The present invention relates to a pneumatic valve drive for a valve, in particular a vacuum valve, which has at least one pneumatic cylinder having at least one piston that is mounted so as to be displaceable in the pneumatic cylinder, and having at least two cylinder cavities that are disposed at mutually opposite sides of the piston, wherein each of the cylinder cavities is connected in each case to at least one pressure source in order for the respective cylinder cavity to be impinged with pressure.
The invention furthermore also relates to a method for operating such a pneumatic valve drive and also to a valve, in particular a vacuum valve, having at least one such pneumatic valve drive.
Pneumatic valve drives are often used in valves and in particular in vacuum valves, for example in order to drive the closure member for closing and/or releasing a valve opening of the valve. As compared to hydraulic valve drives, pneumatic valve drives in the case of a leakage or of a defect have the advantage that contaminations that are not as severe as would be the case in a spillage of the hydraulic oil or the like in hydraulic valve drives arise. For this reason, pneumatic valve drives are particularly preferred for valves in vacuum technology.
In the case of the prior art, pneumatic valve drives for a valve, in particular a vacuum valve, are conceived such that the pressure in both cylinder cavities is regulated. This is comparatively complex in terms of control technology.
It is an object of the invention to provide a pneumatic valve drive of the type mentioned above which is of a more simple construction.
To this end, in the case of a valve drive as mentioned above, the invention proposes that one of the pressure sources is a constant pressure source for impinging the cylinder cavity that is disposed on one of the sides of the piston with a constant pressure, and another of the pressure sources is a regulated pressure source for impinging the cylinder cavity that is disposed on the opposite side of the piston with a variably regulatable pressure. In the context of this document, an artificial pressure source for impinging the respective cylinder cavity with pressure is referred to as a pressure source.
In simple terms, it is thus a fundamental concept of the invention that the pressure is regulated only in one of the cylinder cavities, while the cylinder cavity of the pneumatic cylinder that in relation to the piston lies opposite to the former is impinged with a constant pressure. If, by means of the regulated pressure source, the pressure in the cylinder cavity on the one side of the piston is set so as to be so high that the forces acting on the piston as a result thereof are larger than the forces that in the opposite cylinder cavity act on the piston by virtue of the constant pressure prevalent therein, the piston is thus moved in the one direction relative to the pneumatic cylinder. However, if the regulated pressure source regulates the pressure in the cylinder cavity that is connected to said regulated pressure source such that the forces that act on the piston are lower than the forces that in the other cylinder cavity act on the piston by virtue of constant pressure, the piston is thus moved in the other direction relative to the pneumatic cylinder. Due to a respective pressure level which is built up by the regulated pressure source in one of the cylinder cavities, the forces that act from both sides on the piston can also cancel one another such that the piston is fixed in the position thereof relative to the pneumatic cylinder. It is thus possible for both directions of movement of the piston relative to the pneumatic cylinder as well as for the standstill to be implemented by way of only one regulated pressure source. It is important to note herein that the pneumatic cylinder can be fixed in the position thereof while the piston is moved in the case of the relative movement mentioned. Conversely, it is just as possible for the piston to be fixed in the position thereof, while the pneumatic cylinder is moved relative to the piston. Both are possible in the case of the pneumatic valve drive according to the invention. On account of the relative movement of the piston in and in relation to the pneumatic cylinder, the volume in the one cylinder cavity in any case is always increased to the extent of said volume being reduced in the opposite cylinder cavity, and vice versa.
The fact that a pneumatic valve drive is presently referred to also means that both cylinder cavities are impinged, preferably exclusively, with a gaseous pressure medium. For example, compressed air, or else another suitable gaseous medium, can be used as the pressure medium.
In preferred design embodiments, the constant pressure source is designed so as to be as simple as possible. Said constant pressure source is therefore preferably not regulatable and is provided and/or designed exclusively for impinging the cylinder cavity that is disposed on one of the sides of the piston with a constant pressure. For the sake of completeness, it is to be pointed out that, for example, on account of a sudden change in the pressure by means of the regulated pressure source in one of the cylinder cavities, a brief variation in pressure can also arise in the other cylinder cavity, that is to say that cylinder cavity that is connected to the constant pressure source. Said variation in pressure is however specifically not caused by the constant pressure source but rather by other influencing factors. The constant pressure source is provided for permanently impinging the cylinder cavity on one side of the piston with a constant pressure. The constant pressure in preferred design embodiments of the invention in any case is above the normal atmospheric and/or ambient pressure. The positive pressure that is provided by the constant pressure source for impinging the cylinder cavity that is disposed on one of the sides of the piston is preferably in a pressure range from 1 bar to 4 bar, particularly preferably from 2 bar to 4 bar.
In principle, various parameters can be utilized as input parameters for regulating the pressure in one of the cylinder cavities, that is to say as the regulating variable for the regulated pressure source. However, in preferred design embodiments of the invention the position of the piston relative to the pneumatic cylinder is utilized as the process variable for the regulated pressure source. In this context, preferred design embodiments of the invention provide that the pneumatic valve drive has a regulator having a position-determining arrangement for determining the position of the piston relative to the pneumatic cylinder, wherein the regulator regulates the regulated pressure source in a manner dependent on this position. All measuring systems known in the prior art for determining the position of an object are to be considered as the position-determining arrangement. These measuring systems can be, for example, non-contacting magnetic, electrical, electromagnetic, or light-sensitive encoders, while linear encoders are also possible, in order for only a few examples to be mentioned.
The position-determining arrangement favorably measures the position of that part that is being moved. As has been mentioned above, this can be the piston as well as the pneumatic cylinder. It is possible for the position to be measured directly or else indirectly. The position could thus also be determined indirectly, for example, by way of a gearbox. In particular when the position of the piston is to be measured relative to a locationally fixed pneumatic cylinder, instead of measuring directly the position of the piston, it is expedient for the position of a component that is fixedly connected to said piston, such as for example a piston rod that protrudes from the pneumatic cylinder, to be measured.
In preferred design embodiments of the invention the pneumatic drive has at least one system pressure input. This can be a compressed air line or the like, for example. Particularly preferred variants of pneumatic valve drives according to the invention make do with precisely one system pressure input. It is thus possible, for example, for the system pressure input to be connected by way of a pressure reducer to the cylinder cavity that is disposed on one of the sides of the piston, in order for the constant pressure source to be configured. It is likewise possible that the preferably same system pressure input for configuring the regulated pressure source is connected at least by way of a pressure regulator valve to the cylinder cavity that is disposed on the opposite side of the piston.
In the case of exemplary embodiments in which the constant pressure source is fixedly connected to one of the cylinder cavities, and in which the regulated pressure source is fixedly connected to the other of the cylinder cavities of the pneumatic cylinder, the pressure differential between the constant pressure prevailing from the constant pressure source and the minimum pressure that can be set at the regulated pressure source is available at maximum for the relative movement between the piston and the pneumatic cylinder in one direction. The difference between the maximum pressure that can be set by way of the regulated pressure source and the constant pressure of the constant pressure source is available at maximum for the relative movement in the opposite direction. If the same pressure differential is to be available in both directions, the constant pressure source can thus be chosen or designed, respectively, such that said constant pressure source makes available approximately half the maximum pressure of the regulatable pressure source.
In order for the maximum possible pressure differential between the constant pressure source and the maximum pressure of the regulated pressure source to be made available in both directions of movement, preferred design embodiments however provide that the pneumatic valve drive has at least one switching valve for swapping the pressure source that is connected to the respective cylinder cavity. Due to this, it becomes possible for a first of the two cylinder cavities to be connected to the constant pressure source in a first position of the switching valve. The second of the cylinder cavities is then connected to the regulated pressure source in this switching position of the switching valve. If the switching valve is switched to the other switching position, the second of the cylinder cavities is then connected to the constant pressure source, and the regulated pressure source impinges the first of the cylinder cavities.
For valves, in particular vacuum valves, in which the closure member or another part that is driven by the pneumatic valve drive has to be moved exclusively in a reciprocating manner along a straight line, it is often sufficient for the pneumatic valve drive to have a single pneumatic cylinder having a single piston that is mounted so as to be displaceable therein. However, pneumatic drives according to the invention can also have more than one pneumatic cylinder having pistons that are displaceable therein, for example when a closure member of the valve is to be moved in a reciprocating manner along two mutually angled straight lines such as is the case, for example, in the so-called L-valve. Preferred design embodiments of pneumatic valve drives according to the invention can provide for such valves that the pneumatic valve drive has at least two pneumatic cylinders having in each case at least one piston that is mounted so as to be displaceable in the respective pneumatic cylinder, and having in each case at least two cylinder cavities that are disposed on mutually opposite sides of the respective piston, wherein each of the cylinder cavities is connected in each case to at least one pressure source in order for the respective cylinder cavity to be impinged with pressure, and in each case one of the pressure sources is a constant pressure source for impinging the cylinder cavity that is disposed on one of the sides of the piston with a constant pressure, and in each case another of the pressure sources is a regulated pressure source for impinging the cylinder cavity that is disposed on the opposite side of the piston with a variably regulatable pressure. At least one switching valve can also be provided in the case of such pneumatic valve drives, for example in order for the cylinder cavities of always only one of the pneumatic cylinders to be connected to the constant pressure source and to the regulated pressure source. This is expedient when, for example, as is the case in an L-valve, always only one of the pneumatic cylinders is operated at any given time. Additional switching valves for swapping the pressure source that is connected to the respective cylinder cavity can also be provided in such design embodiments.
As has already been indicated at the outset, the invention does however not only relate to a pneumatic valve drive but also to a valve having at least one pneumatic valve drive according to the invention. The valve is particularly preferably a so-called vacuum valve. These are valves which are used in vacuum technology. Vacuum technology is typically referred to when operating states having pressures of less than or equal to 0.001 mbar (millibar) are achieved. These are the operating pressures in the valve openings or in the vacuum chambers that are connected to the valve openings, respectively. Vacuum valves are valves which are conceived for these pressure ranges and/or respective pressure differentials in relation to the environment. However, vacuum valves can generally also be referred to when said vacuum valves are conceived for pressures below the normal pressure, that is to say below 1 bar.
In the case of preferred design embodiment of valves according to the invention it is provided that the pneumatic valve drive drives at least one closure member of the valve in order for a valve opening of the valve to be closed and/or released. The closure member here can be moved exclusively in a reciprocating linear manner along a straight line. However, said closure member can just as well be moved in a reciprocating manner along two mutually angled, preferably orthogonal, straight lines between the closure position and the release position.
In addition to the pneumatic valve drive and to the valve, the invention also relates to a method for operating a pneumatic valve drive according to the invention and/or a valve according to the invention. In the case of such methods according to the invention it is provided that the cylinder cavity that is disposed on one of the sides of the piston is impinged with the constant pressure by the constant pressure source, and the cylinder cavity that is disposed on the opposite side of the piston is preferably simultaneously impinged with the variably regulatable pressure by the regulated pressure source.
In other words, it is thus provided in the case of methods according to the invention that the pressure is kept constant in a cylinder cavity that is disposed on one side of the piston, while the pressure is preferably simultaneously regulated by the regulated pressure source on the other side of the piston in the cylinder cavity that is disposed there. In other words, the method according to the invention thus provides that the pressure is not regulated on both sides of the piston in the respective cylinder cavity.
Preferred design embodiments of the method according to the invention provide that the position of the piston relative to the pneumatic cylinder is determined by the position-determining arrangement, and the regulated pressure source is regulated by the regulator in a manner dependent on the position thus determined. The features that have been mentioned above in the context of the pneumatic valve drive according to the invention can otherwise also be applied to the method, in as far as possible and expedient. It applies here again in particular that the modification of the relative position between the pneumatic cylinder and the piston can be initiated by a movement of the piston as well as of the pneumatic cylinder as well as of both these parts.
Further features and details of valve drives and valves according to the invention will be explained hereunder in an exemplary manner by the description of the figures in which:
The exemplary embodiment according to
It can be readily seen in
In the case of the variant of embodiment according to
A switching valve 14 that is likewise actuated by the regulator 9 and by way of which the pressure source that is connected to the respective cylinder cavity 5 and 6 can be swapped is provided in the embodiment of the invention in
A variant of the invention in which the constant pressure source 7 and the regulated pressure source 8 are not supplied with system pressure by a single system pressure input 11 is now shown in
A pneumatic valve drive 1 which has two pneumatic cylinders 3 having in each case a piston 4 that is mounted so as to be displaceable therein is now shown in
An additional switching valve 19 is provided in order for the pneumatic cylinders 3 in the exemplary embodiment according to
In the exemplary embodiment according to
The exemplary embodiment according to
Heavily schematic valves 2 in the form of vacuum valves are now shown in
In general, only the pneumatic cylinders 3, the pistons 4, the cylinder cavities 5 and 6, and the piston rods 18 of the valve drives 1 are illustrated in
Number | Date | Country | Kind |
---|---|---|---|
A 526/2015 | Aug 2015 | AT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/067629 | 7/25/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/025302 | 2/16/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4106390 | Kodaira | Aug 1978 | A |
6032419 | Hurwitt | Mar 2000 | A |
9458864 | Hyon | Oct 2016 | B2 |
20020092569 | Maung | Jul 2002 | A1 |
20040122536 | Saitou | Jun 2004 | A1 |
20040182231 | Yo | Sep 2004 | A1 |
20040245489 | Kurita et al. | Dec 2004 | A1 |
20070044465 | Zhang et al. | Mar 2007 | A1 |
20100090145 | Maerk | Apr 2010 | A1 |
20100132908 | Beyer-Steinhauer et al. | Jun 2010 | A1 |
20110175011 | Ehme et al. | Jul 2011 | A1 |
20130145926 | Koeckemann | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
4322496 | Jan 1995 | DE |
102006049491 | Apr 2008 | DE |
1396642 | Mar 2004 | EP |
1414059 | Apr 2004 | EP |
2203195 | Oct 1988 | GB |
H03120390 | Dec 1991 | JP |
H0627060 | Apr 1994 | JP |
H0627060 | Apr 1994 | JP |
2004144196 | May 2004 | JP |
2004102055 | Nov 2004 | WO |
Entry |
---|
Servopneumatik, FESTO, 2 pages, http://www.festo.com/viki/de/Servopneumatik, Apr. 24, 2014. |
Servopneumatics, FESTO, 24 pages, Apr. 2014. |
Renishaw apply innovationk, “Non-contact encoder products guide”, 20 pages, 2012. |
TR Electronic, “Linear Encoders Overview”, www.tr-electronic.com, 24, pages, Mar. 2015. |
Kübler, “Linear measuring technology”, www.kuebler.com, 4 pages, Jun. 2015. |
Number | Date | Country | |
---|---|---|---|
20180195537 A1 | Jul 2018 | US |