The present invention is related to high capacity mobile communications systems, and more particularly to a point-to-multipoint digital micro-cellular communication system.
With the widespread use of wireless technologies additional signal coverage is needed in urban as well as suburban areas. One obstacle to providing full coverage in these areas is steel frame buildings. Inside these tall shiny buildings (TSBs), signals transmitted from wireless base stations attenuate dramatically and thus significantly impact the ability to communicate with wireless telephones located in the buildings. In some buildings, very low power ceiling mounted transmitters are mounted in hallways and conference rooms within the building to distribute signals throughout the building. Signals are typically fed from a single point and then split in order to feed the signals to different points in the building.
In order to provide coverage a single radio frequency (RF) source needs to simultaneously feeds multiple antenna units, each providing coverage to a different part of a building for example. Simultaneous bi-directional RF distribution often involves splitting signals in the forward path (toward the antennas) and combining signals in the reverse path (from the antennas). Currently this can be performed directly at RF frequencies using passive splitters and combiners to feed a coaxial cable distribution network. In passive RF distribution systems, signal splitting in the forward path is significantly limited due to inherent insertion loss associated with the passive devices. Each split reduces the level of the signal distributed in the building thereby making reception, e.g. by cell phones, more difficult. In addition, the high insertion loss of coaxial cable at RF frequencies severely limits the maximum distance over which RF signals can be distributed. Further, the system lacks any means to compensate for variations of insertion loss in each path.
Another solution to distributing RF signals in TSBs is taking the RF signal from a booster or base station, down converting it to a lower frequency, and distributing it via Cat 5 (LAN) or coaxial cable wiring to remote antenna units. At the remote antenna units, the signal is up converted and transmitted. While down-conversion reduces insertion loss, the signals are still susceptible to noise and limited dynamic range. Also, each path in the distribution network requires individual gain adjustment to compensate for the insertion loss in that path.
In another approach, fiber optic cables are used to distribute signals to antennas inside of a building. In this approach, RF signals are received from a bi-directional amplifier or base station. The RF signals directly modulate an optical signal, which is transported throughout the building as analog modulated light signals over fiber optic cable. Unfortunately, conventional systems using analog optical modulation transmission over optical fibers require highly sophisticated linear lasers to achieve adequate performance. Also, analog optical systems are limited in the distance signals can be transmitted in the building. Typically, this limitation is made worse due to the use of multimode fiber that is conventionally available in buildings. Multimode fiber is wider than single mode fiber and supports a number of different reflection modes so that signals tend to exhibit dispersion at the terminating end of the fiber. In addition, analog installation typically includes significant balancing when setting up the system. Further, RF levels in the system need to be balanced with the optical levels. If there is optical attenuation, the RF levels need to be readjusted. In addition, if the connectors are not well cleaned or properly secured, the RF levels can change.
Digitization of the RF spectrum prior to transport solves many of these problems. The level and dynamic range of digitally transported RF remains unaffected over a wide range of path loss. This allows for much greater distances to be covered, and eliminates the path loss compensation problem. However, this has been strictly a point-to-point architecture. One drawback with digitally transported RF in a point-to-point architecture is the equipment and cost requirement. A host RF to digital interface device is needed for each remote antenna unit. In particular, for use within a building or building complex the number of RF to digital interface devices and the fiber to connect these devices is burdensome. For example, in a building having 20 floors, the requirement may include 20 host RF to digital interface devices for 20 remote antenna units, 1 per floor. In some applications more than one remote antenna unit per floor may be required. As a result, there is a need in the art for improved techniques for distributing RF signals in TSBs, which would incorporate the benefits of digital RF transport into a point-to-multipoint architecture.
The above-mentioned problems with distributing RF signals within a building and other problems are addressed by the present invention and will be understood by reading and studying the following specification.
In one embodiment, a digital radio frequency transport system is provided. The transport system includes a digital host unit and at least two digital remote units coupled to the digital host unit. The digital host unit includes shared circuitry that performs bi-directional simultaneous digital radio frequency distribution between the digital host unit and the at least two digital remote units.
In another embodiment, a digital radio frequency transport system is provided. The transport system includes a digital host unit and at least one digital expansion unit coupled to the digital host unit. The transport system further includes at least two digital remote units, each coupled to one of the digital host unit and the digital expansion unit. The digital host unit includes shared circuitry that performs bi-directional simultaneous digital radio frequency distribution between the digital host unit and the at least two digital remote units.
In an alternate embodiment, a method of performing point-to-multipoint radio frequency transport is provided. The method includes receiving radio frequency signals at a digital host unit and converting the radio frequency signals to a digitized radio frequency spectrum. The method also includes optically transmitting the digitized radio frequency spectrum to a plurality of digital remote units. The method further includes receiving the digitized radio frequency spectrum at the plurality of digital remote units, converting the digitized radio frequency spectrum to analog radio frequency signals and transmitting the analog radio frequency signals via a main radio frequency antenna at each of the plurality of digital remote units.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
Point-to-multipoint digital transport of RF signals is accomplished through a network of remote antenna units or digital remote units 40 and 40′ and a digital host unit 20, which interfaces with a wireless network 5 which is coupled to the public switched telephone network (PSTN), or a mobile telecommunications switching office (MTSO) or other switching office/network. System 100 operates by transporting RF signals digitally over fiber optic cables. Signals received at DHU 20 are distributed to multiple DRUs 40 and 40′ to provide coverage throughout a building complex. In addition, signals received at each of the DRUs 40 and 40′ are summed together at the DHU 20 for interface to a wireless network.
In one embodiment, digital expansion unit DEU 30 is situated between the DHU 20 and one or more DRUs. In the forward path, DEU 30 expands the coverage area by splitting signals received from DHU 20 to a plurality of DRUs 40′. In the reverse path, DEU 30 receives signals from a plurality of DRUs 40′, digitally sums the signals together and transports them to a DHU 20 or another DEU such as 30. This system allows for successive branching of signals using DEUs 30 and expanded coverage to multiple DRUs 40 and 40′. This system provides an efficient way of providing signal coverage for wireless communication without added attenuation loss and distance constraint found with analog systems. By using DEUs 30, antennas can be placed further from DHU 20 without adversely affecting signal strength since shorter fiber optic cables can be used.
Digital transport system 100 includes a wireless interface device (WID) 10 that provides an interface to a wireless network. In one embodiment, the WID 10 includes either conventional transmitters and receivers or all digital transmitter and receiver equipment, and interface circuitry to a mobile telecommunications switching office (MTSO). In one embodiment, the wireless interface device 10 is coupled to an MTSO via a T1 line and receives and transmits signals between the MTSO and the DHU 20. In another embodiment, the wireless interface device 10 is coupled to the public switched telephone network (PSTN). In one embodiment, WID 10 comprises a base station and connects directly to DHU 20 via coaxial cables. In another embodiment, WID 10 comprises a base station and wirelessly connects to DHU 20 via a bi-directional amplifier that is connected to an antenna. In one embodiment, the antenna is an outdoor antenna.
WID 10 communicates signals between wireless units and the wireless network via digital remote units DRUs 40 and 40′. WID 10 is coupled to DHU 20. The DHU 20 is coupled to at least one digital expansion unit DEU 30 and a plurality of DRUs 40. In addition, DEU 30 is coupled to a plurality of DRUs 40′. The DHU 20 receives RF signals from WID 10 and converts the RF signals to digital RF signals. DHU 20 further optically transmits the digital RF signals to multiple DRUs 40 either directly or via one or more DEUs 30.
Each DRU 40 and 40′ is connected through a fiber optic cable (or optionally another high bandwidth carrier) to transport digital RF signals to one of DHU 20 or DEU 30. In one embodiment, the fiber optic cable comprises multimode fiber pairs coupled between the DRUs 40 and the DHU 20, between the DRUs 40 and 40′ and the DEUs 30 and between the DEUs 30 and the DHU 20. In one embodiment, the DEU 30 is coupled to the DHU 20 via single mode fiber and the DEU 30 is coupled to the DRUs 40′ via multimode fiber pairs. Although, transport system 100 has been described with fiber optic cable other carriers may be used, e.g., coaxial cable.
In another embodiment, the DHU 20 is coupled to the DRUs 40 by a direct current power cable in order to provide power to each DRU 40. In one embodiment, the direct current power cable delivers 48 VDC to each DRU 40 connected to the DHU 20. In another embodiment, the DEU 30 is coupled to DRUs 40′ by a direct current power cable to provide power to each DRU 40′. In one embodiment, the direct current power cable delivers 48 VDC to each DRU 40′ connected to the DEU 30. In an alternate embodiment, DRUs 40 and 40′ are connected directly to a power supply. In one embodiment, the power supply provides DC power to the DRUs 40 and 40′. In an alternate embodiment, the power supply provides AC power to the DRUs 40 and 40′. In one embodiment, DRUs 40 and 40′ each include an AC/DC power converter.
Both DHU 20 and DEU 30 split signals in the forward path and sum signals in the reverse path. In order to accurately sum the digital signals together at DHU 20 or DEU 30 the data needs to come in to the DHU 20 or DEU 30 at exactly the same rate. As a result all of the DRUs 40 and 40′ need to be synchronized so that their digital sample rates are all locked together. Synchronizing the signals in time is accomplished by locking everything to the bit rate over the fiber. In one embodiment, the DHU 20 sends out a digital bit stream and the optical receiver at the DEU 30 or DRU 40 detects that bit stream and locks its clock to that bit stream. In one embodiment, this is being accomplished with a multiplexer chip set and local oscillators, as will be described below. Splitting and combining the signals in a digital state avoids the combining and splitting losses experienced with an analog system. In addition, transporting the digital signals over multimode fiber results in a low cost transport system that is not subject to much degradation.
The down-conversion and up-conversion of RF signals are implemented by mixing the signal with a local oscillator (LO) at both the DRUs and the DHU. In order for the original frequency of the RF signal to be restored, the signal must be up-converted with an LO that has exactly the same frequency as the LO that was used for down conversion. Any difference in LO frequencies will translate to an equivalent end-to-end frequency offset. In the embodiments described, the down conversion and up conversion LOs are at locations remote from one another. Therefore, in one preferred embodiment, frequency coherence between the local and remote LO's is established as follows: at the DHU end, there is a 142 MHz reference oscillator which establishes the bit rate of 1.42 GHz over the fiber. This reference oscillator also generates a 17.75 MHz reference clock which serves as a reference to which LO's at the DHU are locked.
At each of the DRUs, there is another 17.75 MHz clock, which is recovered from the optical bit stream with the help of the clock and bit recovery circuits. Because this clock is recovered from the bit stream generated at the host, it is frequency coherent with the reference oscillator at the host. A reference 17.75 MHz clock is then generated to serve as a reference for the remote local oscillators. Because the remote recovered bit clock is frequency coherent with the host master clock, the host and remote reference clocks, and any LO's locked to them, are also frequency coherent, thus ensuring that DHU and DRU LO's are locked in frequency. It is understood that in other embodiments the bit rate over the fiber may vary and the frequency of the clocks will also vary.
DHU 320 essentially converts the RF spectrum to digital in the forward path and from digital to analog in the reverse path. In the forward path, DHU 320 receives the combined RF signal from transmitters 323, digitizes the combined signal and transmits it in digital format over fibers 314-1 to 314-M, which are connected directly to a plurality of DRUs or indirectly to one or more DRUs via one or more DEUs.
In one embodiment, DHU 320 receives signals directly from a plurality M of DRUs. The signals are digitally summed and then converted to analog signals and transmitted to base station 310. In another embodiment, DHU 320 receives signals from one or more DEUs and one or more DRUs directly. Again, the signals are all digitally summed and then converted to analog signals and transmitted to base station 310. The signals received via transmission lines 316-1 to 316-M may be received directly from a DRU or signals that are received by a DEU and summed together and then transported via 316-1 to 316-M to DHU 320 for additional summing and conversion for transport to base station 210. DEUs provide a way to expand the coverage area by splitting signals in the forward path and digitally summing signals received from DRUs or other DEUs in the reverse path for transmission upstream to other DEUs or a DHU. In the reverse path, DHU 320 also receives digitized RF signals over fibers 316-1 to 316-M from a plurality of DRUs, either directly or indirectly via DEUs, reconstructs the corresponding analog RF signal, and applies it to receivers 328.
In one embodiment, transmission lines 314-1 to 314-M and 316-1 to 316-M comprise multimode fiber pairs. In an alternate embodiment, each fiber pair is replaced by a single fiber, carrying bi-directional optical signals through the use of wavelength division multiplexing (WDM). In an alternate embodiment, transmission lines 314-1 to 314-M and 316-1 to 316-M comprise single mode fibers. In one embodiment, M is equal to six. In an alternate embodiment, the number of transmission lines in the forward path direction 314-1 to 314-M is not equal to the number of transmission lines in the reverse path direction 316-1 to 316-M.
Referring now to
In one embodiment, DHU 420 includes an amplifier 450 that receives the combined RF signal from a wireless interface device such as a base station or BDA. The combined RF signal is amplified and then mixed by mixer 452 with a signal received from local oscillator 468. Local oscillator 468 is coupled to reference oscillator 415. In one embodiment the local oscillator is coupled to a frequency divider circuit 470, which is in turn coupled to reference oscillator 415. The local oscillator is locked to the reference oscillator 415 as a master clock so that the down conversion of the RF signals is the same as the up conversion. The result is end to end, from DHU to DRU, or DHU to one or more DEUs to DRU, no frequency shift in the signals received and transmitted. The local oscillator 463 is also coupled to a synthesizer circuit 476.
The output signal of mixer 452 is provided to amplifier 454 amplified and then filtered via intermediate frequency (IF) filter 456. The resultant signal is the combined RF signal converted down to an IF signal. The IF signal is mixed with another signal originating from the reference oscillator 415 via mixer 460. The output of mixer 460 is summed together at 462 with a signal produced by field programmable gate array (FPGA) 467. The output is then converted from an analog signal to a digital signal via analog/digital (A/D) converter 464 once converted the digital RF signal is applied to multiplexer 466. In one embodiment, the A/D converter 464 is a 14-bit converter handling a 14-bit signal. In other embodiments, the A/D converter 464 may be of any size to accommodate an appropriate signal. In one embodiment, the input signal from FPGA 467 is a dither signal from dither circuit 462 that adds limited out of band noise to improve the dynamic range of the RF signal.
In one embodiment, DHU 420 includes an alternating current to digital current power distribution circuit 6 that provides direct current power to each of the DRUs coupled to DHU 420.
DHU 420 further includes a plurality of digital optical receivers 418-1 to 418-P in the reverse path. Receivers 418-1 to 418-P each output an electronic digital signal, which is applied to clock and bit recovery circuits 445-1 to 445-P, respectively, for clock and bit recovery of the electronic signals. The signals are then applied to demultiplexers 441-1 to 441-P, respectively, which extract the digitized signals generated at the DRUs, as will be explained in detail below. Demultiplexers 441-1 to 441-P further extract alarm (monitoring) and voice information framed with the digitized signals. The digitized signals output at each demultiplexer 441-1 to 441-P are then applied to FPGA 467 where the signals are summed together and then applied to digital to RF converter 495. Converter 495 operates on the sum of the digitized signals extracted by demultiplexers 441-1 to 441-P, reconstructing baseband replicas of the RF signals received at all the digital remote units. The baseband replicas are then up-converted to their original radio frequency by mixing with a local oscillator 482 and filtering to remove image frequencies. Local oscillator 482 is coupled to synthesizer 476 and reference oscillator as discussed with respect to local oscillator 468 above.
In one embodiment, digital to RF converter 495 includes digital to analog (D/A) converter 484 coupled to an output of FPGA 467 the digitized RF signals are converted to analog RF signals and then mixed with a signal from reference oscillator 415 by mixer 492. The signal is then filtered by IF filter 490 and amplified by amplifier 488. The resultant signal is then mixed with a signal from local oscillator 482 and then applied to RF filter 484, amplifier 480 and RF filter 478 for transmission by a wireless interface device such as a BDA or base station.
In one embodiment, FPGA 467 includes an alarm/control circuit 474, which extracts overhead bits from DRUs to monitor error and alarm information. In one embodiment, the FPGA 467 includes a summer 498, which mathematically sums together the digital RF signals received from fibers 416-1 to 416-P. In another embodiment FPGA includes an overflow algorithm circuit 486 coupled to the output of summer 486. The algorithm circuit 496 allows the summed digital RF signals to saturate and keep the summed signal within a defined number of bits. In one embodiment, the algorithm circuit includes a limiter. In one embodiment, the RF signals are 14-bit signals and when summed and limited by summer 498 and overflow algorithm 496 result in a 14-bit output signal.
For example, in one embodiment each of the digital RF signals received from fibers 416-1 to 416-P, where P is equal to 6, comprise 14 bit inputs. All of those 6 different 14 bit inputs then go into summer 498. In order to allow for overflow, at least 17 bits of resolution is needed in the summer 498 to handle a worst-case scenario when all 6 of the 14 bit inputs are at full scale at the same time. In this embodiment, a 17-bit wide summer 498 is employed to handle that dynamic range. Coming out of summer 498 is needed a 14-bit signal going in the reverse path. In one embodiment, an algorithm circuit 496 for managing the overflow is implemented. In one embodiment, the summer and 498 and overflow algorithm 496 are included in FPGA 467. In one embodiment, overflow algorithm 496 acts like a limiter and allows the sum to saturate and keeps the summed signal within 14 bits. In an alternate embodiment, overflow algorithm circuit 496 controls the gain and scales the signal dynamically to handle overflow conditions.
For example, when the sum of the 6 input signals 0 to 5 is greater than or equal to 13FFBh then the sum is divided by 6 for a signal that is 14 bits or less. When the sum of the 6 input signals 0 to 5 is greater than 13FFBh but less than or equal to FFFCh then the sum is divided by 5 for a signal that is 14 bits or less. When the sum of the 6 input signals 0 to 5 is greater than FFFCh but less than BFFDh then the sum is divided by 4 for a signal that is 14 bits or less. When the sum of the 6 input signals 0 to 5 is greater BFFDh but less than 7FFEh then the sum is divided by 3 for a signal that is 14 bits or less. Finally, when the sum of the 6 input signals 0 to 5 is greater than 7FFEh but less than or equal to 3FFFh then the sum is divided by 2 for a signal that is 14 bits or less.
In one embodiment, digital to RF converter 595 includes a digital-to-analog (D/A) converter 509, which reconstructs the analog RF signal and applies it to IF 504 and amplifier 506. The analog signal is mixed with an output signal of reference oscillator 515 by mixer 502. The output of amplifier 506 is mixed with a signal from local oscillator 519 that locks the RF signal with the return digital signal via reference oscillator 515 that is coupled to local oscillator 519. In one embodiment, the reference oscillator is coupled to frequency divider 517 that in turn is coupled to local oscillators 519 and 529. The local oscillators 519 and 529 are also coupled to synthesizer 521 that is coupled to programmable logic device 525.
RF signals received at main antenna 599 are passed through duplexer 547 to RF to digital converter 593. The RF signals are converted to digital signals and then applied to multiplexer 536 converted from parallel-to-serial and optically transmitted via optical transmitter 532 to a DEU or DHU.
In one embodiment, RF to digital converter 593 includes a first amplifier 543 that receives RF signals from duplexer 547, amplifies the signals and transmits them to digital attenuator 539. In one embodiment, amplifier 543 is a low noise amplifier. Digital attenuator 539 receives the amplified signals and digitally attenuates the signal to control the levels in case of an overload situation. RF to digital converter 593 further includes a second amplifier 537, which receives the attenuated signals, amplifies the signals and applies the amplified signals to mixer 535. Mixer 535 mixes the amplified signals with a signal received from local oscillator 529. The resultant signals are applied to a third amplifier 533 an IF filter 548 and a fourth amplifier 546 in series to down convert to an IF signal. The IF signal is then mixed with a signal from reference oscillator 515 and the mixed signal is summed with a signal from dither circuit 527. The resultant signal is applied to analog-to-digital converter 538 and converted to a digital signal. The output digital signal is then applied to a multiplexer 536. In one embodiment, the multiplexer 536 multiplexes the signal together with a couple of extra bits to do framing and control information. In one embodiment, multiplexer 536, clock and bit recovery circuit and demultiplexer 505 comprise a multiplexer chip set.
Programmable logic circuit 525 programs synthesizer 521 for the reference oscillator and for the up and down conversion of local oscillators 519 and 529. The programmable logic circuit 525 looks for error conditions, for out of lock conditions on the oscillators and reports error modes and looks for overflow condition in the A/D converter 538. If an overflow condition occurs the programmable logic circuit 525 indicates that you are saturating and adds some extra attenuation at digital attenuator 539 in order to reduce the RF signal levels coming in from RF antenna 599 and protect the system from overload.
In one embodiment, DRU 540 includes an internal direct current power distribution system 5. In one embodiment, the distribution system receives 48 VDC and internally distributes 3 outputs of +3.8V, +5.5V and +8V.
DEU 630 also includes optical receivers 669-1 to 669-X, which receive digitized RF signals directly from DRUs or indirectly via DEUs. In operation the signals are received, applied to clock and bit recovery circuits 673-1 to 673-X respectively to lock the local clock and clean up the signals and then applied to demultiplexers 671-1 to 671-X. Demultiplexers 671-1 to 671-X each extract the digitized traffic and apply the samples to field programmable gate array 661. The signals are summed together digitally and transmitted to multiplexer 657, which mulitplexes the signal together with a couple of extra bits to do framing and control information. In addition, the multiplexer 657 converts the signals parallel to serial. The signals are then applied to optical transmitter 659 for further transmission. In one embodiment, the signals are directly transmitted to a DHU or indirectly via one or more additional DEUs.
In one embodiment, the FPGA 661 includes summer 665, which mathematically sums together the digital RF signals received from demultiplexers 671-1 to 671-X. In another embodiment, FPGA 661 includes an overflow algorithm circuit 663 coupled to the output of summer 665. The algorithm circuit 663 allows the summed digital RF signals to saturate and keep the summed signal within a defined number of bits. In one embodiment, the algorithm circuit includes a limiter. In one embodiment, the RF signals are 14-bit signals and when summed and limited by summer 665 and overflow algorithm 663 result in a 14-bit output signal.
In one embodiment, DEU 630 includes an alternating current to digital current power distribution circuit 7 that provides direct current power to each of the DRUs coupled to DEU 630.
In an alternate embodiment, the digital host unit (DHU) and wireless interface device (WID) are located some distance from the building being served. The DHU in the building is replaced by a DEU, and the link between that DEU and the remotely located DHU is via single mode fiber.
In another alternate embodiment, the wireless interface device (WID) is a software defined base station, and the interface between the DHU and WID takes place digitally, eliminating the need for the RF to digital conversion circuitry in the DHU.
A digital radio frequency transport system has been described. The transport system includes a digital host unit and at least two digital remote units coupled to the digital host unit. The digital host unit includes shared circuitry that performs bi-directional simultaneous digital radio frequency distribution between the digital host unit and the at least two digital remote units.
In addition, a digital radio frequency transport system has been described. The transport system includes a digital host unit and at least one digital expansion unit coupled to the digital host unit. The transport system further includes at least two digital remote units, each coupled to one of the digital host unit and the digital expansion unit. The digital host unit includes shared circuitry that performs bi-directional simultaneous digital radio frequency distribution between the digital host unit and that at least two digital remote units.
Further, a method of performing point-to-multipoint radio frequency transport has been described. The method includes receiving analog radio frequency signals at a digital host unit and converting the analog radio frequency signals to digitized radio frequency signals. The method also includes splitting the digitized radio frequency signals into a plurality of a digital radio frequency signals and optically transmitting the digital radio frequency signals to a plurality of digital remote units. The method further includes receiving the digital radio frequency signals at a plurality of digital remote units, converting the digital radio frequency signals to analog radio frequency signals and transmitting the signals via a main radio frequency antenna at each of the plurality of digital remote units.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown. For example, a digital remote unit is not limited to the receipt and summing and splitting and transmitting of digitized radio frequency signals. In other embodiments, the digital host unit is capable of receiving and summing analog radio frequency signals in addition to or instead of digitized radio frequency signals. As well, the digital host unit is capable of splitting and transmitting analog radio frequency signals in addition to or instead of digitized radio frequency signals. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.
This application is a continuation of U.S. application Ser. No. 15/144,219, filed on May 2, 2016 entitled “POINT-TO-MULTIPOINT DIGITAL RADIO FREQUENCY TRANSPORT”, which, in turn, is a continuation of U.S. application Ser. No. 14/054,223, filed on Oct. 15, 2013 entitled “POINT-TO-MULTIPOINT DIGITAL RADIO FREQUENCY TRANSPORT” (which issued as U.S. Pat. No. 9,332,402), which, in turn, is a continuation of U.S. application Ser. No. 13/662,948, filed on Oct. 29, 2012 entitled “POINT-TO-MULTIPOINT DIGITAL RADIO FREQUENCY TRANSPORT” (which issued as U.S. Pat. No. 8,577,286), which, in turn, is a continuation of Ser. No. 12/617,215, filed on Nov. 12, 2009 entitled “POINT-TO-MULTIPOINT DIGITAL RADIO FREQUENCY TRANSPORT” (which issued as U.S. Pat. No. 8,326,218), which, in turn, is a continuation of U.S. application Ser. No. 10/740,944, filed on Dec. 19, 2003 entitled “POINT-TO-MULTIPOINT DIGITAL RADIO FREQUENCY TRANSPORT” (which issued as U.S. Pat. No. 7,639,982), which, in turn, is a continuation of U.S. application Ser. No. 09/619,431, filed on Jul. 19, 2000, entitled “POINT-TO-MULTIPOINT DIGITAL RADIO FREQUENCY TRANSPORT” (which issued as U.S. Pat. No. 6,704,545). All of the preceding applications and patents are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3931473 | Ferris, Jr. | Jan 1976 | A |
4101834 | Stutt et al. | Jul 1978 | A |
4112488 | Smith, III | Sep 1978 | A |
4144409 | Utano et al. | Mar 1979 | A |
4144411 | Frenkiel | Mar 1979 | A |
4183054 | Patisaul et al. | Jan 1980 | A |
4231116 | Sekiguchi et al. | Oct 1980 | A |
4244046 | Brouard et al. | Jan 1981 | A |
4354167 | Terreault et al. | Oct 1982 | A |
4402076 | Krajewski | Aug 1983 | A |
4451699 | Gruenberg | May 1984 | A |
4451916 | Casper et al. | May 1984 | A |
4456793 | Baker et al. | Jun 1984 | A |
4475010 | Huensch et al. | Oct 1984 | A |
4485486 | Webb et al. | Nov 1984 | A |
4525861 | Freeburg | Jun 1985 | A |
4531239 | Usui | Jul 1985 | A |
4556760 | Goldman | Dec 1985 | A |
4596051 | Feldman | Jun 1986 | A |
4611323 | Hessenmuller | Sep 1986 | A |
4613990 | Halpern | Sep 1986 | A |
4628501 | Loscoe | Dec 1986 | A |
4654843 | Roza et al. | Mar 1987 | A |
4667319 | Chum | May 1987 | A |
4669107 | Eriksson-Lennartsson | May 1987 | A |
4691292 | Rothweiler | Sep 1987 | A |
4701909 | Kavehrad et al. | Oct 1987 | A |
4704733 | Kawano | Nov 1987 | A |
4718004 | Dalal | Jan 1988 | A |
4726644 | Mathis | Feb 1988 | A |
4754451 | Eng et al. | Jun 1988 | A |
4755795 | Page | Jul 1988 | A |
4759000 | Reitz | Jul 1988 | A |
4759051 | Han | Jul 1988 | A |
4759057 | De Luca et al. | Jul 1988 | A |
4760573 | Calvignac et al. | Jul 1988 | A |
4790000 | Kinoshita | Dec 1988 | A |
4797947 | Labedz | Jan 1989 | A |
4816825 | Chan et al. | Mar 1989 | A |
4831662 | Kuhn | May 1989 | A |
4849963 | Kawano et al. | Jul 1989 | A |
4868862 | Ryoichi et al. | Sep 1989 | A |
4881082 | Graziano | Nov 1989 | A |
4916460 | Powell | Apr 1990 | A |
4920533 | Dufresne et al. | Apr 1990 | A |
4932049 | Lee | Jun 1990 | A |
4959829 | Griesing | Sep 1990 | A |
4977593 | Ballance | Dec 1990 | A |
4999831 | Grace | Mar 1991 | A |
5067147 | Lee | Nov 1991 | A |
5067173 | Gordon et al. | Nov 1991 | A |
5084869 | Russell | Jan 1992 | A |
5134709 | Bi et al. | Jul 1992 | A |
5136410 | Heiling et al. | Aug 1992 | A |
5138440 | Radice | Aug 1992 | A |
5159479 | Takagi | Oct 1992 | A |
5175867 | Wejke et al. | Dec 1992 | A |
5193109 | Chien-Yeh Lee | Mar 1993 | A |
5243598 | Lee | Sep 1993 | A |
5251053 | Heidemann | Oct 1993 | A |
5267261 | Blakeney, II et al. | Nov 1993 | A |
5272700 | Hansen et al. | Dec 1993 | A |
5278690 | Vella-Coleiro | Jan 1994 | A |
5280472 | Gilhousen et al. | Jan 1994 | A |
5285469 | Vanderpool | Feb 1994 | A |
5297193 | Bouix et al. | Mar 1994 | A |
5299198 | Kay et al. | Mar 1994 | A |
5301056 | O'Neill | Apr 1994 | A |
5303287 | Laborde | Apr 1994 | A |
5305308 | English et al. | Apr 1994 | A |
5309474 | Gilhousen et al. | May 1994 | A |
5313461 | Ahl et al. | May 1994 | A |
5321736 | Beasley | Jun 1994 | A |
5321849 | Lemson | Jun 1994 | A |
5339184 | Tang | Aug 1994 | A |
5381459 | Lappington | Jan 1995 | A |
5392453 | Gudmundson et al. | Feb 1995 | A |
5400391 | Emura et al. | Mar 1995 | A |
5442681 | Kotzin et al. | Aug 1995 | A |
5442700 | Snell et al. | Aug 1995 | A |
5457557 | Zarem et al. | Oct 1995 | A |
5461627 | Rypinski | Oct 1995 | A |
5499047 | Terry et al. | Mar 1996 | A |
5513176 | Dean et al. | Apr 1996 | A |
5519691 | Darcie et al. | May 1996 | A |
5528582 | Bodeep et al. | Jun 1996 | A |
5533011 | Dean et al. | Jul 1996 | A |
5546397 | Mahany | Aug 1996 | A |
5552920 | Glynn | Sep 1996 | A |
5566168 | Dent | Oct 1996 | A |
5579341 | Smith | Nov 1996 | A |
5586121 | Moura et al. | Dec 1996 | A |
5587734 | Lauder et al. | Dec 1996 | A |
5592470 | Rudrapatna et al. | Jan 1997 | A |
5603080 | Kallander et al. | Feb 1997 | A |
5619202 | Wilson et al. | Apr 1997 | A |
5621730 | Kelley | Apr 1997 | A |
5621786 | Fischer et al. | Apr 1997 | A |
5627879 | Russell | May 1997 | A |
5630204 | Hylton et al. | May 1997 | A |
5642405 | Fischer et al. | Jun 1997 | A |
5644622 | Russell et al. | Jul 1997 | A |
5657374 | Russell et al. | Aug 1997 | A |
5682256 | Motley et al. | Oct 1997 | A |
5708961 | Hylton et al. | Jan 1998 | A |
5715235 | Sawahashi et al. | Feb 1998 | A |
5724385 | Levin et al. | Mar 1998 | A |
5732076 | Ketseoglou et al. | Mar 1998 | A |
5748683 | Smith | May 1998 | A |
5752170 | Clifford | May 1998 | A |
5761619 | Danne et al. | Jun 1998 | A |
5765097 | Dail | Jun 1998 | A |
5765099 | Georges et al. | Jun 1998 | A |
5771449 | Biasing et al. | Jun 1998 | A |
5774085 | Yanagimoto et al. | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5774789 | van der Kaay et al. | Jun 1998 | A |
5781541 | Schneider | Jul 1998 | A |
5781859 | Beasley | Jul 1998 | A |
5781865 | Gammon | Jul 1998 | A |
5802173 | Hamilton-Piercy et al. | Sep 1998 | A |
5805983 | Naidu et al. | Sep 1998 | A |
5809395 | Hamilton-Piercy et al. | Sep 1998 | A |
5809422 | Raleigh et al. | Sep 1998 | A |
5809431 | Bustamante et al. | Sep 1998 | A |
5812605 | Smith et al. | Sep 1998 | A |
5818883 | Smith et al. | Oct 1998 | A |
5822324 | Kostresti et al. | Oct 1998 | A |
5852651 | Fischer et al. | Dec 1998 | A |
5874914 | Krasner | Feb 1999 | A |
5878325 | Dail | Mar 1999 | A |
5907544 | Rypinski | May 1999 | A |
5930682 | Schwartz et al. | Jul 1999 | A |
5946622 | Bojeryd | Aug 1999 | A |
5969837 | Farber et al. | Oct 1999 | A |
5978650 | Fischer et al. | Nov 1999 | A |
5987014 | Magill et al. | Nov 1999 | A |
6005506 | Bazarjani et al. | Dec 1999 | A |
6005884 | Cook | Dec 1999 | A |
6009130 | Lurey et al. | Dec 1999 | A |
6014366 | Ichiyoshi | Jan 2000 | A |
6034950 | Sauer et al. | Mar 2000 | A |
6061089 | Tonkin et al. | May 2000 | A |
6108113 | Fee | Aug 2000 | A |
6108550 | Wiorek et al. | Aug 2000 | A |
6108626 | Cellario et al. | Aug 2000 | A |
6112086 | Wala | Aug 2000 | A |
6122529 | Sabat, Jr. et al. | Sep 2000 | A |
6128470 | Naidu | Oct 2000 | A |
6128471 | Quelch et al. | Oct 2000 | A |
6147786 | Pan | Nov 2000 | A |
6150993 | Dobrovolny | Nov 2000 | A |
6157659 | Bird | Dec 2000 | A |
6181687 | Bisdikian | Jan 2001 | B1 |
6188693 | Murakami | Feb 2001 | B1 |
6192216 | Sabat, Jr. et al. | Feb 2001 | B1 |
6198558 | Graves et al. | Mar 2001 | B1 |
6222660 | Traa | Apr 2001 | B1 |
6223021 | Silvia et al. | Apr 2001 | B1 |
6226274 | Reese et al. | May 2001 | B1 |
6253094 | Schmutz | Jun 2001 | B1 |
6259910 | Fairfield et al. | Jul 2001 | B1 |
6262981 | Schmutz | Jul 2001 | B1 |
6263135 | Wade | Jul 2001 | B1 |
6275990 | Dapper et al. | Aug 2001 | B1 |
6298246 | Lysejko et al. | Oct 2001 | B1 |
6307877 | Philips et al. | Oct 2001 | B1 |
6308085 | Shoki | Oct 2001 | B1 |
6317884 | Eames et al. | Nov 2001 | B1 |
6336042 | Dawson | Jan 2002 | B1 |
6337754 | Imajo | Jan 2002 | B1 |
6349200 | Sabat, Jr. et al. | Feb 2002 | B1 |
6353600 | Schwartz et al. | Mar 2002 | B1 |
6356369 | Farhan | Mar 2002 | B1 |
6356374 | Farhan | Mar 2002 | B1 |
6362908 | Kimbrough et al. | Mar 2002 | B1 |
6373611 | Farhan et al. | Apr 2002 | B1 |
6373887 | Aiyagari et al. | Apr 2002 | B1 |
6374124 | Slabinski | Apr 2002 | B1 |
6377640 | Trans | Apr 2002 | B2 |
6442405 | Hiramatsu et al. | Aug 2002 | B1 |
6449071 | Farhan et al. | Sep 2002 | B1 |
6463301 | Bevan et al. | Oct 2002 | B1 |
6466572 | Ethridge et al. | Oct 2002 | B1 |
6480551 | Ohishi et al. | Nov 2002 | B1 |
6480702 | Sabat, Jr. | Nov 2002 | B1 |
6486907 | Farber et al. | Nov 2002 | B1 |
6498936 | Raith | Dec 2002 | B1 |
6504831 | Greenwood et al. | Jan 2003 | B1 |
6535720 | Kintis et al. | Mar 2003 | B1 |
6567473 | Tzannes | May 2003 | B1 |
6580905 | Naidu et al. | Jun 2003 | B1 |
6594496 | Schwartz | Jul 2003 | B2 |
6622013 | Miyoshi et al. | Sep 2003 | B1 |
6643498 | Miyajima | Nov 2003 | B1 |
6667973 | Gorshe et al. | Dec 2003 | B1 |
6674966 | Koonen | Jan 2004 | B1 |
6697603 | Lovinggood et al. | Feb 2004 | B1 |
6704545 | Wala | Mar 2004 | B1 |
6729929 | Sayers et al. | May 2004 | B1 |
6731904 | Judd | May 2004 | B1 |
6738581 | Handelman | May 2004 | B2 |
6745003 | Maca et al. | Jun 2004 | B1 |
6751417 | Combs et al. | Jun 2004 | B1 |
6768745 | Gorshe et al. | Jul 2004 | B1 |
6771933 | Eng et al. | Aug 2004 | B1 |
6785558 | Stratford et al. | Aug 2004 | B1 |
6799020 | Heidmann et al. | Sep 2004 | B1 |
6801767 | Schwartz et al. | Oct 2004 | B1 |
6807374 | Imajo et al. | Oct 2004 | B1 |
6826163 | Mani et al. | Nov 2004 | B2 |
6826164 | Mani et al. | Nov 2004 | B2 |
6831901 | Millar | Dec 2004 | B2 |
6865390 | Goss et al. | Mar 2005 | B2 |
6907048 | Treadaway et al. | Jun 2005 | B1 |
6917614 | Laubach et al. | Jul 2005 | B1 |
6963552 | Sabat, Jr. et al. | Nov 2005 | B2 |
6967966 | Donohue | Nov 2005 | B1 |
6980831 | Matsuyoshi et al. | Dec 2005 | B2 |
7016308 | Gallagher | Mar 2006 | B1 |
7031335 | Donohue | Apr 2006 | B1 |
7035671 | Solum | Apr 2006 | B2 |
7047313 | Broerman | May 2006 | B1 |
7075369 | Takenaka | Jul 2006 | B2 |
7103279 | Koh et al. | Sep 2006 | B1 |
7103377 | Bauman et al. | Sep 2006 | B2 |
7127175 | Mani et al. | Oct 2006 | B2 |
7171244 | Bauman | Jan 2007 | B2 |
7184728 | Solum | Feb 2007 | B2 |
7190903 | Combs et al. | Mar 2007 | B1 |
7205864 | Schultz, Jr. et al. | Apr 2007 | B2 |
7215651 | Millar | May 2007 | B2 |
7257328 | Levinson et al. | Aug 2007 | B2 |
7289972 | Rieser et al. | Oct 2007 | B2 |
RE40564 | Fischer et al. | Nov 2008 | E |
7505747 | Solum | Mar 2009 | B2 |
7512419 | Solum | Mar 2009 | B2 |
7539509 | Bauman et al. | May 2009 | B2 |
7548695 | Wake | Jun 2009 | B2 |
7610046 | Wala | Oct 2009 | B2 |
7614074 | Mobley et al. | Nov 2009 | B2 |
7639982 | Wala | Dec 2009 | B2 |
7702985 | Millar | Apr 2010 | B2 |
7761093 | Sabat, Jr. et al. | Jul 2010 | B2 |
5627879 | Russell et al. | Sep 2010 | C1 |
5657374 | Russell et al. | Sep 2010 | C1 |
7848747 | Wala | Dec 2010 | B2 |
7848770 | Scheinert | Dec 2010 | B2 |
7917177 | Bauman | Mar 2011 | B2 |
RE40564 | Fischer et al. | Apr 2011 | C1 |
7920858 | Sabat, Jr. et al. | Apr 2011 | B2 |
7962111 | Solum | Jun 2011 | B2 |
8019221 | Zancewicz | Sep 2011 | B2 |
8032916 | Oyadomari et al. | Oct 2011 | B2 |
8160570 | Sabat, Jr. et al. | Apr 2012 | B2 |
8290483 | Sabat, Jr. et al. | Oct 2012 | B2 |
8326218 | Wala | Dec 2012 | B2 |
RE43964 | Fischer et al. | Feb 2013 | E |
8446530 | Bellers | May 2013 | B2 |
8559939 | Sabat, Jr. et al. | Oct 2013 | B2 |
8577286 | Wala | Nov 2013 | B2 |
RE45321 | Fischer et al. | Jan 2015 | E |
8958410 | Fischer | Feb 2015 | B2 |
8958789 | Bauman et al. | Feb 2015 | B2 |
9332402 | Wala | May 2016 | B2 |
9467876 | Kummetz | Oct 2016 | B2 |
9867052 | Sabat, Jr. et al. | Jan 2018 | B2 |
10075243 | Fischer | Sep 2018 | B2 |
20010031014 | Subramanian et al. | Oct 2001 | A1 |
20010036163 | Sabat, Jr. et al. | Nov 2001 | A1 |
20020003645 | Kim et al. | Jan 2002 | A1 |
20020072329 | Bandeira et al. | Jun 2002 | A1 |
20020167954 | Highsmith et al. | Nov 2002 | A1 |
20020191565 | Mani et al. | Dec 2002 | A1 |
20030043928 | Ling et al. | Mar 2003 | A1 |
20030060178 | Ghassemzadeh et al. | Mar 2003 | A1 |
20030066087 | Sawyer et al. | Apr 2003 | A1 |
20030133182 | Ng et al. | Jul 2003 | A1 |
20030143947 | Lyu | Jul 2003 | A1 |
20030157943 | Sabat, Jr. | Aug 2003 | A1 |
20030162516 | Solum | Aug 2003 | A1 |
20040010609 | Vilander et al. | Jan 2004 | A1 |
20040037565 | Young et al. | Feb 2004 | A1 |
20040198453 | Cutrer et al. | Oct 2004 | A1 |
20040219950 | Pallonen et al. | Nov 2004 | A1 |
20050007993 | Chambers et al. | Jan 2005 | A1 |
20050131645 | Panopoulos | Jun 2005 | A1 |
20050147067 | Mani et al. | Jul 2005 | A1 |
20050201323 | Mani et al. | Sep 2005 | A1 |
20050243785 | Sabat, Jr. et al. | Nov 2005 | A1 |
20050250503 | Cutrer | Nov 2005 | A1 |
20060121944 | Buscaglia et al. | Jun 2006 | A1 |
20060193295 | White et al. | Aug 2006 | A1 |
20070166036 | Combs et al. | Jul 2007 | A1 |
20090034979 | Zancewicz | Feb 2009 | A1 |
20090067841 | Combs et al. | Mar 2009 | A1 |
20100061291 | Wala | Mar 2010 | A1 |
20110182583 | Rakib | Jul 2011 | A1 |
20110265140 | Rakib | Oct 2011 | A1 |
20130122952 | Wala | May 2013 | A1 |
20140036758 | Wala | Feb 2014 | A1 |
20160248508 | Wala | Aug 2016 | A1 |
20170026857 | Kummetz | Jan 2017 | A1 |
20170214460 | Wala | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2008900 | Jan 1998 | CA |
1127056 | Jul 1996 | CN |
1362799 | Aug 2002 | CN |
3707244 | Sep 1988 | DE |
0166885 | Jan 1986 | EP |
0346925 | Dec 1989 | EP |
0368673 | May 1990 | EP |
0391597 | Oct 1990 | EP |
0468688 | Jan 1992 | EP |
0642243 | Mar 1995 | EP |
0664621 | Jul 1995 | EP |
0876073 | Nov 1998 | EP |
2290850 | Mar 2011 | EP |
1303929 | Oct 2011 | EP |
1570626 | Nov 2013 | EP |
3035562 | Jun 2016 | EP |
2345865 | Oct 1977 | FR |
2253770 | Sep 1992 | GB |
2289198 | Nov 1995 | GB |
2300549 | Nov 1996 | GB |
2315959 | Feb 1998 | GB |
2320653 | Jun 1998 | GB |
540424 | Mar 1956 | IT |
58164007 | Sep 1983 | JP |
3026031 | Feb 1991 | JP |
512374 | Jan 1993 | JP |
H05153021 | Jun 1993 | JP |
H05268128 | Oct 1993 | JP |
6318905 | Nov 1994 | JP |
8510878 | Nov 1996 | JP |
11234200 | Aug 1999 | JP |
2002354534 | Dec 2002 | JP |
100594770 | Jun 2006 | KR |
9115927 | Oct 1991 | WO |
9428690 | Dec 1994 | WO |
9533350 | Dec 1995 | WO |
9628946 | Sep 1996 | WO |
9705704 | Feb 1997 | WO |
9716000 | May 1997 | WO |
9732442 | Sep 1997 | WO |
9824256 | Jun 1998 | WO |
9837715 | Aug 1998 | WO |
9937035 | Jul 1999 | WO |
9948312 | Sep 1999 | WO |
0021221 | Apr 2000 | WO |
0156197 | Aug 2001 | WO |
0174013 | Oct 2001 | WO |
0174100 | Oct 2001 | WO |
0209319 | Jan 2002 | WO |
0209319 | Jan 2002 | WO |
0239624 | Apr 2002 | WO |
2004051322 | Jun 2004 | WO |
Entry |
---|
Anon, “2 GHz Repeater Built Without I-F”, “Microwaves”, Jun. 1976, p. 16, vol. 15, No. 6, p. 16, Publisher: Hayden Publishing Company Inc. |
Oades, “The Linear RF Repeater”, “1980 International Conference on Communications”, Jun. 8-12, 1980, p. 1, Publisher: IEEE. |
Rosenbloom et al., “Cell Enhancer: Beyond the Outer Limits”, pp. 1-2. |
Sabat Jr. et al., “Multiprotocol Antenna System for Multiple Service Providers”, “U.S. Appl. No. 15/842,744”, filed Dec. 14, 2017, pp. 1-44. |
United States Patent and Trademark Office, “Office Action”, “From U.S. Appl. No. 15/144,219”, dated Apr. 25, 2018, pp. 1-38, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “From U.S. Appl. No. 10/395,743”, dated Apr. 4, 2007, pp. 1-11, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “From U.S. Appl. No. 10/395,743”, dated May 21, 2008, pp. 1-14, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “From U.S. Appl. No. 10/395,743”, dated Jan. 14, 2010, pp. 1-31, Published in: US. |
The International Bureau of WIPO, “International Preliminary Report on Patentability from PCT/US03/38302”, “from PCT Counterpart of U.S. Appl. No. 10/395,743”, dated Dec. 14, 2011, pp. 1-10, Published in: WO. |
The International Bureau of WIPO, “International Search Report from PCT/US03/38302”, “from PCT Counterpart of U.S. Appl. No. 10/395,743”, dated May 2, 2005, pp. 1-5, Published in: WO. |
Wala, “A New Microcell Architecture Using Digital Optical Transport, Freedom Through Wireless Technology”, May 18, 1993, pp. 585-588, Publisher: Proceedings of the Vehicular Technology Conference, New York, IEEE, Published in: US. |
ADC Kentrox, “CityCell 824, Remote-Site Manual”, “Preliminary Version”, Feb. 1, 1993, pp. 1-105, Publisher: ADC Kentrox. |
Lewis, “ADC-Kentrox Call Report With Bell Atlantic”, Oct. 18, 1992, pp. 1-3. |
ADC Kentrox, “Wireless Systems Group CityCell 824—A Positioning White Paper”, Mar. 1993, pp. 1-6, Publisher: CITA Trade Show. |
“Photographs of ADC Kentrox City Cell 824 Components; Publication Date Unknown”, , pp. 1-14. |
“Widen Your Horizons to a World of Solutions We're Wherever in the World You Need Us to Be.”, “ADC Telecommunications, Inc. Advertisment for CityRad Cell Enhancer, CityCell Digital Fiberoptic Microcell, CitySmart Site Diversity System & CityWide”, 1994, pp. 1-8, Publisher: ADC Telecommunications, Inc. |
Akos et al., “Direct Bandpass Sampling of Multiple Distinct RF Signals”, “Transactions on Communications”, Jul. 1, 1999, pp. 983-988, vol. 47, No. 7, Publisher: IEEE. |
Ameritech, “Broadband Optical Transport Digital Microcell Connection Service—Interface and Performance Specifications”, Dec. 1993, pp. Cover-26, No. 1, Publisher: Ameritech. |
Analog Devices, Inc., “Mixed-Signal Design Seminar”, 1991, pp. 1-3, Publisher: Analog Devices, Inc. |
Anaren, “Anaren Microwave Components”, pp. 1-2. |
“And Now a Few Words From Your Customers . . . ”, Aug. 1, 1992, pp. 1-4, Publisher: ADC Kentrox. |
Foxcom Wireless Proprietary Information, “Application Note RFiber—RF Fiberoptic Links for Wireless Applications”, 1998, pp. 3-11. |
Brunner et al., “On Space-Time Rake Receiver Structures for WCDMA”, Oct. 1999, pp. 1546-1551, Publisher: IEEE. |
Cheun, “Performance of Direct-Sequence Spread-Spectrum Rake Receivers with Random Spreading Sequences”, “IEEE Transactions on Communications”, Sep. 1997, pp. 1130-1143, vol. 45, No. 9, Publisher: IEEE. |
The Day Group, “New Signal Transport Technology Digitizes the Cellular Band”, “Cellular Industry”, , pp. 1-2, Publisher: City Cell. |
“CityCell 824 Host-Site User Manual”, Sep. 25, 1993, pp. 1-108. |
Cellular Industry, “ADC Kentrox CityCell Field Trial Yields Another First—Simultaneous Analog and Digital Calls”, “City Cell”, Dec. 22, 2000, p. 1. |
Dali Wireless, Inc.'s Preliminary Invalidity Contentions to CommScope Technoliges LLC, “CommScope Technologies LLC V. Dali Wireless, Inc. V. CommScope Connectivity LLC”, “United States District Court for the Northern District of Texas Dallas Division”, Mar. 13, 2017, pp. 1-23, No. 3:16-cv-477, Published in: US. |
Dali Wireless, Inc.'s Preliminary Invalidity Contentions to CommScope Technoliges LLC—Exhibit A, “CommScope Technologies LLC V. Dali Wireless, Inc. V. CommScope Connectivity LLC”, “United States District Court for the Northern District of Texas Dallas Division”, Mar. 13, 2017, pp. 1-27, No. 3:16-cv-477, Published in: US. |
Dali Wireless, Inc.'s Preliminary Invalidity Contentions to CommScope Technoliges LLC—Exhibit B, “CommScope Technologies LLC V. Dali Wireless, Inc. V. CommScope Connectivity LLC”, “United States District Court for the Northern District of Texas Dallas Division”, Mar. 13, 2017, pp. 1-200, No. 3:16-cv-477, Published in: US. |
Dali Wireless, Inc.'s Preliminary Invalidity Contentions to CommScope Technoliges LLC—Exhibit C, “CommScope Technologies LLC V. Dali Wireless, Inc. V. CommScope Connectivity LLC”, “United States District Court for the Northern District of Texas Dallas Division”, Mar. 13, 2017, pp. 1-410, No. 3:16-cv-477, Published in: US. |
Dali Wireless, Inc.'s Preliminary Invalidity Contentions to CommScope Technoliges LLC—Exhibit D, “CommScope Technologies LLC V. Dali Wireless, Inc. V. CommScope Connectivity LLC”, “United States District Court for the Northern District of Texas Dallas Division”, Mar. 13, 2017, pp. 1-613, No. 3:16-cv-477, Published in: US. |
Dali Wireless, Inc.'s Preliminary Invalidity Contentions to CommScope Technoliges LLC—Exhibit E, “CommScope Technologies LLC V. Dali Wireless, Inc. V. CommScope Connectivity LLC”, “United States District Court for the Northern District of Texas Dallas Division”, Mar. 13, 2017, pp. 1-482, No. 3:16-cv-477, Published in: US. |
Dali Wireless, Inc.'s Preliminary Invalidity Contentions to CommScope Technoliges LLC—Exhibit F, “CommScope Technologies LLC V. Dali Wireless, Inc. V. CommScope Connectivity LLC”, “United States District Court for the Northern District of Texas Dallas Division”, Mar. 13, 2017, pp. 1-573, No. 3:16-cv-477, Published in: US. |
Crofut, “Remote Monitoring of Wireless Base Stations”, “http://urgentcomm.com/print/mag/remote-monitoring-wireless-base-stations”, Jun. 1, 1998, pp. 1-4. |
Cyr et al., “The Digital Age is Here—Digital Radio Frequency Transport Enhances Cellular Network Performance”, “Telephony”, Jul. 5, 1993, pp. 20-24. |
Payne et al., “Single Mode Optical Local Networks”, “GLOBECOM '85”, Dec. 5, 1985, pp. 1200-1206, Publisher: IEEE Global Telecommunications Conference. |
Horowitz, “Digital Electronics Chapter 8: Basic Logic Concepts”, “The Art of Electronics”, 1980, p. 316 Publisher: Press Syndicate of the University of Cambridge. |
Cox, “A Radio System Proposal for Widespread Low-Power Tetherless Communications”, “IEEE Transactions on Communications”, Feb. 1991, pp. 324-335, vol. 39, No. 2, Publisher: IEEE. |
IEE, “Electronics Letters an International Publication”, Nov. 19, 1987, pp. 1-4, vol. 23, No. 24, Publisher: The Institution of Electrical Engineers. |
ADC Kentrox, “ADC Kentrox Expands RF Technology Base with Acquisition of Waseca Technology Inc.”, “ADC Kentrox New Release”, Jun. 9, 1993, pp. 1-2. |
Siala et al., “Equalization for Orthogonal Frequency Division Multiplexing System”, 1993, pp. 649-652, Publisher: IEEE, Published in: New York, NY. |
Ericksson, “Advertisement by Ericksson”, “Telephony”, 1994, p. 1. |
ADC Kentrox, “ADC Kentrox Introduces CityCell 824, A Replacement for Conventional Cell Sites; Company's Original Goal Was to Improve Fiber Optic T1 Links Between Cells, MTSOs”, “Telocator Bulletin”, Feb. 1993, p. 1, Publisher: CityCell. |
Tang, “Fiber Optic Antenna Remoting for Multi-Sector Cellular Cell Sites”, “GTE Laboratories—Abstract”, at least as early as Jul. 9, 1993, pp. 1-22. |
ADC Kentrox, “First Field Trial Results Exceed Expectations ADC Kentrox and Cellular One Join Force to Provide a New Level of Portable Service”, Mar. 2, 1993, pp. 1-2, Publisher: ADC Kentrox. |
Foxcom Wireless Properietary Information, “Litenna In-Building RF Distribution System”, 1998, pp. 1-8, Publisher: Foxcom Wireless Ltd. |
1998 Foxcom Wireless Proprietary Information, “Application Note: RFiber—RF Fiberoptic Links for Wireless Applications”, “RFiber Application Book”, 1998, pp. 3-11, Published in: US. |
Grace, “Synchronous Quantized Subcarrier Multiplexing for Transport of Video, Voice and Data”, “IEEE Journal on Selected Areas in Communications”, Sep. 1990, pp. 1351-1358, vol. 8, No. 7, Publisher: IEEE. |
Graf, “Modern Dictionary of Electronics—Seventh Edition”, 1999, pp. 1-9. |
Grundmann et al., “An Empirical Comparison of a Distributed Antenna Microcell System Versus a Single Antenna Microcell System for Indoor Spread Spectrum Communications at 1.8 GHz”, “ICUPC '93”, 1993, pp. 59-63, Publisher: IEEE. |
Gupta et al., “Land Mobile Radio Systems—A Tutorial Exposition”, Jun. 1985, pp. 34-45, vol. 23, No. 6, Publisher: IEEE Communications Magazine. |
Harvey et al., “Cordless Communications Utilising Radio Over Fibre Techniques for the Local Loop”, “IEEE International Conference on Communications”, Jun. 1991, pp. 1171-1175, Publisher: IEEE. |
Ishio et al., “A Two-Way Wavelength-Division-Multiplexing Transmission and Its Application to a Switched TV Distribution System”, “Conference Record, Fourth European Conference on Optical Communication”, Sep. 12, 1978, pp. 645-665, Publisher: IIC. |
Titch, “Kentrox Boosts Coverage and Capacity”, “Telephony”, Jan. 25, 1993, pp. 11-12. |
European Patent Office, “Office Action EP Application No. 01950794.6”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Feb. 24, 2006, pp. 1-5, Published in: EP. |
European Patent Office, “Office Action for EP Application No. 01950794.6”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Mar. 6, 2007, pp. 1-4, Published in: EP. |
European Patent Office, “Office Action for EP Application No. 01950794.6”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Nov. 16, 2010, pp. 1-4, Published in: EP. |
European Patent Office, “Summons to Attend Oral Proceedings for EP Application No. 01950794.6”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, May 21, 2010, pp. 1-6, Published in: EP. |
European Patent Office, “Extended European Search Report for EP Application No. 10011450.3”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Jan. 14, 2011, pp. 1-9, Published in: EP. |
European Patent Office, “Communication under Rule 71(3) from European Application Serial No. 10011450.3”, “from Foreign Counterpart to U.S. Appl. No. 09/619,431”, dated Jul. 14, 2015, pp. 1-39, Published in: EP. |
European Patent Office, “Communication under Rule 71(3) for EP Applicatoin No. 10011450.3”, “from Foreign Counterpart to U.S. Appl. No. 09/619,431”, dated Jan. 26, 2016, pp. 1-37, Published in: EP. |
European Patent Office, “European Office Action for Application Serial No. 10011450.3”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Jan. 16, 2015, pp. 1-4, Published in: EP. |
European Patent Office, “Extended European Search Report for EP Application No. 15020262.0”, “from Foreign Counterpart to U.S. Appl. No. 09/619,431”, dated May 20, 2016, pp. 1-8, Published in: EP. |
United States Patent and Trademark Office, “Notice of Allowance”, “U.S. Appl. No. 09/619,431”, dated Aug. 12, 2003, pp. 1-9, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “U.S. Appl. No. 09/619,431”, dated Mar. 13, 2003, pp. 1-15, Published in: US. |
United States Patent and Trademark Office, “Final Office Action”, “U.S. Appl. No. 10/740,944”, dated Apr. 25, 2007, pp. 1-19, Published in: US. |
United States Patent and Trademark Office, “Final Office Action”, “U.S. Appl. No. 10/740,944”, dated Jul. 18, 2007, pp. 1-21, Published in: US. |
United States Patent and Trademark Office, “Final Office Action”, “U.S. Appl. No. 10/740,944”, dated Oct. 3, 2007, pp. 1-22, Published in: US. |
United States Patent and Trademark Office, “Final Office Action”, “U.S. Appl. No. 10/740,944”, dated Oct. 14, 2008, pp. 1-25, Published in: US. |
United States Patent and Trademark Office, “Notice of Allowance”, “U.S. Appl. No. 10/740,944”, dated Aug. 13, 2009, pp. 1-12, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “U.S. Appl. No. 10/140,944”, dated Aug. 24, 2006, pp. 1-19, Published in: US. |
United States Patent and Trademark Office, “Final Office Action”, “U.S. Appl. No. 10/740,944”, dated Feb. 5, 2007, pp. 1-16, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “U.S. Appl. No. 10/740,944”, dated Apr. 3, 2008, pp. 1-21, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “U.S. Appl. No. 10/740,944”, dated Feb. 27, 2009, pp. 1-25. |
United States Patent and Trademark Office, “Notice of Allowance”, “U.S. Appl. No. 12/617,215”, dated Aug. 2, 2012, pp. 1-11, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “U.S. Appl. No. 12/617,215”, dated Apr. 11, 2012, pp. 1-12, Published in: US. |
United States Patent and Trademark Office, “Notice of Allowance”, “U.S. Appl. No. 13/662,948”, dated Jul. 3, 2013, pp. 1-10, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “from U.S. Appl. No. 13/662,948”, dated Apr. 24, 2013, pp. 1-23, Published in: US. |
United States Patent and Trademark Office, “Notice of Allowance”, “from U.S. Appl. No. 14/054,223”, dated Aug. 14, 2015, pp. 1-5, Published in: US. |
United States Patent and Trademark Office, “Notice of Allowance”, “from U.S. Appl. No. 14/054,223”, dated Dec. 22, 2015, pp. 1-9, Published in: US. |
United States Patent and Trademark Office, “Supplemental Notice of Allowability”, “from U.S. Appl. No. 14/054,223”, dated Apr. 11, 2016, pp. 1-4, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “from U.S. Appl. No. 14/054,223”, dated Apr. 29, 2015, pp. 1-25, Published in: US. |
United States Patent and Trademark Office, “Final Office Action”, “From U.S. Appl. No. 15/144,219”, dated Oct. 30, 2017, pp. 1-33, Published in: US. |
United States Patent and Trademark Office, “Notice of Allowance”, “From U.S. Appl. No. 15/144,219”, dated Nov. 28, 2016, pp. 1-5, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “From U.S. Appl. No. 15/144,219”, dated Aug. 10, 2016, pp. 1-35, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “From U.S. Appl. No. 15/144,219”, dated Apr. 28, 2017, pp. 1-24, Published in: US. |
The International Bureau of WIPO, “International Preliminary Examination Report from PCT/US01/21021”, “from PCT Counterpart of U.S. Appl. No. 09/619,431”, dated Oct. 6, 2002, pp. 1-3, Published in: WO. |
International Searching Authority, “International Search Report for PCT/US01/21021”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Nov. 15, 2001, pp. 1-7, Published in: WO. |
International Search Authority, “Written Opinion for PCT/US01/21021”, dated Mar. 18, 2002, pp. 1-2, Published in: WO. |
China Patent Office, “Notification of Grant Patent Right for Invention from CN200380109396.3”, “from Chinese Counterpart of U.S. Appl. No. 10/395,743”, dated Jun. 29, 2010, pp. 1-4, Published in: CN. |
China Patent Office, “First Office Action from CN200380109396.3”, “from Chinese Counterpart of U.S. Appl. No. 10/395,743”, dated Jan. 4, 2008, pp. 1-7, Published in: CN. |
European Patent Office, “Office Action for EP Application No. 03790242.6”, “from Foreign Counterpart of U.S. Appl. No. 10/395,743”, dated Feb. 11, 2009, pp. 1-4, Published in: EP. |
Korean Intellectual Property Office, “Decision to Grant from KR2005-7010190”, “from Foreign Counterpart to U.S. Appl. No. 10/395,743”, dated Feb. 2, 2012, pp. 1-7, Published in: KR. |
Korean Patent Office, “Office Action from KR2005-7010190”, “from Foreign Counterpart to U.S. Appl. No. 10/395,743”, dated Sep. 30, 2010, pp. 1-5, Published in: KR. |
Korean Patent Office, “Final Rejection KR2005-7010190”, “from Korean Counterpart to U.S. Appl. No. 10/395,743”, dated Oct. 31, 2011, pp. 1-4, Published in: KR. |
United States Patent and Trademark Office, “Final Office Action”, “From U.S. Appl. No. 10/395,743”, dated Nov. 17, 2008, pp. 1-15, Published in: US. |
United States Patent and Trademark Office, “Final Office Action”, “From U.S. Appl. No. 10/395,743”, dated Aug. 20, 2009, pp. 1-22, Published in: US. |
United States Patent and Trademark Office, “Final Office Action”, “From U.S. Appl. No. 10/395,743”, dated Jul. 21, 2010, pp. 1-23, Published in: US. |
United States Patent and Trademark Office, “Notice of Allowance”, “From U.S. Appl. No. 10/395,743”, dated Jun. 4, 2014, pp. 1-5, Published in: US. |
United States Patent and Trademark Office, “Notice of Allowance”, “From U.S. Appl. No. 10/395,743”, dated Sep. 12, 2014, pp. 1-25, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “From U.S. Appl. No. 10/395,743”, dated Mar. 28, 2005, pp. 1-11, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “From U.S. Appl. No. 10/395,743”, dated Jan. 30, 2006, pp. 1-15, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “From U.S. Appl. No. 10/395,743”, dated Sep. 1, 2006, pp. 1-12, Published in: US. |
United States Patent and Trademark Office, “Office Action”, “From U.S. Appl. No. 10/395,743”, dated Nov. 15, 2007, pp. 1-16, Published in: US. |
Brazilian Patent Office, “Office Action for Brazil Application No. PI0112653-9”, “from Foreign Countpart to U.S. Appl. No. 09/619,431”, dated Apr. 8, 2015, pp. 1-14, Published in: BR. |
Brazil Patent Office, “Office Action for Brazil Application No. PI0112653-9”, “from Foreign Counterpart to U.S. Appl. No. 09/619,431”, dated Jan. 8, 2016, pp. 1-7, Published in: BR. |
State Intellectual Property Office of People's Republic of China, “Second Office Action for CN Application No. 01815499.9”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated May 11, 2007, pp. 1-5, Published in: CN. |
State Intellectual Property Office of People's Republic of China, “Third Office Action for CN Application No. 01815499.9”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Oct. 26, 2007, pp. 1-8, Published in: CN. |
State Intellectual Property Office of People's Republic of China, “Fourth Office Action for CN Application No. 01815499.9”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Mar. 7, 2007, pp. 1-8, Published in: CN. |
State Intellectual Property Office of People's Republic of China, “Notification to Grant Patent Right for Invention”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated May 28, 2013, pp. 1-3, Published in: CN. |
State Intellectual Property Office of People's Republic of China, “Second Office Action”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, Feb. 4, 2013, pp. 1-7, Published in: CN. |
State Intellectual Property Office of People's Republic of China, “First Office Action for CN Application No. 200710153587”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Mar. 19, 2010, pp. 1-7, Published in: CN. |
State Intellectual Property Office of People's Republic of China, “Office Action for CN Application No. 200710153587”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Nov. 2, 2010, pp. 1-9, Published in: CN. |
State Intellectual Property Office of People's Republic of China, “Notice of Reexamination for CN Application No. 200710153587”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Jun. 21, 2012, pp. 1-18, Published in: CN. |
State Intellectual Property Office of People's Republic of China, “Second Office Action for CN Application No. 200910005002.9”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Jan. 23, 2013, pp. 1-11, Published in: CN. |
State Intellectual Property Office of People's Republic of China, “Notification to Grant Patent Right for Invention from CN200910005002.9”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, Aug. 19, 2013, pp. 1-6, Published in: CN. |
State Intellectual Property Office of People's Republic of China, “First Office Action for CN Application No. 200910005002.9”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated Apr. 6, 2012, pp. 1-12, Published in: CN. |
European Patent Office, “Communication under Rule 71(3) EPC for EP Application No. 01950794.6”, “from Foreign Counterpart of U.S. Appl. No. 09/619,431”, dated May 3, 2011, pp. 1-5, Published in: EP. |
Schneiderman, “Offshore Markets Gain in Size, Competitiveness Even the Smallest Industry Companies Are Expanding Their Global Buisness”, “Microwaves and RF”, Mar. 1993, pp. 33-39, vol. 32, No. 3, Publisher: Penton Publishing, Inc. |
Merrett et al., “A Cordless Access System Using Radio-Over-Fibre Techniques”, “Gateway to the Future Technology in Motion”, May 22, 1991, pp. Cover-924, Publisher: 41st IEEE Vehicular Technology Conference. |
Microwaves & RF, “Digital Transport for Cellular”, Feb. 1993, p. 1. |
Microwaves & RF, “Offshore Markets Gain in Size, Competitiveness”, Mar. 1993, pp. 1-8, vol. 32, No. 3. |
Nakatsugawa et al., “Software Radio Base and Personal Stations for Cellular/PCS Systems”, “Vehicular Technology Conference Proceedings”, May 18, 2000, pp. 617-621, Publisher: IEEE. |
O'Byrne, “TDMA and CDMA in a Fiber-Optic Environment”, “Vehicular Technology Conference, 1988, IEEE 38th”, Jun. 1992, pp. 727-731, Publisher: IEEE. |
Quinn, “The Cell Enhancer”, “Vehicular Technology Conference”, May 22, 1986, pp. 77-83, Publisher: Bell Atlantic Mobile Systems. |
Kobb, “Personal Wireless”, Spectrum, Jun. 1993, pp. 18, vol. 30, No. 6, Publisher: IEEE, Published in: US. |
Steele, “Towards a High-Capacity Digital Cellular Mobile Radio System”, “Special Issue on Land Mobile Radio”, Aug. 1985, pp. 405-415, vol. 132, No. Pt. F, No. 5, Publisher: IEEE Proceedings. |
Tang, “Fiber-Optic Antenna Remoting for Multisector Cellular Cell Sites”, Jan. 1, 1992, pp. 76-81, Publisher: GTE Laboratories, Published in: US. |
Tektronix, “Synchronous Optical Network (SONET)”, “http://www.iec.org/online/tutorials/sonet/topic03.html”, Aug. 28, 2002, pp. 1-5, Publisher: International Engineering Consortium. |
Russell, “New Microcell Technology Sets Cellular Carriers Free”, “Telephony Mar. 1993”, pp. 40-42, Publisher: ADC Kentrox, Published in: US. |
GTE Laboratories, “Urban Microcell System Layout”, “GTE Laboratories Conference”, Jun. 14-18, 1992, pp. 1-13, Published in: US. |
Lee et al., “Intelligent Microcell Applications in PCS”, “Vehicular Technology Conference, 1993., 43rd IEEE”, May 20, 1993, pp. 721-727, Publisher: IEEE. |
Zhaohui et al., “A RAKE Type Receiver Structure for CDMA Mobile Communication Systems Using Antenna Arrays”, 1996, pp. 528-530, Publisher: IEEE. |
Zonemaster, “Maximum Coverage for High-Capacity Locations”, “Decibel Products”, 1993, pp. 1-4, Publisher: Decibel Multi Media Microcell System. |
Brazilian National Institute of Industrial Property, “Technical Examination Report for BR Application No. PI0112653-9”, from Foreign Counterpart to U.S. Appl. No. 09/619,431, dated Apr. 17, 2018, p. 1-6, Published in: BR. |
European Patent Office, “Communication under Rule 71(3) from EP Application No. 10011450.3 dated Aug. 11, 2015”, from Foreign Counterpart to U.S. Appl. No. 09/619,431, dated Aug. 11, 2015, pp. 1-40, Published: EP. |
State Intellectual Property Office, P.R. China, “Office Action from CN Application No. 01815499.9 dated Jul. 8, 2005”, from Foreign Counterpart to U.S. Appl. No. 09/619,431, dated Jul. 8, 2005, pp. 1-8, Published: US. |
U.S. Patent and Trademark Office, “Final Office Action”, U.S. Appl. No. 15/144,219, dated Dec. 4, 2018, pp. 1-59, Published: US. |
U.S. Patent and Trademark Office, “Interview Summary”, U.S. Appl. No. 15/144,219, dated Sep. 29, 2017, pp. 1-14, Published: US. |
U.S. Patent and Trademark Office, “Interview Summary”, U.S. Appl. No. 15/144,219, dated Nov. 16, 2016, pp. 1-11, Published: US. |
U.S. Patent and Trademark Office, “Interview Summary”, U.S. Appl. No. 15/144,219, dated Mar. 26, 2018, pp. 1-13, Published: US. |
Wikipedia, “Global System for Mobile Communications”, Jan. 9, 2019, pp. 1-24, Wikipedia. |
Annex WRST 14 to the Nullity Action 114950NI934 PL/If against EP 2290850 dated Apr. 3, 2019, pp. 1-50. |
Annex WRST 16 to the Nullity Action 114951NI934/If against EP 1570626 dated Jan. 7, 2019, pp. 1-53. |
Annex WRST 2 to the Nullity Action 114950NI934 PL/If against EP 2290850 dated Apr. 3, 2019, pp. 1-4. |
Annex WRST 2 to the Nullity Action 114951NI934/If against EP 1570626 dated Jan. 7, 2019, pp. 1-4. |
Annex WRST 3 to the Nullity Action 114950NI934 PL/If against EP 2290850 dated Apr. 3, 2019, pp. 1-2. |
Annex WRST 3 to the Nullity Action 114951NI934/If against EP 1570626 dated Jan. 7, 2019, pp. 1-3. |
Annex WRST 4 to the Nullity Action 114950NI934 PL/If against EP 2290850 dated Apr. 3, 2019, pp. 1-6. |
CommScope, “CommScope Completes Transformational Acquisition of TE Connectivity's Telecom, Enterprise and Wireless Businesses”, Aug. 28, 2015, pp. 1-4. |
Nullity Action 114950NI934 PL/If against EP 2290850 dated Apr. 3, 2019, pp. 1-107. |
Nullity Action 114951NI934 PL/If against EP 1570626 dated Jan. 7, 2019, pp. 1-122. |
TE Connectivity, “Innovative Solution to Cut Costs of Delivering Mobile Ultra-broadband Access”, Feb. 20, 2014, pp. 1-4. |
Wikipedia, “Summation”, Dec. 18, 2018, pp. 1-11, Wikipedia. |
Wikipedia, “T-carrier”, Oct. 21, 2018, pp. 1-6, Wikipedia. |
Jury Verdict, “CommScope Technologies LLC V. Dali Wireless, Inc. V. CommScope Connectivity LLC”, No. 3:16-cv-477, “United States District Court for the Northern District of Texas Dallas Division”, Jun. 20, 2019, pp. 1-19, Published in: US. |
Federal Patent Court, “Statement of Reply including Annex MB1 in the Nullity Action from EP Pat. No. 1570626 dated Jul. 31, 2019”, from Foreign Counterpart to U.S. Appl. No. 10/395,743, pp. 1-57, Published: DE. |
Federal Patent Court, “Statement of Reply including Annexes MB1 and MB2 in the Nullity Action from EP Application No. 2290850 dated Sep. 13, 2019”, from Foreign Counterpart to U.S. Appl. No. 09/619,431, pp. 1-149, Published: DE. |
Number | Date | Country | |
---|---|---|---|
20170214460 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15144219 | May 2016 | US |
Child | 15483432 | US | |
Parent | 14054223 | Oct 2013 | US |
Child | 15144219 | US | |
Parent | 13662948 | Oct 2012 | US |
Child | 14054223 | US | |
Parent | 12617215 | Nov 2009 | US |
Child | 13662948 | US | |
Parent | 10740944 | Dec 2003 | US |
Child | 12617215 | US | |
Parent | 09619431 | Jul 2000 | US |
Child | 10740944 | US |