 parts by weight of a base rubber.
In
As is apparent from
As is apparent from
As is apparent from
The small groove G having such a shape as to constitute the whole wavy curve may be formed in the blocks 24, 26, 28 and 30. The wavy curve extended in the circumferential direction may be assumed.
In the same manner as in the tire 2 shown in
Each of the blocks 48, 50, 52 and 54 has a large number of small grooves G1. When a wavy curve is assumed on the surface of the tread portion 34, the small groove G1 is formed along a portion included in the blocks 48, 50, 52 and 54 in the wavy curve. In other words, the shape of the small groove G1 takes a part of the wavy curve. As is apparent from
The fourth block 54 includes a small groove G2 together with the small groove G1. The small grooves G1 and G2 are provided alternately in the circumferential direction. When another wavy curve is assumed on the surface of the tread portion 34, the small groove G2 is formed along a portion of the wavy curve which is included in the fourth block 54. In other words, the shape of the small groove G2 is a part of the other wavy curves. The shape of the wavy curve along which the small groove G2 is provided is identical to that of the wavy curve along which the small groove G1 is provided. Although the wavy curve along which the small grove G2 is provided can also be assumed on the first block 48, the second block 50 and the third block 52, the small groove provided along the same wavy curve is not formed in the first block 48, the second block 50 and the third block 52. In other words, the pitches of the small grooves G1 and G2 in the center block 54 are a double of the pitch of the small groove G1 in the shoulder block 48. A density Dc of each of the small grooves G1 and G2 in the center block 54 is higher than a density Ds of the small grooves G1 in the shoulder block 48. The density is obtained by dividing the total length of the small grooves G1 and G2 included in the blocks 48 and 54 by the area of the contact surfaces of the blocks.
The contact time of the center block 54 is longer than that of the shoulder block 48. Moreover, the contact pressure of the center block 54 is higher than that of the shoulder block 48. A large number of small grooves G1 and G2 are formed in the center block 54 so that the braking performance of the tire 32 can be enhanced. The density of the small grooves G1 in the shoulder block 48 is low. Therefore, the rigidity of the shoulder block 48 can be maintained.
In respect of the braking performance and the rigidity of the shoulder block 48, a ratio (Dc/Ds) is preferably equal to or higher than 1.5, is more preferably equal to or higher than 1.7, and is particularly preferably equal to or higher than 1.9. In respect of an uneven wear resistance and a handling stability, the ratio (Dc/Ds) is preferably equal to or lower than 5.0, is more preferably equal to or lower than 3.0, is further preferably equal to or lower than 2.5, and is particularly preferably equal to or lower than 2.0. In the tire 32 shown in
It is preferable that a density Dm of the intermediate block should be equal to or higher than the density Ds of the shoulder block. It is preferable that the density Dm of the intermediate block should be equal to or lower than the density Dc of the center block. In the example of
It is preferable that the widths of the small grooves G1 and G2 should be equal to or greater than 0.1 mm and be equal to or smaller than 2.0 mm. It is more preferable that the widths should be equal to or greater than 0.3 mm. It is more preferable that the widths should be equal to or smaller than 0.5 mm. It is preferable that the depths of the small grooves G1 and G2 should be equal to or greater than 0.1 mm and be equal to or smaller than 1.0 mm. It is more preferable that the depths should be equal to or greater than 0.2 mm. It is more preferable that the depths should be equal to or smaller than 0.5 mm. It is preferable that the pitches of the small grooves G1 and G2 should be equal to or greater than 0.5 mm and be equal to or smaller than 5.0 mm. It is more preferable that the pitches should be equal to or greater than 1.0 mm. It is more preferable that the pitches should be equal to or smaller than 4.5 mm.
In case of a block pattern in which the vertical groove is present on the equator plane CL, adjacent blocks to the left and right sides of the vertical groove are referred to as the center blocks. The closest block to the end of the tread portion 34 is referred to as the shoulder block and the block interposed between the center block and the shoulder block is referred to as the intermediate block.
Also in a tread pattern which does not have a lateral groove but a plurality of vertical grooves and a plurality of ribs partitioned by the vertical grooves, small grooves is effective. Also in the tread pattern, it is preferable that a density Dc of small grooves in a center rib should be higher than a density Ds of small grooves in a shoulder rib. In respect of a braking performance and a rigidity of the shoulder rib, a ratio (Dc/Ds) is preferably equal to or higher than 1.5, is more preferably equal to or higher than 1.7, and is particularly preferably equal to or higher than 1.9. In respect of an abrasion resistance and a handling stability, the ratio (Dc/Ds) is preferably equal to or lower than 5.0, is more preferably equal to or lower than 3.0, is further preferably equal to or lower than 2.5, and is particularly preferably equal to or lower than 2.0.
It is preferable that a density Dm of an intermediate rib should be equal to or higher than the density Ds of the shoulder rib. It is preferable that the density Dm of the intermediate rib should be equal to or lower than the density Dc of the center rib.
In a tread pattern in which there is a rib provided across the equator plane CL, the rib provided across the equator plane CL is referred to as a center rib, the closest rib to the end of a tread portion is referred to as a shoulder rib, and a rib interposed between the center rib and the shoulder rib is referred to as an intermediate rib. In case of a rib pattern in which a vertical groove is present on the equator plane CL, adjacent ribs to the left and right sides of the vertical groove are referred to as the center ribs. The closest rib to the end of a tread portion is referred to as the shoulder rib, and a rib interposed between the center rib and the shoulder rib is referred to as an intermediate rib. The density of small grooves is obtained by dividing the total length of small grooves included in the ribs by the area of the contact surfaces of the ribs.
A green tire was put in a mold to cause a crosslinking reaction over a rubber, and a studless tire having a tread pattern shown in FIGS. 1 to 3 was thus fabricated. The tire has a size of “195/65R15 91H”. The small groove of the tire takes such a shape as to constitute a part of a wavy curve. The wavy curve is extended in an axial direction. The wavy curve has the number of cycles of 2.0 and an amplitude of 7 mm. The small groove has a width of 0.3 mm and a depth of 0.3 mm. The small groove has a pitch of 2.0 mm.
A tire according to each of examples 3 to 8 was obtained in the same manner as in the example 1 except that a mold was changed and the depth of a small groove was set as shown in the following Table 1.
A tire according to each of examples 2, 9 and 10 was obtained in the same manner as in the example 1 except that a mold was changed and the width of a small groove was set as shown in the following Table 1.
A tire according to each of examples 12 to 16 was obtained in the same manner as in the example 1 except that a mold was changed and the pitch of a small groove was set as shown in the following Table 2.
A tire according to each of examples 11, 17 and 18 was obtained in the same manner as in the example 1 except that a mold was changed and the number C of cycles of a wavy curve was set as shown in the following Table 2.
A tire according to a comparative example 1 was obtained in the same manner as in the example 1 except that a mold was changed and a small groove was not provided.
A tire according to a comparative example 2 was obtained in the same manner as in the example 1 except that a mold was changed and a small groove was provided on a straight line extended in a circumferential direction.
A tire according to a comparative example 3 was obtained in the same manner as in the example 1 except that a mold was changed and a small groove was provided on a straight line extended in an axial direction.
[Evaluation of Braking Performance]
A tire was incorporated into a rim of “15×6.5−JJ”. The tire was filled with air to have an internal pressure of 200 kPa. The tire was attached to a passenger car of a front engine rear drive type which has a displacement of 2500 cm3. The car was caused to run at a speed of 50 km/h over an icy road surface. Thus, a distance from braking to stop was measured. The measurement was carried out ten times to calculate a mean measured value, and furthermore, to calculate the inverse number of the mean value. The result is shown as an index with an evaluation in the comparative example 1 set to be 100 in the following Tables 1 and 2.
*Straight line in circumferential direction
**Straight line in axialc direction
As shown in the Tables 1 and 2, the tire according to each of the examples has an excellent braking performance.
A green tire was put in a mold to cause a crosslinking reaction over a rubber, and a studless tire having a tread pattern shown in
A tire according to each of examples 20 to 27 was obtained in the same manner as in the example 19 except that a mold was changed and the pitch of a small groove in a center block was set as shown in the following Table 3.
[Evaluation of Braking Performance]
By the same method as that in the experiment 1, a braking performance was evaluated. The tires according to the examples 19 to 27 were evaluated together with the tires according to the example 1 and the comparative example 1 in the experiment 1. The result is shown as an index with the evaluation in the example 1 set to be 100 in the following Table 3.
[Evaluation of Uneven Wear Resistance]
The car was caused to run over an asphalted road surface. The degree of an uneven wear at a mileage of 1000 km was visually observed and a grading of “A” to “C” was carried out. The result is shown in the following Table 3. “A” is the most preferable.
As shown in the Table 3, the tire according to each of the examples has an excellent braking performance. From the results of the experiments 1 and 2, the advantages of the present invention are apparent.
The tread pattern described above can be applied to various passenger car tires in addition to a studless tire. The above description is only illustrative and various changes can be made without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2004-232185 | Aug 2004 | JP | national |
2005-123360 | Apr 2005 | JP | national |