Polar code encoding method and apparatus in wireless communications

Information

  • Patent Grant
  • 11165535
  • Patent Number
    11,165,535
  • Date Filed
    Thursday, April 2, 2020
    5 years ago
  • Date Issued
    Tuesday, November 2, 2021
    3 years ago
Abstract
This application relates to the field of wireless communications technologies, and discloses an encoding method and apparatus, to improve accuracy of reliability calculation and ordering for polarized channels. The method includes: obtaining a first sequence used to encode K to-be-encoded bits, where the first sequence includes sequence numbers of N polarized channels, the first sequence is same as a second sequence or a subset of the second sequence, the second sequence comprises sequence numbers of Nmax, polarized channels, and the second sequence is the sequence shown in Sequence Q11 or Table Q11, K is a positive integer, N is a positive integer power of 2, n is equal to or greater than 5, K≤N, Nmax=1024; selecting sequence numbers of K polarized channels from the first sequence; and performing polar code encoding on K the to-be-encoded bits based on the selected sequence numbers of the K polarized channels.
Description
TECHNICAL FIELD

Embodiments of this application relate to the field of communications technologies, and in particular, to a polar code encoding method and apparatus.


BACKGROUND

As the most fundamental wireless access technology, channel coding plays a key role in ensuring reliable transmission of data. In an existing wireless communications system, channel coding is usually performed by using a turbo code, a low-density parity-check (LDPC) code, and a polar code. The turbo code cannot support information transmission at an excessively low or excessively high bit rate. For medium/short packet transmission, due to encoding/decoding characteristics of the turbo code and the LDPC code, it is very difficult for the turbo code and the LDPC code to achieve ideal performance in a case of a limited code length. In terms of implementation, the turbo code and the LDPC code have relatively high computational complexity in an encoding/decoding implementation process. The polar code is a good code that has been theoretically proved to be able to achieve the Shannon capacity and has relatively low encoding/decoding complexity, and therefore is more widely applied.


However, with rapid evolution of wireless communications systems, future communications systems such as 5th generation (5G) communications systems will have some new characteristics. For example, three most typical communication scenarios include enhanced mobile broadband (eMBB), massive machine type communications (mMTC), and ultra-reliable and low-latency communications (URLLC). The communications scenarios have higher requirements on encoding/decoding performance of the polar code.


Reliability ordering for polarized channels plays a key role in the encoding/decoding performance of the polar code. However, at present, accuracy of reliability ordering for polarized channels is not desirable, hindering further improvement of the encoding/decoding performance of the polar code during application.


SUMMARY

Embodiments of this application provide a polar code encoding method and apparatus, to improve accuracy of reliability ordering for polarized channels.


Specific technical solutions provided in the embodiments of this application are as follows:


According to a first aspect, a polar code encoding method is provided. The method includes: obtaining, by an encoding apparatus, to-be-encoded bits, where a length of the to-be-encoded bits is K, and K is a positive integer; obtaining a sequence used to encode the K to-be-encoded bits, where the sequence is denoted as a first sequence, the first sequence is used to represent an order of reliability of N polarized channels, the first sequence includes sequence numbers of the N polarized channels, the sequence numbers of the N polarized channels are arranged in the first sequence based on the reliability of the N polarized channels, N is a mother code length of a polar code, N is a positive integer power of 2, and K≤N; selecting, in descending order of the reliability, the first K sequence numbers whose reliability rank relatively high in the first sequence; and mapping to-be-encoded information bits to polarized channels corresponding to the first K sequence numbers, and performing polar code encoding on the to-be-encoded bits. Therefore, positions of the information bits and fixed bits are determined by calculating reliability of polarized channels of a polar code without considering a channel parameter and a bit rate. In this way, computational complexity of polar code encoding may be reduced.


In a possible design, the first sequence is all of or a subset of a second sequence, where the second sequence includes sequence numbers of Nmax polarized channels, the sequence numbers of the Nmax polarized channels are arranged in the second sequence based on reliability of the Nmax polarized channels, Nmax is a positive integer, Nmax≥N, and an order in which the sequence numbers of the polarized channels in the first sequence are arranged is consistent with an order in which sequence numbers less than N in the sequence numbers of the polarized channels in the second sequence are arranged.


In a possible design, the second sequence may be part or all of any sequence shown in Sequence Q1 to Sequence Q30 in the specification, the sequence numbers of the N polarized channels in the second sequence are arranged in ascending order of the reliability of the N polarized channels, and a minimum value of the sequence number of the polarized channel is 0.


In a possible design, the second sequence is part or all of any sequence shown in Table Q1 to Table Q30 in the specification the sequence numbers of the N polarized channels in the second sequence are arranged in ascending order of the reliability of the N polarized channels, and a minimum value of the sequence number of the polarized channel is 0.


In a possible design, the second sequence may be part or all of any sequence shown in Sequence Z1 to Sequence Z30 in the specification, each of the sequence numbers of the N polarized channels in the second sequence corresponds to the order of the reliability of the sequence number in the entire sequence, and a minimum value of the sequence number of the polarized channel is 0.


In a possible design, the second sequence is part or all of any sequence shown in Table Z1 to Table Z30 in the specification, each of the sequence numbers of the N polarized channels in the second sequence corresponds to the order of the reliability of the sequence number in the entire sequence, and a minimum value of the sequence number of the polarized channel is 0.


According to a second aspect, a polar code encoding apparatus is provided. The apparatus has a function of implementing the method according to any one of the first aspect and the possible designs of the first aspect. The function may be implemented by using hardware, or may be implemented by using hardware to execute corresponding software. The hardware or the software includes one or more modules corresponding to the foregoing function.


In a possible design, when part or all of the function is implemented by using hardware, the polar code encoding apparatus includes: an input interface circuit, configured to obtain to-be-encoded bits; a logic circuit, configured to perform the method according to any one of the first aspect and the possible designs of the first aspect; and an output interface circuit, configured to output a bit sequence after encoding.


Optionally, the polar code encoding apparatus may be a chip or an integrated circuit.


In a possible design, when part or all of the function is implemented by using software, the polar code encoding apparatus includes: a memory, configured to store a program; and a processor, configured to execute the program stored in the memory. When the program is executed, the polar code encoding apparatus may implement the method according to any one of the first aspect and the possible designs of the first aspect.


Optionally, the memory may be a physically independent unit. Alternatively, the memory is integrated with a processor.


In a possible design, when part or all of the function is implemented by using software, the polar code encoding apparatus includes a processor. The memory configured to store the program is located outside the encoding apparatus. The processor is connected to the memory by using a circuit/wire and is configured to read and execute the program stored in the memory.


According to a third aspect, a communications system is provided. The communications system includes a network device and a terminal. The network device or the terminal may perform the method according to any one of the first aspect and the possible designs of the first aspect.


According to a fourth aspect, a computer storage medium storing a computer program is provided. The computer program includes an instruction used to perform the method according to any one of the first aspect and the possible designs of the first aspect.


According to a fifth aspect, a computer program product including an instruction is provided. When run on a computer, the instruction causes the computer to perform the methods according to the foregoing aspects.


According to a sixth aspect, a wireless device is provided. The wireless device includes an encoding apparatus configured to implement the method described in any one of the first aspect and the possible designs of the first aspect, a modulator, and a transceiver, where


the modulator is configured to modulate a bit sequence after encoding, to obtain a modulated sequence; and


the transceiver is configured to send the modulated sequence.


In a possible design, the wireless device is a terminal or a network device.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic architectural diagram of a communications system applied in an embodiment of this application;



FIG. 2 is a schematic flowchart of a polar code encoding method according to an embodiment of this application;



FIG. 3 is a first schematic structural diagram of a polar code encoding apparatus according to an embodiment of this application;



FIG. 4 is a second schematic structural diagram of a polar code encoding apparatus according to an embodiment of this application;



FIG. 5 is a third schematic structural diagram of a polar code encoding apparatus according to an embodiment of this application; and



FIG. 6 is a fourth schematic structural diagram of a polar code encoding apparatus according to an embodiment of this application.





DESCRIPTION OF EMBODIMENTS

The following describes in detail the embodiments of this application with reference to accompanying drawings.


The embodiments of this application provide a polar code encoding method and apparatus. A reliability order is obtained based on reliability of polarized channels, sequence numbers of polarized channels used to send information bits are selected based on the reliability order, and polar code encoding is performed based on the sequence numbers selected for the information bits. In the embodiments of this application, a reliability of each subchannel of a polar code can be calculated more accurately. The encoding method and apparatus provided in the embodiments of the present invention are described below in detail with reference to the accompanying drawings.


To facilitate understanding of the embodiments of this application, the following describes the polar code briefly.


In an encoding scheme of the polar code, a noiseless channel is used to transmit information useful for a user, and a pure noisy channel is used to transmit agreed information or is not used to transmit information. The polar code is a linear block code, with its encoding matrix being GN and its encoding process being x1N=u1NGN, where u1N=(u1, u2, . . . , uN) is a binary row vector having a length of N (that is, code length), GN is an N×N matrix, and GN=F2⊗(log2(N)). F2⊗(log2(N)) is defined as a Kronecker (Kronecker) product of log2 N matrices F2. The foregoing matrix







F
2

=


[



1


0




1


1



]

.





In the encoding process of the polar code, some bits in u1N are used to carry information and are referred to as an information bit set, and an index set of the bits is denoted as custom character. Other bits are set to fixed values pre-agreed on by a receive end and a transmit end and are referred to as a fixed bit set or a frozen bit set (frozen bits), and an index set of the other bits is represented by a complementary set custom characterc of custom character. The encoding process of the polar code is equivalent to x1N=uAGN.(A)⊕uAcGN.(AC) where GN(A) is a sub-matrix obtained from rows that correspond to the indexes in the set custom character in GN, and GN(AC) is a sub-matrix obtained from rows that correspond to the indexes in the set custom characterc in GN. custom character is the information bit set in u1N, and includes K information bits. Usually, various check bits including but not limited to a cyclic redundancy check (Cyclic Redundancy Check, CRC for short) bit and a parity check (Parity Check, PC for short) bit are also included in the information bit set. uAc is the fixed bit set in u1N, and includes N−K fixed bits, which are known bits. The fixed bits are usually set to 0. However, the fixed bits may be set arbitrarily provided that the receive end and the transmit end pre-agree. Therefore, an encoding output of the polar code may be simplified to: x1N=custom characterGN(custom character). Herein, custom character is an information bit set in u1N, and custom character is a row vector of a length K, that is, |custom character|=K, where |⋅| represents a quantity of elements in a set, and K is a size of an information block; GN(custom character) is a sub-matrix obtained by using rows that correspond to the indexes in the set custom character in the matrix GN, and GN(custom character) is a K×N matrix.


A process of constructing the polar code, that is, a process of selecting the set custom character, determines performance of the polar code. Usually, the process of constructing the polar code is: determining, based on a mother code length N, that there are a total of N polarized channels that respectively correspond to N rows of the encoding matrix, calculating reliability of the polarized channels, and using indexes of the first K polarized channels having relatively high reliability as elements of the set custom character, and indexes that correspond to the remaining N−K polarized channels are used as elements of the index set custom characterc of the fixed bits. The set custom character determines positions of the information bits, and the set custom characterc determines positions of the fixed bits. A sequence number of a polarized channel is an index of the position of an information bit or a fixed bit, that is, an index of a position in u1N.


The solutions provided in the embodiments of this application relate to how to determine reliability of a polarized channel. A basic invention idea of the embodiments of this application is that reliability of the polarized channel may be represented by using a reliability. From a perspective of spectral analysis of signals, an approximation of an existing reliability to the polarized channel reliability may be understood as domain transform of a signal. Similar to Fourier transform in which transformation between a time domain and a frequency domain of a signal is implemented by using a kernel ejw, in this method, a signal is transformed from a channel sequence number domain to a reliability weight domain by using a β kernel. In the signal time-frequency analysis field, Fourier transform and wavelet transform are most commonly used. For the Fourier transform, limited by a form of the trigonometric function kernel ejw, high time domain resolution and high frequency domain resolution cannot be achieved at the same time in a signal time-frequency analysis process. For the wavelet transform, because a wavelet kernel is used and there are various forms of functions, an instantaneous change of a signal in time domain can be captured when domain transform is performed, so that both high time domain resolution and high frequency domain resolution can be achieved. In the embodiments of this application, the polarized channel reliability is estimated by using a changeable transform kernel, so that accuracy of sequence reliability estimation is improved.



FIG. 1 is a schematic structural diagram of a wireless communications network according to an embodiment of the present invention. FIG. 1 is merely an example. Other wireless networks to which the encoding method or apparatus of the embodiments of the present invention can be applied shall all fall within the protection scope of the present invention.


As shown in FIG. 1, a wireless communications network 100 includes a network device 110 and a terminal 112. When the wireless communications network 100 includes a core network 102, the network device 110 may further be connected to the core network 102. The network device 110 may further communicate with an IP network 104, for example, an Internet, a private IP network, or another data network. The network device provides a service for a terminal within coverage of the network device. For example, as shown in FIG. 1, the network device 110 provides wireless access for one or more terminals 112 within coverage of the network device 110. In addition, there may be an overlapping area between coverage of network devices, for example, the network device 110 and a network device 120. The network devices may further communicate with each other, for example, the network device 110 may communicate with the network device 120.


The foregoing network device may be a device configured to communicate with a terminal device. For example, the network device may be a base transceiver station (BTS) in a GSM system or a CDMA system, or may be a NodeB (NB) in a WCDMA system, or may further be an evolved NodeB (eNB or eNodeB) in an LTE system or a network side device in a future 5G network. Alternatively, the network device may be a relay station, an access point, an in-vehicle device, or the like. In a device to device (D2D) communications system, the network device may alternatively be a terminal that plays a role of a base station.


The foregoing terminal may refer to user equipment (UE), an access terminal, a user unit, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a wireless communications device, a user agent, or a user apparatus. The access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device having a wireless communication function, a computing device, another processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or the like. Based on a communications system architecture shown in FIG. 1, in this embodiment of this application, the polar code encoding method may be executed by the foregoing network device or terminal. The polar code encoding method may be used when the network device or the terminal serves as a transmit end to send data or information. Correspondingly, when the network device or the terminal serves as a receive end to receive data or information, a subchannel sequence needs to be determined first based on the method of the present invention. The following describes in detail the polar code encoding method provided in the embodiments of this application.


Based on the communications system architecture shown in FIG. 1, as shown in FIG. 2, a specific procedure of a polar code encoding method provided in an embodiment of this application is as follows.


Step 201. Obtain a first sequence used to encode K to-be-encoded bits.


The first sequence includes sequence numbers of N polarized channels, the sequence numbers of the N polarized channels are arranged in the first sequence based on reliability of the N polarized channels, K is a positive integer, N is a mother code length of a polar code, and N is a positive integer power of 2.


Step 202. Sequence numbers of K polarized channels are selected from the first sequence in descending order of reliability.


Step 203. Place the to-be-encoded bits based on the selected sequence numbers of the K polarized channels, and perform polar code encoding on the to-be-encoded bits.


The K to-be-encoded bits are mapped to the K polarized channels in the N polarized channels. The reliability of the K polarized channels is higher than reliability of the remaining N−K polarized channels.


Optionally, the first sequence is all of or a subset of a second sequence, the second sequence includes sequence numbers of Nmax polarized channels, the sequence numbers of the Nmax polarized channels are arranged in the second sequence based on reliability of the Nmax polarized channels, that is, an order in which the sequence numbers of the polarized channels in the first sequence are arranged is consistent with an order in which sequence numbers less than N in the sequence numbers of the polarized channels in the second sequence are arranged. Nmax may be a positive integer power of 2 or may not be a positive integer power of 2, and Nmax≥N. A manner for calculating the reliability of the Nmax polarized channels is similar to that for calculating the reliability of the N polarized channels. The arrangement based on the reliability herein may be arrangement performed in ascending order of the reliability, or may be arrangement performed in descending order of the reliability. Alternatively, the sequence numbers of the polarized channels are grouped into two or more groups, and the sequence numbers in each group are arranged in descending order or ascending order of the reliability. A specific grouping manner may be grouping based on values of sequence numbers of polarized channels or grouping based on congruent sequence numbers (for example, three groups are divided, and sequence numbers that are congruent modulo 3 are grouped into one group). This is not specifically limited herein.


Optionally, rate matching is performed, based on a target code length, on a sequence obtained after the polar code encoding.


According to the encoding method provided in this embodiment, after input information bits are received, a quantity K of to-be-encoded bits is determined based on a target code length N of a polar code. Regardless of online calculation or a manner in which calculation and storage are performed in advance, if a second sequence is known, a first sequence may be obtained from the second sequence, and when Nmax=N, the second sequence is the first sequence. The second sequence includes an order of reliability of Nmax polarized channels, where Nmax is a maximum code length supported by a communications system. Optionally, the first sequence may be obtained from a pre-stored second sequence, then information bits are determined based on the first sequence, and finally polar encoding is performed on the K to-be-encoded bits, to obtain a bit sequence obtained after the polar encoding. Therefore, positions of the information bits and fixed bits are determined by obtaining a reliability of a polarized channel of a polar code through a combination of online calculation and offline storage.


The following specifically describes a sequence of sequence numbers of polarized channels that is obtained through arrangement based on a reliability of an ith polarized channel in N (or Nmax) polarized channels. The sequence numbers of the N polarized channels may be 0 to N−1, or may be 1 to N. In this embodiment of this application, when the reliability of the ith polarized channel of the N polarized channels is determined, a value of i may be 1, 2, . . . , and N, or may be 0, 1, . . . , and N−1.


It may be understood that formulas used in the embodiments of this application are merely examples. Any solution that may be obtained by persons skilled in the art by making simple variations to the formulas without affecting performance of the formulas shall fall within the protection scope of the embodiments of this application.


For specific sequence examples, refer to the following six groups of sequences found based on different criteria. The second sequence may be part or all of any sequence shown in Sequence Q1 to Sequence Q30. These sequences may also be represented by using corresponding tables Table Q1 to Table Q30. “Reliability or sequence number of reliability” is a natural sequence of reliability in ascending order, and “polarized channel sequence number” is polarized channel sequence numbers in corresponding sequences. Herein, “part of” has three different meanings:


(1) Nmax is not a positive integer power of 2, but code lengths in the given examples are all positive integer powers of 2; therefore the second sequence can only be part of any sequence shown in Sequence Q1 to Sequence Q30; or


(2) Nmax_encoding_device supported by an encoding device is less than Nmax_protocol regulated by a protocol, and therefore only Nmax_encoding_device in any sequence shown in Sequence Q1 to Sequence Q30 needs to be selected; or


(3) Part of an actually used sequence having a length of Nmax is completely consistent with part of any sequence shown in Sequence Q1 to Sequence Q30.


These sequences may also be represented by using Z sequences, that is, an order of reliability of polarized channels that corresponds to a natural order of polarized channel sequence number is used as a Z sequence. To be specific, the second sequence may be part or all of any sequence shown in Sequence Z1 to Sequence Z30. Likewise, the Z sequences may also be represented by using corresponding tables Table Z1 to Table Z30, where the polarized channel sequence numbers are sequentially arranged in ascending order, and “reliability or sequence number of reliability” is a sequence number of ordering of a reliability of a polarized channel that corresponds to the polarized channel sequence number.


For example, an xth Q sequence is Sequence Qx and Table Qx, and Sequence Qx is equivalent to Table Qx. Corresponding Z sequences are Sequence Zx and Table Zx, and Sequence Zx is equivalent to Table Zx, where x=1, 2, . . . , and 30.


First group of sequences (obtained by using a criterion that comprehensively considers performance of code length of 64, 128, 256, 512, and 1024, and preferentially considers performance of a mother code length of 256).


Sequence Q1, having a sequence length of 1024:


[0, 1, 4, 8, 2, 16, 32, 6, 64, 512, 3, 12, 5, 18, 128, 9, 33, 17, 10, 256, 20, 34, 24, 65, 7, 36, 66, 129, 11, 40, 19, 132, 513, 13, 68, 48, 14, 72, 257, 21, 130, 26, 35, 80, 258, 136, 38, 22, 260, 516, 37, 25, 96, 67, 264, 41, 144, 28, 69, 49, 74, 160, 42, 520, 272, 192, 70, 44, 131, 81, 15, 288, 50, 134, 73, 514, 23, 52, 320, 133, 76, 82, 137, 56, 27, 259, 528, 97, 39, 384, 138, 84, 29, 261, 145, 544, 43, 98, 140, 30, 88, 262, 146, 71, 518, 265, 161, 45, 100, 148, 51, 46, 576, 75, 266, 104, 273, 164, 193, 53, 515, 162, 268, 77, 152, 274, 54, 524, 83, 57, 112, 85, 135, 289, 517, 194, 78, 290, 58, 276, 168, 530, 99, 139, 196, 86, 176, 640, 60, 89, 280, 101, 147, 292, 521, 141, 321, 142, 90, 200, 545, 31, 102, 263, 105, 529, 322, 149, 296, 47, 522, 92, 208, 267, 385, 324, 304, 536, 768, 532, 163, 153, 150, 106, 55, 165, 386, 577, 328, 548, 269, 113, 154, 79, 224, 166, 275, 108, 578, 270, 59, 114, 195, 169, 156, 87, 546, 61, 277, 291, 519, 278, 116, 170, 197, 641, 177, 281, 91, 552, 201, 388, 293, 198, 523, 62, 143, 336, 584, 172, 282, 120, 644, 103, 178, 294, 531, 202, 93, 323, 560, 392, 297, 151, 580, 209, 284, 180, 525, 107, 94, 204, 769, 298, 352, 325, 526, 155, 109, 533, 400, 305, 300, 642, 210, 184, 326, 538, 115, 167, 592, 157, 225, 306, 547, 329, 110, 770, 212, 117, 171, 550, 330, 226, 648, 387, 308, 158, 608, 416, 337, 534, 216, 271, 549, 118, 279, 537, 332, 389, 173, 579, 121, 199, 776, 179, 228, 553, 338, 656, 312, 540, 390, 174, 581, 393, 283, 772, 122, 672, 554, 784, 63, 340, 704, 448, 561, 353, 800, 394, 232, 203, 527, 582, 556, 295, 285, 181, 124, 205, 240, 643, 585, 562, 286, 299, 354, 182, 401, 211, 396, 344, 586, 832, 564, 95, 185, 206, 327, 645, 535, 402, 593, 186, 356, 588, 568, 307, 646, 418, 213, 301, 227, 302, 896, 594, 360, 111, 649, 771, 417, 539, 214, 404, 309, 188, 449, 331, 217, 159, 609, 596, 551, 650, 119, 229, 333, 408, 541, 773, 610, 657, 310, 420, 600, 218, 368, 230, 652, 391, 175, 313, 339, 542, 334, 123, 555, 774, 233, 314, 658, 612, 341, 777, 450, 220, 424, 355, 673, 583, 125, 234, 183, 395, 241, 557, 660, 616, 316, 342, 345, 778, 563, 403, 287, 397, 452, 674, 558, 785, 432, 187, 357, 207, 664, 587, 780, 705, 676, 236, 346, 565, 361, 126, 242, 589, 405, 215, 398, 566, 303, 597, 358, 801, 419, 624, 456, 786, 348, 244, 569, 189, 590, 219, 647, 311, 706, 362, 595, 464, 802, 406, 680, 421, 788, 248, 598, 190, 570, 369, 651, 409, 834, 410, 708, 480, 613, 231, 572, 315, 659, 364, 422, 335, 688, 370, 792, 221, 611, 451, 601, 425, 804, 412, 653, 453, 833, 317, 712, 235, 602, 343, 543, 372, 654, 222, 614, 426, 775, 433, 559, 237, 898, 617, 347, 808, 243, 720, 454, 665, 318, 604, 376, 661, 428, 779, 238, 675, 359, 836, 458, 625, 399, 662, 677, 434, 567, 457, 816, 245, 618, 349, 787, 127, 781, 897, 407, 666, 436, 591, 363, 620, 465, 736, 350, 678, 571, 246, 681, 249, 626, 460, 707, 840, 411, 782, 365, 789, 440, 599, 374, 668, 628, 423, 900, 466, 848, 803, 250, 790, 371, 709, 191, 573, 689, 481, 682, 413, 603, 793, 366, 713, 468, 710, 373, 574, 655, 427, 806, 414, 684, 904, 252, 615, 482, 632, 805, 429, 794, 864, 223, 690, 455, 714, 835, 472, 809, 377, 605, 619, 435, 663, 721, 319, 796, 484, 692, 912, 430, 606, 716, 488, 810, 459, 838, 667, 239, 817, 621, 378, 837, 722, 437, 696, 461, 737, 679, 380, 812, 627, 247, 899, 841, 441, 622, 928, 351, 724, 783, 469, 629, 818, 438, 669, 462, 738, 683, 251, 842, 849, 496, 901, 820, 728, 467, 633, 902, 367, 670, 791, 442, 844, 630, 474, 685, 850, 483, 691, 711, 379, 865, 795, 415, 824, 960, 740, 253, 905, 634, 444, 693, 744, 485, 807, 686, 906, 470, 575, 715, 375, 866, 913, 473, 852, 636, 797, 431, 694, 811, 486, 752, 723, 798, 489, 856, 908, 254, 717, 607, 930, 476, 697, 725, 914, 439, 819, 839, 868, 492, 718, 698, 381, 813, 623, 814, 498, 872, 739, 929, 671, 916, 821, 463, 726, 961, 843, 490, 631, 729, 700, 382, 741, 845, 920, 471, 822, 851, 730, 497, 880, 742, 443, 903, 687, 825, 500, 445, 932, 846, 635, 745, 826, 732, 446, 962, 936, 475, 853, 867, 637, 907, 487, 695, 746, 828, 753, 854, 857, 915, 964, 477, 909, 719, 799, 699, 493, 504, 748, 944, 858, 873, 638, 754, 255, 968, 869, 491, 478, 383, 910, 815, 917, 727, 870, 701, 931, 860, 499, 756, 731, 823, 922, 874, 976, 918, 502, 933, 743, 760, 881, 494, 702, 921, 876, 501, 847, 992, 447, 733, 827, 882, 934, 963, 505, 937, 747, 855, 924, 734, 829, 965, 938, 884, 506, 749, 945, 859, 755, 479, 966, 830, 888, 940, 750, 871, 970, 911, 757, 946, 969, 861, 977, 875, 919, 639, 758, 948, 862, 761, 508, 972, 923, 877, 952, 886, 935, 978, 762, 503, 883, 703, 993, 925, 878, 980, 941, 764, 495, 926, 885, 994, 735, 939, 984, 967, 889, 947, 831, 507, 942, 751, 973, 996, 890, 949, 759, 892, 971, 1000, 953, 509, 863, 981, 950, 974, 763, 1008, 979, 879, 954, 986, 995, 891, 927, 510, 765, 956, 997, 982, 887, 985, 943, 998, 1001, 766, 988, 951, 1004, 893, 1010, 957, 975, 511, 1002, 894, 983, 1009, 955, 987, 1012, 958, 999, 1005, 989, 1016, 990, 1011, 767, 1003, 1014, 1006, 1017, 895, 1013, 991, 1018, 959, 1020, 1015, 1007, 1019, 1021, 1022, 1023]









TABLE Q1





having a sequence length of 1024:























Reliability
Polarized
Reliability
Polarized
Reliability
Polarized
Reliability
Polarized
Reliability


or sequence
channel
or sequence
channel
or sequence
channel
or sequence
channel
or sequence


number of
sequence
number of
sequence
number of
sequence
number of
sequence
number of


reliability
number
reliability
number
reliability
number
reliability
number
reliability





0
0
128
83
256
526
384
309
512


1
1
129
57
257
155
385
188
513


2
4
130
112
258
109
386
449
514


3
8
131
85
259
533
387
331
515


4
2
132
135
260
400
388
217
516


5
16
133
289
261
305
389
159
517


6
32
134
517
262
300
390
609
518


7
6
135
194
263
642
391
596
519


8
64
136
78
264
210
392
551
520


9
512
137
290
265
184
393
650
521


10
3
138
58
266
326
394
119
522


11
12
139
276
267
538
395
229
523


12
5
140
168
268
115
396
333
524


13
18
141
530
269
167
397
408
525


14
128
142
99
270
592
398
541
526


15
9
143
139
271
157
399
773
527


16
33
144
196
272
225
400
610
528


17
17
145
86
273
306
401
657
529


18
10
146
176
274
547
402
310
530


19
256
147
640
275
329
403
420
531


20
20
148
60
276
110
404
600
532


21
34
149
89
277
770
405
218
533


22
24
150
280
278
212
406
368
534


23
65
151
101
279
117
407
230
535


24
7
152
147
280
171
408
652
536


25
36
153
292
281
550
409
391
537


26
66
154
521
282
330
410
175
538


27
129
155
141
283
226
411
313
539


28
11
156
321
284
648
412
339
540


29
40
157
142
285
387
413
542
541


30
19
158
90
286
308
414
334
542


31
132
159
200
287
158
415
123
543


32
513
160
545
288
608
416
555
544


33
13
161
31
289
416
417
774
545


34
68
162
102
290
337
418
233
546


35
48
163
263
291
534
419
314
547


36
14
164
105
292
216
420
658
548


37
72
165
529
293
271
421
612
549


38
257
166
322
294
549
422
341
550


39
21
167
149
295
118
423
777
551


40
130
168
296
296
279
424
450
552


41
26
169
47
297
537
425
220
553


42
35
170
522
298
332
426
424
554


43
80
171
92
299
389
427
355
555


44
258
172
208
300
173
428
673
556


45
136
173
267
301
579
429
583
557


46
38
174
385
302
121
430
125
558


47
22
175
324
303
199
431
234
559


48
260
176
304
304
776
432
183
560


49
516
177
536
305
179
433
395
561


50
37
178
768
306
228
434
241
562


51
25
179
532
307
553
435
557
563


52
96
180
163
308
338
436
660
564


53
67
181
153
309
656
437
616
565


54
264
182
150
310
312
438
316
566


55
41
183
106
311
540
439
342
567


56
144
184
55
312
390
440
345
568


57
28
185
165
313
174
441
778
569


58
69
186
386
314
581
442
563
570


59
49
187
577
315
393
443
403
571


60
74
188
328
316
283
444
287
572


61
160
189
548
317
772
445
397
573


62
42
190
269
318
122
446
452
574


63
520
191
113
319
672
447
674
575


64
272
192
154
320
554
448
558
576


65
192
193
79
321
784
449
785
577


66
70
194
224
322
63
450
432
578


67
44
195
166
323
340
451
187
579


68
131
196
275
324
704
452
357
580


69
81
197
108
325
448
453
207
581


70
15
198
578
326
561
454
664
582


71
288
199
270
327
353
455
587
583


72
50
200
59
328
800
456
780
584


73
134
201
114
329
394
457
705
585


74
73
202
195
330
232
458
676
586


75
514
203
169
331
203
459
236
587


76
23
204
156
332
527
460
346
588


77
52
205
87
333
582
461
565
589


78
320
206
546
334
556
462
361
590


79
133
207
61
335
295
463
126
591


80
76
208
277
336
285
464
242
592


81
82
209
291
337
181
465
589
593


82
137
210
519
338
124
466
405
594


83
56
211
278
339
205
467
215
595


84
27
212
116
340
240
468
398
596


85
259
213
170
341
643
469
566
597


86
528
214
197
342
585
470
303
598


87
97
215
641
343
562
471
597
599


88
39
216
177
344
286
472
358
600


89
384
217
281
345
299
473
801
601


90
138
218
91
346
354
474
419
602


91
84
219
552
347
182
475
624
603


92
29
220
201
348
401
476
456
604


93
261
221
388
349
211
477
786
605


94
145
222
293
350
396
478
348
606


95
544
223
198
351
344
479
244
607


96
43
224
523
352
586
480
569
608


97
98
225
62
353
832
481
189
609


98
140
226
143
354
564
482
590
610


99
30
227
336
355
95
483
219
611


100
88
228
584
356
185
484
647
612


101
262
229
172
357
206
485
311
613


102
146
230
282
358
327
486
706
614


103
71
231
120
359
645
487
362
615


104
518
232
644
360
535
488
595
616


105
265
233
103
361
402
489
464
617


106
161
234
178
362
593
490
802
618


107
45
235
294
363
186
491
406
619


108
100
236
531
364
356
492
680
620


109
148
237
202
365
588
493
421
621


110
51
238
93
366
568
494
788
622


111
46
239
323
367
307
495
248
623


112
576
240
560
368
646
496
598
624


113
75
241
392
369
418
497
190
625


114
266
242
297
370
213
498
570
626


115
104
243
151
371
301
499
369
627


116
273
244
580
372
227
500
651
628


117
164
245
209
373
302
501
409
629


118
193
246
284
374
896
502
834
630


119
53
247
180
375
594
503
410
631


120
515
248
525
376
360
504
708
632


121
162
249
107
377
111
505
480
633


122
268
250
94
378
649
506
613
634


123
77
251
204
379
771
507
231
635


124
152
252
769
380
417
508
572
636


125
274
253
298
381
539
509
315
637


126
54
254
352
382
214
510
659
638


127
524
255
325
383
404
511
364
639






Reliability
Polarized
Reliability
Polarized
Reliability
Polarized
Reliability
Polarized



or sequence
channel
or sequence
channel
or sequence
channel
or sequence
channel



number of
sequence
number of
sequence
number of
sequence
number of
sequence



reliability
number
reliability
number
reliability
number
reliability
number






0
422
640
223
768
492
896
859



1
335
641
690
769
718
897
755



2
688
642
455
770
698
898
479



3
370
643
714
771
381
899
966



4
792
644
835
772
813
900
830



5
221
645
472
773
623
901
888



6
611
646
809
774
814
902
940



7
451
647
377
775
498
903
750



8
601
648
605
776
872
904
871



9
425
649
619
777
739
905
970



10
804
650
435
778
929
906
911



11
412
651
663
779
671
907
757



12
653
652
721
780
916
908
946



13
453
653
319
781
821
909
969



14
833
654
796
782
463
910
861



15
317
655
484
783
726
911
977



16
712
656
692
784
961
912
875



17
235
657
912
785
843
913
919



18
602
658
430
786
490
914
639



19
343
659
606
787
631
915
758



20
543
660
716
788
729
916
948



21
372
661
488
789
700
917
862



22
654
662
810
790
382
918
761



23
222
663
459
791
741
919
508



24
614
664
838
792
845
920
972



25
426
665
667
793
920
921
923



26
775
666
239
794
471
922
877



27
433
667
817
795
822
923
952



28
559
668
621
796
851
924
886



29
237
669
378
797
730
925
935



30
898
670
837
798
497
926
978



31
617
671
722
799
880
927
762



32
347
672
437
800
742
928
503



33
808
673
696
801
443
929
883



34
243
674
461
802
903
930
703



35
720
675
737
803
687
931
993



36
454
676
679
804
825
932
925



37
665
677
380
805
500
933
878



38
318
678
812
806
445
934
980



39
604
679
627
807
932
935
941



40
376
680
247
808
846
936
764



41
661
681
899
809
635
937
495



42
428
682
841
810
745
938
926



43
779
683
441
811
826
939
885



44
238
684
622
812
732
940
994



45
675
685
928
813
446
941
735



46
359
686
351
814
962
942
939



47
836
687
724
815
936
943
984



48
458
688
783
816
475
944
967



49
625
689
469
817
853
945
889



50
399
690
629
818
867
946
947



51
662
691
818
819
637
947
831



52
677
692
438
820
907
948
507



53
434
693
669
821
487
949
942



54
567
694
462
822
695
950
751



55
457
695
738
823
746
951
973



56
816
696
683
824
828
952
996



57
245
697
251
825
753
953
890



58
618
698
842
826
854
954
949



59
349
699
849
827
857
955
759



60
787
700
496
828
915
956
892



61
127
701
901
829
964
957
971



62
781
702
820
830
477
958
1000



63
897
703
728
831
909
959
953



64
407
704
467
832
719
960
509



65
666
705
633
833
799
961
863



66
436
706
902
834
699
962
981



67
591
707
367
835
493
963
950



68
363
708
670
836
504
964
974



69
620
709
791
837
748
965
763



70
465
710
442
838
944
966
1008



71
736
711
844
839
858
967
979



72
350
712
630
840
873
968
879



73
678
713
474
841
638
969
954



74
571
714
685
842
754
970
986



75
246
715
850
843
255
971
995



76
681
716
483
844
968
972
891



77
249
717
691
845
869
973
927



78
626
718
711
846
491
974
510



79
460
719
379
847
478
975
765



80
707
720
865
848
383
976
956



81
840
721
795
849
910
977
997



82
411
722
415
850
815
978
982



83
782
723
824
851
917
979
887



84
365
724
960
852
727
980
985



85
789
725
740
853
870
981
943



86
440
726
253
854
701
982
998



87
599
727
905
855
931
983
1001



88
374
728
634
856
860
984
766



89
668
729
444
857
499
985
988



90
628
730
693
858
756
986
951



91
423
731
744
859
731
987
1004



92
900
732
485
860
823
988
893



93
466
733
807
861
922
989
1010



94
848
734
686
862
874
990
957



95
803
735
906
863
976
991
975



96
250
736
470
864
918
992
511



97
790
737
575
865
502
993
1002



98
371
738
715
866
933
994
894



99
709
739
375
867
743
995
983



100
191
740
866
868
760
996
1009



101
573
741
913
869
881
997
955



102
689
742
473
870
494
998
987



103
481
743
852
871
702
999
1012



104
682
744
636
872
921
1000
958



105
413
745
797
873
876
1001
999



106
603
746
431
874
501
1002
1005



107
793
747
694
875
847
1003
989



108
366
748
811
876
992
1004
1016



109
713
749
486
877
447
1005
990



110
468
750
752
878
733
1006
1011



111
710
751
723
879
827
1007
767



112
373
752
798
880
882
1008
1003



113
574
753
489
881
934
1009
1014



114
655
754
856
882
963
1010
1006



115
427
755
908
883
505
1011
1017



116
806
756
254
884
937
1012
895



117
414
757
717
885
747
1013
1013



118
684
758
607
886
855
1014
991



119
904
759
930
887
924
1015
1018



120
252
760
476
888
734
1016
959



121
615
761
697
889
829
1017
1020



122
482
762
725
890
965
1018
1015



123
632
763
914
891
938
1019
1007



124
805
764
439
892
884
1020
1019



125
429
765
819
893
506
1021
1021



126
794
766
839
894
749
1022
1022



127
864
767
868
895
945
1023
1023









Sequence Q2, having a sequence length of 512:


[0, 1, 4, 8, 2, 16, 32, 6, 64, 3, 12, 5, 18, 128, 9, 33, 17, 10, 256, 20, 34, 24, 65, 7, 36, 66, 129, 11, 40, 19, 132, 13, 68, 48, 14, 72, 257, 21, 130, 26, 35, 80, 258, 136, 38, 22, 260, 37, 25, 96, 67, 264, 41, 144, 28, 69, 49, 74, 160, 42, 272, 192, 70, 44, 131, 81, 15, 288, 50, 134, 73, 23, 52, 320, 133, 76, 82, 137, 56, 27, 259, 97, 39, 384, 138, 84, 29, 261, 145, 43, 98, 140, 30, 88, 262, 146, 71, 265, 161, 45, 100, 148, 51, 46, 75, 266, 104, 273, 164, 193, 53, 162, 268, 77, 152, 274, 54, 83, 57, 112, 85, 135, 289, 194, 78, 290, 58, 276, 168, 99, 139, 196, 86, 176, 60, 89, 280, 101, 147, 292, 141, 321, 142, 90, 200, 31, 102, 263, 105, 322, 149, 296, 47, 92, 208, 267, 385, 324, 304, 163, 153, 150, 106, 55, 165, 386, 328, 269, 113, 154, 79, 224, 166, 275, 108, 270, 59, 114, 195, 169, 156, 87, 61, 277, 291, 278, 116, 170, 197, 177, 281, 91, 201, 388, 293, 198, 62, 143, 336, 172, 282, 120, 103, 178, 294, 202, 93, 323, 392, 297, 151, 209, 284, 180, 107, 94, 204, 298, 352, 325, 155, 109, 400, 305, 300, 210, 184, 326, 115, 167, 157, 225, 306, 329, 110, 212, 117, 171, 330, 226, 387, 308, 158, 416, 337, 216, 271, 118, 279, 332, 389, 173, 121, 199, 179, 228, 338, 312, 390, 174, 393, 283, 122, 63, 340, 448, 353, 394, 232, 203, 295, 285, 181, 124, 205, 240, 286, 299, 354, 182, 401, 211, 396, 344, 95, 185, 206, 327, 402, 186, 356, 307, 418, 213, 301, 227, 302, 360, 111, 417, 214, 404, 309, 188, 449, 331, 217, 159, 119, 229, 333, 408, 310, 420, 218, 368, 230, 391, 175, 313, 339, 334, 123, 233, 314, 341, 450, 220, 424, 355, 125, 234, 183, 395, 241, 316, 342, 345, 403, 287, 397, 452, 432, 187, 357, 207, 236, 346, 361, 126, 242, 405, 215, 398, 303, 358, 419, 456, 348, 244, 189, 219, 311, 362, 464, 406, 421, 248, 190, 369, 409, 410, 480, 231, 315, 364, 422, 335, 370, 221, 451, 425, 412, 453, 317, 235, 343, 372, 222, 426, 433, 237, 347, 243, 454, 318, 376, 428, 238, 359, 458, 399, 434, 457, 245, 349, 127, 407, 436, 363, 465, 350, 246, 249, 460, 411, 365, 440, 374, 423, 466, 250, 371, 191, 481, 413, 366, 468, 373, 427, 414, 252, 482, 429, 223, 455, 472, 377, 435, 319, 484, 430, 488, 459, 239, 378, 437, 461, 380, 247, 441, 351, 469, 438, 462, 251, 496, 467, 367, 442, 474, 483, 379, 415, 253, 444, 485, 470, 375, 473, 431, 486, 489, 254, 476, 439, 492, 381, 498, 463, 490, 382, 471, 497, 443, 500, 445, 446, 475, 487, 477, 493, 504, 255, 491, 478, 383, 499, 502, 494, 501, 447, 505, 506, 479, 508, 503, 495, 507, 509, 510, 511]









TABLE Q2







having a sequence length of 512:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
4



3
8



4
2



5
16



6
32



7
6



8
64



9
3



10
12



11
5



12
18



13
128



14
9



15
33



16
17



17
10



18
256



19
20



20
34



21
24



22
65



23
7



24
36



25
66



26
129



27
11



28
40



29
19



30
132



31
13



32
68



33
48



34
14



35
72



36
257



37
21



38
130



39
26



40
35



41
80



42
258



43
136



44
38



45
22



46
260



47
37



48
25



49
96



50
67



51
264



52
41



53
144



54
28



55
69



56
49



57
74



58
160



59
42



60
272



61
192



62
70



63
44



64
131



65
81



66
15



67
288



68
50



69
134



70
73



71
23



72
52



73
320



74
133



75
76



76
82



77
137



78
56



79
27



80
259



81
97



82
39



83
384



84
138



85
84



86
29



87
261



88
145



89
43



90
98



91
140



92
30



93
88



94
262



95
146



96
71



97
265



98
161



99
45



100
100



101
148



102
51



103
46



104
75



105
266



106
104



107
273



108
164



109
193



110
53



111
162



112
268



113
77



114
152



115
274



116
54



117
83



118
57



119
112



120
85



121
135



122
289



123
194



124
78



125
290



126
58



127
276



128
168



129
99



130
139



131
196



132
86



133
176



134
60



135
89



136
280



137
101



138
147



139
292



140
141



141
321



142
142



143
90



144
200



145
31



146
102



147
263



148
105



149
322



150
149



151
296



152
47



153
92



154
208



155
267



156
385



157
324



158
304



159
163



160
153



161
150



162
106



163
55



164
165



165
386



166
328



167
269



168
113



169
154



170
79



171
224



172
166



173
275



174
108



175
270



176
59



177
114



178
195



179
169



180
156



181
87



182
61



183
277



184
291



185
278



186
116



187
170



188
197



189
177



190
281



191
91



192
201



193
388



194
293



195
198



196
62



197
143



198
336



199
172



200
282



201
120



202
103



203
178



204
294



205
202



206
93



207
323



208
392



209
297



210
151



211
209



212
284



213
180



214
107



215
94



216
204



217
298



218
352



219
325



220
155



221
109



222
400



223
305



224
300



225
210



226
184



227
326



228
115



229
167



230
157



231
225



232
306



233
329



234
110



235
212



236
117



237
171



238
330



239
226



240
387



241
308



242
158



243
416



244
337



245
216



246
271



247
118



248
279



249
332



250
389



251
173



252
121



253
199



254
179



255
228



256
338



257
312



258
390



259
174



260
393



261
283



262
122



263
63



264
340



265
448



266
353



267
394



268
232



269
203



270
295



271
285



272
181



273
124



274
205



275
240



276
286



277
299



278
354



279
182



280
401



281
211



282
396



283
344



284
95



285
185



286
206



287
327



288
402



289
186



290
356



291
307



292
418



293
213



294
301



295
227



296
302



297
360



298
111



299
417



300
214



301
404



302
309



303
188



304
449



305
331



306
217



307
159



308
119



309
229



310
333



311
408



312
310



313
420



314
218



315
368



316
230



317
391



318
175



319
313



320
339



321
334



322
123



323
233



324
314



325
341



326
450



327
220



328
424



329
355



330
125



331
234



332
183



333
395



334
241



335
316



336
342



337
345



338
403



339
287



340
397



341
452



342
432



343
187



344
357



345
207



346
236



347
346



348
361



349
126



350
242



351
405



352
215



353
398



354
303



355
358



356
419



357
456



358
348



359
244



360
189



361
219



362
311



363
362



364
464



365
406



366
421



367
248



368
190



369
369



370
409



371
410



372
480



373
231



374
315



375
364



376
422



377
335



378
370



379
221



380
451



381
425



382
412



383
453



384
317



385
235



386
343



387
372



388
222



389
426



390
433



391
237



392
347



393
243



394
454



395
318



396
376



397
428



398
238



399
359



400
458



401
399



402
434



403
457



404
245



405
349



406
127



407
407



408
436



409
363



410
465



411
350



412
246



413
249



414
460



415
411



416
365



417
440



418
374



419
423



420
466



421
250



422
371



423
191



424
481



425
413



426
366



427
468



428
373



429
427



430
414



431
252



432
482



433
429



434
223



435
455



436
472



437
377



438
435



439
319



440
484



441
430



442
488



443
459



444
239



445
378



446
437



447
461



448
380



449
247



450
441



451
351



452
469



453
438



454
462



455
251



456
496



457
467



458
367



459
442



460
474



461
483



462
379



463
415



464
253



465
444



466
485



467
470



468
375



469
473



470
431



471
486



472
489



473
254



474
476



475
439



476
492



477
381



478
498



479
463



480
490



481
382



482
471



483
497



484
443



485
500



486
445



487
446



488
475



489
487



490
477



491
493



492
504



493
255



494
491



495
478



496
383



497
499



498
502



499
494



500
501



501
447



502
505



503
506



504
479



505
508



506
503



507
495



508
507



509
509



510
510



511
511










Sequence Q3, having a sequence length of 256:


[0, 1, 4, 8, 2, 16, 32, 6, 64, 3, 12, 5, 18, 128, 9, 33, 17, 10, 20, 34, 24, 65, 7, 36, 66, 129, 11, 40, 19, 132, 13, 68, 48, 14, 72, 21, 130, 26, 35, 80, 136, 38, 22, 37, 25, 96, 67, 41, 144, 28, 69, 49, 74, 160, 42, 192, 70, 44, 131, 81, 15, 50, 134, 73, 23, 52, 133, 76, 82, 137, 56, 27, 97, 39, 138, 84, 29, 145, 43, 98, 140, 30, 88, 146, 71, 161, 45, 100, 148, 51, 46, 75, 104, 164, 193, 53, 162, 77, 152, 54, 83, 57, 112, 85, 135, 194, 78, 58, 168, 99, 139, 196, 86, 176, 60, 89, 101, 147, 141, 142, 90, 200, 31, 102, 105, 149, 47, 92, 208, 163, 153, 150, 106, 55, 165, 113, 154, 79, 224, 166, 108, 59, 114, 195, 169, 156, 87, 61, 116, 170, 197, 177, 91, 201, 198, 62, 143, 172, 120, 103, 178, 202, 93, 151, 209, 180, 107, 94, 204, 155, 109, 210, 184, 115, 167, 157, 225, 110, 212, 117, 171, 226, 158, 216, 118, 173, 121, 199, 179, 228, 174, 122, 63, 232, 203, 181, 124, 205, 240, 182, 211, 95, 185, 206, 186, 213, 227, 111, 214, 188, 217, 159, 119, 229, 218, 230, 175, 123, 233, 220, 125, 234, 183, 241, 187, 207, 236, 126, 242, 215, 244, 189, 219, 248, 190, 231, 221, 235, 222, 237, 243, 238, 245, 127, 246, 249, 250, 191, 252, 223, 239, 247, 251, 253, 254, 255]









TABLE Q3







having a sequence length of 256:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
4



3
8



4
2



5
16



6
32



7
6



8
64



9
3



10
12



11
5



12
18



13
128



14
9



15
33



16
17



17
10



18
20



19
34



20
24



21
65



22
7



23
36



24
66



25
129



26
11



27
40



28
19



29
132



30
13



31
68



32
48



33
14



34
72



35
21



36
130



37
26



38
35



39
80



40
136



41
38



42
22



43
37



44
25



45
96



46
67



47
41



48
144



49
28



50
69



51
49



52
74



53
160



54
42



55
192



56
70



57
44



58
131



59
81



60
15



61
50



62
134



63
73



64
23



65
52



66
133



67
76



68
82



69
137



70
56



71
27



72
97



73
39



74
138



75
84



76
29



77
145



78
43



79
98



80
140



81
30



82
88



83
146



84
71



85
161



86
45



87
100



88
148



89
51



90
46



91
75



92
104



93
164



94
193



95
53



96
162



97
77



98
152



99
54



100
83



101
57



102
112



103
85



104
135



105
194



106
78



107
58



108
168



109
99



110
139



111
196



112
86



113
176



114
60



115
89



116
101



117
147



118
141



119
142



120
90



121
200



122
31



123
102



124
105



125
149



126
47



127
92



128
208



129
163



130
153



131
150



132
106



133
55



134
165



135
113



136
154



137
79



138
224



139
166



140
108



141
59



142
114



143
195



144
169



145
156



146
87



147
61



148
116



149
170



150
197



151
177



152
91



153
201



154
198



155
62



156
143



157
172



158
120



159
103



160
178



161
202



162
93



163
151



164
209



165
180



166
107



167
94



168
204



169
155



170
109



171
210



172
184



173
115



174
167



175
157



176
225



177
110



178
212



179
117



180
171



181
226



182
158



183
216



184
118



185
173



186
121



187
199



188
179



189
228



190
174



191
122



192
63



193
232



194
203



195
181



196
124



197
205



198
240



199
182



200
211



201
95



202
185



203
206



204
186



205
213



206
227



207
111



208
214



209
188



210
217



211
159



212
119



213
229



214
218



215
230



216
175



217
123



218
233



219
220



220
125



221
234



222
183



223
241



224
187



225
207



226
236



227
126



228
242



229
215



230
244



231
189



232
219



233
248



234
190



235
231



236
221



237
235



238
222



239
237



240
243



241
238



242
245



243
127



244
246



245
249



246
250



247
191



248
252



249
223



250
239



251
247



252
251



253
253



254
254



255
255










Sequence Q4, having a sequence length of 128:


[0, 1, 4, 8, 2, 16, 32, 6, 64, 3, 12, 5, 18, 9, 33, 17, 10, 20, 34, 24, 65, 7, 36, 66, 11, 40, 19, 13, 68, 48, 14, 72, 21, 26, 35, 80, 38, 22, 37, 25, 96, 67, 41, 28, 69, 49, 74, 42, 70, 44, 81, 15, 50, 73, 23, 52, 76, 82, 56, 27, 97, 39, 84, 29, 43, 98, 30, 88, 71, 45, 100, 51, 46, 75, 104, 53, 77, 54, 83, 57, 112, 85, 78, 58, 99, 86, 60, 89, 101, 90, 31, 102, 105, 47, 92, 106, 55, 113, 79, 108, 59, 114, 87, 61, 116, 91, 62, 120, 103, 93, 107, 94, 109, 115, 110, 117, 118, 121, 122, 63, 124, 95, 111, 119, 123, 125, 126, 127]









TABLE Q4







having a sequence length of 128:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
4



3
8



4
2



5
16



6
32



7
6



8
64



9
3



10
12



11
5



12
18



13
9



14
33



15
17



16
10



17
20



18
34



19
24



20
65



21
7



22
36



23
66



24
11



25
40



26
19



27
13



28
68



29
48



30
14



31
72



32
21



33
26



34
35



35
80



36
38



37
22



38
37



39
25



40
96



41
67



42
41



43
28



44
69



45
49



46
74



47
42



48
70



49
44



50
81



51
15



52
50



53
73



54
23



55
52



56
76



57
82



58
56



59
27



60
97



61
39



62
84



63
29



64
43



65
98



66
30



67
88



68
71



69
45



70
100



71
51



72
46



73
75



74
104



75
53



76
77



77
54



78
83



79
57



80
112



81
85



82
78



83
58



84
99



85
86



86
60



87
89



88
101



89
90



90
31



91
102



92
105



93
47



94
92



95
106



96
55



97
113



98
79



99
108



100
59



101
114



102
87



103
61



104
116



105
91



106
62



107
120



108
103



109
93



110
107



111
94



112
109



113
115



114
110



115
117



116
118



117
121



118
122



119
63



120
124



121
95



122
111



123
119



124
123



125
125



126
126



127
127










Sequence Q5, having a sequence length of 64:


[0, 1, 4, 8, 2, 16, 32, 6, 3, 12, 5, 18, 9, 33, 17, 10, 20, 34, 24, 7, 36, 11, 40, 19, 13, 48, 14, 21, 26, 35, 38, 22, 37, 25, 41, 28, 49, 42, 44, 15, 50, 23, 52, 56, 27, 39, 29, 43, 30, 45, 51, 46, 53, 54, 57, 58, 60, 31, 47, 55, 59, 61, 62, 63]









TABLE Q5







having a sequence length of 64:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
4



3
8



4
2



5
16



6
32



7
6



8
3



9
12



10
5



11
18



12
9



13
33



14
17



15
10



16
20



17
34



18
24



19
7



20
36



21
11



22
40



23
19



24
13



25
48



26
14



27
21



28
26



29
35



30
38



31
22



32
37



33
25



34
41



35
28



36
49



37
42



38
44



39
15



40
50



41
23



42
52



43
56



44
27



45
39



46
29



47
43



48
30



49
45



50
51



51
46



52
53



53
54



54
57



55
58



56
60



57
31



58
47



59
55



60
59



61
61



62
62



63
63










Sequence Z1, having a sequence length of 1024:


[0, 1, 4, 10, 2, 12, 7, 24, 3, 15, 18, 28, 11, 33, 36, 70, 5, 17, 13, 30, 20, 39, 47, 76, 22, 51, 41, 84, 57, 92, 99, 161, 6, 16, 21, 42, 25, 50, 46, 88, 29, 55, 62, 96, 67, 107, 111, 169, 35, 59, 72, 110, 77, 119, 126, 184, 83, 129, 138, 200, 148, 207, 225, 322, 8, 23, 26, 53, 34, 58, 66, 103, 37, 74, 60, 113, 80, 123, 136, 193, 43, 69, 81, 128, 91, 131, 145, 205, 100, 149, 158, 218, 171, 238, 250, 355, 52, 87, 97, 142, 108, 151, 162, 233, 115, 164, 183, 249, 197, 258, 276, 377, 130, 191, 201, 268, 212, 279, 295, 394, 231, 302, 318, 415, 338, 430, 463, 573, 14, 27, 40, 68, 31, 79, 73, 132, 45, 82, 90, 143, 98, 155, 157, 226, 56, 94, 102, 152, 109, 167, 182, 243, 124, 181, 192, 257, 204, 271, 287, 389, 61, 106, 121, 180, 117, 185, 195, 269, 140, 203, 213, 280, 229, 300, 313, 410, 146, 216, 234, 305, 247, 337, 347, 432, 265, 356, 363, 451, 385, 481, 497, 612, 65, 118, 135, 202, 144, 214, 223, 303, 159, 220, 237, 331, 251, 339, 357, 453, 172, 245, 264, 349, 278, 370, 382, 467, 292, 388, 405, 483, 425, 517, 535, 640, 194, 272, 283, 372, 306, 395, 407, 507, 330, 418, 431, 529, 459, 541, 556, 666, 340, 434, 464, 546, 479, 569, 587, 680, 495, 589, 608, 697, 632, 726, 756, 843, 19, 38, 44, 85, 48, 93, 101, 163, 54, 105, 114, 173, 122, 190, 199, 293, 64, 116, 125, 196, 139, 208, 211, 296, 150, 217, 230, 316, 246, 336, 344, 444, 71, 133, 137, 209, 153, 222, 235, 335, 168, 242, 253, 345, 262, 371, 373, 470, 176, 261, 273, 367, 286, 384, 402, 485, 310, 411, 419, 509, 438, 527, 550, 653, 78, 156, 166, 239, 175, 255, 266, 358, 188, 275, 282, 387, 298, 396, 414, 513, 227, 290, 308, 412, 323, 422, 439, 531, 351, 440, 460, 544, 478, 571, 584, 686, 254, 327, 346, 427, 364, 452, 472, 558, 376, 462, 487, 580, 511, 596, 620, 707, 406, 499, 515, 610, 533, 624, 600, 739, 552, 647, 669, 719, 677, 771, 790, 848, 89, 174, 186, 285, 221, 299, 312, 409, 241, 315, 329, 433, 350, 445, 468, 562, 260, 348, 361, 443, 383, 466, 491, 576, 397, 501, 503, 594, 523, 617, 629, 722, 289, 380, 369, 474, 403, 493, 512, 603, 426, 521, 537, 627, 554, 637, 658, 746, 450, 539, 565, 650, 578, 672, 692, 764, 598, 683, 710, 801, 729, 806, 813, 877, 325, 386, 424, 519, 446, 525, 548, 642, 476, 567, 560, 663, 591, 674, 694, 782, 489, 582, 605, 704, 622, 689, 736, 794, 645, 742, 713, 816, 760, 830, 847, 898, 505, 615, 634, 716, 655, 732, 749, 821, 661, 753, 786, 846, 768, 835, 870, 937, 700, 798, 775, 857, 805, 874, 865, 928, 836, 883, 893, 948, 919, 960, 974, 992, 9, 32, 75, 120, 49, 134, 104, 210, 63, 154, 170, 224, 127, 248, 256, 332, 86, 165, 141, 236, 179, 259, 291, 360, 177, 297, 267, 381, 311, 398, 413, 532, 95, 160, 206, 274, 189, 294, 281, 392, 219, 307, 320, 416, 334, 435, 448, 540, 240, 326, 343, 442, 354, 461, 469, 566, 366, 480, 498, 586, 508, 613, 625, 737, 112, 187, 198, 301, 244, 314, 333, 429, 228, 342, 352, 455, 365, 465, 482, 579, 270, 362, 375, 488, 391, 471, 496, 599, 404, 520, 530, 618, 551, 648, 659, 758, 288, 390, 400, 518, 421, 506, 536, 633, 437, 543, 570, 649, 581, 668, 684, 773, 475, 561, 590, 679, 602, 690, 712, 787, 635, 705, 728, 809, 744, 819, 841, 914, 147, 215, 263, 341, 232, 359, 368, 484, 284, 378, 393, 500, 408, 524, 534, 626, 309, 401, 420, 510, 436, 553, 563, 651, 454, 549, 577, 665, 601, 693, 708, 779, 319, 428, 447, 557, 458, 564, 585, 676, 492, 588, 616, 696, 630, 714, 734, 803, 514, 614, 641, 717, 656, 730, 747, 822, 673, 761, 770, 834, 789, 854, 871, 930, 324, 457, 486, 592, 504, 611, 623, 718, 528, 621, 643, 738, 660, 757, 769, 832, 547, 652, 671, 751, 687, 762, 783, 852, 703, 788, 797, 859, 812, 878, 888, 941, 583, 675, 695, 777, 725, 791, 800, 867, 731, 810, 823, 885, 837, 894, 903, 950, 750, 825, 842, 897, 858, 907, 915, 955, 868, 918, 927, 965, 936, 975, 984, 1007, 178, 252, 277, 379, 317, 399, 417, 538, 304, 423, 441, 555, 456, 574, 595, 688, 321, 449, 477, 572, 494, 597, 609, 709, 516, 619, 638, 721, 654, 745, 752, 833, 328, 473, 490, 607, 522, 636, 628, 733, 545, 646, 662, 748, 678, 772, 774, 850, 568, 667, 691, 765, 702, 781, 795, 860, 723, 804, 811, 879, 824, 889, 900, 947, 353, 526, 502, 644, 559, 670, 664, 766, 593, 682, 698, 785, 711, 792, 808, 875, 606, 699, 715, 796, 743, 817, 826, 886, 754, 827, 839, 896, 856, 910, 917, 961, 639, 720, 740, 818, 767, 845, 853, 904, 776, 840, 862, 912, 873, 922, 933, 968, 799, 869, 880, 929, 892, 939, 924, 979, 901, 945, 953, 972, 956, 988, 994, 1012, 374, 575, 542, 681, 604, 701, 706, 802, 631, 727, 735, 820, 755, 831, 849, 906, 657, 741, 763, 828, 780, 851, 864, 913, 793, 872, 861, 921, 887, 932, 938, 973, 685, 778, 759, 855, 807, 866, 881, 925, 815, 884, 891, 942, 902, 935, 949, 981, 838, 895, 908, 946, 916, 954, 963, 986, 923, 959, 969, 997, 976, 990, 1000, 1016, 724, 784, 814, 882, 829, 890, 899, 944, 844, 909, 905, 957, 920, 951, 964, 991, 863, 911, 926, 967, 934, 962, 978, 995, 943, 980, 970, 998, 985, 1003, 1005, 1014, 876, 931, 940, 971, 952, 977, 982, 1001, 958, 983, 993, 1008, 987, 1002, 1010, 1019, 966, 996, 989, 1006, 999, 1013, 1009, 1018, 1004, 1011, 1015, 1020, 1017, 1021, 1022, 1023]









TABLE Z1







having a sequence length of 1024:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
4



3
10



4
2



5
12



6
7



7
24



8
3



9
15



10
18



11
28



12
11



13
33



14
36



15
70



16
5



17
17



18
13



19
30



20
20



21
39



22
47



23
76



24
22



25
51



26
41



27
84



28
57



29
92



30
99



31
161



32
6



33
16



34
21



35
42



36
25



37
50



38
46



39
88



40
29



41
55



42
62



43
96



44
67



45
107



46
111



47
169



48
35



49
59



50
72



51
110



52
77



53
119



54
126



55
184



56
83



57
129



58
138



59
200



60
148



61
207



62
225



63
322



64
8



65
23



66
26



67
53



68
34



69
58



70
66



71
103



72
37



73
74



74
60



75
113



76
80



77
123



78
136



79
193



80
43



81
69



82
81



83
128



84
91



85
131



86
145



87
205



88
100



89
149



90
158



91
218



92
171



93
238



94
250



95
355



96
52



97
87



98
97



99
142



100
108



101
151



102
162



103
233



104
115



105
164



106
183



107
249



108
197



109
258



110
276



111
377



112
130



113
191



114
201



115
268



116
212



117
279



118
295



119
394



120
231



121
302



122
318



123
415



124
338



125
430



126
463



127
573



128
14



129
27



130
40



131
68



132
31



133
79



134
73



135
132



136
45



137
82



138
90



139
143



140
98



141
155



142
157



143
226



144
56



145
94



146
102



147
152



148
109



149
167



150
182



151
243



152
124



153
181



154
192



155
257



156
204



157
271



158
287



159
389



160
61



161
106



162
121



163
180



164
117



165
185



166
195



167
269



168
140



169
203



170
213



171
280



172
229



173
300



174
313



175
410



176
146



177
216



178
234



179
305



180
247



181
337



182
347



183
432



184
265



185
356



186
363



187
451



188
385



189
481



190
497



191
612



192
65



193
118



194
135



195
202



196
144



197
214



198
223



199
303



200
159



201
220



202
237



203
331



204
251



205
339



206
357



207
453



208
172



209
245



210
264



211
349



212
278



213
370



214
382



215
467



216
292



217
388



218
405



219
483



220
425



221
517



222
535



223
640



224
194



225
272



226
283



227
372



228
306



229
395



230
407



231
507



232
330



233
418



234
431



235
529



236
459



237
541



238
556



239
666



240
340



241
434



242
464



243
546



244
479



245
569



246
587



247
680



248
495



249
589



250
608



251
697



252
632



253
726



254
756



255
843



256
19



257
38



258
44



259
85



260
48



261
93



262
101



263
163



264
54



265
105



266
114



267
173



268
122



269
190



270
199



271
293



272
64



273
116



274
125



275
196



276
139



277
208



278
211



279
296



280
150



281
217



282
230



283
316



284
246



285
336



286
344



287
444



288
71



289
133



290
137



291
209



292
153



293
222



294
235



295
335



296
168



297
242



298
253



299
345



300
262



301
371



302
373



303
470



304
176



305
261



306
273



307
367



308
286



309
384



310
402



311
485



312
310



313
411



314
419



315
509



316
438



317
527



318
550



319
653



320
78



321
156



322
166



323
239



324
175



325
255



326
266



327
358



328
188



329
275



330
282



331
387



332
298



333
396



334
414



335
513



336
227



337
290



338
308



339
412



340
323



341
422



342
439



343
531



344
351



345
440



346
460



347
544



348
478



349
571



350
584



351
686



352
254



353
327



354
346



355
427



356
364



357
452



358
472



359
558



360
376



361
462



362
487



363
580



364
511



365
596



366
620



367
707



368
406



369
499



370
515



371
610



372
533



373
624



374
600



375
739



376
552



377
647



378
669



379
719



380
677



381
771



382
790



383
848



384
89



385
174



386
186



387
285



388
221



389
299



390
312



391
409



392
241



393
315



394
329



395
433



396
350



397
445



398
468



399
562



400
260



401
348



402
361



403
443



404
383



405
466



406
491



407
576



408
397



409
501



410
503



411
594



412
523



413
617



414
629



415
722



416
289



417
380



418
369



419
474



420
403



421
493



422
512



423
603



424
426



425
521



426
537



427
627



428
554



429
637



430
658



431
746



432
450



433
539



434
565



435
650



436
578



437
672



438
692



439
764



440
598



441
683



442
710



443
801



444
729



445
806



446
813



447
877



448
325



449
386



450
424



451
519



452
446



453
525



454
548



455
642



456
476



457
567



458
560



459
663



460
591



461
674



462
694



463
782



464
489



465
582



466
605



467
704



468
622



469
689



470
736



471
794



472
645



473
742



474
713



475
816



476
760



477
830



478
847



479
898



480
505



481
615



482
634



483
716



484
655



485
732



486
749



487
821



488
661



489
753



490
786



491
846



492
768



493
835



494
870



495
937



496
700



497
798



498
775



499
857



500
805



501
874



502
865



503
928



504
836



505
883



506
893



507
948



508
919



509
960



510
974



511
992



512
9



513
32



514
75



515
120



516
49



517
134



518
104



519
210



520
63



521
154



522
170



523
224



524
127



525
248



526
256



527
332



528
86



529
165



530
141



531
236



532
179



533
259



534
291



535
360



536
177



537
297



538
267



539
381



540
311



541
398



542
413



543
532



544
95



545
160



546
206



547
274



548
189



549
294



550
281



551
392



552
219



553
307



554
320



555
416



556
334



557
435



558
448



559
540



560
240



561
326



562
343



563
442



564
354



565
461



566
469



567
566



568
366



569
480



570
498



571
586



572
508



573
613



574
625



575
737



576
112



577
187



578
198



579
301



580
244



581
314



582
333



583
429



584
228



585
342



586
352



587
455



588
365



589
465



590
482



591
579



592
270



593
362



594
375



595
488



596
391



597
471



598
496



599
599



600
404



601
520



602
530



603
618



604
551



605
648



606
659



607
758



608
288



609
390



610
400



611
518



612
421



613
506



614
536



615
633



616
437



617
543



618
570



619
649



620
581



621
668



622
684



623
773



624
475



625
561



626
590



627
679



628
602



629
690



630
712



631
787



632
635



633
705



634
728



635
809



636
744



637
819



638
841



639
914



640
147



641
215



642
263



643
341



644
232



645
359



646
368



647
484



648
284



649
378



650
393



651
500



652
408



653
524



654
534



655
626



656
309



657
401



658
420



659
510



660
436



661
553



662
563



663
651



664
454



665
549



666
577



667
665



668
601



669
693



670
708



671
779



672
319



673
428



674
447



675
557



676
458



677
564



678
585



679
676



680
492



681
588



682
616



683
6%



684
630



685
714



686
734



687
803



688
514



689
614



690
641



691
717



692
656



693
730



694
747



695
822



696
673



697
761



698
770



699
834



700
789



701
854



702
871



703
930



704
324



705
457



706
486



707
592



708
504



709
611



710
623



711
718



712
528



713
621



714
643



715
738



716
660



717
757



718
769



719
832



720
547



721
652



722
671



723
751



724
687



725
762



726
783



727
852



728
703



729
788



730
797



731
859



732
812



733
878



734
888



735
941



736
583



737
675



738
695



739
777



740
725



741
791



742
800



743
867



744
731



745
810



746
823



747
885



748
837



749
894



750
903



751
950



752
750



753
825



754
842



755
897



756
858



757
907



758
915



759
955



760
868



761
918



762
927



763
965



764
936



765
975



766
984



767
1007



768
178



769
252



770
277



771
379



772
317



773
399



774
417



775
538



776
304



777
423



778
441



779
555



780
456



781
574



782
595



783
688



784
321



785
449



786
477



787
572



788
494



789
597



790
609



791
709



792
516



793
619



794
638



795
721



796
654



797
745



798
752



799
833



800
328



801
473



802
490



803
607



804
522



805
636



806
628



807
733



808
545



809
646



810
662



811
748



812
678



813
772



814
774



815
850



816
568



817
667



818
691



819
765



820
702



821
781



822
795



823
860



824
723



825
804



826
811



827
879



828
824



829
889



830
900



831
947



832
353



833
526



834
502



835
644



836
559



837
670



838
664



839
766



840
593



841
682



842
698



843
785



844
711



845
792



846
808



847
875



848
606



849
699



850
715



851
796



852
743



853
817



854
826



855
886



856
754



857
827



858
839



859
896



860
856



861
910



862
917



863
961



864
639



865
720



866
740



867
818



868
767



869
845



870
853



871
904



872
776



873
840



874
862



875
912



876
873



877
922



878
933



879
968



880
799



881
869



882
880



883
929



884
892



885
939



886
924



887
979



888
901



889
945



890
953



891
972



892
956



893
988



894
994



895
1012



896
374



897
575



898
542



899
681



900
604



901
701



902
706



903
802



904
631



905
727



906
735



907
820



908
755



909
831



910
849



911
906



912
657



913
741



914
763



915
828



916
780



917
851



918
864



919
913



920
793



921
872



922
861



923
921



924
887



925
932



926
938



927
973



928
685



929
778



930
759



931
855



932
807



933
866



934
881



935
925



936
815



937
884



938
891



939
942



940
902



941
935



942
949



943
981



944
838



945
895



946
908



947
946



948
916



949
954



950
963



951
986



952
923



953
959



954
969



955
997



956
976



957
990



958
1000



959
1016



960
724



961
784



962
814



963
882



964
829



965
890



966
899



967
944



968
844



969
909



970
905



971
957



972
920



973
951



974
964



975
991



976
863



977
911



978
926



979
967



980
934



981
962



982
978



983
995



984
943



985
980



986
970



987
998



988
985



989
1003



990
1005



991
1014



992
876



993
931



994
940



995
971



996
952



997
977



998
982



999
1001



1000
958



1001
983



1002
993



1003
1008



1004
987



1005
1002



1006
1010



1007
1019



1008
966



1009
996



1010
989



1011
1006



1012
999



1013
1013



1014
1009



1015
1018



1016
1004



1017
1011



1018
1015



1019
1020



1020
1017



1021
1021



1022
1022



1023
1023










Sequence Z2, having a sequence length of 512:


[0, 1, 4, 9, 2, 11, 7, 23, 3, 14, 17, 27, 10, 31, 34, 66, 5, 16, 12, 29, 19, 37, 45, 71, 21, 48, 39, 79, 54, 86, 92, 145, 6, 15, 20, 40, 24, 47, 44, 82, 28, 52, 59, 89, 63, 99, 103, 152, 33, 56, 68, 102, 72, 110, 116, 163, 78, 118, 126, 176, 134, 182, 196, 263, 8, 22, 25, 50, 32, 55, 62, 96, 35, 70, 57, 104, 75, 113, 124, 170, 41, 65, 76, 117, 85, 120, 132, 181, 93, 135, 143, 191, 153, 206, 215, 284, 49, 81, 90, 129, 100, 137, 146, 202, 106, 148, 162, 214, 174, 221, 234, 298, 119, 168, 177, 228, 186, 236, 247, 308, 201, 252, 262, 322, 273, 330, 349, 406, 13, 26, 38, 64, 30, 74, 69, 121, 43, 77, 84, 130, 91, 140, 142, 197, 53, 88, 95, 138, 101, 150, 161, 210, 114, 160, 169, 220, 180, 230, 242, 307, 58, 98, 111, 159, 108, 164, 172, 229, 128, 179, 187, 237, 199, 251, 259, 318, 133, 189, 203, 254, 213, 272, 279, 332, 226, 285, 289, 343, 303, 360, 368, 423, 61, 109, 123, 178, 131, 188, 195, 253, 144, 192, 205, 269, 216, 274, 286, 345, 154, 211, 225, 281, 235, 293, 300, 352, 245, 306, 314, 361, 327, 379, 388, 434, 171, 231, 239, 295, 255, 309, 316, 373, 268, 323, 331, 385, 346, 391, 398, 444, 275, 334, 350, 393, 359, 404, 412, 449, 367, 413, 421, 455, 431, 464, 473, 493, 18, 36, 42, 80, 46, 87, 94, 147, 51, 97, 105, 155, 112, 167, 175, 246, 60, 107, 115, 173, 127, 183, 185, 248, 136, 190, 200, 261, 212, 271, 276, 339, 67, 122, 125, 184, 139, 194, 204, 270, 151, 209, 217, 277, 224, 294, 296, 354, 158, 223, 232, 291, 241, 302, 312, 362, 257, 319, 324, 374, 335, 384, 395, 439, 73, 141, 149, 207, 157, 219, 227, 287, 166, 233, 238, 305, 249, 310, 321, 377, 198, 244, 256, 320, 264, 325, 336, 386, 283, 337, 347, 392, 358, 405, 411, 451, 218, 266, 278, 329, 290, 344, 355, 399, 297, 348, 363, 409, 375, 416, 426, 458, 315, 369, 378, 422, 387, 428, 418, 468, 396, 437, 445, 462, 448, 477, 481, 496, 83, 156, 165, 240, 193, 250, 258, 317, 208, 260, 267, 333, 282, 340, 353, 401, 222, 280, 288, 338, 301, 351, 365, 407, 311, 370, 371, 415, 382, 425, 430, 463, 243, 299, 292, 356, 313, 366, 376, 419, 328, 381, 389, 429, 397, 433, 441, 470, 342, 390, 402, 438, 408, 446, 453, 475, 417, 450, 459, 484, 465, 486, 487, 501, 265, 304, 326, 380, 341, 383, 394, 435, 357, 403, 400, 443, 414, 447, 454, 479, 364, 410, 420, 457, 427, 452, 467, 482, 436, 469, 460, 488, 474, 490, 495, 504, 372, 424, 432, 461, 440, 466, 471, 489, 442, 472, 480, 494, 476, 491, 499, 507, 456, 483, 478, 497, 485, 500, 498, 506, 492, 502, 503, 508, 505, 509, 510, 511]









TABLE Z2







having a sequence length of 512:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
4



3
9



4
2



5
11



6
7



7
23



8
3



9
14



10
17



11
27



12
10



13
31



14
34



15
66



16
5



17
16



18
12



19
29



20
19



21
37



22
45



23
71



24
21



25
48



26
39



27
79



28
54



29
86



30
92



31
145



32
6



33
15



34
20



35
40



36
24



37
47



38
44



39
82



40
28



41
52



42
59



43
89



44
63



45
99



46
103



47
152



48
33



49
56



50
68



51
102



52
72



53
110



54
116



55
163



56
78



57
118



58
126



59
176



60
134



61
182



62
196



63
263



64
8



65
22



66
25



67
50



68
32



69
55



70
62



71
%



72
35



73
70



74
57



75
104



76
75



77
113



78
124



79
170



80
41



81
65



82
76



83
117



84
85



85
120



86
132



87
181



88
93



89
135



90
143



91
191



92
153



93
206



94
215



95
284



96
49



97
81



98
90



99
129



100
100



101
137



102
146



103
202



104
106



105
148



106
162



107
214



108
174



109
221



110
234



111
298



112
119



113
168



114
177



115
228



116
186



117
236



118
247



119
308



120
201



121
252



122
262



123
322



124
273



125
330



126
349



127
406



128
13



129
26



130
38



131
64



132
30



133
74



134
69



135
121



136
43



137
77



138
84



139
130



140
91



141
140



142
142



143
197



144
53



145
88



146
95



147
138



148
101



149
150



150
161



151
210



152
114



153
160



154
169



155
220



156
180



157
230



158
242



159
307



160
58



161
98



162
111



163
159



164
108



165
164



166
172



167
229



168
128



169
179



170
187



171
237



172
199



173
251



174
259



175
318



176
133



177
189



178
203



179
254



180
213



181
272



182
279



183
332



184
226



185
285



186
289



187
343



188
303



189
360



190
368



191
423



192
61



193
109



194
123



195
178



196
131



197
188



198
195



199
253



200
144



201
192



202
205



203
269



204
216



205
274



206
286



207
345



208
154



209
211



210
225



211
281



212
235



213
293



214
300



215
352



216
245



217
306



218
314



219
361



220
327



221
379



222
388



223
434



224
171



225
231



226
239



227
295



228
255



229
309



230
316



231
373



232
268



233
323



234
331



235
385



236
346



237
391



238
398



239
444



240
275



241
334



242
350



243
393



244
359



245
404



246
412



247
449



248
367



249
413



250
421



251
455



252
431



253
464



254
473



255
493



256
18



257
36



258
42



259
80



260
46



261
87



262
94



263
147



264
51



265
97



266
105



267
155



268
112



269
167



270
175



271
246



272
60



273
107



274
115



275
173



276
127



277
183



278
185



279
248



280
136



281
190



282
200



283
261



284
212



285
271



286
276



287
339



288
67



289
122



290
125



291
184



292
139



293
194



294
204



295
270



296
151



297
209



298
217



299
277



300
224



301
294



302
296



303
354



304
158



305
223



306
232



307
291



308
241



309
302



310
312



311
362



312
257



313
319



314
324



315
374



316
335



317
384



318
395



319
439



320
73



321
141



322
149



323
207



324
157



325
219



326
227



327
287



328
166



329
233



330
238



331
305



332
249



333
310



334
321



335
377



336
198



337
244



338
256



339
320



340
264



341
325



342
336



343
386



344
283



345
337



346
347



347
392



348
358



349
405



350
411



351
451



352
218



353
266



354
278



355
329



356
290



357
344



358
355



359
399



360
297



361
348



362
363



363
409



364
375



365
416



366
426



367
458



368
315



369
369



370
378



371
422



372
387



373
428



374
418



375
468



376
396



377
437



378
445



379
462



380
448



381
477



382
481



383
496



384
83



385
156



386
165



387
240



388
193



389
250



390
258



391
317



392
208



393
260



394
267



395
333



396
282



397
340



398
353



399
401



400
222



401
280



402
288



403
338



404
301



405
351



406
365



407
407



408
311



409
370



410
371



411
415



412
382



413
425



414
430



415
463



416
243



417
299



418
292



419
356



420
313



421
366



422
376



423
419



424
328



425
381



426
389



427
429



428
397



429
433



430
441



431
470



432
342



433
390



434
402



435
438



436
408



437
446



438
453



439
475



440
417



441
450



442
459



443
484



444
465



445
486



446
487



447
501



448
265



449
304



450
326



451
380



452
341



453
383



454
394



455
435



456
357



457
403



458
400



459
443



460
414



461
447



462
454



463
479



464
364



465
410



466
420



467
457



468
427



469
452



470
467



471
482



472
436



473
469



474
460



475
488



476
474



477
490



478
495



479
504



480
372



481
424



482
432



483
461



484
440



485
466



486
471



487
489



488
442



489
472



490
480



491
494



492
476



493
491



494
499



495
507



496
456



497
483



498
478



499
497



500
485



501
500



502
498



503
506



504
492



505
502



506
503



507
508



508
505



509
509



510
510



511
511










Sequence Z3, having a sequence length of 256:


[0, 1, 4, 9, 2, 11, 7, 22, 3, 14, 17, 26, 10, 30, 33, 60, 5, 16, 12, 28, 18, 35, 42, 64, 20, 44, 37, 71, 49, 76, 81, 122, 6, 15, 19, 38, 23, 43, 41, 73, 27, 47, 54, 78, 57, 86, 90, 126, 32, 51, 61, 89, 65, 95, 99, 133, 70, 101, 107, 141, 114, 147, 155, 192, 8, 21, 24, 46, 31, 50, 56, 84, 34, 63, 52, 91, 67, 97, 106, 137, 39, 59, 68, 100, 75, 103, 112, 146, 82, 115, 120, 152, 127, 162, 167, 201, 45, 72, 79, 109, 87, 116, 123, 159, 92, 124, 132, 166, 140, 170, 177, 207, 102, 135, 142, 173, 148, 179, 184, 212, 158, 186, 191, 217, 196, 220, 227, 243, 13, 25, 36, 58, 29, 66, 62, 104, 40, 69, 74, 110, 80, 118, 119, 156, 48, 77, 83, 117, 88, 125, 131, 163, 98, 130, 136, 169, 145, 175, 182, 211, 53, 85, 96, 129, 93, 134, 139, 174, 108, 144, 149, 180, 157, 185, 190, 216, 113, 151, 160, 188, 165, 195, 199, 222, 172, 202, 204, 224, 209, 231, 234, 247, 55, 94, 105, 143, 111, 150, 154, 187, 121, 153, 161, 194, 168, 197, 203, 225, 128, 164, 171, 200, 178, 205, 208, 229, 183, 210, 214, 232, 219, 236, 238, 249, 138, 176, 181, 206, 189, 213, 215, 235, 193, 218, 221, 237, 226, 239, 241, 250, 198, 223, 228, 240, 230, 242, 244, 251, 233, 245, 246, 252, 248, 253, 254, 255]









TABLE Z3







having a sequence length of 256:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
4



3
9



4
2



5
11



6
7



7
22



8
3



9
14



10
17



11
26



12
10



13
30



14
33



15
60



16
5



17
16



18
12



19
28



20
18



21
35



22
42



23
64



24
20



25
44



26
37



27
71



28
49



29
76



30
81



31
122



32
6



33
15



34
19



33
38



36
23



37
43



38
41



39
73



40
27



41
47



42
54



43
78



44
57



45
86



46
90



47
126



48
32



49
51



50
61



51
89



52
65



53
95



54
99



55
133



56
70



57
101



58
107



59
141



60
114



61
147



62
155



63
192



64
8



65
21



66
24



67
46



68
31



69
50



70
56



71
84



72
34



73
63



74
52



75
91



76
67



77
97



78
106



79
137



80
39



81
59



82
68



83
100



84
75



85
103



86
112



87
146



88
82



89
115



90
120



91
152



92
127



93
162



94
167



95
201



96
45



97
72



98
79



99
109



100
87



101
116



102
123



103
159



104
92



105
124



106
132



107
166



108
140



109
170



110
177



111
207



112
102



113
135



114
142



115
173



116
148



117
179



118
184



119
212



120
158



121
186



122
191



123
217



124
196



125
220



126
227



127
243



128
13



129
25



130
36



131
58



132
29



133
66



134
62



135
104



136
40



137
69



138
74



139
110



140
80



141
118



142
119



143
156



144
48



145
77



146
83



147
117



148
88



149
125



150
131



151
163



152
98



153
130



154
136



155
169



156
145



157
175



158
182



159
211



160
53



161
85



162
96



163
129



164
93



165
134



166
139



167
174



168
108



169
144



170
149



171
180



172
157



173
185



174
190



175
216



176
113



177
151



178
160



179
188



180
165



181
195



182
199



183
222



184
172



185
202



186
204



187
224



188
209



189
231



190
234



191
247



192
55



193
94



194
105



195
143



196
111



197
150



198
154



199
187



200
121



201
153



202
161



203
194



204
168



205
197



206
203



207
225



208
128



209
164



210
171



211
200



212
178



213
205



214
208



215
229



216
183



217
210



218
214



219
232



220
219



221
236



222
238



223
249



224
138



225
176



226
181



227
206



228
189



229
213



230
215



231
235



232
193



233
218



234
221



235
237



236
226



237
239



238
241



239
250



240
198



241
223



242
228



243
240



244
230



245
242



246
244



247
251



248
233



249
245



250
246



251
252



252
248



253
253



254
254



255
255










Sequence Z4, having a sequence length of 128:


[0, 1, 4, 9, 2, 11, 7, 21, 3, 13, 16, 24, 10, 27, 30, 51, 5, 15, 12, 26, 17, 32, 37, 54, 19, 39, 33, 59, 43, 63, 66, 90, 6, 14, 18, 34, 22, 38, 36, 61, 25, 42, 47, 64, 49, 69, 72, 93, 29, 45, 52, 71, 55, 75, 77, 96, 58, 79, 83, 100, 86, 103, 106, 119, 8, 20, 23, 41, 28, 44, 48, 68, 31, 53, 46, 73, 56, 76, 82, 98, 35, 50, 57, 78, 62, 81, 85, 102, 67, 87, 89, 105, 94, 109, 111, 121, 40, 60, 65, 84, 70, 88, 91, 108, 74, 92, 95, 110, 99, 112, 114, 122, 80, 97, 101, 113, 104, 115, 116, 123, 107, 117, 118, 124, 120, 125, 126, 127]









TABLE Z4







having a sequence length of 128:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
4



3
9



4
2



5
11



6
7



7
21



8
3



9
13



10
16



11
24



12
10



13
27



14
30



15
51



16
5



17
15



18
12



19
26



20
17



21
32



22
37



23
54



24
19



25
39



26
33



27
59



28
43



29
63



30
66



31
90



32
6



33
14



34
18



35
34



36
22



37
38



38
36



39
61



40
25



41
42



42
47



43
64



44
49



45
69



46
72



47
93



48
29



49
45



50
52



51
71



52
55



53
75



54
77



55
96



56
58



57
79



58
83



59
100



60
86



61
103



62
106



63
119



64
8



65
20



66
23



67
41



68
28



69
44



70
48



71
68



72
31



73
53



74
46



75
73



76
56



77
76



78
82



79
98



80
35



81
50



82
57



83
78



84
62



85
81



86
85



87
102



88
67



89
87



90
89



91
105



92
94



93
109



94
111



95
121



96
40



97
60



98
65



99
84



100
70



101
88



102
91



103
108



104
74



105
92



106
95



107
110



108
99



109
112



110
114



111
122



112
80



113
97



114
101



115
113



116
104



117
115



118
116



119
123



120
107



121
117



122
118



123
124



124
120



125
125



126
126



127
127










Sequence Z5, having a sequence length of 64:


[0, 1, 4, 8, 2, 10, 7, 19, 3, 12, 15, 21, 9, 24, 26, 39, 5, 14, 11, 23, 16, 27, 31, 41, 18, 33, 28, 44, 35, 46, 48, 57, 6, 13, 17, 29, 20, 32, 30, 45, 22, 34, 37, 47, 38, 49, 51, 58, 25, 36, 40, 50, 42, 52, 53, 59, 43, 54, 55, 60, 56, 61, 62, 63]









TABLE Z5







having a sequence length of 64:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
4



3
8



4
2



5
10



6
7



7
19



8
3



9
12



10
15



11
21



12
9



13
24



14
26



15
39



16
5



17
14



18
11



19
23



20
16



21
27



22
31



23
41



24
18



25
33



26
28



27
44



28
35



29
46



30
48



31
57



32
6



33
13



34
17



35
29



36
20



37
32



38
30



39
45



40
22



41
34



42
37



43
47



44
38



45
49



46
51



47
58



48
25



49
36



50
40



51
50



52
42



53
52



54
53



55
59



56
43



57
54



58
55



59
60



60
56



61
61



62
62



63
63










Second group of sequences (obtained by using a criterion that comprehensively considers performance obtained by List (list) whose sizes are respectively 1, 2, 4, 8, and 16, and preferentially considers performance of Lists 1 and 16).


Sequence Q6, having a sequence length of 1024:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 256, 36, 24, 20, 65, 34, 7, 129, 66, 512, 11, 40, 68, 13, 19, 130, 48, 14, 72, 257, 21, 132, 35, 258, 26, 513, 80, 37, 25, 22, 136, 38, 260, 96, 514, 264, 67, 41, 144, 28, 69, 42, 516, 49, 74, 272, 160, 520, 288, 528, 70, 131, 544, 192, 44, 81, 50, 73, 133, 15, 52, 320, 23, 134, 76, 82, 56, 384, 137, 97, 27, 39, 259, 84, 138, 145, 261, 29, 43, 98, 515, 88, 140, 30, 146, 71, 262, 265, 161, 576, 45, 100, 640, 51, 148, 46, 75, 266, 273, 517, 104, 162, 53, 193, 152, 77, 164, 768, 268, 274, 518, 54, 83, 57, 521, 112, 135, 78, 289, 194, 85, 276, 522, 58, 168, 139, 99, 86, 60, 280, 89, 290, 529, 524, 196, 141, 101, 147, 176, 142, 530, 31, 292, 200, 263, 90, 149, 321, 322, 102, 545, 105, 532, 92, 47, 296, 163, 150, 546, 208, 385, 267, 304, 324, 153, 165, 536, 386, 106, 55, 328, 577, 548, 113, 154, 79, 224, 108, 269, 166, 578, 519, 552, 195, 270, 641, 523, 580, 560, 275, 59, 169, 156, 291, 277, 114, 87, 197, 116, 170, 61, 531, 525, 642, 281, 278, 526, 177, 293, 388, 91, 584, 769, 198, 172, 120, 201, 336, 62, 282, 143, 103, 178, 294, 93, 644, 202, 592, 323, 392, 297, 151, 209, 284, 180, 107, 94, 204, 770, 648, 298, 352, 533, 325, 608, 155, 210, 400, 305, 547, 300, 109, 184, 534, 772, 326, 656, 115, 167, 157, 537, 225, 306, 329, 110, 117, 212, 171, 330, 226, 549, 776, 538, 387, 308, 216, 416, 672, 337, 158, 271, 118, 279, 550, 332, 579, 540, 389, 173, 121, 553, 199, 784, 179, 228, 338, 312, 704, 390, 122, 554, 581, 393, 283, 174, 203, 340, 448, 561, 353, 394, 181, 527, 582, 556, 63, 295, 285, 232, 124, 643, 585, 562, 205, 182, 286, 299, 354, 211, 401, 185, 396, 344, 586, 645, 593, 535, 240, 206, 95, 327, 564, 800, 402, 356, 307, 301, 417, 186, 404, 213, 418, 539, 568, 594, 649, 771, 227, 832, 588, 646, 302, 111, 360, 214, 551, 609, 896, 188, 309, 449, 331, 217, 408, 229, 541, 159, 420, 596, 650, 773, 310, 333, 119, 339, 218, 368, 657, 230, 391, 542, 610, 233, 313, 334, 774, 658, 612, 175, 123, 314, 555, 600, 583, 341, 450, 652, 220, 557, 424, 395, 777, 673, 355, 287, 183, 234, 125, 241, 563, 660, 558, 616, 778, 674, 316, 342, 345, 397, 452, 432, 207, 785, 403, 357, 187, 587, 565, 664, 624, 780, 236, 126, 242, 398, 705, 346, 456, 358, 405, 303, 569, 595, 244, 786, 189, 676, 589, 566, 647, 361, 706, 215, 348, 419, 406, 464, 801, 590, 409, 680, 788, 362, 570, 597, 572, 311, 708, 219, 598, 601, 651, 611, 410, 802, 421, 792, 231, 602, 653, 248, 688, 369, 190, 480, 335, 364, 613, 659, 654, 422, 315, 221, 370, 425, 235, 451, 412, 343, 372, 317, 614, 775, 222, 543, 426, 453, 237, 559, 833, 804, 712, 834, 661, 808, 779, 617, 604, 433, 720, 816, 836, 347, 897, 243, 662, 454, 318, 675, 376, 567, 618, 665, 736, 898, 840, 781, 428, 625, 238, 359, 458, 399, 245, 434, 677, 457, 591, 349, 127, 666, 787, 678, 620, 782, 626, 571, 191, 407, 350, 436, 465, 246, 460, 363, 681, 599, 249, 411, 668, 707, 573, 789, 803, 790, 682, 365, 440, 628, 709, 374, 423, 466, 250, 371, 689, 793, 481, 413, 603, 574, 366, 468, 655, 900, 805, 429, 615, 710, 252, 373, 848, 684, 713, 605, 690, 632, 482, 794, 806, 427, 414, 663, 835, 904, 809, 714, 619, 796, 472, 223, 455, 692, 721, 837, 716, 864, 810, 606, 912, 722, 696, 377, 817, 435, 812, 319, 484, 430, 621, 838, 667, 239, 461, 378, 459, 627, 622, 437, 488, 380, 818, 496, 669, 679, 724, 841, 629, 351, 467, 438, 737, 251, 462, 442, 441, 469, 247, 683, 842, 738, 899, 670, 783, 849, 820, 728, 928, 791, 367, 901, 630, 685, 844, 633, 711, 253, 691, 824, 902, 686, 740, 850, 375, 444, 470, 483, 415, 485, 905, 795, 473, 634, 744, 852, 960, 865, 693, 797, 906, 715, 807, 474, 636, 694, 254, 717, 575, 811, 697, 866, 798, 379, 431, 913, 607, 489, 723, 486, 908, 718, 813, 476, 856, 839, 725, 698, 914, 752, 868, 819, 814, 439, 929, 490, 623, 671, 739, 916, 872, 381, 930, 497, 821, 463, 726, 961, 843, 492, 631, 729, 700, 443, 741, 845, 920, 382, 822, 851, 730, 498, 880, 742, 445, 903, 687, 825, 932, 471, 635, 846, 500, 745, 962, 826, 732, 446, 936, 255, 853, 475, 753, 695, 867, 637, 907, 487, 746, 828, 854, 504, 799, 909, 857, 964, 719, 477, 915, 699, 493, 748, 944, 858, 873, 638, 968, 478, 383, 754, 869, 491, 910, 815, 917, 727, 870, 701, 931, 499, 860, 756, 922, 731, 976, 918, 874, 823, 502, 933, 743, 760, 881, 494, 702, 921, 827, 876, 501, 847, 992, 934, 447, 733, 882, 937, 963, 747, 505, 855, 924, 734, 829, 965, 884, 938, 506, 749, 945, 966, 755, 859, 940, 830, 911, 871, 639, 888, 479, 946, 750, 969, 508, 861, 757, 970, 919, 875, 862, 758, 948, 977, 923, 972, 761, 877, 952, 495, 703, 935, 978, 883, 762, 503, 925, 878, 735, 993, 885, 939, 994, 980, 926, 764, 941, 967, 886, 831, 947, 507, 889, 984, 751, 942, 996, 971, 890, 509, 949, 973, 1000, 892, 950, 863, 759, 1008, 510, 979, 953, 763, 974, 954, 879, 981, 982, 927, 995, 765, 956, 887, 985, 997, 986, 943, 891, 998, 766, 511, 988, 1001, 951, 1002, 893, 975, 894, 1009, 955, 1004, 1010, 957, 983, 958, 987, 1012, 999, 1016, 767, 989, 1003, 990, 1005, 959, 1011, 1013, 895, 1006, 1014, 1017, 1018, 991, 1020, 1007, 1015, 1019, 1021, 1022, 1023]









TABLE Q6







having a sequence length of 1024:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
9



11
6



12
17



13
10



14
18



15
128



16
12



17
33



18
256



19
36



20
24



21
20



22
65



23
34



24
7



25
129



26
66



27
512



28
11



29
40



30
68



31
13



32
19



33
130



34
48



35
14



36
72



37
257



38
21



39
132



40
35



41
258



42
26



43
513



44
80



45
37



46
25



47
22



48
136



49
38



50
260



51
96



52
514



53
264



54
67



55
41



56
144



57
28



58
69



59
42



60
516



61
49



62
74



63
272



64
160



65
520



66
288



67
528



68
70



69
131



70
544



71
192



72
44



73
81



74
50



75
73



76
133



77
15



78
52



79
320



80
23



81
134



82
76



83
82



84
56



85
384



86
137



87
97



88
27



89
39



90
259



91
84



92
138



93
145



94
261



95
29



96
43



97
98



98
515



99
88



100
140



101
30



102
146



103
71



104
262



105
265



106
161



107
576



108
45



109
100



110
640



111
51



112
148



113
46



114
75



115
266



116
273



117
517



118
104



119
162



120
53



121
193



122
152



123
77



124
164



125
768



126
268



127
274



128
518



129
54



130
83



131
57



132
521



133
112



134
135



135
78



136
289



137
194



138
85



139
276



140
522



141
58



142
168



143
139



144
99



145
86



146
60



147
280



148
89



149
290



150
529



151
524



152
196



153
141



154
101



155
147



156
176



157
142



158
530



159
31



160
292



161
200



162
263



163
90



164
149



165
321



166
322



167
102



168
545



169
105



170
532



171
92



172
47



173
296



174
163



175
150



176
546



177
208



178
385



179
267



180
304



181
324



182
153



183
165



184
536



185
386



186
106



187
55



188
328



189
577



190
548



191
113



192
154



193
79



194
224



195
108



196
269



197
166



198
578



199
519



200
552



201
195



202
270



203
641



204
523



205
580



206
560



207
275



208
59



209
169



210
156



211
291



212
277



213
114



214
87



215
197



216
116



217
170



218
61



219
531



220
525



221
642



222
281



223
278



224
526



225
177



226
293



227
388



228
91



229
584



230
769



231
198



232
172



233
120



234
201



235
336



236
62



237
282



238
143



239
103



240
178



241
294



242
93



243
644



244
202



245
592



246
323



247
392



248
297



249
151



250
209



251
284



252
180



253
107



254
94



255
204



256
770



257
648



258
298



259
352



260
533



261
325



262
608



263
155



264
210



265
400



266
305



267
547



268
300



269
109



270
184



271
534



272
772



273
326



274
656



275
115



276
167



277
157



278
537



279
225



280
306



281
329



282
110



283
117



284
212



285
171



286
330



287
226



288
549



289
776



290
538



291
387



292
308



293
216



294
416



295
672



296
337



297
158



298
271



299
118



300
279



301
550



302
332



303
579



304
540



305
389



306
173



307
121



308
553



309
199



310
784



311
179



312
228



313
338



314
312



315
704



316
390



317
122



318
554



319
581



320
393



321
283



322
174



323
203



324
340



325
448



326
561



327
353



328
394



329
181



330
527



331
582



332
556



333
63



334
295



335
285



336
232



337
124



338
643



339
585



340
562



341
205



342
182



343
286



344
299



345
354



346
211



347
401



348
185



349
3%



350
344



351
586



352
645



353
593



354
535



355
240



356
206



357
95



358
327



359
564



360
800



361
402



362
356



363
307



364
301



365
417



366
186



367
404



368
213



369
418



370
539



371
568



372
594



373
649



374
771



375
227



376
832



377
588



378
646



379
302



380
111



381
360



382
214



383
551



384
609



385
896



386
188



387
309



388
449



389
331



390
217



391
408



392
229



393
541



394
159



395
420



396
5%



397
650



398
773



399
310



400
333



401
119



402
339



403
218



404
368



405
657



406
230



407
391



408
542



409
610



410
233



411
313



412
334



413
774



414
658



415
612



416
175



417
123



418
314



419
555



420
600



421
583



422
341



423
450



424
652



425
220



426
557



427
424



428
395



429
777



430
673



431
355



432
287



433
183



434
234



435
125



436
241



437
563



438
660



439
558



440
616



441
778



442
674



443
316



444
342



445
345



446
397



447
452



448
432



449
207



450
785



451
403



452
357



453
187



454
587



455
565



456
664



457
624



458
780



459
236



460
126



461
242



462
398



463
705



464
346



465
456



466
358



467
405



468
303



469
569



470
595



471
244



472
786



473
189



474
676



475
589



476
566



477
647



478
361



479
706



480
215



481
348



482
419



483
406



484
464



485
801



486
590



487
409



488
680



489
788



490
362



491
570



492
597



493
572



494
311



495
708



496
219



497
598



498
601



499
651



500
611



501
410



502
802



503
421



504
792



505
231



506
602



507
653



508
248



509
688



510
369



511
190



512
480



513
335



514
364



515
613



516
659



517
654



518
422



519
315



520
221



521
370



522
425



523
235



524
451



525
412



526
343



527
372



528
317



529
614



530
775



531
222



532
543



533
426



534
453



535
237



536
559



537
833



538
804



539
712



540
834



541
661



542
808



543
779



544
617



545
604



546
433



547
720



548
816



549
836



550
347



551
897



552
243



553
662



554
454



555
318



556
675



557
376



558
567



559
618



560
665



561
736



562
898



563
840



564
781



565
428



566
625



567
238



568
359



569
458



570
399



571
245



572
434



573
677



574
457



575
591



576
349



577
127



578
666



579
787



580
678



581
620



582
782



583
626



584
571



585
191



586
407



587
350



588
436



589
465



590
246



591
460



592
363



593
681



594
599



595
249



596
411



597
668



598
707



599
573



600
789



601
803



602
790



603
682



604
365



605
440



606
628



607
709



608
374



609
423



610
466



611
250



612
371



613
689



614
793



615
481



616
413



617
603



618
574



619
366



620
468



621
655



622
900



623
805



624
429



625
615



626
710



627
252



628
373



629
848



630
684



631
713



632
605



633
690



634
632



635
482



636
794



637
806



638
427



639
414



640
663



641
835



642
904



643
809



644
714



645
619



646
796



647
472



648
223



649
455



650
692



651
721



652
837



653
716



654
864



655
810



656
606



657
912



658
722



659
696



660
377



661
817



662
435



663
812



664
319



665
484



666
430



667
621



668
838



669
667



670
239



671
461



672
378



673
459



674
627



675
622



676
437



677
488



678
380



679
818



680
496



681
669



682
679



683
724



684
841



685
629



686
351



687
467



688
438



689
737



690
251



691
462



692
442



693
441



694
469



695
247



696
683



697
842



698
738



699
899



700
670



701
783



702
849



703
820



704
728



705
928



706
791



707
367



708
901



709
630



710
685



711
844



712
633



713
711



714
253



715
691



716
824



717
902



718
686



719
740



720
850



721
375



722
444



723
470



724
483



725
415



726
485



727
905



728
795



729
473



730
634



731
744



732
852



733
960



734
865



735
693



736
797



737
906



738
715



739
807



740
474



741
636



742
694



743
254



744
717



745
575



746
811



747
697



748
866



749
798



750
379



751
431



752
913



753
607



754
489



755
723



756
486



757
908



758
718



759
813



760
476



761
856



762
839



763
725



764
698



765
914



766
752



767
868



768
819



769
814



770
439



771
929



772
490



773
623



774
671



775
739



776
916



777
872



778
381



779
930



780
497



781
821



782
463



783
726



784
961



785
843



786
492



787
631



788
729



789
700



790
443



791
741



792
845



793
920



794
382



795
822



796
851



797
730



798
498



799
880



800
742



801
445



802
903



803
687



804
825



805
932



806
471



807
635



808
846



809
500



810
745



811
962



812
826



813
732



814
446



815
936



816
255



817
853



818
475



819
753



820
695



821
867



822
637



823
907



824
487



825
746



826
828



827
854



828
504



829
799



830
909



831
857



832
964



833
719



834
477



835
915



836
699



837
493



838
748



839
944



840
858



841
873



842
638



843
968



844
478



845
383



846
754



847
869



848
491



849
910



850
815



851
917



852
727



853
870



854
701



855
931



856
499



857
860



858
756



859
922



860
731



861
976



862
918



863
874



864
823



865
502



866
933



867
743



868
760



869
881



870
494



871
702



872
921



873
827



874
876



875
501



876
847



877
992



878
934



879
447



880
733



881
882



882
937



883
963



884
747



885
505



886
855



887
924



888
734



889
829



890
965



891
884



892
938



893
506



894
749



895
945



896
966



897
755



898
859



899
940



900
830



901
911



902
871



903
639



904
888



905
479



906
946



907
750



908
969



909
508



910
861



911
757



912
970



913
919



914
875



915
862



916
758



917
948



918
977



919
923



920
972



921
761



922
877



923
952



924
495



925
703



926
935



927
978



928
883



929
762



930
503



931
925



932
878



933
735



934
993



935
885



936
939



937
994



938
980



939
926



940
764



941
941



942
967



943
886



944
831



945
947



946
507



947
889



948
984



949
751



950
942



951
996



952
971



953
890



954
509



955
949



956
973



957
1000



958
892



959
950



960
863



961
759



962
1008



963
510



964
979



965
953



966
763



967
974



968
954



969
879



970
981



971
982



972
927



973
995



974
765



975
956



976
887



977
985



978
997



979
986



980
943



981
891



982
998



983
766



984
511



985
988



986
1001



987
951



988
1002



989
893



990
975



991
894



992
1009



993
955



994
1004



995
1010



996
957



997
983



998
958



999
987



1000
1012



1001
999



1002
1016



1003
767



1004
989



1005
1003



1006
990



1007
1005



1008
959



1009
1011



1010
1013



1011
895



1012
1006



1013
1014



1014
1017



1015
1018



1016
991



1017
1020



1018
1007



1019
1015



1020
1019



1021
1021



1022
1022



1023
1023










Sequence Q7, having a sequence length of 512:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 256, 36, 24, 20, 65, 34, 7, 129, 66, 11, 40, 68, 13, 19, 130, 48, 14, 72, 257, 21, 132, 35, 258, 26, 80, 37, 25, 22, 136, 38, 260, 96, 264, 67, 41, 144, 28, 69, 42, 49, 74, 272, 160, 288, 70, 131, 192, 44, 81, 50, 73, 133, 15, 52, 320, 23, 134, 76, 82, 56, 384, 137, 97, 27, 39, 259, 84, 138, 145, 261, 29, 43, 98, 88, 140, 30, 146, 71, 262, 265, 161, 45, 100, 51, 148, 46, 75, 266, 273, 104, 162, 53, 193, 152, 77, 164, 268, 274, 54, 83, 57, 112, 135, 78, 289, 194, 85, 276, 58, 168, 139, 99, 86, 60, 280, 89, 290, 196, 141, 101, 147, 176, 142, 31, 292, 200, 263, 90, 149, 321, 322, 102, 105, 92, 47, 296, 163, 150, 208, 385, 267, 304, 324, 153, 165, 386, 106, 55, 328, 113, 154, 79, 224, 108, 269, 166, 195, 270, 275, 59, 169, 156, 291, 277, 114, 87, 197, 116, 170, 61, 281, 278, 177, 293, 388, 91, 198, 172, 120, 201, 336, 62, 282, 143, 103, 178, 294, 93, 202, 323, 392, 297, 151, 209, 284, 180, 107, 94, 204, 298, 352, 325, 155, 210, 400, 305, 300, 109, 184, 326, 115, 167, 157, 225, 306, 329, 110, 117, 212, 171, 330, 226, 387, 308, 216, 416, 337, 158, 271, 118, 279, 332, 389, 173, 121, 199, 179, 228, 338, 312, 390, 122, 393, 283, 174, 203, 340, 448, 353, 394, 181, 63, 295, 285, 232, 124, 205, 182, 286, 299, 354, 211, 401, 185, 396, 344, 240, 206, 95, 327, 402, 356, 307, 301, 417, 186, 404, 213, 418, 227, 302, 111, 360, 214, 188, 309, 449, 331, 217, 408, 229, 159, 420, 310, 333, 119, 339, 218, 368, 230, 391, 233, 313, 334, 175, 123, 314, 341, 450, 220, 424, 395, 355, 287, 183, 234, 125, 241, 316, 342, 345, 397, 452, 432, 207, 403, 357, 187, 236, 126, 242, 398, 346, 456, 358, 405, 303, 244, 189, 361, 215, 348, 419, 406, 464, 409, 362, 311, 219, 410, 421, 231, 248, 369, 190, 480, 335, 364, 422, 315, 221, 370, 425, 235, 451, 412, 343, 372, 317, 222, 426, 453, 237, 433, 347, 243, 454, 318, 376, 428, 238, 359, 458, 399, 245, 434, 457, 349, 127, 191, 407, 350, 436, 465, 246, 460, 363, 249, 411, 365, 440, 374, 423, 466, 250, 371, 481, 413, 366, 468, 429, 252, 373, 482, 427, 414, 472, 223, 455, 377, 435, 319, 484, 430, 239, 461, 378, 459, 437, 488, 380, 496, 351, 467, 438, 251, 462, 442, 441, 469, 247, 367, 253, 375, 444, 470, 483, 415, 485, 473, 474, 254, 379, 431, 489, 486, 476, 439, 490, 381, 497, 463, 492, 443, 382, 498, 445, 471, 500, 446, 255, 475, 487, 504, 477, 493, 478, 383, 491, 499, 502, 494, 501, 447, 505, 506, 479, 508, 495, 503, 507, 509, 510, 511]









TABLE Q7







having a sequence length of 512:






















Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-



bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-


or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized


se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-


quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel


num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-


ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-


of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce


relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-


bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber

























0
0
64
192
128
139
192
388
256
338
320
313
384
343
448
380


1
1
65
44
129
99
193
91
257
312
321
334
385
372
449
496


2
2
66
81
130
86
194
198
258
390
322
175
386
317
450
351


3
4
67
50
131
60
195
172
259
122
323
123
387
222
451
467


4
8
68
73
132
280
196
120
260
393
324
314
388
426
452
438


5
16
69
133
133
89
197
201
261
283
325
341
389
453
453
251


6
32
70
15
134
290
198
336
262
174
326
450
390
237
454
462


7
3
71
52
135
196
199
62
263
203
327
220
391
433
455
442


8
5
72
320
136
141
200
282
264
340
328
424
392
347
456
441


9
64
73
23
137
101
201
143
265
448
329
395
393
243
457
469


10
9
74
134
138
147
202
103
266
353
330
355
394
454
458
247


11
6
75
76
139
176
203
178
267
394
331
287
395
318
459
367


12
17
76
82
140
142
204
294
268
181
332
183
396
376
460
253


13
10
77
56
141
31
205
93
269
63
333
234
397
428
461
375


14
18
78
384
142
292
206
202
270
295
334
125
398
238
462
444


15
128
79
137
143
200
207
323
271
285
335
241
399
359
463
470


16
12
80
97
144
263
208
392
272
232
336
316
400
458
464
483


17
33
81
27
145
90
209
297
273
124
337
342
401
399
465
415


18
256
82
39
146
149
210
151
274
205
338
345
402
245
466
485


19
36
83
259
147
321
211
209
275
182
339
397
403
434
467
473


20
24
84
84
148
322
212
284
276
286
340
452
404
457
468
474


21
20
85
138
149
102
213
180
277
299
341
432
405
349
469
254


22
65
86
145
150
105
214
107
278
354
342
207
406
127
470
379


23
34
87
261
151
92
215
94
279
211
343
403
407
191
471
431


24
7
88
29
152
47
216
204
280
401
344
357
408
407
472
489


25
129
89
43
153
296
217
298
281
185
345
187
409
350
473
486


26
66
90
98
154
163
218
352
282
396
346
236
410
436
474
476


27
11
91
88
155
150
219
325
283
344
347
126
411
465
475
439


28
40
92
140
156
208
220
155
284
240
348
242
412
246
476
490


29
68
93
30
157
385
221
210
285
206
349
398
413
460
477
381


30
13
94
146
158
267
222
400
286
95
350
346
414
363
478
497


31
19
95
71
159
304
223
305
287
327
351
456
415
249
479
463


32
130
96
262
160
324
224
300
288
402
352
358
416
411
480
492


33
48
97
265
161
153
225
109
289
356
353
405
417
365
481
443


34
14
98
161
162
165
226
184
290
307
354
303
418
440
482
382


35
72
99
45
163
386
227
326
291
301
355
244
419
374
483
498


36
257
100
100
164
106
228
115
292
417
356
189
420
423
484
445


37
21
101
51
165
55
229
167
293
186
357
361
421
466
485
471


38
132
102
148
166
328
230
157
294
404
358
215
422
250
486
500


39
35
103
46
167
113
231
225
295
213
359
348
423
371
487
446


40
258
104
75
168
154
232
306
296
418
360
419
424
481
488
255


41
26
105
266
169
79
233
329
297
227
361
406
425
413
489
475


42
80
106
273
170
224
234
110
298
302
362
464
426
366
490
487


43
37
107
104
171
108
235
117
299
111
363
409
427
468
491
504


44
25
108
162
172
269
236
212
300
360
364
362
428
429
492
477


45
22
109
53
173
166
237
171
301
214
365
311
429
252
493
493


46
136
110
193
174
195
238
330
302
188
366
219
430
373
494
478


47
38
111
152
175
270
239
226
303
309
367
410
431
482
495
383


48
260
112
77
176
275
240
387
304
449
368
421
432
427
496
491


49
96
113
164
177
59
241
308
305
331
369
231
433
414
497
499


50
264
114
268
178
169
242
216
306
217
370
248
434
472
498
502


51
67
115
274
179
156
243
416
307
408
371
369
435
223
499
494


52
41
116
54
180
291
244
337
308
229
372
190
436
455
500
501


53
144
117
83
181
277
245
158
309
159
373
480
437
377
501
447


54
28
118
57
182
114
246
271
310
420
374
335
438
435
502
505


55
69
119
112
183
87
247
118
311
310
375
364
439
319
503
506


56
42
120
135
184
197
248
279
312
333
376
422
440
484
504
479


57
49
121
78
185
116
249
332
313
119
377
315
441
430
505
508


58
74
122
289
186
170
250
389
314
339
378
221
442
239
506
495


59
272
123
194
187
61
251
173
315
218
379
370
443
461
507
503


60
160
124
85
188
281
252
121
316
368
380
425
444
378
508
507


61
288
125
276
189
278
253
199
317
230
381
235
445
459
509
509


62
70
126
58
190
177
254
179
318
391
382
451
446
437
510
510


63
131
127
168
191
293
255
228
319
233
383
412
447
488
511
511









Sequence Q8, having a sequence length of 256:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 36, 24, 20, 65, 34, 7, 129, 66, 11, 40, 68, 13, 19, 130, 48, 14, 72, 21, 132, 35, 26, 80, 37, 25, 22, 136, 38, 96, 67, 41, 144, 28, 69, 42, 49, 74, 160, 70, 131, 192, 44, 81, 50, 73, 133, 15, 52, 23, 134, 76, 82, 56, 137, 97, 27, 39, 84, 138, 145, 29, 43, 98, 88, 140, 30, 146, 71, 161, 45, 100, 51, 148, 46, 75, 104, 162, 53, 193, 152, 77, 164, 54, 83, 57, 112, 135, 78, 194, 85, 58, 168, 139, 99, 86, 60, 89, 196, 141, 101, 147, 176, 142, 31, 200, 90, 149, 102, 105, 92, 47, 163, 150, 208, 153, 165, 106, 55, 113, 154, 79, 224, 108, 166, 195, 59, 169, 156, 114, 87, 197, 116, 170, 61, 177, 91, 198, 172, 120, 201, 62, 143, 103, 178, 93, 202, 151, 209, 180, 107, 94, 204, 155, 210, 109, 184, 115, 167, 157, 225, 110, 117, 212, 171, 226, 216, 158, 118, 173, 121, 199, 179, 228, 122, 174, 203, 181, 63, 232, 124, 205, 182, 211, 185, 240, 206, 95, 186, 213, 227, 111, 214, 188, 217, 229, 159, 119, 218, 230, 233, 175, 123, 220, 183, 234, 125, 241, 207, 187, 236, 126, 242, 244, 189, 215, 219, 231, 248, 190, 221, 235, 222, 237, 243, 238, 245, 127, 191, 246, 249, 250, 252, 223, 239, 251, 247, 253, 254, 255]









TABLE Q8







having a sequence length of 256:






















Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-



bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-


or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized


se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-


quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel


num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-


ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-


of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce


relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-


bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber

























0
0
32
48
64
52
96
152
128
163
160
178
192
203
224
207


1
1
33
14
65
23
97
77
129
150
161
93
193
181
225
187


2
2
34
72
66
134
98
164
130
208
162
202
194
63
226
236


3
4
35
21
67
76
99
54
131
153
163
151
195
232
227
126


4
8
36
132
68
82
100
83
132
165
164
209
196
124
228
242


5
16
37
35
69
56
101
57
133
106
165
180
197
205
229
244


6
32
38
26
70
137
102
112
134
55
166
107
198
182
230
189


7
3
39
80
71
97
103
135
135
113
167
94
199
211
231
215


8
5
40
37
72
27
104
78
136
154
168
204
200
185
232
219


9
64
41
25
73
39
105
194
137
79
169
155
201
240
233
231


10
9
42
22
74
84
106
85
138
224
170
210
202
206
234
248


11
6
43
136
75
138
107
58
139
108
171
109
203
95
235
190


12
17
44
38
76
145
108
168
140
166
172
184
204
186
236
221


13
10
45
96
77
29
109
139
141
195
173
115
205
213
237
235


14
18
46
67
78
43
110
99
142
59
174
167
206
227
238
222


15
128
47
41
79
98
111
86
143
169
175
157
207
111
239
237


16
12
48
144
80
88
112
60
144
156
176
225
208
214
240
243


17
33
49
28
81
140
113
89
145
114
177
110
209
188
241
238


18
36
50
69
82
30
114
196
146
87
178
117
210
217
242
245


19
24
51
42
83
146
115
141
147
197
179
212
211
229
243
127


20
20
52
49
84
71
116
101
148
116
180
171
212
159
244
191


21
65
53
74
85
161
117
147
149
170
181
226
213
119
245
246


22
34
54
160
86
45
118
176
150
61
182
216
214
218
246
249


23
7
55
70
87
100
119
142
151
177
183
158
215
230
247
250


24
129
56
131
88
51
120
31
152
91
184
118
216
233
248
252


25
66
57
192
89
148
121
200
153
198
185
173
217
175
249
223


26
11
58
44
90
46
122
90
154
172
186
121
218
123
250
239


27
40
59
81
91
75
123
149
155
120
187
199
219
220
251
251


28
68
60
50
92
104
124
102
156
201
188
179
220
183
252
247


29
13
61
73
93
162
125
105
157
62
189
228
221
234
253
253


30
19
62
133
94
53
126
92
158
143
190
122
222
125
254
254


31
130
63
15
95
193
127
47
159
103
191
174
223
241
255
255









Sequence Q9, having a sequence length of 128:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 12, 33, 36, 24, 20, 65, 34, 7, 66, 11, 40, 68, 13, 19, 48, 14, 72, 21, 35, 26, 80, 37, 25, 22, 38, 96, 67, 41, 28, 69, 42, 49, 74, 70, 44, 81, 50, 73, 15, 52, 23, 76, 82, 56, 97, 27, 39, 84, 29, 43, 98, 88, 30, 71, 45, 100, 51, 46, 75, 104, 53, 77, 54, 83, 57, 112, 78, 85, 58, 99, 86, 60, 89, 101, 31, 90, 102, 105, 92, 47, 106, 55, 113, 79, 108, 59, 114, 87, 116, 61, 91, 120, 62, 103, 93, 107, 94, 109, 115, 110, 117, 118, 121, 122, 63, 124, 95, 111, 119, 123, 125, 126, 127]









TABLE Q9







having a sequence length of 128:






















Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-



bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-


or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized


se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-


quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel


num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-


ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-


of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce


relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-


bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber

























0
0
16
33
32
21
48
70
64
43
80
112
96
55
112
109


1
1
17
36
33
35
49
44
65
98
81
78
97
113
113
115


2
2
18
24
34
26
50
81
66
88
82
85
98
79
114
110


3
4
19
20
35
80
51
50
67
30
83
58
99
108
115
117


4
8
20
65
36
37
52
73
68
71
84
99
100
59
116
118


5
16
21
34
37
25
53
15
69
45
85
86
101
114
117
121


6
32
22
7
38
22
54
52
70
100
86
60
102
87
118
122


7
3
23
66
39
38
55
23
71
51
87
89
103
116
119
63


8
5
24
11
40
96
56
76
72
46
88
101
104
61
120
124


9
64
25
40
41
67
57
82
73
75
89
31
105
91
121
95


10
9
26
68
42
41
58
56
74
104
90
90
106
120
122
111


11
6
27
13
43
28
59
97
75
53
91
102
107
62
123
119


12
17
28
19
44
69
60
27
76
77
92
105
108
103
124
123


13
10
29
48
45
42
61
39
77
54
93
92
109
93
125
125


14
18
30
14
46
49
62
84
78
83
94
47
110
107
126
126


15
12
31
72
47
74
63
29
79
57
95
106
111
94
127
127









Sequence Q10, having a sequence length of 64:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 9, 6, 17, 10, 18, 12, 33, 36, 24, 20, 34, 7, 11, 40, 13, 19, 48, 14, 21, 35, 26, 37, 25, 22, 38, 41, 28, 42, 49, 44, 50, 15, 52, 23, 56, 27, 39, 29, 43, 30, 45, 51, 46, 53, 54, 57, 58, 60, 31, 47, 55, 59, 61, 62, 63]









TABLE Q10







having a sequence length of 64:






















Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-



bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-


or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized


se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-


quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel


num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-


ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-


of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce


relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-


bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber

























0
0
8
5
16
36
24
19
32
22
40
15
48
30
56
60


1
1
9
9
17
24
25
48
33
38
41
52
49
45
57
31


2
2
10
6
18
20
26
14
34
41
42
23
50
51
58
47


3
4
11
17
19
34
27
21
35
28
43
56
51
46
59
55


4
8
12
10
20
7
28
35
36
42
44
27
52
53
60
59


5
16
13
18
21
11
29
26
37
49
45
39
53
54
61
61


6
32
14
12
22
40
30
37
38
44
46
29
54
57
62
62


7
3
15
33
23
13
31
25
39
50
47
43
55
58
63
63









Sequence Z6, having a sequence length of 1024:


[0, 1, 2, 7, 3, 8, 11, 24, 4, 10, 13, 28, 16, 31, 35, 77, 5, 12, 14, 32, 21, 38, 47, 80, 20, 46, 42, 88, 57, 95, 101, 159, 6, 17, 23, 40, 19, 45, 49, 89, 29, 55, 59, 96, 72, 108, 113, 172, 34, 61, 74, 111, 78, 120, 129, 187, 84, 131, 141, 208, 146, 218, 236, 333, 9, 22, 26, 54, 30, 58, 68, 103, 36, 75, 62, 114, 82, 123, 135, 193, 44, 73, 83, 130, 91, 138, 145, 214, 99, 148, 163, 228, 171, 242, 254, 357, 51, 87, 97, 144, 109, 154, 167, 239, 118, 169, 186, 253, 195, 269, 282, 380, 133, 191, 213, 275, 216, 283, 299, 401, 233, 307, 317, 417, 337, 435, 460, 577, 15, 25, 33, 69, 39, 76, 81, 134, 48, 86, 92, 143, 100, 153, 157, 238, 56, 93, 102, 155, 112, 164, 175, 249, 122, 182, 192, 263, 210, 277, 297, 394, 64, 106, 119, 174, 124, 183, 197, 276, 142, 209, 217, 285, 232, 306, 322, 416, 156, 225, 240, 311, 252, 329, 342, 433, 270, 348, 366, 453, 386, 473, 511, 585, 71, 121, 137, 201, 152, 215, 231, 309, 161, 234, 244, 323, 255, 341, 356, 449, 177, 250, 264, 346, 284, 368, 382, 480, 293, 390, 403, 496, 425, 520, 531, 648, 194, 279, 287, 375, 312, 392, 406, 505, 336, 410, 434, 523, 459, 535, 567, 670, 355, 436, 461, 552, 471, 571, 590, 695, 508, 595, 611, 690, 627, 714, 743, 816, 18, 37, 41, 90, 50, 94, 104, 162, 53, 105, 115, 179, 126, 196, 202, 298, 63, 116, 127, 207, 139, 212, 223, 300, 147, 222, 237, 321, 251, 335, 343, 432, 66, 136, 149, 211, 160, 226, 241, 334, 173, 248, 258, 344, 268, 364, 379, 468, 180, 266, 280, 363, 292, 387, 399, 494, 314, 411, 418, 519, 443, 528, 555, 664, 79, 165, 166, 246, 181, 261, 273, 358, 188, 281, 286, 389, 302, 400, 412, 513, 235, 296, 313, 402, 324, 422, 444, 526, 350, 445, 464, 550, 481, 576, 587, 686, 259, 327, 345, 431, 362, 452, 466, 568, 381, 478, 490, 592, 514, 604, 619, 707, 404, 510, 521, 612, 527, 628, 608, 721, 557, 660, 672, 750, 678, 778, 794, 845, 85, 178, 185, 291, 227, 305, 316, 407, 247, 320, 328, 428, 349, 446, 462, 570, 265, 347, 361, 451, 367, 467, 483, 586, 391, 487, 501, 596, 525, 616, 639, 725, 294, 365, 369, 482, 395, 503, 518, 609, 427, 522, 533, 638, 565, 624, 666, 751, 448, 546, 572, 662, 588, 676, 688, 770, 605, 693, 692, 790, 722, 801, 814, 879, 325, 388, 423, 524, 447, 534, 554, 649, 465, 574, 569, 673, 591, 671, 691, 782, 484, 589, 610, 687, 620, 694, 723, 806, 647, 729, 740, 818, 760, 834, 844, 905, 512, 615, 635, 724, 665, 726, 756, 824, 677, 754, 772, 848, 786, 837, 870, 924, 680, 780, 798, 856, 809, 875, 865, 930, 828, 885, 893, 946, 909, 954, 963, 984, 27, 43, 52, 98, 60, 117, 128, 199, 65, 132, 140, 204, 151, 220, 224, 330, 67, 150, 158, 219, 170, 260, 271, 354, 184, 278, 290, 370, 304, 393, 408, 532, 70, 168, 176, 267, 190, 288, 301, 383, 200, 308, 318, 419, 332, 426, 439, 536, 206, 326, 340, 437, 359, 455, 476, 558, 371, 469, 491, 584, 493, 599, 618, 745, 107, 189, 198, 303, 205, 319, 331, 421, 229, 339, 351, 454, 377, 475, 486, 575, 245, 353, 372, 470, 396, 492, 497, 594, 420, 498, 506, 617, 545, 632, 656, 753, 262, 384, 409, 500, 415, 515, 529, 625, 440, 544, 559, 645, 581, 667, 675, 773, 457, 566, 583, 674, 606, 685, 709, 787, 634, 712, 730, 807, 741, 822, 842, 903, 110, 203, 221, 338, 243, 352, 378, 477, 257, 373, 397, 499, 424, 507, 517, 621, 274, 405, 414, 516, 438, 541, 553, 640, 456, 560, 578, 669, 597, 681, 700, 774, 295, 430, 442, 556, 474, 573, 580, 682, 488, 593, 603, 696, 630, 710, 718, 803, 509, 613, 633, 715, 650, 735, 742, 820, 659, 747, 764, 836, 789, 854, 871, 925, 315, 463, 479, 598, 495, 607, 626, 713, 539, 631, 644, 738, 653, 744, 758, 833, 547, 651, 658, 755, 683, 763, 783, 852, 704, 788, 797, 860, 813, 880, 888, 933, 561, 689, 698, 775, 719, 791, 800, 867, 731, 810, 825, 884, 838, 894, 907, 949, 766, 819, 846, 897, 858, 911, 916, 961, 868, 921, 929, 966, 940, 974, 983, 1003, 125, 230, 256, 374, 272, 398, 413, 530, 289, 429, 441, 543, 458, 564, 582, 701, 310, 450, 472, 579, 489, 600, 602, 706, 504, 614, 636, 728, 646, 736, 749, 829, 360, 485, 502, 601, 538, 623, 637, 739, 542, 643, 655, 746, 663, 759, 769, 850, 548, 661, 679, 768, 703, 781, 795, 864, 716, 804, 812, 873, 826, 889, 900, 944, 376, 537, 540, 641, 549, 652, 668, 762, 563, 684, 697, 785, 711, 792, 808, 876, 629, 702, 720, 796, 732, 817, 827, 886, 761, 831, 840, 898, 857, 910, 915, 960, 654, 734, 748, 821, 767, 847, 853, 902, 777, 841, 863, 914, 874, 922, 932, 969, 799, 869, 881, 928, 891, 935, 943, 976, 904, 947, 953, 981, 958, 989, 991, 1011, 385, 551, 562, 699, 622, 708, 717, 802, 642, 727, 737, 823, 757, 830, 849, 901, 657, 752, 765, 835, 776, 851, 862, 913, 793, 872, 859, 919, 887, 931, 939, 972, 705, 771, 779, 855, 805, 866, 878, 926, 815, 882, 892, 936, 899, 941, 950, 980, 839, 895, 906, 945, 917, 955, 959, 987, 923, 965, 968, 993, 975, 996, 998, 1008, 733, 784, 811, 883, 832, 890, 896, 942, 843, 908, 912, 952, 920, 956, 967, 990, 861, 918, 927, 964, 938, 970, 971, 997, 948, 977, 979, 999, 985, 1004, 1006, 1016, 877, 934, 937, 973, 951, 978, 982, 1001, 957, 986, 988, 1005, 994, 1007, 1012, 1018, 962, 992, 995, 1009, 1000, 1010, 1013, 1019, 1002, 1014, 1015, 1020, 1017, 1021, 1022, 1023]









TABLE Z6







having a sequence length of 1024:























Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-


Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility


ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or


chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-


nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence


se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-


quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber


ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of


num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-


ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility

























0
0
128
15
256
18
384
85
512
27
640
110
768
125
896
385


1
1
129
25
257
37
385
178
513
43
641
203
769
230
897
551


2
2
130
33
258
41
386
185
514
52
642
221
770
256
898
562


3
7
131
69
259
90
387
291
515
98
643
338
771
374
899
699


4
3
132
39
260
50
388
227
516
60
644
243
772
272
900
622


5
8
133
76
261
94
389
305
517
117
645
352
773
398
901
708


6
11
134
81
262
104
390
316
518
128
646
378
774
413
902
717


7
24
135
134
263
162
391
407
519
199
647
477
775
530
903
802


8
4
136
48
264
53
392
247
520
65
648
257
776
289
904
642


9
10
137
86
265
105
393
320
521
132
649
373
777
429
905
727


10
13
138
92
266
115
394
328
522
140
650
397
778
441
906
737


11
28
139
143
267
179
395
428
523
204
651
499
779
543
907
823


12
16
140
100
268
126
396
349
524
151
652
424
780
458
908
757


13
31
141
153
269
196
397
446
525
220
653
507
781
564
909
830


14
35
142
157
270
202
398
462
526
224
654
517
782
582
910
849


15
77
143
238
271
298
399
570
527
330
655
621
783
701
911
901


16
5
144
56
272
63
400
265
528
67
656
274
784
310
912
657


17
12
145
93
273
116
401
347
529
150
657
405
785
450
913
752


18
14
146
102
274
127
402
361
530
158
658
414
786
472
914
765


19
32
147
155
275
207
403
451
531
219
659
516
787
579
915
835


20
21
148
112
276
139
404
367
532
170
660
438
788
489
916
776


21
38
149
164
277
212
405
467
533
260
661
541
789
600
917
851


22
47
150
175
278
223
406
483
534
271
662
553
790
602
918
862


23
80
151
249
279
300
407
586
535
354
663
640
791
706
919
913


24
20
152
122
280
147
408
391
536
184
664
456
792
504
920
793


25
46
153
182
281
222
409
487
537
278
665
560
793
614
921
872


26
42
154
192
282
237
410
501
538
290
666
578
794
636
922
859


27
88
155
263
283
321
411
596
539
370
667
669
795
728
923
919


28
57
156
210
284
251
412
525
540
304
668
597
796
646
924
887


29
95
157
277
285
335
413
616
541
393
669
681
797
736
925
931


30
101
158
297
286
343
414
639
542
408
670
700
798
749
926
939


31
159
159
394
287
432
415
725
543
532
671
774
799
829
927
972


32
6
160
64
288
66
416
294
544
70
672
295
800
360
928
705


33
17
161
106
289
136
417
365
545
168
673
430
801
485
929
771


34
23
162
119
290
149
418
369
546
176
674
442
802
502
930
779


35
40
163
174
291
211
419
482
547
267
675
556
803
601
931
855


36
19
164
124
292
160
420
395
548
190
676
474
804
538
932
805


37
45
165
183
293
226
421
503
549
288
677
573
805
623
933
866


38
49
166
197
294
241
422
518
550
301
678
580
806
637
934
878


39
89
167
276
295
334
423
609
551
383
679
682
807
739
935
926


40
29
168
142
296
173
424
427
552
200
680
488
808
542
936
815


41
55
169
209
297
248
425
522
553
308
681
593
809
643
937
882


42
59
170
217
298
258
426
533
554
318
682
603
810
655
938
892


43
96
171
285
299
344
427
638
555
419
683
696
811
746
939
936


44
72
172
232
300
268
428
565
556
332
684
630
812
663
940
899


45
108
173
306
301
364
429
624
557
426
685
710
813
759
941
941


46
113
174
322
302
379
430
666
558
439
686
718
814
769
942
950


47
172
175
416
303
468
431
751
559
536
687
803
815
850
943
980


48
34
176
156
304
180
432
448
560
206
688
509
816
548
944
839


49
61
177
225
305
266
433
546
561
326
689
613
817
661
945
895


50
74
178
240
306
280
434
572
562
340
690
633
818
679
946
906


51
111
179
311
307
363
435
662
563
437
691
715
819
768
947
945


52
78
180
252
308
292
436
588
564
359
692
650
820
703
948
917


53
120
181
329
309
387
437
676
565
455
693
735
821
781
949
955


54
129
182
342
310
399
438
688
566
476
694
742
822
795
950
959


55
187
183
433
311
494
439
770
567
558
695
820
823
864
951
987


56
84
184
270
312
314
440
605
568
371
696
659
824
716
952
923


57
131
185
348
313
411
441
693
569
469
697
747
825
804
953
965


58
141
186
366
314
418
442
692
570
491
698
764
826
812
954
968


59
208
187
453
315
519
443
790
571
584
699
836
827
873
955
993


60
146
188
386
316
443
444
722
572
493
700
789
828
826
956
975


61
218
189
473
317
528
445
801
573
599
701
854
829
889
957
996


62
236
190
511
318
555
446
814
574
618
702
871
830
900
958
998


63
333
191
585
319
664
447
879
575
745
703
925
831
944
959
1008


64
9
192
71
320
79
448
325
576
107
704
315
832
376
960
733


65
22
193
121
321
165
449
388
577
189
705
463
833
537
961
784


66
26
194
137
322
166
450
423
578
198
706
479
834
540
962
811


67
54
195
201
323
246
451
524
579
303
707
598
835
641
963
883


68
30
196
152
324
181
452
447
580
205
708
495
836
549
964
832


69
58
197
215
325
261
453
534
581
319
709
607
837
652
965
890


70
68
198
231
326
273
454
554
582
331
710
626
838
668
966
896


71
103
199
309
327
358
455
649
583
421
711
713
839
762
967
942


72
36
200
161
328
188
456
465
584
229
712
539
840
563
968
843


73
75
201
234
329
281
457
574
585
339
713
631
841
684
969
908


74
62
202
244
330
286
458
569
586
351
714
644
842
697
970
912


75
114
203
323
331
389
459
673
587
454
715
738
843
785
971
952


76
82
204
255
332
302
460
591
588
377
716
653
844
711
972
920


77
123
205
341
333
400
461
671
589
475
717
744
845
792
973
956


78
135
206
356
334
412
462
691
590
486
718
758
846
808
974
967


79
193
207
449
335
513
463
782
591
575
719
833
847
876
975
990


80
44
208
177
336
235
464
484
592
245
720
547
848
629
976
861


81
73
209
250
337
296
465
589
593
353
721
651
849
702
977
918


82
83
210
264
338
313
466
610
594
372
722
658
850
720
978
927


83
130
211
346
339
402
467
687
595
470
723
755
851
796
979
964


84
91
212
284
340
324
468
620
596
396
724
683
852
732
980
938


85
138
213
368
341
422
469
694
597
492
725
763
853
817
981
970


86
145
214
382
342
444
470
723
598
497
726
783
854
827
982
971


87
214
215
480
343
526
471
806
599
594
727
852
855
886
983
997


88
99
216
293
344
350
472
647
600
420
728
704
856
761
984
948


89
148
217
390
345
445
473
729
601
498
729
788
857
831
985
977


90
163
218
403
346
464
474
740
602
506
730
797
858
840
986
979


91
228
219
496
347
550
475
818
603
617
731
860
859
898
987
999


92
171
220
425
348
481
476
760
604
545
732
813
860
857
988
985


93
242
221
520
349
576
477
834
605
632
733
880
861
910
989
1004


94
254
222
531
350
587
478
844
606
656
734
888
862
915
990
1006


95
357
223
648
351
686
479
905
607
753
735
933
863
960
991
1016


96
51
224
194
352
259
480
512
608
262
736
561
864
654
992
877


97
87
225
279
353
327
481
615
609
384
737
689
865
734
993
934


98
97
226
287
354
345
482
635
610
409
738
698
866
748
994
937


99
144
227
375
355
431
483
724
611
500
739
775
867
821
995
973


100
109
228
312
356
362
484
665
612
415
740
719
868
767
996
951


101
154
229
392
357
452
485
726
613
515
741
791
869
847
997
978


102
167
230
406
358
466
486
756
614
529
742
800
870
853
998
982


103
239
231
505
359
568
487
824
615
625
743
867
871
902
999
1001


104
118
232
336
360
381
488
677
616
440
744
731
872
777
1000
957


105
169
233
410
361
478
489
754
617
544
745
810
873
841
1001
986


106
186
234
434
362
490
490
772
618
559
746
825
874
863
1002
988


107
253
235
523
363
592
491
848
619
645
747
884
875
914
1003
1005


108
195
236
459
364
514
492
786
620
581
748
838
876
874
1004
994


109
269
237
535
365
604
493
837
621
667
749
894
877
922
1005
1007


110
282
238
567
366
619
494
870
622
675
750
907
878
932
1006
1012


111
380
239
670
367
707
495
924
623
773
751
949
879
969
1007
1018


112
133
240
355
368
404
496
680
624
457
752
766
880
799
1008
962


113
191
241
436
369
510
497
780
625
566
753
819
881
869
1009
992


114
213
242
461
370
521
498
798
626
583
754
846
882
881
1010
995


115
275
243
552
371
612
499
856
627
674
755
897
883
928
1011
1009


116
216
244
471
372
527
500
809
628
606
756
858
884
891
1012
1000


117
283
245
571
373
628
501
875
629
685
757
911
885
935
1013
1010


118
299
246
590
374
608
502
865
630
709
758
916
886
943
1014
1013


119
401
247
695
375
721
503
930
631
787
759
961
887
976
1015
1019


120
233
248
508
376
557
504
828
632
634
760
868
888
904
1016
1002


121
307
249
595
377
660
505
885
633
712
761
921
889
947
1017
1014


122
317
250
611
378
672
506
893
634
730
762
929
890
953
1018
1015


123
417
251
690
379
750
507
946
635
807
763
966
891
981
1019
1020


124
337
252
627
380
678
508
909
636
741
764
940
892
958
1020
1017


125
435
253
714
381
778
509
954
637
822
765
974
893
989
1021
1021


126
460
254
743
382
794
510
963
638
842
766
983
894
991
1022
1022


127
577
255
816
383
845
511
984
639
903
767
1003
895
1011
1023
1023









Sequence Z7, having a sequence length of 512:


[0, 1, 2, 7, 3, 8, 11, 24, 4, 10, 13, 27, 16, 30, 34, 70, 5, 12, 14, 31, 21, 37, 45, 73, 20, 44, 41, 81, 54, 88, 93, 141, 6, 17, 23, 39, 19, 43, 47, 82, 28, 52, 56, 89, 65, 99, 103, 152, 33, 57, 67, 101, 71, 109, 116, 165, 77, 118, 126, 177, 131, 187, 199, 269, 9, 22, 26, 51, 29, 55, 62, 95, 35, 68, 58, 104, 75, 112, 121, 169, 42, 66, 76, 117, 84, 124, 130, 183, 91, 133, 145, 193, 151, 205, 215, 286, 49, 80, 90, 129, 100, 137, 149, 202, 107, 150, 164, 214, 171, 225, 234, 299, 119, 167, 182, 228, 185, 235, 247, 313, 196, 252, 259, 323, 273, 334, 347, 406, 15, 25, 32, 63, 38, 69, 74, 120, 46, 79, 85, 128, 92, 136, 140, 201, 53, 86, 94, 138, 102, 146, 155, 210, 111, 161, 168, 220, 179, 230, 245, 309, 60, 98, 108, 154, 113, 162, 173, 229, 127, 178, 186, 237, 195, 251, 262, 322, 139, 190, 203, 254, 213, 268, 275, 332, 226, 281, 293, 345, 302, 356, 372, 407, 64, 110, 123, 174, 135, 184, 194, 253, 143, 197, 206, 263, 216, 274, 285, 342, 156, 211, 221, 279, 236, 295, 301, 358, 242, 306, 315, 366, 327, 378, 387, 435, 170, 231, 239, 297, 255, 308, 317, 369, 272, 319, 333, 381, 346, 390, 398, 442, 284, 335, 348, 393, 355, 402, 412, 458, 370, 415, 422, 453, 429, 460, 469, 488, 18, 36, 40, 83, 48, 87, 96, 144, 50, 97, 105, 158, 114, 172, 175, 246, 59, 106, 115, 176, 125, 181, 189, 248, 132, 188, 200, 261, 212, 271, 276, 331, 61, 122, 134, 180, 142, 191, 204, 270, 153, 209, 217, 277, 224, 291, 298, 354, 159, 223, 232, 290, 241, 303, 311, 365, 257, 320, 324, 377, 336, 386, 395, 439, 72, 147, 148, 207, 160, 219, 227, 287, 166, 233, 238, 305, 249, 312, 321, 374, 198, 244, 256, 314, 264, 325, 337, 384, 283, 338, 350, 392, 359, 405, 409, 450, 218, 266, 278, 330, 289, 344, 352, 399, 300, 357, 364, 414, 375, 417, 426, 459, 316, 371, 379, 423, 385, 430, 419, 461, 396, 437, 444, 470, 448, 477, 482, 495, 78, 157, 163, 240, 192, 250, 258, 318, 208, 260, 267, 329, 282, 339, 349, 401, 222, 280, 288, 343, 294, 353, 361, 408, 307, 363, 367, 416, 383, 425, 433, 465, 243, 292, 296, 360, 310, 368, 376, 420, 328, 380, 388, 432, 397, 428, 441, 471, 341, 391, 403, 438, 410, 446, 452, 475, 418, 456, 455, 481, 462, 484, 487, 501, 265, 304, 326, 382, 340, 389, 394, 436, 351, 404, 400, 445, 413, 443, 454, 479, 362, 411, 421, 451, 427, 457, 463, 485, 434, 467, 468, 489, 474, 492, 494, 504, 373, 424, 431, 464, 440, 466, 473, 490, 447, 472, 476, 496, 480, 493, 499, 506, 449, 478, 483, 497, 486, 500, 498, 507, 491, 502, 503, 508, 505, 509, 510, 511]









TABLE Z7







having a sequence length of 512:























Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-


Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility


ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or


chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-


nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence


se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-


quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber


ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of


num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-


ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility

























0
0
64
9
128
15
192
64
256
18
320
72
384
78
448
265


1
1
65
22
129
25
193
110
257
36
321
147
385
157
449
304


2
2
66
26
130
32
194
123
258
40
322
148
386
163
450
326


3
7
67
51
131
63
195
174
259
83
323
207
387
240
451
382


4
3
68
29
132
38
196
135
260
48
324
160
388
192
452
340


5
8
69
55
133
69
197
184
261
87
325
219
389
250
453
389


6
11
70
62
134
74
198
194
262
96
326
227
390
258
454
394


7
24
71
95
135
120
199
253
263
144
327
287
391
318
455
436


8
4
72
35
136
46
200
143
264
50
328
166
392
208
456
351


9
10
73
68
137
79
201
197
265
97
329
233
393
260
457
404


10
13
74
58
138
85
202
206
266
105
330
238
394
267
458
400


11
27
75
104
139
128
203
263
267
158
331
305
395
329
459
445


12
16
76
75
140
92
204
216
268
114
332
249
396
282
460
413


13
30
77
112
141
136
205
274
269
172
333
312
397
339
461
443


14
34
78
121
142
140
206
285
270
175
334
321
398
349
462
454


15
70
79
169
143
201
207
342
271
246
335
374
399
401
463
479


16
5
80
42
144
53
208
156
272
59
336
198
400
222
464
362


17
12
81
66
145
86
209
211
273
106
337
244
401
280
465
411


18
14
82
76
146
94
210
221
274
115
338
256
402
288
466
421


19
31
83
117
147
138
211
279
275
176
339
314
403
343
467
451


20
21
84
84
148
102
212
236
276
125
340
264
404
294
468
427


21
37
85
124
149
146
213
295
277
181
341
325
405
353
469
457


22
45
86
130
150
155
214
301
278
189
342
337
406
361
470
463


23
73
87
183
151
210
215
358
279
248
343
384
407
408
471
485


24
20
88
91
152
111
216
242
280
132
344
283
408
307
472
434


25
44
89
133
153
161
217
306
281
188
345
338
409
363
473
467


26
41
90
145
154
168
218
315
282
200
346
350
410
367
474
468


27
81
91
193
155
220
219
366
283
261
347
392
411
416
475
489


28
54
92
151
156
179
220
327
284
212
348
359
412
383
476
474


29
88
93
205
157
230
221
378
285
271
349
405
413
425
477
492


30
93
94
215
158
245
222
387
286
276
350
409
414
433
478
494


31
141
95
286
159
309
223
435
287
331
351
450
415
465
479
504


32
6
96
49
160
60
224
170
288
61
352
218
416
243
480
373


33
17
97
80
161
98
225
231
289
122
353
266
417
292
481
424


34
23
98
90
162
108
226
239
290
134
354
278
418
296
482
431


35
39
99
129
163
154
227
297
291
180
355
330
419
360
483
464


36
19
100
100
164
113
228
255
292
142
356
289
420
310
484
440


37
43
101
137
165
162
229
308
293
191
357
344
421
368
485
466


38
47
102
149
166
173
230
317
294
204
358
352
422
376
486
473


39
82
103
202
167
229
231
369
295
270
359
399
423
420
487
490


40
28
104
107
168
127
232
272
296
153
360
300
424
328
488
447


41
52
105
150
169
178
233
319
297
209
361
357
425
380
489
472


42
56
106
164
170
186
234
333
298
217
362
364
426
388
490
476


43
89
107
214
171
237
235
381
299
277
363
414
427
432
491
496


44
65
108
171
172
195
236
346
300
224
364
375
428
397
492
480


45
99
109
225
173
251
237
390
301
291
365
417
429
428
493
493


46
103
110
234
174
262
238
398
302
298
366
426
430
441
494
499


47
152
111
299
175
322
239
442
303
354
367
459
431
471
495
506


48
33
112
119
176
139
240
284
304
159
368
316
432
341
496
449


49
57
113
167
177
190
241
335
305
223
369
371
433
391
497
478


50
67
114
182
178
203
242
348
306
232
370
379
434
403
498
483


51
101
115
228
179
254
243
393
307
290
371
423
435
438
499
497


52
71
116
185
180
213
244
355
308
241
372
385
436
410
500
486


53
109
117
235
181
268
245
402
309
303
373
430
437
446
501
500


54
116
118
247
182
275
246
412
310
311
374
419
438
452
502
498


55
165
119
313
183
332
247
458
311
365
375
461
439
475
503
507


56
77
120
196
184
226
248
370
312
257
376
396
440
418
504
491


57
118
121
252
185
281
249
415
313
320
377
437
441
456
505
502


58
126
122
259
186
293
250
422
314
324
378
444
442
455
506
503


59
177
123
323
187
345
251
453
315
377
379
470
443
481
507
508


60
131
124
273
188
302
252
429
316
336
380
448
444
462
508
505


61
187
125
334
189
356
253
460
317
386
381
477
445
484
509
509


62
199
126
347
190
372
254
469
318
395
382
482
446
487
510
510


63
269
127
406
191
407
255
488
319
439
383
495
447
501
511
511









Sequence Z8, having a sequence length of 256:


[0, 1, 2, 7, 3, 8, 11, 23, 4, 10, 13, 26, 16, 29, 33, 63, 5, 12, 14, 30, 20, 35, 42, 65, 19, 41, 38, 72, 49, 77, 82, 120, 6, 17, 22, 37, 18, 40, 44, 73, 27, 47, 51, 78, 58, 86, 90, 127, 32, 52, 60, 88, 64, 94, 99, 134, 69, 101, 107, 142, 112, 150, 157, 194, 9, 21, 25, 46, 28, 50, 55, 84, 34, 61, 53, 91, 67, 97, 104, 137, 39, 59, 68, 100, 74, 106, 111, 146, 80, 113, 122, 152, 126, 161, 167, 203, 45, 71, 79, 110, 87, 116, 124, 159, 92, 125, 133, 166, 139, 171, 177, 207, 102, 135, 145, 173, 148, 178, 184, 213, 155, 186, 190, 218, 196, 222, 227, 243, 15, 24, 31, 56, 36, 62, 66, 103, 43, 70, 75, 109, 81, 115, 119, 158, 48, 76, 83, 117, 89, 123, 129, 163, 96, 131, 136, 169, 144, 175, 183, 212, 54, 85, 93, 128, 98, 132, 140, 174, 108, 143, 149, 180, 154, 185, 191, 217, 118, 151, 160, 188, 165, 193, 198, 220, 172, 200, 204, 225, 209, 230, 235, 244, 57, 95, 105, 141, 114, 147, 153, 187, 121, 156, 162, 192, 168, 197, 202, 224, 130, 164, 170, 199, 179, 205, 208, 231, 182, 210, 214, 232, 219, 236, 238, 249, 138, 176, 181, 206, 189, 211, 215, 233, 195, 216, 221, 237, 226, 239, 241, 250, 201, 223, 228, 240, 229, 242, 245, 252, 234, 246, 247, 251, 248, 253, 254, 255]









TABLE Z8







having a sequence length of 256:























Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-


Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility


ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or


chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-


nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence


se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-


quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber


ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of


num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-


ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility

























0
0
32
6
64
9
96
45
128
15
160
54
192
57
224
138


1
1
33
17
65
21
97
71
129
24
161
85
193
95
225
176


2
2
34
22
66
25
98
79
130
31
162
93
194
105
226
181


3
7
35
37
67
46
99
110
131
56
163
128
195
141
227
206


4
3
36
18
68
28
100
87
132
36
164
98
196
114
228
189


5
8
37
40
69
50
101
116
133
62
165
132
197
147
229
211


6
11
38
44
70
55
102
124
134
66
166
140
198
153
230
215


7
23
39
73
71
84
103
159
135
103
167
174
199
187
231
233


8
4
40
27
72
34
104
92
136
43
168
108
200
121
232
195


9
10
41
47
73
61
105
125
137
70
169
143
201
156
233
216


10
13
42
51
74
53
106
133
138
75
170
149
202
162
234
221


11
26
43
78
75
91
107
166
139
109
171
180
203
192
235
237


12
16
44
58
76
67
108
139
140
81
172
154
204
168
236
226


13
29
45
86
77
97
109
171
141
115
173
185
205
197
237
239


14
33
46
90
78
104
110
177
142
119
174
191
206
202
238
241


15
63
47
127
79
137
111
207
143
158
175
217
207
224
239
250


16
5
48
32
80
39
112
102
144
48
176
118
208
130
240
201


17
12
49
52
81
59
113
135
145
76
177
151
209
164
241
223


18
14
50
60
82
68
114
145
146
83
178
160
210
170
242
228


19
30
51
88
83
100
115
173
147
117
179
188
211
199
243
240


20
20
52
64
84
74
116
148
148
89
180
165
212
179
244
229


21
35
53
94
85
106
117
178
149
123
181
193
213
205
245
242


22
42
54
99
86
111
118
184
150
129
182
198
214
208
246
245


23
65
55
134
87
146
119
213
151
163
183
220
215
231
247
252


24
19
56
69
88
80
120
155
152
96
184
172
216
182
248
234


25
41
57
101
89
113
121
186
153
131
185
200
217
210
249
246


26
38
58
107
90
122
122
190
154
136
186
204
218
214
250
247


27
72
59
142
91
152
123
218
155
169
187
225
219
232
251
251


28
49
60
112
92
126
124
196
156
144
188
209
220
219
252
248


29
77
61
150
93
161
125
222
157
175
189
230
221
236
253
253


30
82
62
157
94
167
126
227
158
183
190
235
222
238
254
254


31
120
63
194
95
203
127
243
159
212
191
244
223
249
255
255









Sequence Z9, having a sequence length of 128:


[0, 1, 2, 7, 3, 8, 11, 22, 4, 10, 13, 24, 15, 27, 30, 53, 5, 12, 14, 28, 19, 32, 38, 55, 18, 37, 34, 60, 43, 63, 67, 89, 6, 16, 21, 33, 17, 36, 39, 61, 25, 42, 45, 64, 49, 69, 72, 94, 29, 46, 51, 71, 54, 75, 77, 96, 58, 79, 83, 100, 86, 104, 107, 119, 9, 20, 23, 41, 26, 44, 48, 68, 31, 52, 47, 73, 56, 76, 81, 98, 35, 50, 57, 78, 62, 82, 85, 102, 66, 87, 90, 105, 93, 109, 111, 121, 40, 59, 65, 84, 70, 88, 91, 108, 74, 92, 95, 110, 99, 112, 114, 122, 80, 97, 101, 113, 103, 115, 116, 123, 106, 117, 118, 124, 120, 125, 126, 127]









TABLE Z9







having a sequence length of 128:























Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-


Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility


ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or


chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-


nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence


se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-


quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber


ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of


num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-


ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility

























0
0
16
5
32
6
48
29
64
9
80
35
96
40
112
80


1
1
17
12
33
16
49
46
65
20
81
50
97
59
113
97


2
2
18
14
34
21
50
51
66
23
82
57
98
65
114
101


3
7
19
28
35
33
51
71
67
41
83
78
99
84
115
113


4
3
20
19
36
17
52
54
68
26
84
62
100
70
116
103


5
8
21
32
37
36
53
75
69
44
85
82
101
88
117
115


6
11
22
38
38
39
54
77
70
48
86
85
102
91
118
116


7
22
23
55
39
61
55
96
71
68
87
102
103
108
119
123


8
4
24
18
40
25
56
58
72
31
88
66
104
74
120
106


9
10
25
37
41
42
57
79
73
52
89
87
105
92
121
117


10
13
26
34
42
45
58
83
74
47
90
90
106
95
122
118


11
24
27
60
43
64
59
100
75
73
91
105
107
110
123
124


12
15
28
43
44
49
60
86
76
56
92
93
108
99
124
120


13
27
29
63
45
69
61
104
77
76
93
109
109
112
125
125


14
30
30
67
46
72
62
107
78
81
94
111
110
114
126
126


15
53
31
89
47
94
63
119
79
98
95
121
111
122
127
127









Sequence Z10, having a sequence length of 64:


[0, 1, 2, 7, 3, 8, 10, 20, 4, 9, 12, 21, 14, 23, 26, 40, 5, 11, 13, 24, 18, 27, 32, 42, 17, 31, 29, 44, 35, 46, 48, 57, 6, 15, 19, 28, 16, 30, 33, 45, 22, 34, 36, 47, 38, 49, 51, 58, 25, 37, 39, 50, 41, 52, 53, 59, 43, 54, 55, 60, 56, 61, 62, 63]









TABLE Z10







having a sequence length of 64:























Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-


Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility


ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or


chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-


nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence


se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-


quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber


ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of


num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-


ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility

























0
0
8
4
16
5
24
17
32
6
40
22
48
25
56
43


1
1
9
9
17
11
25
31
33
15
41
34
49
37
57
54


2
2
10
12
18
13
26
29
34
19
42
36
50
39
58
55


3
7
11
21
19
24
27
44
35
28
43
47
51
50
59
60


4
3
12
14
20
18
28
35
36
16
44
38
52
41
60
56


5
8
13
23
21
27
29
46
37
30
45
49
53
52
61
61


6
10
14
26
22
32
30
48
38
33
46
51
54
53
62
62


7
20
15
40
23
42
31
57
39
45
47
58
55
59
63
63









Third group of sequences (a criterion that comprehensively considers performance obtained by List (list) whose sizes are respectively 1, 2, 4, 8, and 16, and preferentially considers performance of Lists 2, 4, and 8).


Sequence Q11, having a sequence length of 1024:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 256, 34, 24, 36, 7, 129, 66, 512, 11, 40, 68, 130, 19, 13, 48, 14, 72, 257, 21, 132, 35, 258, 26, 513, 80, 37, 25, 22, 136, 260, 264, 38, 514, 96, 67, 41, 144, 28, 69, 42, 516, 49, 74, 272, 160, 520, 288, 528, 192, 544, 70, 44, 131, 81, 50, 73, 15, 320, 133, 52, 23, 134, 384, 76, 137, 82, 56, 27, 97, 39, 259, 84, 138, 145, 261, 29, 43, 98, 515, 88, 140, 30, 146, 71, 262, 265, 161, 576, 45, 100, 640, 51, 148, 46, 75, 266, 273, 517, 104, 162, 53, 193, 152, 77, 164, 768, 268, 274, 518, 54, 83, 57, 521, 112, 135, 78, 289, 194, 85, 276, 522, 58, 168, 139, 99, 86, 60, 280, 89, 290, 529, 524, 196, 141, 101, 147, 176, 142, 530, 321, 31, 200, 90, 545, 292, 322, 532, 263, 149, 102, 105, 304, 296, 163, 92, 47, 267, 385, 546, 324, 208, 386, 150, 153, 165, 106, 55, 328, 536, 577, 548, 113, 154, 79, 269, 108, 578, 224, 166, 519, 552, 195, 270, 641, 523, 275, 580, 291, 59, 169, 560, 114, 277, 156, 87, 197, 116, 170, 61, 531, 525, 642, 281, 278, 526, 177, 293, 388, 91, 584, 769, 198, 172, 120, 201, 336, 62, 282, 143, 103, 178, 294, 93, 644, 202, 592, 323, 392, 297, 770, 107, 180, 151, 209, 284, 648, 94, 204, 298, 400, 608, 352, 325, 533, 155, 210, 305, 547, 300, 109, 184, 534, 537, 115, 167, 225, 326, 306, 772, 157, 656, 329, 110, 117, 212, 171, 776, 330, 226, 549, 538, 387, 308, 216, 416, 271, 279, 158, 337, 550, 672, 118, 332, 579, 540, 389, 173, 121, 553, 199, 784, 179, 228, 338, 312, 704, 390, 174, 554, 581, 393, 283, 122, 448, 353, 561, 203, 63, 340, 394, 527, 582, 556, 181, 295, 285, 232, 124, 205, 182, 643, 562, 286, 585, 299, 354, 211, 401, 185, 396, 344, 586, 645, 593, 535, 240, 206, 95, 327, 564, 800, 402, 356, 307, 301, 417, 213, 568, 832, 588, 186, 646, 404, 227, 896, 594, 418, 302, 649, 771, 360, 539, 111, 331, 214, 309, 188, 449, 217, 408, 609, 596, 551, 650, 229, 159, 420, 310, 541, 773, 610, 657, 333, 119, 600, 339, 218, 368, 652, 230, 391, 313, 450, 542, 334, 233, 555, 774, 175, 123, 658, 612, 341, 777, 220, 314, 424, 395, 673, 583, 355, 287, 183, 234, 125, 557, 660, 616, 342, 316, 241, 778, 563, 345, 452, 397, 403, 207, 674, 558, 785, 432, 357, 187, 236, 664, 624, 587, 780, 705, 126, 242, 565, 398, 346, 456, 358, 405, 303, 569, 244, 595, 189, 566, 676, 361, 706, 589, 215, 786, 647, 348, 419, 406, 464, 680, 801, 362, 590, 409, 570, 788, 597, 572, 219, 311, 708, 598, 601, 651, 421, 792, 802, 611, 602, 410, 231, 688, 653, 248, 369, 190, 364, 654, 659, 335, 480, 315, 221, 370, 613, 422, 425, 451, 614, 543, 235, 412, 343, 372, 775, 317, 222, 426, 453, 237, 559, 833, 804, 712, 834, 661, 808, 779, 617, 604, 433, 720, 816, 836, 347, 897, 243, 662, 454, 318, 675, 618, 898, 781, 376, 428, 665, 736, 567, 840, 625, 238, 359, 457, 399, 787, 591, 678, 434, 677, 349, 245, 458, 666, 620, 363, 127, 191, 782, 407, 436, 626, 571, 465, 681, 246, 707, 350, 599, 668, 790, 460, 249, 682, 573, 411, 803, 789, 709, 365, 440, 628, 689, 374, 423, 466, 793, 250, 371, 481, 574, 413, 603, 366, 468, 655, 900, 805, 615, 684, 710, 429, 794, 252, 373, 605, 848, 690, 713, 632, 482, 806, 427, 904, 414, 223, 663, 692, 835, 619, 472, 455, 796, 809, 714, 721, 837, 716, 864, 810, 606, 912, 722, 696, 377, 435, 817, 319, 621, 812, 484, 430, 838, 667, 488, 239, 378, 459, 622, 627, 437, 380, 818, 461, 496, 669, 679, 724, 841, 629, 351, 467, 438, 737, 251, 462, 442, 441, 469, 247, 683, 842, 738, 899, 670, 783, 849, 820, 728, 928, 791, 367, 901, 630, 685, 844, 633, 711, 253, 691, 824, 902, 686, 740, 850, 375, 444, 470, 483, 415, 485, 905, 795, 473, 634, 744, 852, 960, 865, 693, 797, 906, 715, 807, 474, 636, 694, 254, 717, 575, 913, 798, 811, 379, 697, 431, 607, 489, 866, 723, 486, 908, 718, 813, 476, 856, 839, 725, 698, 914, 752, 868, 819, 814, 439, 929, 490, 623, 671, 739, 916, 463, 843, 381, 497, 930, 821, 726, 961, 872, 492, 631, 729, 700, 443, 741, 845, 920, 382, 822, 851, 730, 498, 880, 742, 445, 471, 635, 932, 687, 903, 825, 500, 846, 745, 826, 732, 446, 962, 936, 475, 853, 867, 637, 907, 487, 695, 746, 828, 753, 854, 857, 504, 799, 255, 964, 909, 719, 477, 915, 638, 748, 944, 869, 491, 699, 754, 858, 478, 968, 383, 910, 815, 976, 870, 917, 727, 493, 873, 701, 931, 756, 860, 499, 731, 823, 922, 874, 918, 502, 933, 743, 760, 881, 494, 702, 921, 501, 876, 847, 992, 447, 733, 827, 934, 882, 937, 963, 747, 505, 855, 924, 734, 829, 965, 938, 884, 506, 749, 945, 966, 755, 859, 940, 830, 911, 871, 639, 888, 479, 946, 750, 969, 508, 861, 757, 970, 919, 875, 862, 758, 948, 977, 923, 972, 761, 877, 952, 495, 703, 935, 978, 883, 762, 503, 925, 878, 735, 993, 885, 939, 994, 980, 926, 764, 941, 967, 886, 831, 947, 507, 889, 984, 751, 942, 996, 971, 890, 509, 949, 973, 1000, 892, 950, 863, 759, 1008, 510, 979, 953, 763, 974, 954, 879, 981, 982, 927, 995, 765, 956, 887, 985, 997, 986, 943, 891, 998, 766, 511, 988, 1001, 951, 1002, 893, 975, 894, 1009, 955, 1004, 1010, 957, 983, 958, 987, 1012, 999, 1016, 767, 989, 1003, 990, 1005, 959, 1011, 1013, 895, 1006, 1014, 1017, 1018, 991, 1020, 1007, 1015, 1019, 1021, 1022, 1023]









TABLE Q11







having a sequence length of 1024:






















Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-

Relia-



bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-
bility
Polar-


or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized
or
ized


se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-
se-
chan-


quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel
quence
nel


num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-
num-
se-


ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-
ber
quen-


of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce
of
ce


relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-
relia-
num-


bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber
bility
ber

























0
0
128
518
256
94
384
214
512
364
640
414
768
819
896
966


1
1
129
54
257
204
385
309
513
654
641
223
769
814
897
755


2
2
130
83
258
298
386
188
514
659
642
663
770
439
898
859


3
4
131
57
259
400
387
449
515
335
643
692
771
929
899
940


4
8
132
521
260
608
388
217
516
480
644
835
772
490
900
830


5
16
133
112
261
352
389
408
517
315
645
619
773
623
901
911


6
32
134
135
262
325
390
609
518
221
646
472
774
671
902
871


7
3
135
78
263
533
391
596
519
370
647
455
775
739
903
639


8
5
136
289
264
155
392
551
520
613
648
796
776
916
904
888


9
64
137
194
265
210
393
650
521
422
649
809
777
463
905
479


10
9
138
85
266
305
394
229
522
425
650
714
778
843
906
946


11
6
139
276
267
547
395
159
523
451
651
721
779
381
907
750


12
17
140
522
268
300
396
420
524
614
652
837
780
497
908
969


13
10
141
58
269
109
397
310
525
543
653
716
781
930
909
508


14
18
142
168
270
184
398
541
526
235
654
864
782
821
910
861


15
128
143
139
271
534
399
773
527
412
655
810
783
726
911
757


16
12
144
99
272
537
400
610
528
343
656
606
784
961
912
970


17
33
145
86
273
115
401
657
529
372
657
912
785
872
913
919


18
65
146
60
274
167
402
333
530
775
658
722
786
492
914
875


19
20
147
280
275
225
403
119
531
317
659
696
787
631
915
862


20
256
148
89
276
326
404
600
532
222
660
377
788
729
916
758


21
34
149
290
277
306
405
339
533
426
661
435
789
700
917
948


22
24
150
529
278
772
406
218
534
453
662
817
790
443
918
977


23
36
151
524
279
157
407
368
535
237
663
319
791
741
919
923


24
7
152
196
280
656
408
652
536
559
664
621
792
845
920
972


25
129
153
141
281
329
409
230
537
833
665
812
793
920
921
761


26
66
154
101
282
110
410
391
538
804
666
484
794
382
922
877


27
512
155
147
283
117
411
313
539
712
667
430
795
822
923
952


28
11
156
176
284
212
412
450
540
834
668
838
796
851
924
495


29
40
157
142
285
171
413
542
541
661
669
667
797
730
925
703


30
68
158
530
286
776
414
334
542
808
670
488
798
498
926
935


31
130
159
321
287
330
415
233
543
779
671
239
799
880
927
978


32
19
160
31
288
226
416
555
544
617
672
378
800
742
928
883


33
13
161
200
289
549
417
774
545
604
673
459
801
445
929
762


34
48
162
90
290
538
418
175
546
433
674
622
802
471
930
503


35
14
163
545
291
387
419
123
547
720
675
627
803
635
931
925


36
72
164
292
292
308
420
658
548
816
676
437
804
932
932
878


37
257
165
322
293
216
421
612
549
836
677
380
805
687
933
735


38
21
166
532
294
416
422
341
550
347
678
818
806
903
934
993


39
132
167
263
295
271
423
777
551
897
679
461
807
825
935
885


40
35
168
149
296
279
424
220
552
243
680
496
808
500
936
939


41
258
169
102
297
158
425
314
553
662
681
669
809
846
937
994


42
26
170
105
298
337
426
424
554
454
682
679
810
745
938
980


43
513
171
304
299
550
427
395
555
318
683
724
811
826
939
926


44
80
172
296
300
672
428
673
556
675
684
841
812
732
940
764


45
37
173
163
301
118
429
583
557
618
685
629
813
446
941
941


46
25
174
92
302
332
430
355
558
898
686
351
814
962
942
967


47
22
175
47
303
579
431
287
559
781
687
467
815
936
943
886


48
136
176
267
304
540
432
183
560
376
688
438
816
475
944
831


49
260
177
385
305
389
433
234
561
428
689
737
817
853
945
947


50
264
178
546
306
173
434
125
562
665
690
251
818
867
946
507


51
38
179
324
307
121
435
557
563
736
691
462
819
637
947
889


52
514
180
208
308
553
436
660
564
567
692
442
820
907
948
984


53
96
181
386
309
199
437
616
565
840
693
441
821
487
949
751


54
67
182
150
310
784
438
342
566
625
694
469
822
695
950
942


55
41
183
153
311
179
439
316
567
238
695
247
823
746
951
996


56
144
184
165
312
228
440
241
568
359
696
683
824
828
952
971


57
28
185
106
313
338
441
778
569
457
697
842
825
753
953
890


58
69
186
55
314
312
442
563
570
399
698
738
826
854
954
509


59
42
187
328
315
704
443
345
571
787
699
899
827
857
955
949


60
516
188
536
316
390
444
452
572
591
700
670
828
504
956
973


61
49
189
577
317
174
445
397
573
678
701
783
829
799
957
1000


62
74
190
548
318
554
446
403
574
434
702
849
830
255
958
892


63
272
191
113
319
581
447
207
575
677
703
820
831
964
959
950


64
160
192
154
320
393
448
674
576
349
704
728
832
909
960
863


65
520
193
79
321
283
449
558
577
245
705
928
833
719
961
759


66
288
194
269
322
122
450
785
578
458
706
791
834
477
962
1008


67
528
195
108
323
448
451
432
579
666
707
367
835
915
963
510


68
192
196
578
324
353
452
357
580
620
708
901
836
638
964
979


69
544
197
224
325
561
453
187
581
363
709
630
837
748
965
953


70
70
198
166
326
203
454
236
582
127
710
685
838
944
966
763


71
44
199
519
327
63
455
664
583
191
711
844
839
869
967
974


72
131
200
552
328
340
456
624
584
782
712
633
840
491
968
954


73
81
201
195
329
394
457
587
585
407
713
711
841
699
969
879


74
50
202
270
330
527
458
780
586
436
714
253
842
754
970
981


75
73
203
641
331
582
459
705
587
626
715
691
843
858
971
982


76
15
204
523
332
556
460
126
588
571
716
824
844
478
972
927


77
320
205
275
333
181
461
242
589
465
717
902
845
968
973
995


78
133
206
580
334
295
462
565
590
681
718
686
846
383
974
765


79
52
207
291
335
285
463
398
591
246
719
740
847
910
975
956


80
23
208
59
336
232
464
346
592
707
720
850
848
815
976
887


81
134
209
169
337
124
465
456
593
350
721
375
849
976
977
985


82
384
210
560
338
205
466
358
594
599
722
444
850
870
978
997


83
76
211
114
339
182
467
405
595
668
723
470
851
917
979
986


84
137
212
277
340
643
468
303
596
790
724
483
852
727
980
943


85
82
213
156
341
562
469
569
597
460
725
415
853
493
981
891


86
56
214
87
342
286
470
244
598
249
726
485
854
873
982
998


87
27
215
197
343
585
471
595
599
682
727
905
855
701
983
766


88
97
216
116
344
299
472
189
600
573
728
795
856
931
984
511


89
39
217
170
345
354
473
566
601
411
729
473
857
756
985
988


90
259
218
61
346
211
474
676
602
803
730
634
858
860
986
1001


91
84
219
531
347
401
475
361
603
789
731
744
859
499
987
951


92
138
220
525
348
185
476
706
604
709
732
852
860
731
988
1002


93
145
221
642
349
396
477
589
605
365
733
960
861
823
989
893


94
261
222
281
350
344
478
215
606
440
734
865
862
922
990
975


95
29
223
278
351
586
479
786
607
628
735
693
863
874
991
894


96
43
224
526
352
645
480
647
608
689
736
797
864
918
992
1009


97
98
225
177
353
593
481
348
609
374
737
906
865
502
993
955


98
515
226
293
354
535
482
419
610
423
738
715
866
933
994
1004


99
88
227
388
355
240
483
406
611
466
739
807
867
743
995
1010


100
140
228
91
356
206
484
464
612
793
740
474
868
760
996
957


101
30
229
584
357
95
485
680
613
250
741
636
869
881
997
983


102
146
230
769
358
327
486
801
614
371
742
694
870
494
998
958


103
71
231
198
359
564
487
362
615
481
743
254
871
702
999
987


104
262
232
172
360
800
488
590
616
574
744
717
872
921
1000
1012


105
265
233
120
361
402
489
409
617
413
745
575
873
501
1001
999


106
161
234
201
362
356
490
570
618
603
746
913
874
876
1002
1016


107
576
235
336
363
307
491
788
619
366
747
798
875
847
1003
767


108
45
236
62
364
301
492
597
620
468
748
811
876
992
1004
989


109
100
237
282
365
417
493
572
621
655
749
379
877
447
1005
1003


110
640
238
143
366
213
494
219
622
900
750
697
878
733
1006
990


111
51
239
103
367
568
495
311
623
805
751
431
879
827
1007
1005


112
148
240
178
368
832
496
708
624
615
752
607
880
934
1008
959


113
46
241
294
369
588
497
598
625
684
753
489
881
882
1009
1011


114
75
242
93
370
186
498
601
626
710
754
866
882
937
1010
1013


115
266
243
644
371
646
499
651
627
429
755
723
883
963
1011
895


116
273
244
202
372
404
500
421
628
794
756
486
884
747
1012
1006


117
517
245
592
373
227
501
792
629
252
757
908
885
505
1013
1014


118
104
246
323
374
896
502
802
630
373
758
718
886
855
1014
1017


119
162
247
392
375
594
503
611
631
605
759
813
887
924
1015
1018


120
53
248
297
376
418
504
602
632
848
760
476
888
734
1016
991


121
193
249
770
377
302
505
410
633
690
761
856
889
829
1017
1020


122
152
250
107
378
649
506
231
634
713
762
839
890
965
1018
1007


123
77
251
180
379
771
507
688
635
632
763
725
891
938
1019
1015


124
164
252
151
380
360
508
653
636
482
764
698
892
884
1020
1019


125
768
253
209
381
539
509
248
637
806
765
914
893
506
1021
1021


126
268
254
284
382
111
510
369
638
427
766
752
894
749
1022
1022


127
274
255
648
383
331
511
190
639
904
767
868
895
945
1023
1023









Sequence Q12, having a sequence length of 512:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 256, 34, 24, 36, 7, 129, 66, 11, 40, 68, 130, 19, 13, 48, 14, 72, 257, 21, 132, 35, 258, 26, 80, 37, 25, 22, 136, 260, 264, 38, 96, 67, 41, 144, 28, 69, 42, 49, 74, 272, 160, 288, 192, 70, 44, 131, 81, 50, 73, 15, 320, 133, 52, 23, 134, 384, 76, 137, 82, 56, 27, 97, 39, 259, 84, 138, 145, 261, 29, 43, 98, 88, 140, 30, 146, 71, 262, 265, 161, 45, 100, 51, 148, 46, 75, 266, 273, 104, 162, 53, 193, 152, 77, 164, 268, 274, 54, 83, 57, 112, 135, 78, 289, 194, 85, 276, 58, 168, 139, 99, 86, 60, 280, 89, 290, 196, 141, 101, 147, 176, 142, 321, 31, 200, 90, 292, 322, 263, 149, 102, 105, 304, 296, 163, 92, 47, 267, 385, 324, 208, 386, 150, 153, 165, 106, 55, 328, 113, 154, 79, 269, 108, 224, 166, 195, 270, 275, 291, 59, 169, 114, 277, 156, 87, 197, 116, 170, 61, 281, 278, 177, 293, 388, 91, 198, 172, 120, 201, 336, 62, 282, 143, 103, 178, 294, 93, 202, 323, 392, 297, 107, 180, 151, 209, 284, 94, 204, 298, 400, 352, 325, 155, 210, 305, 300, 109, 184, 115, 167, 225, 326, 306, 157, 329, 110, 117, 212, 171, 330, 226, 387, 308, 216, 416, 271, 279, 158, 337, 118, 332, 389, 173, 121, 199, 179, 228, 338, 312, 390, 174, 393, 283, 122, 448, 353, 203, 63, 340, 394, 181, 295, 285, 232, 124, 205, 182, 286, 299, 354, 211, 401, 185, 396, 344, 240, 206, 95, 327, 402, 356, 307, 301, 417, 213, 186, 404, 227, 418, 302, 360, 111, 331, 214, 309, 188, 449, 217, 408, 229, 159, 420, 310, 333, 119, 339, 218, 368, 230, 391, 313, 450, 334, 233, 175, 123, 341, 220, 314, 424, 395, 355, 287, 183, 234, 125, 342, 316, 241, 345, 452, 397, 403, 207, 432, 357, 187, 236, 126, 242, 398, 346, 456, 358, 405, 303, 244, 189, 361, 215, 348, 419, 406, 464, 362, 409, 219, 311, 421, 410, 231, 248, 369, 190, 364, 335, 480, 315, 221, 370, 422, 425, 451, 235, 412, 343, 372, 317, 222, 426, 453, 237, 433, 347, 243, 454, 318, 376, 428, 238, 359, 457, 399, 434, 349, 245, 458, 363, 127, 191, 407, 436, 465, 246, 350, 460, 249, 411, 365, 440, 374, 423, 466, 250, 371, 481, 413, 366, 468, 429, 252, 373, 482, 427, 414, 223, 472, 455, 377, 435, 319, 484, 430, 488, 239, 378, 459, 437, 380, 461, 496, 351, 467, 438, 251, 462, 442, 441, 469, 247, 367, 253, 375, 444, 470, 483, 415, 485, 473, 474, 254, 379, 431, 489, 486, 476, 439, 490, 463, 381, 497, 492, 443, 382, 498, 445, 471, 500, 446, 475, 487, 504, 255, 477, 491, 478, 383, 493, 499, 502, 494, 501, 447, 505, 506, 479, 508, 495, 503, 507, 509, 510, 511]









TABLE Q12







having a sequence length of 512:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
9



11
6



12
17



13
10



14
18



15
128



16
12



17
33



18
65



19
20



20
256



21
34



22
24



23
36



24
7



25
129



26
66



27
11



28
40



29
68



30
130



31
19



32
13



33
48



34
14



35
72



36
257



37
21



38
132



39
35



40
258



41
26



42
80



43
37



44
25



45
22



46
136



47
260



48
264



49
38



50
96



51
67



52
41



53
144



54
28



55
69



56
42



57
49



58
74



59
272



60
160



61
288



62
192



63
70



64
44



65
131



66
81



67
50



68
73



69
15



70
320



71
133



72
52



73
23



74
134



75
384



76
76



77
137



78
82



79
56



80
27



81
97



82
39



83
259



84
84



85
138



86
145



87
261



88
29



89
43



90
98



91
88



92
140



93
30



94
146



95
71



96
262



97
265



98
161



99
45



100
100



101
51



102
148



103
46



104
75



105
266



106
273



107
104



108
162



109
53



110
193



111
152



112
77



113
164



114
268



115
274



116
54



117
83



118
57



119
112



120
135



121
78



122
289



123
194



124
85



125
276



126
58



127
168



128
139



129
99



130
86



131
60



132
280



133
89



134
290



135
196



136
141



137
101



138
147



139
176



140
142



141
321



142
31



143
200



144
90



145
292



146
322



147
263



148
149



149
102



150
105



151
304



152
296



153
163



154
92



155
47



156
267



157
385



158
324



159
208



160
386



161
150



162
153



163
165



164
106



165
55



166
328



167
113



168
154



169
79



170
269



171
108



172
224



173
166



174
195



175
270



176
275



177
291



178
59



179
169



180
114



181
277



182
156



183
87



184
197



185
116



186
170



187
61



188
281



189
278



190
177



191
293



192
388



193
91



194
198



195
172



196
120



197
201



198
336



199
62



200
282



201
143



202
103



203
178



204
294



205
93



206
202



207
323



208
392



209
297



210
107



211
180



212
151



213
209



214
284



215
94



216
204



217
298



218
400



219
352



220
325



221
155



222
210



223
305



224
300



225
109



226
184



227
115



228
167



229
225



230
326



231
306



232
157



233
329



234
110



235
117



236
212



237
171



238
330



239
226



240
387



241
308



242
216



243
416



244
271



245
279



246
158



247
337



248
118



249
332



250
389



251
173



252
121



253
199



254
179



255
228



256
338



257
312



258
390



259
174



260
393



261
283



262
122



263
448



264
353



265
203



266
63



267
340



268
394



269
181



270
295



271
285



272
232



273
124



274
205



275
182



276
286



277
299



278
354



279
211



280
401



281
185



282
396



283
344



284
240



285
206



286
95



287
327



288
402



289
356



290
307



291
301



292
417



293
213



294
186



295
404



296
227



297
418



298
302



299
360



300
111



301
331



302
214



303
309



304
188



305
449



306
217



307
408



308
229



309
159



310
420



311
310



312
333



313
119



314
339



315
218



316
368



317
230



318
391



319
313



320
450



321
334



322
233



323
175



324
123



325
341



326
220



327
314



328
424



329
395



330
355



331
287



332
183



333
234



334
125



335
342



336
316



337
241



338
345



339
452



340
397



341
403



342
207



343
432



344
357



345
187



346
236



347
126



348
242



349
398



350
346



351
456



352
358



353
405



354
303



355
244



356
189



357
361



358
215



359
348



360
419



361
406



362
464



363
362



364
409



365
219



366
311



367
421



368
410



369
231



370
248



371
369



372
190



373
364



374
335



375
480



376
315



377
221



378
370



379
422



380
425



381
451



382
235



383
412



384
343



385
372



386
317



387
222



388
426



389
453



390
237



391
433



392
347



393
243



394
454



395
318



396
376



397
428



398
238



399
359



400
457



401
399



402
434



403
349



404
245



405
458



406
363



407
127



408
191



409
407



410
436



411
465



412
246



413
350



414
460



415
249



416
411



417
365



418
440



419
374



420
423



421
466



422
250



423
371



424
481



425
413



426
366



427
468



428
429



429
252



430
373



431
482



432
427



433
414



434
223



435
472



436
455



437
377



438
435



439
319



440
484



441
430



442
488



443
239



444
378



445
459



446
437



447
380



448
461



449
496



450
351



451
467



452
438



453
251



454
462



455
442



456
441



457
469



458
247



459
367



460
253



461
375



462
444



463
470



464
483



465
415



466
485



467
473



468
474



469
254



470
379



471
431



472
489



473
486



474
476



475
439



476
490



477
463



478
381



479
497



480
492



481
443



482
382



483
498



484
445



485
471



486
500



487
446



488
475



489
487



490
504



491
255



492
477



493
491



494
478



495
383



496
493



497
499



498
502



499
494



500
501



501
447



502
505



503
506



504
479



505
508



506
495



507
503



508
507



509
509



510
510



511
511










Sequence Q13, having a sequence length of 256:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 34, 24, 36, 7, 129, 66, 11, 40, 68, 130, 19, 13, 48, 14, 72, 21, 132, 35, 26, 80, 37, 25, 22, 136, 38, 96, 67, 41, 144, 28, 69, 42, 49, 74, 160, 192, 70, 44, 131, 81, 50, 73, 15, 133, 52, 23, 134, 76, 137, 82, 56, 27, 97, 39, 84, 138, 145, 29, 43, 98, 88, 140, 30, 146, 71, 161, 45, 100, 51, 148, 46, 75, 104, 162, 53, 193, 152, 77, 164, 54, 83, 57, 112, 135, 78, 194, 85, 58, 168, 139, 99, 86, 60, 89, 196, 141, 101, 147, 176, 142, 31, 200, 90, 149, 102, 105, 163, 92, 47, 208, 150, 153, 165, 106, 55, 113, 154, 79, 108, 224, 166, 195, 59, 169, 114, 156, 87, 197, 116, 170, 61, 177, 91, 198, 172, 120, 201, 62, 143, 103, 178, 93, 202, 107, 180, 151, 209, 94, 204, 155, 210, 109, 184, 115, 167, 225, 157, 110, 117, 212, 171, 226, 216, 158, 118, 173, 121, 199, 179, 228, 174, 122, 203, 63, 181, 232, 124, 205, 182, 211, 185, 240, 206, 95, 213, 186, 227, 111, 214, 188, 217, 229, 159, 119, 218, 230, 233, 175, 123, 220, 183, 234, 125, 241, 207, 187, 236, 126, 242, 244, 189, 215, 219, 231, 248, 190, 221, 235, 222, 237, 243, 238, 245, 127, 191, 246, 249, 250, 252, 223, 239, 251, 247, 253, 254, 255]









TABLE Q13







having a sequence length of 256:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
9



11
6



12
17



13
10



14
18



15
128



16
12



17
33



18
65



19
20



20
34



21
24



22
36



23
7



24
129



25
66



26
11



27
40



28
68



29
130



30
19



31
13



32
48



33
14



34
72



35
21



36
132



37
35



38
26



39
80



40
37



41
25



42
22



43
136



44
38



45
96



46
67



47
41



48
144



49
28



50
69



51
42



52
49



53
74



54
160



55
192



56
70



57
44



58
131



59
81



60
50



61
73



62
15



63
133



64
52



65
23



66
134



67
76



68
137



69
82



70
56



71
27



72
97



73
39



74
84



75
138



76
145



77
29



78
43



79
98



80
88



81
140



82
30



83
146



84
71



85
161



86
45



87
100



88
51



89
148



90
46



91
75



92
104



93
162



94
53



95
193



96
152



97
77



98
164



99
54



100
83



101
57



102
112



103
135



104
78



105
194



106
85



107
58



108
168



109
139



110
99



111
86



112
60



113
89



114
196



115
141



116
101



117
147



118
176



119
142



120
31



121
200



122
90



123
149



124
102



125
105



126
163



127
92



128
47



129
208



130
150



131
153



132
165



133
106



134
55



135
113



136
154



137
79



138
108



139
224



140
166



141
195



142
59



143
169



144
114



145
156



146
87



147
197



148
116



149
170



150
61



151
177



152
91



153
198



154
172



155
120



156
201



157
62



158
143



159
103



160
178



161
93



162
202



163
107



164
180



165
151



166
209



167
94



168
204



169
155



170
210



171
109



172
184



173
115



174
167



175
225



176
157



177
110



178
117



179
212



180
171



181
226



182
216



183
158



184
118



185
173



186
121



187
199



188
179



189
228



190
174



191
122



192
203



193
63



194
181



195
232



196
124



197
205



198
182



199
211



200
185



201
240



202
206



203
95



204
213



205
186



206
227



207
111



208
214



209
188



210
217



211
229



212
159



213
119



214
218



215
230



216
233



217
175



218
123



219
220



220
183



221
234



222
125



223
241



224
207



225
187



226
236



227
126



228
242



229
244



230
189



231
215



232
219



233
231



234
248



235
190



236
221



237
235



238
222



239
237



240
243



241
238



242
245



243
127



244
191



245
246



246
249



247
250



248
252



249
223



250
239



251
251



252
247



253
253



254
254



255
255










Sequence Q14, having a sequence length of 128:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 12, 33, 65, 20, 34, 24, 36, 7, 66, 11, 40, 68, 19, 13, 48, 14, 72, 21, 35, 26, 80, 37, 25, 22, 38, 96, 67, 41, 28, 69, 42, 49, 74, 70, 44, 81, 50, 73, 15, 52, 23, 76, 82, 56, 27, 97, 39, 84, 29, 43, 98, 88, 30, 71, 45, 100, 51, 46, 75, 104, 53, 77, 54, 83, 57, 112, 78, 85, 58, 99, 86, 60, 89, 101, 31, 90, 102, 105, 92, 47, 106, 55, 113, 79, 108, 59, 114, 87, 116, 61, 91, 120, 62, 103, 93, 107, 94, 109, 115, 110, 117, 118, 121, 122, 63, 124, 95, 111, 119, 123, 125, 126, 127]









TABLE Q14







having a sequence length of 128:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
9



11
6



12
17



13
10



14
18



15
12



16
33



17
65



18
20



19
34



20
24



21
36



22
7



23
66



24
11



25
40



26
68



27
19



28
13



29
48



30
14



31
72



32
21



33
35



34
26



35
80



36
37



37
25



38
22



39
38



40
96



41
67



42
41



43
28



44
69



45
42



46
49



47
74



48
70



49
44



50
81



51
50



52
73



53
15



54
52



55
23



56
76



57
82



58
56



59
27



60
97



61
39



62
84



63
29



64
43



65
98



66
88



67
30



68
71



69
45



70
100



71
51



72
46



73
75



74
104



75
53



76
77



77
54



78
83



79
57



80
112



81
78



82
85



83
58



84
99



85
86



86
60



87
89



88
101



89
31



90
90



91
102



92
105



93
92



94
47



95
106



96
55



97
113



98
79



99
108



100
59



101
114



102
87



103
116



104
61



105
91



106
120



107
62



108
103



109
93



110
107



111
94



112
109



113
115



114
110



115
117



116
118



117
121



118
122



119
63



120
124



121
95



122
111



123
119



124
123



125
125



126
126



127
127










Sequence Q15, having a sequence length of 64:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 9, 6, 17, 10, 18, 12, 33, 20, 34, 24, 36, 7, 11, 40, 19, 13, 48, 14, 21, 35, 26, 37, 25, 22, 38, 41, 28, 42, 49, 44, 50, 15, 52, 23, 56, 27, 39, 29, 43, 30, 45, 51, 46, 53, 54, 57, 58, 60, 31, 47, 55, 59, 61, 62, 63]









TABLE Q15







having a sequence length of 64:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
9



10
6



11
17



12
10



13
18



14
12



15
33



16
20



17
34



18
24



19
36



20
7



21
11



22
40



23
19



24
13



25
48



26
14



27
21



28
35



29
26



30
37



31
25



32
22



33
38



34
41



35
28



36
42



37
49



38
44



39
50



40
15



41
52



42
23



43
56



44
27



45
39



46
29



47
43



48
30



49
45



50
51



51
46



52
53



53
54



54
57



55
58



56
60



57
31



58
47



59
55



60
59



61
61



62
62



63
63










Sequence Z11, having a sequence length of 1024:


[0, 1, 2, 7, 3, 8, 11, 24, 4, 10, 13, 28, 16, 33, 35, 76, 5, 12, 14, 32, 19, 38, 47, 80, 22, 46, 42, 87, 57, 95, 101, 160, 6, 17, 21, 40, 23, 45, 51, 89, 29, 55, 59, 96, 71, 108, 113, 175, 34, 61, 74, 111, 79, 120, 129, 186, 86, 131, 141, 208, 146, 218, 236, 327, 9, 18, 26, 54, 30, 58, 70, 103, 36, 75, 62, 114, 83, 123, 135, 193, 44, 73, 85, 130, 91, 138, 145, 214, 99, 148, 162, 228, 174, 242, 256, 357, 53, 88, 97, 144, 109, 154, 169, 239, 118, 170, 185, 250, 195, 269, 282, 382, 133, 191, 211, 273, 216, 283, 301, 403, 233, 307, 322, 419, 337, 434, 460, 582, 15, 25, 31, 72, 39, 78, 81, 134, 48, 84, 92, 143, 100, 153, 157, 238, 56, 93, 102, 155, 112, 168, 182, 252, 122, 183, 192, 264, 213, 279, 297, 395, 64, 106, 119, 173, 124, 184, 198, 274, 142, 209, 217, 285, 232, 306, 317, 418, 156, 225, 240, 311, 251, 333, 339, 432, 270, 348, 370, 453, 386, 472, 511, 583, 68, 121, 137, 201, 152, 215, 231, 309, 161, 234, 244, 326, 257, 338, 356, 447, 180, 253, 265, 346, 284, 366, 384, 478, 293, 388, 406, 494, 424, 518, 532, 641, 197, 275, 288, 373, 312, 394, 409, 506, 336, 415, 433, 526, 454, 535, 567, 671, 355, 440, 461, 552, 470, 577, 591, 695, 509, 598, 613, 690, 629, 714, 743, 830, 20, 37, 41, 90, 49, 94, 104, 167, 50, 105, 115, 176, 126, 194, 202, 295, 63, 116, 127, 205, 139, 212, 223, 296, 147, 222, 237, 321, 254, 335, 342, 431, 66, 136, 149, 207, 164, 226, 241, 334, 172, 248, 258, 344, 268, 364, 377, 468, 171, 266, 277, 363, 292, 385, 397, 495, 314, 411, 425, 517, 439, 531, 555, 663, 77, 159, 165, 246, 179, 262, 276, 358, 187, 281, 287, 383, 302, 402, 414, 515, 235, 298, 313, 405, 328, 422, 438, 528, 350, 443, 464, 550, 481, 576, 593, 686, 261, 324, 345, 430, 362, 452, 466, 568, 380, 475, 487, 581, 512, 605, 619, 707, 407, 510, 519, 614, 529, 630, 609, 721, 560, 660, 672, 749, 677, 779, 794, 846, 82, 177, 181, 291, 227, 305, 316, 410, 247, 320, 329, 427, 349, 445, 463, 570, 259, 347, 361, 446, 372, 467, 483, 585, 389, 489, 505, 601, 527, 617, 640, 725, 294, 365, 376, 482, 396, 500, 521, 610, 426, 522, 533, 638, 561, 627, 667, 751, 451, 546, 574, 661, 586, 676, 688, 770, 606, 693, 692, 790, 722, 801, 813, 877, 323, 387, 412, 523, 444, 534, 554, 647, 465, 569, 578, 673, 597, 679, 691, 777, 484, 589, 611, 687, 620, 694, 723, 802, 646, 729, 740, 816, 760, 834, 844, 905, 516, 615, 636, 724, 666, 726, 756, 821, 670, 753, 772, 840, 786, 853, 870, 924, 680, 780, 798, 859, 808, 873, 865, 930, 828, 885, 893, 946, 909, 954, 963, 984, 27, 43, 52, 98, 60, 117, 128, 199, 65, 132, 140, 204, 151, 220, 224, 330, 67, 150, 158, 219, 166, 263, 271, 354, 188, 272, 290, 381, 304, 398, 413, 525, 69, 163, 178, 267, 190, 289, 299, 392, 200, 308, 318, 416, 332, 435, 449, 536, 210, 325, 341, 442, 359, 462, 473, 564, 367, 469, 490, 588, 493, 600, 616, 745, 107, 189, 196, 303, 206, 319, 331, 429, 229, 343, 351, 457, 369, 477, 488, 572, 245, 353, 375, 471, 391, 492, 497, 594, 404, 498, 504, 618, 545, 631, 656, 752, 260, 390, 400, 503, 421, 520, 524, 624, 437, 544, 557, 645, 580, 664, 674, 773, 456, 566, 587, 675, 607, 685, 709, 787, 635, 712, 730, 803, 741, 819, 836, 903, 110, 203, 221, 340, 243, 352, 371, 480, 255, 378, 393, 499, 408, 508, 513, 621, 280, 401, 420, 514, 436, 541, 553, 642, 455, 562, 579, 669, 595, 681, 700, 774, 300, 428, 448, 556, 474, 575, 573, 682, 485, 590, 599, 696, 625, 710, 718, 805, 507, 608, 633, 715, 643, 735, 742, 822, 659, 750, 764, 841, 789, 855, 871, 925, 315, 459, 476, 592, 496, 604, 626, 713, 539, 634, 650, 738, 653, 744, 758, 833, 547, 651, 658, 755, 683, 763, 783, 852, 704, 788, 797, 860, 812, 878, 888, 933, 563, 689, 698, 775, 719, 791, 800, 867, 731, 810, 823, 884, 837, 894, 907, 949, 766, 825, 842, 897, 857, 911, 916, 961, 868, 921, 929, 966, 940, 974, 983, 1003, 125, 230, 249, 379, 278, 399, 417, 530, 286, 423, 441, 543, 458, 559, 584, 701, 310, 450, 479, 571, 491, 603, 596, 706, 501, 612, 628, 728, 648, 736, 747, 829, 360, 486, 502, 602, 538, 623, 637, 739, 542, 649, 655, 748, 665, 759, 769, 848, 548, 662, 678, 768, 703, 782, 795, 861, 716, 807, 811, 879, 824, 889, 900, 944, 368, 537, 540, 644, 549, 652, 668, 762, 565, 684, 697, 778, 711, 792, 809, 875, 632, 702, 720, 796, 732, 817, 826, 886, 761, 827, 843, 898, 858, 910, 915, 960, 654, 734, 754, 818, 767, 839, 850, 902, 785, 854, 863, 914, 874, 922, 932, 969, 799, 869, 881, 928, 892, 935, 943, 976, 904, 947, 953, 981, 958, 989, 991, 1011, 374, 551, 558, 699, 622, 708, 717, 806, 639, 727, 737, 820, 757, 832, 847, 901, 657, 746, 765, 835, 776, 851, 864, 913, 793, 872, 862, 919, 887, 931, 939, 972, 705, 771, 781, 856, 804, 866, 880, 926, 815, 882, 891, 936, 899, 941, 950, 980, 838, 895, 906, 945, 917, 955, 959, 987, 923, 965, 968, 993, 975, 996, 998, 1008, 733, 784, 814, 883, 831, 890, 896, 942, 845, 908, 912, 952, 920, 956, 967, 990, 849, 918, 927, 964, 938, 970, 971, 997, 948, 977, 979, 999, 985, 1004, 1006, 1016, 876, 934, 937, 973, 951, 978, 982, 1001, 957, 986, 988, 1005, 994, 1007, 1012, 1018, 962, 992, 995, 1009, 1000, 1010, 1013, 1019, 1002, 1014, 1015, 1020, 1017, 1021, 1022, 1023]









TABLE Z11







having a sequence length of 1024:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
11



7
24



8
4



9
10



10
13



11
28



12
16



13
33



14
35



15
76



16
5



17
12



18
14



19
32



20
19



21
38



22
47



23
80



24
22



25
46



26
42



27
87



28
57



29
95



30
101



31
160



32
6



33
17



34
21



35
40



36
23



37
45



38
51



39
89



40
29



41
55



42
59



43
96



44
71



45
108



46
113



47
175



48
34



49
61



50
74



51
111



52
79



53
120



54
129



55
186



56
86



57
131



58
141



59
208



60
146



61
218



62
236



63
327



64
9



65
18



66
26



67
54



68
30



69
58



70
70



71
103



72
36



73
75



74
62



75
114



76
83



77
123



78
135



79
193



80
44



81
73



82
85



83
130



84
91



85
138



86
145



87
214



88
99



89
148



90
162



91
228



92
174



93
242



94
256



95
357



96
53



97
88



98
97



99
144



100
109



101
154



102
169



103
239



104
118



105
170



106
185



107
250



108
195



109
269



110
282



111
382



112
133



113
191



114
211



115
273



116
216



117
283



118
301



119
403



120
233



121
307



122
322



123
419



124
337



125
434



126
460



127
582



128
15



129
25



130
31



131
72



132
39



133
78



134
81



135
134



136
48



137
84



138
92



139
143



140
100



141
153



142
157



143
238



144
56



145
93



146
102



147
155



148
112



149
168



150
182



151
252



152
122



153
183



154
192



155
264



156
213



157
279



158
297



159
395



160
64



161
106



162
119



163
173



164
124



165
184



166
198



167
274



168
142



169
209



170
217



171
285



172
232



173
306



174
317



175
418



176
156



177
225



178
240



179
311



180
251



181
333



182
339



183
432



184
270



185
348



186
370



187
453



188
386



189
472



190
511



191
583



192
68



193
121



194
137



195
201



196
152



197
215



198
231



199
309



200
161



201
234



202
244



203
326



204
257



205
338



206
356



207
447



208
180



209
253



210
265



211
346



212
284



213
366



214
384



215
478



216
293



217
388



218
406



219
494



220
424



221
518



222
532



223
641



224
197



225
275



226
288



227
373



228
312



229
394



230
409



231
506



232
336



233
415



234
433



235
526



236
454



237
535



238
567



239
671



240
355



241
440



242
461



243
552



244
470



245
577



246
591



247
695



248
509



249
598



250
613



251
690



252
629



253
714



254
743



255
830



256
20



257
37



258
41



259
90



260
49



261
94



262
104



263
167



264
50



265
105



266
115



267
176



268
126



269
194



270
202



271
295



272
63



273
116



274
127



275
205



276
139



277
212



278
223



279
2%



280
147



281
222



282
237



283
321



284
254



285
335



286
342



287
431



288
66



289
136



290
149



291
207



292
164



293
226



294
241



295
334



296
172



297
248



298
258



299
344



300
268



301
364



302
377



303
468



304
171



305
266



306
277



307
363



308
292



309
385



310
397



311
495



312
314



313
411



314
425



315
517



316
439



317
531



318
555



319
663



320
77



321
159



322
165



323
246



324
179



325
262



326
276



327
358



328
187



329
281



330
287



331
383



332
302



333
402



334
414



335
515



336
235



337
298



338
313



339
405



340
328



341
422



342
438



343
528



344
350



345
443



346
464



347
550



348
481



349
576



350
593



351
686



352
261



353
324



354
345



355
430



356
362



357
452



358
466



359
568



360
380



361
475



362
487



363
581



364
512



365
605



366
619



367
707



368
407



369
510



370
519



371
614



372
529



373
630



374
609



375
721



376
560



377
660



378
672



379
749



380
677



381
779



382
794



383
846



384
82



385
177



386
181



387
291



388
227



389
305



390
316



391
410



392
247



393
320



394
329



395
427



396
349



397
445



398
463



399
570



400
259



401
347



402
361



403
446



404
372



405
467



406
483



407
585



408
389



409
489



410
505



411
601



412
527



413
617



414
640



415
725



416
294



417
365



418
376



419
482



420
396



421
500



422
521



423
610



424
426



425
522



426
533



427
638



428
561



429
627



430
667



431
751



432
451



433
546



434
574



435
661



436
586



437
676



438
688



439
770



440
606



441
693



442
692



443
790



444
722



445
801



446
813



447
877



448
323



449
387



450
412



451
523



452
444



453
534



454
554



455
647



456
465



457
569



458
578



459
673



460
597



461
679



462
691



463
777



464
484



465
589



466
611



467
687



468
620



469
694



470
723



471
802



472
646



473
729



474
740



475
816



476
760



477
834



478
844



479
905



480
516



481
615



482
636



483
724



484
666



485
726



486
756



487
821



488
670



489
753



490
772



491
840



492
786



493
853



494
870



495
924



496
680



497
780



498
798



499
859



500
808



501
873



502
865



503
930



504
828



505
885



506
893



507
946



508
909



509
954



510
963



511
984



512
27



513
43



514
52



515
98



516
60



517
117



518
128



519
199



520
65



521
132



522
140



523
204



524
151



525
220



526
224



527
330



528
67



529
150



530
158



531
219



532
166



533
263



534
271



535
354



536
188



537
272



538
290



539
381



540
304



541
398



542
413



543
525



544
69



545
163



546
178



547
267



548
190



549
289



550
299



551
392



552
200



553
308



554
318



555
416



556
332



557
435



558
449



559
536



560
210



561
325



562
341



563
442



564
359



565
462



566
473



567
564



568
367



569
469



570
490



571
588



572
493



573
600



574
616



575
745



576
107



577
189



578
196



579
303



580
206



581
319



582
331



583
429



584
229



585
343



586
351



587
457



588
369



589
477



590
488



591
572



592
245



593
353



594
375



595
471



596
391



597
492



598
497



599
594



600
404



601
498



602
504



603
618



604
545



605
631



606
656



607
752



608
260



609
390



610
400



611
503



612
421



613
520



614
524



615
624



616
437



617
544



618
557



619
645



620
580



621
664



622
674



623
773



624
456



625
566



626
587



627
675



628
607



629
685



630
709



631
787



632
635



633
712



634
730



635
803



636
741



637
819



638
836



639
903



640
110



641
203



642
221



643
340



644
243



645
352



646
371



647
480



648
255



649
378



650
393



651
499



652
408



653
508



654
513



655
621



656
280



657
401



658
420



659
514



660
436



661
541



662
553



663
642



664
455



665
562



666
579



667
669



668
595



669
681



670
700



671
774



672
300



673
428



674
448



675
556



676
474



677
575



678
573



679
682



680
485



681
590



682
599



683
696



684
625



685
710



686
718



687
805



688
507



689
608



690
633



691
715



692
643



693
735



694
742



695
822



696
659



697
750



698
764



699
841



700
789



701
855



702
871



703
925



704
315



705
459



706
476



707
592



708
496



709
604



710
626



711
713



712
539



713
634



714
650



715
738



716
653



717
744



718
758



719
833



720
547



721
651



722
658



723
755



724
683



725
763



726
783



727
852



728
704



729
788



730
797



731
860



732
812



733
878



734
888



735
933



736
563



737
689



738
698



739
775



740
719



741
791



742
800



743
867



744
731



745
810



746
823



747
884



748
837



749
894



750
907



751
949



752
766



753
825



754
842



755
897



756
857



757
911



758
916



759
961



760
868



761
921



762
929



763
966



764
940



765
974



766
983



767
1003



768
125



769
230



770
249



771
379



772
278



773
399



774
417



775
530



776
286



777
423



778
441



779
543



780
458



781
559



782
584



783
701



784
310



785
450



786
479



787
571



788
491



789
603



790
596



791
706



792
501



793
612



794
628



795
728



796
648



797
736



798
747



799
829



800
360



801
486



802
502



803
602



804
538



805
623



806
637



807
739



808
542



809
649



810
655



811
748



812
665



813
759



814
769



815
848



816
548



817
662



818
678



819
768



820
703



821
782



822
795



823
861



824
716



825
807



826
811



827
879



828
824



829
889



830
900



831
944



832
368



833
537



834
540



835
644



836
549



837
652



838
668



839
762



840
565



841
684



842
697



843
778



844
711



845
792



846
809



847
875



848
632



849
702



850
720



851
796



852
732



853
817



854
826



855
886



856
761



857
827



858
843



859
898



860
858



861
910



862
915



863
960



864
654



865
734



866
754



867
818



868
767



869
839



870
850



871
902



872
785



873
854



874
863



875
914



876
874



877
922



878
932



879
969



880
799



881
869



882
881



883
928



884
892



885
935



886
943



887
976



888
904



889
947



890
953



891
981



892
958



893
989



894
991



895
1011



896
374



897
551



898
558



899
699



900
622



901
708



902
717



903
806



904
639



905
727



906
737



907
820



908
757



909
832



910
847



911
901



912
657



913
746



914
765



915
835



916
776



917
851



918
864



919
913



920
793



921
872



922
862



923
919



924
887



925
931



926
939



927
972



928
705



929
771



930
781



931
856



932
804



933
866



934
880



935
926



936
815



937
882



938
891



939
936



940
899



941
941



942
950



943
980



944
838



945
895



946
906



947
945



948
917



949
955



950
959



951
987



952
923



953
965



954
968



955
993



956
975



957
996



958
998



959
1008



960
733



961
784



962
814



963
883



964
831



965
890



966
896



967
942



968
845



969
908



970
912



971
952



972
920



973
956



974
967



975
990



976
849



977
918



978
927



979
964



980
938



981
970



982
971



983
997



984
948



985
977



986
979



987
999



988
985



989
1004



990
1006



991
1016



992
876



993
934



994
937



995
973



996
951



997
978



998
982



999
1001



1000
957



1001
986



1002
988



1003
1005



1004
994



1005
1007



1006
1012



1007
1018



1008
962



1009
992



1010
995



1011
1009



1012
1000



1013
1010



1014
1013



1015
1019



1016
1002



1017
1014



1018
1015



1019
1020



1020
1017



1021
1021



1022
1022



1023
1023










Sequence Z12, having a sequence length of 512:


[0, 1, 2, 7, 3, 8, 11, 24, 4, 10, 13, 27, 16, 32, 34, 69, 5, 12, 14, 31, 19, 37, 45, 73, 22, 44, 41, 80, 54, 88, 93, 142, 6, 17, 21, 39, 23, 43, 49, 82, 28, 52, 56, 89, 64, 99, 103, 155, 33, 57, 67, 101, 72, 109, 116, 165, 79, 118, 126, 178, 131, 187, 199, 266, 9, 18, 26, 51, 29, 55, 63, 95, 35, 68, 58, 104, 76, 112, 121, 169, 42, 66, 78, 117, 84, 124, 130, 183, 91, 133, 144, 193, 154, 205, 215, 286, 50, 81, 90, 129, 100, 137, 149, 202, 107, 150, 164, 210, 171, 225, 234, 300, 119, 167, 180, 227, 185, 235, 248, 313, 196, 252, 262, 324, 273, 334, 347, 407, 15, 25, 30, 65, 38, 71, 74, 120, 46, 77, 85, 128, 92, 136, 140, 201, 53, 86, 94, 138, 102, 148, 161, 212, 111, 162, 168, 221, 182, 232, 246, 309, 60, 98, 108, 153, 113, 163, 173, 228, 127, 179, 186, 237, 195, 251, 259, 323, 139, 190, 203, 254, 211, 269, 275, 332, 226, 281, 294, 345, 304, 356, 372, 408, 62, 110, 123, 174, 135, 184, 194, 253, 143, 197, 206, 265, 216, 274, 285, 342, 159, 213, 222, 279, 236, 293, 302, 358, 242, 306, 315, 365, 326, 377, 387, 434, 172, 229, 239, 296, 255, 308, 317, 369, 272, 322, 333, 382, 346, 390, 398, 443, 284, 337, 348, 393, 355, 404, 412, 458, 370, 415, 422, 453, 429, 460, 469, 491, 20, 36, 40, 83, 47, 87, 96, 147, 48, 97, 105, 156, 114, 170, 175, 244, 59, 106, 115, 176, 125, 181, 189, 245, 132, 188, 200, 261, 214, 271, 276, 331, 61, 122, 134, 177, 145, 191, 204, 270, 152, 209, 217, 277, 224, 291, 298, 354, 151, 223, 231, 290, 241, 303, 311, 366, 257, 319, 327, 376, 336, 386, 395, 439, 70, 141, 146, 207, 158, 220, 230, 287, 166, 233, 238, 301, 249, 312, 321, 374, 198, 247, 256, 314, 267, 325, 335, 384, 283, 338, 350, 392, 359, 403, 413, 450, 219, 264, 278, 330, 289, 344, 352, 399, 299, 357, 363, 406, 373, 417, 426, 459, 316, 371, 378, 423, 385, 430, 419, 461, 396, 437, 444, 470, 447, 478, 482, 495, 75, 157, 160, 240, 192, 250, 258, 318, 208, 260, 268, 329, 282, 340, 349, 401, 218, 280, 288, 341, 295, 353, 361, 409, 307, 364, 368, 416, 383, 425, 433, 465, 243, 292, 297, 360, 310, 367, 379, 420, 328, 380, 388, 432, 397, 428, 441, 471, 343, 391, 402, 438, 410, 446, 452, 475, 418, 456, 455, 481, 462, 484, 487, 501, 263, 305, 320, 381, 339, 389, 394, 436, 351, 400, 405, 445, 414, 448, 454, 477, 362, 411, 421, 451, 427, 457, 463, 485, 435, 467, 468, 488, 474, 492, 494, 504, 375, 424, 431, 464, 440, 466, 473, 489, 442, 472, 476, 493, 480, 496, 499, 506, 449, 479, 483, 497, 486, 500, 498, 507, 490, 502, 503, 508, 505, 509, 510, 511]









TABLE Z12







having a sequence length of 512:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
11



7
24



8
4



9
10



10
13



11
27



12
16



13
32



14
34



15
69



16
5



17
12



18
14



19
31



20
19



21
37



22
45



23
73



24
22



25
44



26
41



27
80



28
54



29
88



30
93



31
142



32
6



33
17



34
21



35
39



36
23



37
43



38
49



39
82



40
28



41
52



42
56



43
89



44
64



45
99



46
103



47
155



48
33



49
57



50
67



51
101



52
72



53
109



54
116



55
165



56
79



57
118



58
126



59
178



60
131



61
187



62
199



63
266



64
9



65
18



66
26



67
51



68
29



69
55



70
63



71
95



72
35



73
68



74
58



75
104



76
76



77
112



78
121



79
169



80
42



81
66



82
78



83
117



84
84



85
124



86
130



87
183



88
91



89
133



90
144



91
193



92
154



93
205



94
215



95
286



96
50



97
81



98
90



99
129



100
100



101
137



102
149



103
202



104
107



105
150



106
164



107
210



108
171



109
225



110
234



111
300



112
119



113
167



114
180



115
227



116
185



117
235



118
248



119
313



120
196



121
252



122
262



123
324



124
273



125
334



126
347



127
407



128
15



129
25



130
30



131
65



132
38



133
71



134
74



135
120



136
46



137
77



138
85



139
128



140
92



141
136



142
140



143
201



144
53



145
86



146
94



147
138



148
102



149
148



150
161



151
212



152
111



153
162



154
168



155
221



156
182



157
232



158
246



159
309



160
60



161
98



162
108



163
153



164
113



165
163



166
173



167
228



168
127



169
179



170
186



171
237



172
195



173
251



174
259



175
323



176
139



177
190



178
203



179
254



180
211



181
269



182
275



183
332



184
226



185
281



186
294



187
345



188
304



189
356



190
372



191
408



192
62



193
110



194
123



195
174



196
135



197
184



198
194



199
253



200
143



201
197



202
206



203
265



204
216



205
274



206
285



207
342



208
159



209
213



210
222



211
279



212
236



213
293



214
302



215
358



216
242



217
306



218
315



219
365



220
326



221
377



222
387



223
434



224
172



225
229



226
239



227
296



228
255



229
308



230
317



231
369



232
272



233
322



234
333



235
382



236
346



237
390



238
398



239
443



240
284



241
337



242
348



243
393



244
355



245
404



246
412



247
458



248
370



249
415



250
422



251
453



252
429



253
460



254
469



255
491



256
20



257
36



258
40



259
83



260
47



261
87



262
96



263
147



264
48



265
97



266
105



267
156



268
114



269
170



270
175



271
244



272
59



273
106



274
115



275
176



276
125



277
181



278
189



279
245



280
132



281
188



282
200



283
261



284
214



285
271



286
276



287
331



288
61



289
122



290
134



291
177



292
145



293
191



294
204



295
270



296
152



297
209



298
217



299
277



300
224



301
291



302
298



303
354



304
151



305
223



306
231



307
290



308
241



309
303



310
311



311
366



312
257



313
319



314
327



315
376



316
336



317
386



318
395



319
439



320
70



321
141



322
146



323
207



324
158



325
220



326
230



327
287



328
166



329
233



330
238



331
301



332
249



333
312



334
321



335
374



336
198



337
247



338
256



339
314



340
267



341
325



342
335



343
384



344
283



345
338



346
350



347
392



348
359



349
403



350
413



351
450



352
219



353
264



354
278



355
330



356
289



357
344



358
352



359
399



360
299



361
357



362
363



363
406



364
373



365
417



366
426



367
259



368
316



369
371



370
378



371
423



372
385



373
430



374
419



375
461



376
396



377
437



378
444



379
470



380
447



381
478



382
482



383
495



384
75



385
157



386
160



387
240



388
192



389
250



390
258



391
318



392
208



393
260



394
268



395
329



396
282



397
340



398
349



399
401



400
218



401
280



402
288



403
341



404
295



405
353



406
361



407
409



408
307



409
364



410
368



411
416



412
383



413
425



414
433



415
465



416
243



417
292



418
297



419
360



420
310



421
367



422
379



423
420



424
328



425
380



426
388



427
432



428
397



429
428



430
441



431
471



432
343



433
391



434
402



435
438



436
410



437
446



438
452



439
475



440
418



441
456



442
455



443
481



444
462



445
484



446
487



447
501



448
263



449
305



450
320



451
381



452
339



453
389



454
394



455
436



456
351



457
400



458
405



459
445



460
414



461
448



462
454



463
477



464
362



465
411



466
421



467
451



468
427



469
457



470
463



471
485



472
435



473
467



474
468



475
488



476
474



477
492



478
494



479
504



480
375



481
424



482
431



483
464



484
440



485
466



486
473



487
489



488
442



489
472



490
476



491
493



492
480



493
496



494
499



495
506



496
449



497
479



498
483



499
497



500
486



501
500



502
498



503
507



504
490



505
502



506
503



507
508



508
505



509
509



510
510



511
511










Sequence Z13, having a sequence length of 256:


[0, 1, 2, 7, 3, 8, 11, 23, 4, 10, 13, 26, 16, 31, 33, 62, 5, 12, 14, 30, 19, 35, 42, 65, 21, 41, 38, 71, 49, 77, 82, 120, 6, 17, 20, 37, 22, 40, 44, 73, 27, 47, 51, 78, 57, 86, 90, 128, 32, 52, 60, 88, 64, 94, 99, 134, 70, 101, 107, 142, 112, 150, 157, 193, 9, 18, 25, 46, 28, 50, 56, 84, 34, 61, 53, 91, 67, 97, 104, 137, 39, 59, 69, 100, 74, 106, 111, 146, 80, 113, 122, 152, 127, 161, 167, 203, 45, 72, 79, 110, 87, 116, 124, 159, 92, 125, 133, 163, 138, 171, 177, 207, 102, 135, 144, 173, 148, 178, 184, 213, 155, 186, 191, 218, 196, 222, 227, 243, 15, 24, 29, 58, 36, 63, 66, 103, 43, 68, 75, 109, 81, 115, 119, 158, 48, 76, 83, 117, 89, 123, 130, 165, 96, 131, 136, 169, 145, 176, 183, 212, 54, 85, 93, 126, 98, 132, 140, 174, 108, 143, 149, 180, 154, 185, 190, 217, 118, 151, 160, 188, 164, 194, 198, 220, 172, 200, 205, 225, 209, 230, 235, 244, 55, 95, 105, 141, 114, 147, 153, 187, 121, 156, 162, 192, 168, 197, 202, 224, 129, 166, 170, 199, 179, 204, 208, 231, 182, 210, 214, 232, 219, 236, 238, 249, 139, 175, 181, 206, 189, 211, 215, 233, 195, 216, 221, 237, 226, 239, 241, 250, 201, 223, 228, 240, 229, 242, 245, 252, 234, 246, 247, 251, 248, 253, 254, 255]









TABLE Z13







having a sequence length of 256:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
11



7
23



8
4



9
10



10
13



11
26



12
16



13
31



14
33



15
62



16
5



17
12



18
14



19
30



20
19



21
35



22
42



23
65



24
21



25
41



26
38



27
71



28
49



29
77



30
82



31
120



32
6



33
17



34
20



35
37



36
22



37
40



38
44



39
73



40
27



41
47



42
51



43
78



44
57



45
86



46
90



47
128



48
32



49
52



50
60



51
88



52
64



53
94



54
99



55
134



56
70



57
101



58
107



59
142



60
112



61
150



62
157



63
193



64
9



65
18



66
25



67
46



68
28



69
50



70
56



71
84



72
34



73
61



74
53



75
91



76
67



77
97



78
104



79
137



80
39



81
59



82
69



83
100



84
74



85
106



86
111



87
146



88
80



89
113



90
122



91
152



92
127



93
161



94
167



95
203



96
45



97
72



98
79



99
110



100
87



101
116



102
124



103
159



104
92



105
125



106
133



107
163



108
138



109
171



110
177



111
207



112
102



113
135



114
144



115
173



116
148



117
178



118
184



119
213



120
155



121
186



122
191



123
218



124
196



125
222



126
227



127
243



128
15



129
24



130
29



131
58



132
36



133
63



134
66



135
103



136
43



137
68



138
75



139
109



140
81



141
115



142
119



143
158



144
48



145
76



146
83



147
117



148
89



149
123



150
130



151
165



152
96



153
131



154
136



155
169



156
145



157
176



158
183



159
212



160
54



161
85



162
93



163
126



164
98



165
132



166
140



167
174



168
108



169
143



170
149



171
180



172
154



173
185



174
190



175
217



176
118



177
151



178
160



179
188



180
164



181
194



182
198



183
220



184
172



185
200



186
205



187
225



188
209



189
230



190
235



191
244



192
55



193
95



194
105



195
141



196
114



197
147



198
153



199
187



200
121



201
156



202
162



203
192



204
168



205
197



206
202



207
224



208
129



209
166



210
170



211
199



212
179



213
204



214
208



215
231



216
182



217
210



218
214



219
232



220
219



221
236



222
238



223
249



224
139



225
175



226
181



227
206



228
189



229
211



230
215



231
233



232
195



233
216



234
221



235
237



236
226



237
239



238
241



239
250



240
201



241
223



242
228



243
240



244
229



245
242



246
245



247
252



248
234



249
246



250
247



251
251



252
248



253
253



254
254



255
255










Sequence Z14, having a sequence length of 128:


[0, 1, 2, 7, 3, 8, 11, 22, 4, 10, 13, 24, 15, 28, 30, 53, 5, 12, 14, 27, 18, 32, 38, 55, 20, 37, 34, 59, 43, 63, 67, 89, 6, 16, 19, 33, 21, 36, 39, 61, 25, 42, 45, 64, 49, 69, 72, 94, 29, 46, 51, 71, 54, 75, 77, 96, 58, 79, 83, 100, 86, 104, 107, 119, 9, 17, 23, 41, 26, 44, 48, 68, 31, 52, 47, 73, 56, 76, 81, 98, 35, 50, 57, 78, 62, 82, 85, 102, 66, 87, 90, 105, 93, 109, 111, 121, 40, 60, 65, 84, 70, 88, 91, 108, 74, 92, 95, 110, 99, 112, 114, 122, 80, 97, 101, 113, 103, 115, 116, 123, 106, 117, 118, 124, 120, 125, 126, 127]









TABLE Z14







having a sequence length of 128:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
11



7
22



8
4



9
10



10
13



11
24



12
15



13
28



14
30



15
53



16
5



17
12



18
14



19
27



20
18



21
32



22
38



23
55



24
20



25
37



26
34



27
59



28
43



29
63



30
67



31
89



32
6



33
16



34
19



35
33



36
21



37
36



38
39



39
61



40
25



41
42



42
45



43
64



44
49



45
69



46
72



47
94



48
29



49
46



50
51



51
71



52
54



53
75



54
77



55
96



56
58



57
79



58
83



59
100



60
86



61
104



62
107



63
119



64
9



65
17



66
23



67
41



68
26



69
44



70
48



71
68



72
31



73
52



74
47



75
73



76
56



77
76



78
81



79
98



80
35



81
50



82
57



83
78



84
62



85
82



86
85



87
102



88
66



89
87



90
90



91
105



92
93



93
109



94
111



95
121



96
40



97
60



98
65



99
84



100
70



101
88



102
91



103
108



104
74



105
92



106
95



107
110



108
99



109
112



110
114



111
122



112
80



113
97



114
101



115
113



116
103



117
115



118
116



119
123



120
106



121
117



122
118



123
124



124
120



125
125



126
126



127
127










Sequence Z15, having a sequence length of 64:


[0, 1, 2, 7, 3, 8, 10, 20, 4, 9, 12, 21, 14, 24, 26, 40, 5, 11, 13, 23, 16, 27, 32, 42, 18, 31, 29, 44, 35, 46, 48, 57, 6, 15, 17, 28, 19, 30, 33, 45, 22, 34, 36, 47, 38, 49, 51, 58, 25, 37, 39, 50, 41, 52, 53, 59, 43, 54, 55, 60, 56, 61, 62, 63]









TABLE Z15







having a sequence length of 64:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
10



7
20



8
4



9
9



10
12



11
21



12
14



13
24



14
26



15
40



16
5



17
11



18
13



19
23



20
16



21
27



22
32



23
42



24
18



25
31



26
29



27
44



28
35



29
46



30
48



31
57



32
6



33
15



34
17



35
28



36
19



37
30



38
33



39
45



40
22



41
34



42
36



43
47



44
38



45
49



46
51



47
58



48
25



49
37



50
39



51
50



52
41



53
52



54
53



55
59



56
43



57
54



58
55



59
60



60
56



61
61



62
62



63
63










Fourth group of sequences (a criterion that considers a performance balance under partial-order (partial-order) constraints).


Sequence Q16, having a sequence length of 1024:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 256, 34, 24, 36, 7, 129, 66, 512, 11, 40, 68, 130, 19, 13, 48, 14, 72, 257, 21, 132, 35, 258, 22, 80, 136, 513, 25, 37, 260, 264, 26, 96, 514, 38, 67, 41, 144, 28, 69, 516, 42, 272, 49, 70, 520, 160, 44, 131, 73, 288, 528, 192, 50, 74, 544, 52, 15, 133, 320, 81, 23, 134, 384, 76, 56, 259, 82, 137, 27, 97, 39, 84, 138, 145, 261, 29, 43, 98, 515, 88, 140, 30, 146, 71, 262, 265, 161, 576, 45, 100, 640, 51, 148, 46, 75, 266, 273, 517, 104, 162, 53, 193, 152, 77, 164, 768, 268, 274, 518, 54, 83, 57, 521, 112, 135, 78, 289, 194, 85, 276, 522, 58, 168, 139, 99, 86, 60, 280, 89, 290, 529, 524, 196, 141, 101, 147, 176, 142, 530, 321, 90, 200, 31, 545, 292, 322, 532, 263, 149, 102, 105, 296, 304, 163, 92, 47, 267, 150, 208, 385, 546, 386, 324, 106, 153, 165, 55, 328, 536, 577, 548, 113, 154, 79, 269, 108, 578, 224, 166, 519, 552, 195, 270, 641, 523, 275, 580, 291, 169, 59, 560, 114, 277, 156, 87, 197, 116, 170, 61, 531, 525, 642, 281, 278, 526, 177, 293, 388, 91, 584, 769, 198, 172, 120, 201, 336, 62, 282, 143, 103, 178, 294, 93, 644, 202, 592, 323, 392, 297, 770, 107, 180, 151, 209, 284, 648, 94, 204, 298, 400, 352, 608, 325, 533, 155, 210, 305, 547, 300, 109, 184, 115, 534, 167, 225, 537, 326, 306, 772, 157, 656, 329, 110, 117, 212, 171, 330, 226, 549, 776, 538, 387, 308, 216, 416, 271, 279, 158, 337, 550, 672, 118, 332, 579, 540, 389, 173, 121, 553, 199, 784, 179, 228, 338, 390, 122, 554, 448, 312, 581, 393, 283, 704, 174, 394, 181, 340, 203, 353, 561, 527, 582, 556, 63, 295, 285, 232, 124, 286, 562, 205, 182, 643, 585, 299, 354, 211, 401, 185, 396, 344, 586, 645, 593, 535, 240, 206, 95, 327, 564, 800, 402, 356, 307, 301, 417, 213, 186, 539, 404, 227, 594, 568, 771, 418, 649, 302, 832, 551, 111, 896, 360, 588, 609, 331, 214, 309, 188, 449, 217, 646, 408, 229, 541, 159, 420, 596, 650, 773, 310, 333, 119, 657, 658, 610, 368, 339, 391, 313, 218, 334, 542, 230, 233, 774, 612, 175, 123, 652, 600, 450, 583, 341, 220, 555, 314, 557, 424, 395, 777, 673, 355, 287, 183, 234, 125, 616, 342, 563, 778, 660, 558, 452, 674, 397, 785, 432, 316, 345, 241, 207, 403, 357, 187, 587, 565, 664, 624, 780, 236, 126, 242, 398, 705, 346, 456, 358, 405, 303, 569, 189, 595, 215, 566, 676, 361, 706, 589, 244, 786, 647, 348, 419, 406, 464, 801, 590, 362, 570, 409, 680, 597, 788, 572, 219, 311, 708, 598, 601, 651, 421, 792, 802, 611, 602, 369, 190, 688, 653, 248, 231, 410, 364, 654, 659, 335, 480, 315, 221, 613, 422, 370, 425, 235, 451, 543, 614, 412, 343, 222, 775, 317, 372, 426, 453, 237, 559, 833, 804, 712, 834, 661, 808, 779, 617, 604, 433, 720, 816, 836, 347, 897, 243, 662, 454, 318, 675, 618, 898, 781, 376, 428, 665, 736, 567, 840, 625, 238, 359, 457, 399, 787, 677, 434, 349, 458, 678, 245, 666, 363, 591, 127, 620, 407, 782, 436, 465, 626, 571, 246, 681, 350, 707, 460, 599, 668, 789, 249, 411, 682, 573, 365, 803, 790, 709, 440, 466, 793, 574, 371, 423, 689, 603, 366, 628, 250, 413, 468, 655, 481, 900, 805, 191, 373, 615, 684, 427, 710, 794, 605, 414, 252, 713, 374, 848, 690, 632, 806, 482, 429, 904, 809, 455, 223, 663, 835, 692, 619, 472, 714, 796, 721, 837, 716, 864, 810, 606, 912, 722, 696, 377, 817, 435, 484, 621, 812, 319, 430, 838, 667, 239, 378, 459, 437, 622, 627, 488, 380, 818, 461, 496, 669, 679, 724, 841, 629, 351, 467, 438, 737, 247, 462, 441, 442, 469, 251, 683, 842, 738, 899, 670, 783, 849, 820, 728, 928, 791, 367, 901, 630, 685, 844, 633, 711, 253, 691, 824, 902, 686, 740, 850, 375, 444, 470, 483, 905, 415, 485, 795, 473, 634, 744, 852, 960, 865, 693, 797, 906, 715, 807, 474, 636, 694, 254, 717, 575, 811, 697, 866, 798, 379, 431, 913, 607, 489, 723, 486, 908, 718, 813, 476, 856, 839, 725, 698, 914, 752, 868, 819, 814, 439, 929, 490, 623, 671, 739, 916, 463, 843, 381, 497, 930, 821, 726, 961, 872, 492, 631, 729, 700, 443, 741, 845, 920, 382, 822, 851, 730, 498, 880, 742, 445, 471, 635, 932, 687, 903, 825, 500, 846, 745, 826, 732, 446, 962, 936, 475, 853, 867, 637, 907, 487, 695, 746, 828, 753, 854, 857, 504, 799, 909, 719, 638, 915, 477, 255, 964, 699, 748, 869, 944, 491, 754, 910, 858, 917, 478, 968, 870, 815, 383, 727, 493, 873, 701, 931, 756, 860, 499, 731, 823, 702, 918, 921, 874, 494, 976, 760, 933, 881, 501, 743, 922, 876, 847, 934, 827, 733, 882, 502, 447, 992, 937, 963, 747, 505, 855, 924, 734, 829, 938, 884, 506, 965, 749, 945, 966, 755, 859, 940, 830, 911, 871, 888, 479, 946, 750, 969, 861, 757, 970, 919, 875, 758, 508, 862, 639, 948, 977, 923, 972, 761, 877, 952, 495, 703, 935, 978, 883, 762, 503, 925, 878, 735, 993, 885, 939, 994, 980, 926, 764, 941, 967, 886, 831, 947, 507, 889, 984, 751, 942, 996, 971, 890, 509, 949, 973, 1000, 892, 950, 863, 759, 1008, 510, 979, 953, 763, 974, 954, 879, 981, 982, 927, 995, 765, 956, 887, 985, 997, 986, 943, 891, 998, 766, 511, 988, 1001, 951, 1002, 893, 975, 894, 1009, 955, 1004, 1010, 957, 983, 958, 987, 1012, 999, 1016, 767, 989, 1003, 990, 1005, 895, 1011, 1013, 959, 1006, 1014, 1017, 1018, 991, 1020, 1007, 1015, 1019, 1021, 1022, 1023]









TABLE Q16







having a sequence length of 1024:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
9



11
6



12
17



13
10



14
18



15
128



16
12



17
33



18
65



19
20



20
256



21
34



22
24



23
36



24
7



25
129



26
66



27
512



28
11



29
40



30
68



31
130



32
19



33
13



34
48



35
14



36
72



37
257



38
21



39
132



40
35



41
258



42
22



43
80



44
136



45
513



46
25



47
37



48
260



49
264



50
26



51
96



52
514



53
38



54
67



55
41



56
144



57
28



58
69



59
516



60
42



61
272



62
49



63
70



64
520



65
160



66
44



67
131



68
73



69
288



70
528



71
192



72
50



73
74



75
544



75
52



76
15



77
133



78
320



79
81



80
23



81
134



82
384



83
76



84
56



85
259



86
82



87
137



88
27



89
97



90
39



91
84



92
138



93
145



94
261



95
29



96
43



97
98



98
515



99
88



100
140



101
30



102
146



103
71



104
262



105
265



106
161



107
576



108
45



109
100



110
640



111
51



112
148



113
46



114
75



115
266



116
273



117
517



118
104



119
162



120
53



121
193



122
152



123
77



124
164



125
768



126
268



127
274



128
518



129
54



130
83



131
57



132
521



133
112



134
135



135
78



136
289



137
194



138
85



139
276



140
522



141
58



142
168



143
139



144
99



145
86



146
60



147
280



148
89



149
290



150
529



151
524



152
196



153
141



154
101



155
147



156
176



157
142



158
530



159
321



160
90



161
200



162
31



163
545



164
292



165
322



166
532



167
263



168
149



169
102



170
105



171
296



172
304



173
163



174
92



175
47



176
267



177
150



178
208



179
385



180
546



181
386



182
324



183
106



184
153



185
165



186
55



187
328



188
536



189
577



190
548



191
113



192
154



193
79



194
269



195
108



196
578



197
224



198
166



199
519



200
552



201
195



202
270



203
641



204
523



205
275



206
580



207
291



208
169



209
59



210
560



211
114



212
277



213
156



214
87



215
197



216
116



217
170



218
61



219
531



220
525



221
642



222
281



223
278



224
526



225
177



226
293



227
388



228
91



229
584



230
769



231
198



232
172



233
120



234
201



235
336



236
62



237
282



238
143



239
103



240
178



241
294



242
93



243
644



244
202



245
592



246
323



247
392



248
297



249
770



250
107



251
180



252
151



253
209



254
284



255
648



256
94



257
204



258
298



259
400



260
352



261
608



262
325



263
533



264
155



265
210



266
305



267
547



268
300



269
109



270
184



271
115



272
534



273
167



274
225



275
537



276
326



277
306



278
772



279
157



280
656



281
329



282
110



283
117



284
212



285
171



286
330



287
226



288
549



289
776



290
538



291
387



292
308



293
216



294
416



295
271



296
279



297
158



298
337



299
550



300
672



301
118



302
332



303
579



304
540



305
389



306
173



307
121



308
553



309
199



310
784



311
179



312
228



313
338



314
390



315
122



316
554



317
448



318
312



319
581



320
393



321
283



322
704



323
174



324
394



325
181



326
340



327
203



328
353



329
561



330
527



331
582



332
556



333
63



334
295



335
285



336
232



337
124



338
286



339
562



340
205



341
182



342
643



343
585



344
299



345
354



346
211



347
401



348
185



349
396



350
344



351
586



352
645



353
593



354
535



355
240



356
206



357
95



358
327



359
564



360
800



361
402



362
356



363
307



364
301



365
417



366
213



367
186



368
539



369
404



370
227



371
594



372
568



373
771



374
418



375
649



376
302



377
832



378
551



379
111



380
896



381
360



382
588



383
609



384
331



385
214



386
309



387
188



388
449



389
217



390
646



391
408



392
229



393
541



394
159



395
420



396
596



397
650



398
773



399
310



400
333



401
119



402
657



403
658



404
610



405
368



406
339



407
391



408
313



409
218



410
334



411
542



412
230



413
233



414
774



415
612



416
175



417
123



418
652



419
600



420
450



421
583



422
341



423
220



424
555



425
314



426
557



427
424



428
395



429
777



430
673



431
355



432
287



433
183



434
234



435
125



436
616



437
342



438
563



439
778



440
660



441
558



442
452



443
674



444
397



445
785



446
432



447
316



448
345



449
241



450
207



451
403



452
357



453
187



454
587



455
565



456
664



457
624



458
780



459
236



460
126



461
242



462
398



463
705



464
346



465
456



466
358



467
405



468
303



469
569



470
189



471
595



472
215



473
566



474
676



475
361



476
706



477
589



478
244



479
786



480
647



481
348



482
419



483
406



484
464



485
801



486
590



487
362



488
570



489
409



490
680



491
597



492
788



493
572



494
219



495
311



496
708



497
598



498
601



499
651



500
421



501
792



502
802



503
611



504
602



505
369



506
190



507
688



508
653



509
248



510
231



511
410



512
364



513
654



514
659



515
335



516
480



517
315



518
221



519
613



520
422



521
370



522
425



523
235



524
451



525
543



526
614



527
412



528
343



529
222



530
775



531
317



532
372



533
426



534
453



535
237



536
559



537
833



538
804



539
712



540
834



541
661



542
808



543
779



544
617



545
604



546
433



547
720



548
816



549
836



550
347



551
897



552
243



553
662



554
454



555
318



556
675



557
618



558
898



559
781



560
376



561
428



562
665



563
736



564
567



565
840



566
625



567
238



568
359



569
457



570
399



571
787



572
677



573
434



574
349



575
458



576
678



577
245



578
666



579
363



580
591



581
127



582
620



583
407



584
782



585
436



586
465



587
626



588
571



589
246



590
681



591
350



592
707



593
460



594
599



595
668



596
789



597
249



598
411



599
682



600
573



601
365



602
803



603
790



604
709



605
440



606
466



607
793



608
574



609
371



610
423



611
689



612
603



613
366



614
628



615
250



616
413



617
468



618
655



619
481



620
900



621
805



622
191



623
373



624
615



625
684



626
427



627
710



628
794



629
605



630
414



631
252



632
713



633
374



634
848



635
690



636
632



637
806



638
482



639
429



640
904



641
809



642
455



643
223



644
663



645
835



646
692



647
619



648
472



649
714



650
796



651
721



652
837



653
716



654
864



655
810



656
606



657
912



658
722



659
696



660
377



661
817



662
435



663
484



664
621



665
812



666
319



667
430



668
838



669
667



670
239



671
378



672
459



673
437



674
622



675
627



676
488



677
380



678
818



679
461



680
496



681
669



682
679



683
724



684
841



685
629



686
351



687
467



688
438



689
737



690
247



691
462



692
441



693
442



694
469



695
251



696
683



697
842



698
738



699
899



700
670



701
783



702
849



703
820



704
728



705
928



706
791



707
367



708
901



709
630



710
685



711
844



712
633



713
711



714
253



715
691



716
824



717
902



718
686



719
740



720
850



721
375



722
444



723
470



724
483



725
905



726
415



727
485



728
795



729
473



730
634



731
744



732
852



733
960



734
865



735
693



736
797



737
906



738
715



739
807



740
474



741
636



742
694



743
254



744
717



745
575



746
811



747
697



748
866



749
798



750
379



751
431



752
913



753
607



754
489



755
723



756
486



757
908



758
718



759
813



760
476



761
856



762
839



763
725



764
698



765
914



766
752



767
868



768
819



769
814



770
439



771
929



772
490



773
623



774
671



775
739



776
916



777
463



778
843



779
381



780
497



781
930



782
821



783
726



784
961



785
872



786
492



787
631



788
729



789
700



790
443



791
741



792
845



793
920



794
382



795
822



796
851



797
730



798
498



799
880



800
742



801
445



802
471



803
635



804
932



805
687



806
903



807
825



808
500



809
846



810
745



811
826



812
732



813
446



814
962



815
936



816
475



817
853



818
867



819
637



820
907



821
487



822
695



823
746



824
828



825
753



826
854



827
857



828
504



829
799



830
909



831
719



832
638



833
915



834
477



835
255



836
964



837
699



838
748



839
869



840
944



841
491



842
754



843
910



844
858



845
917



846
478



847
968



848
870



849
815



850
383



851
727



852
493



853
873



854
701



855
931



856
756



857
860



858
499



859
731



860
823



861
702



862
918



863
921



864
874



865
494



866
976



867
760



868
933



869
881



870
501



871
743



872
922



873
876



874
847



875
934



876
827



877
733



878
882



879
502



880
447



881
992



882
937



883
963



884
747



885
505



886
855



887
924



888
734



889
829



890
938



891
884



892
506



893
965



894
749



895
945



896
966



897
755



898
859



899
940



900
830



901
911



902
871



903
888



904
479



905
946



906
750



907
969



908
861



909
757



910
970



911
919



912
875



913
758



914
508



915
862



916
639



917
948



918
977



919
923



920
972



921
761



922
877



923
952



924
495



925
703



926
935



927
978



928
883



929
762



930
503



931
925



932
878



933
735



934
993



935
885



936
939



937
994



938
980



939
926



940
764



941
941



942
967



943
886



944
831



945
947



946
507



947
889



948
984



949
751



950
942



951
996



952
971



953
890



954
509



955
949



956
973



957
1000



958
892



959
950



960
863



961
759



962
1008



963
510



964
979



965
953



966
763



967
974



968
954



969
879



970
981



971
982



972
927



973
995



974
765



975
956



976
887



977
985



978
997



979
986



980
943



981
891



982
998



983
766



984
511



985
988



986
1001



987
951



988
1002



989
893



990
975



991
894



992
1009



993
955



994
1004



995
1010



996
957



997
983



998
958



999
987



1000
1012



1001
999



1002
1016



1003
767



1004
989



1005
1003



1006
990



1007
1005



1008
895



1009
1011



1010
1013



1011
959



1012
1006



1013
1014



1014
1017



1015
1018



1016
991



1017
1020



1018
1007



1019
1015



1020
1019



1021
1021



1022
1022



1023
1023










Sequence Q17, having a sequence length of 512:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 256, 34, 24, 36, 7, 129, 66, 11, 40, 68, 130, 19, 13, 48, 14, 72, 257, 21, 132, 35, 258, 22, 80, 136, 25, 37, 260, 264, 26, 96, 38, 67, 41, 144, 28, 69, 42, 272, 49, 70, 160, 44, 131, 73, 288, 192, 50, 74, 52, 15, 133, 320, 81, 23, 134, 384, 76, 56, 259, 82, 137, 27, 97, 39, 84, 138, 145, 261, 29, 43, 98, 88, 140, 30, 146, 71, 262, 265, 161, 45, 100, 51, 148, 46, 75, 266, 273, 104, 162, 53, 193, 152, 77, 164, 268, 274, 54, 83, 57, 112, 135, 78, 289, 194, 85, 276, 58, 168, 139, 99, 86, 60, 280, 89, 290, 196, 141, 101, 147, 176, 142, 321, 90, 200, 31, 292, 322, 263, 149, 102, 105, 296, 304, 163, 92, 47, 267, 150, 208, 385, 386, 324, 106, 153, 165, 55, 328, 113, 154, 79, 269, 108, 224, 166, 195, 270, 275, 291, 169, 59, 114, 277, 156, 87, 197, 116, 170, 61, 281, 278, 177, 293, 388, 91, 198, 172, 120, 201, 336, 62, 282, 143, 103, 178, 294, 93, 202, 323, 392, 297, 107, 180, 151, 209, 284, 94, 204, 298, 400, 352, 325, 155, 210, 305, 300, 109, 184, 115, 167, 225, 326, 306, 157, 329, 110, 117, 212, 171, 330, 226, 387, 308, 216, 416, 271, 279, 158, 337, 118, 332, 389, 173, 121, 199, 179, 228, 338, 390, 122, 448, 312, 393, 283, 174, 394, 181, 340, 203, 353, 63, 295, 285, 232, 124, 286, 205, 182, 299, 354, 211, 401, 185, 396, 344, 240, 206, 95, 327, 402, 356, 307, 301, 417, 213, 186, 404, 227, 418, 302, 111, 360, 331, 214, 309, 188, 449, 217, 408, 229, 159, 420, 310, 333, 119, 368, 339, 391, 313, 218, 334, 230, 233, 175, 123, 450, 341, 220, 314, 424, 395, 355, 287, 183, 234, 125, 342, 452, 397, 432, 316, 345, 241, 207, 403, 357, 187, 236, 126, 242, 398, 346, 456, 358, 405, 303, 189, 215, 361, 244, 348, 419, 406, 464, 362, 409, 219, 311, 421, 369, 190, 248, 231, 410, 364, 335, 480, 315, 221, 422, 370, 425, 235, 451, 412, 343, 222, 317, 372, 426, 453, 237, 433, 347, 243, 454, 318, 376, 428, 238, 359, 457, 399, 434, 349, 458, 245, 363, 127, 407, 436, 465, 246, 350, 460, 249, 411, 365, 440, 466, 371, 423, 366, 250, 413, 468, 481, 191, 373, 427, 414, 252, 374, 482, 429, 455, 223, 472, 377, 435, 484, 319, 430, 239, 378, 459, 437, 488, 380, 461, 496, 351, 467, 438, 247, 462, 441, 442, 469, 251, 367, 253, 375, 444, 470, 483, 415, 485, 473, 474, 254, 379, 431, 489, 486, 476, 439, 490, 463, 381, 497, 492, 443, 382, 498, 445, 471, 500, 446, 475, 487, 504, 477, 255, 491, 478, 383, 493, 499, 494, 501, 502, 447, 505, 506, 479, 508, 495, 503, 507, 509, 510, 511]









TABLE Q17







having a sequence length of 512:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
9



11
6



12
17



13
10



14
18



15
128



16
12



17
33



18
65



19
20



20
256



21
34



22
24



23
36



24
7



25
129



26
66



27
11



28
40



29
68



30
130



31
19



32
13



33
48



34
14



35
72



36
257



37
21



38
132



39
35



40
258



41
22



42
80



43
136



44
25



45
37



46
260



47
264



48
26



49
96



50
38



51
67



52
41



53
144



54
28



55
69



56
42



57
272



58
49



59
70



60
160



61
44



62
131



63
73



64
288



65
192



66
50



67
74



68
52



69
15



70
133



71
320



72
81



73
23



74
134



75
384



76
76



77
56



78
259



79
82



80
137



81
27



82
97



83
39



84
84



85
138



86
145



87
261



88
29



89
43



90
98



91
88



92
140



93
30



94
146



95
71



96
262



97
265



98
161



99
45



100
100



101
51



102
148



103
46



104
75



105
266



106
273



107
104



108
162



109
53



110
193



111
152



112
77



113
164



114
268



115
274



116
54



117
83



118
57



119
112



120
135



121
78



122
289



123
194



124
85



125
276



126
58



127
168



128
139



129
99



130
86



131
60



132
280



133
89



134
290



135
196



136
141



137
101



138
147



139
176



140
142



141
321



142
90



143
200



144
31



145
292



146
322



147
263



148
149



149
102



150
105



151
296



152
304



153
163



154
92



155
47



156
267



157
150



158
208



159
385



160
386



161
324



162
106



163
153



164
165



165
55



166
328



167
113



168
154



169
79



170
269



171
108



172
224



173
166



174
195



175
270



176
275



177
291



178
169



179
59



180
114



181
277



182
156



183
87



184
197



185
116



186
170



187
61



188
281



189
278



190
177



191
293



192
388



193
91



194
198



195
172



196
120



197
201



198
336



199
62



200
282



201
143



202
103



203
178



204
294



205
93



206
202



207
323



208
392



209
297



210
107



211
180



212
151



213
209



214
284



215
94



216
204



217
298



218
400



219
352



220
325



221
155



222
210



223
305



224
300



225
109



226
184



227
115



228
167



229
225



230
326



231
306



232
157



233
329



234
110



235
117



236
212



237
171



238
330



239
226



240
387



241
308



242
216



243
416



244
271



245
279



246
158



247
337



248
118



249
332



250
389



251
173



252
121



253
199



254
179



255
228



256
338



257
390



258
122



259
448



260
312



261
393



262
283



263
174



264
394



265
181



266
340



267
203



268
353



269
63



270
295



271
285



272
232



273
124



274
286



275
205



276
182



277
299



278
354



279
211



280
401



281
185



282
396



283
344



284
240



285
206



286
95



287
327



288
402



289
356



290
307



291
301



292
417



293
213



294
186



295
404



296
227



297
418



298
302



299
111



300
360



301
331



302
214



303
309



304
188



305
449



306
217



307
408



308
229



309
159



310
420



311
310



312
333



313
119



314
368



315
339



316
391



317
313



318
218



319
334



320
230



321
233



322
175



323
123



324
450



325
341



326
220



327
314



328
424



329
395



330
355



331
287



332
183



333
234



334
125



335
342



336
452



337
397



338
432



339
316



340
345



341
241



342
207



343
403



344
357



345
187



346
236



347
126



348
242



349
398



350
346



351
456



352
358



353
405



354
303



355
189



356
215



357
361



358
244



359
348



360
419



361
406



362
464



363
362



364
409



365
219



366
311



367
421



368
369



369
190



370
248



371
231



372
410



373
364



374
335



375
480



376
315



377
221



378
422



379
370



380
425



381
235



382
451



383
412



384
343



385
222



386
317



387
372



388
426



389
453



390
237



391
433



392
347



393
243



394
454



395
318



396
376



397
428



398
238



399
359



400
457



401
399



402
434



403
349



404
458



405
245



406
363



407
127



408
407



409
436



410
465



411
246



412
350



413
460



414
249



415
411



416
365



417
440



418
466



419
371



420
423



421
366



422
250



423
413



424
468



425
481



426
191



427
373



428
427



429
414



430
252



431
374



432
482



433
429



434
455



435
223



436
472



437
377



438
435



439
484



440
319



441
430



442
239



443
378



444
459



445
437



446
488



447
380



448
461



449
496



450
351



451
467



452
438



453
247



454
462



455
441



456
442



457
469



458
251



459
367



460
253



461
375



462
444



463
470



464
483



465
415



466
485



467
473



468
474



469
254



470
379



471
431



472
489



473
486



474
476



475
439



476
490



477
463



478
381



479
497



480
492



481
443



482
382



483
498



484
445



485
471



486
500



487
446



488
475



489
487



490
504



491
477



492
255



493
491



494
478



495
383



496
493



497
499



498
494



499
501



500
502



501
447



502
505



503
506



504
479



505
508



506
495



507
503



508
507



509
509



510
510



511
511










Sequence Q18, having a sequence length of 256:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 34, 24, 36, 7, 129, 66, 11, 40, 68, 130, 19, 13, 48, 14, 72, 21, 132, 35, 22, 80, 136, 25, 37, 26, 96, 38, 67, 41, 144, 28, 69, 42, 49, 70, 160, 44, 131, 73, 192, 50, 74, 52, 15, 133, 81, 23, 134, 76, 56, 82, 137, 27, 97, 39, 84, 138, 145, 29, 43, 98, 88, 140, 30, 146, 71, 161, 45, 100, 51, 148, 46, 75, 104, 162, 53, 193, 152, 77, 164, 54, 83, 57, 112, 135, 78, 194, 85, 58, 168, 139, 99, 86, 60, 89, 196, 141, 101, 147, 176, 142, 90, 200, 31, 149, 102, 105, 163, 92, 47, 150, 208, 106, 153, 165, 55, 113, 154, 79, 108, 224, 166, 195, 169, 59, 114, 156, 87, 197, 116, 170, 61, 177, 91, 198, 172, 120, 201, 62, 143, 103, 178, 93, 202, 107, 180, 151, 209, 94, 204, 155, 210, 109, 184, 115, 167, 225, 157, 110, 117, 212, 171, 226, 216, 158, 118, 173, 121, 199, 179, 228, 122, 174, 181, 203, 63, 232, 124, 205, 182, 211, 185, 240, 206, 95, 213, 186, 227, 111, 214, 188, 217, 229, 159, 119, 218, 230, 233, 175, 123, 220, 183, 234, 125, 241, 207, 187, 236, 126, 242, 189, 215, 244, 219, 190, 248, 231, 221, 235, 222, 237, 243, 238, 245, 127, 246, 249, 250, 191, 252, 223, 239, 247, 251, 253, 254, 255]









TABLE Q18







having a sequence length of 256:










Reliability
Polarized



or sequence
channel



number of
sequence



reliability
number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
9



11
6



12
17



13
10



14
18



15
128



16
12



17
33



18
65



19
20



20
34



21
24



22
36



23
7



24
129



25
66



26
11



27
40



28
68



29
130



30
19



31
13



32
48



33
14



34
72



35
21



36
132



37
35



38
22



39
80



40
136



41
25



42
37



43
26



44
96



45
38



46
67



47
41



48
144



49
28



50
69



51
42



52
49



53
70



54
160



55
44



56
131



57
73



58
192



59
50



60
74



61
52



62
15



63
133



64
81



65
23



66
134



67
76



68
56



69
82



70
137



71
27



72
97



73
39



74
84



75
138



76
145



77
29



78
43



79
98



80
88



81
140



82
30



83
146



84
71



85
161



86
45



87
100



88
51



89
148



90
46



91
75



92
104



93
162



94
53



95
193



96
152



97
77



98
164



99
54



100
83



101
57



102
112



103
135



104
78



105
194



106
85



107
58



108
168



109
139



110
99



111
86



112
60



113
89



114
196



115
141



116
101



117
147



118
176



119
142



120
90



121
200



122
31



123
149



124
102



125
105



126
163



127
92



128
47



129
150



130
208



131
106



132
153



133
165



134
55



135
113



136
154



137
79



138
108



139
224



140
166



141
195



142
169



143
59



144
114



145
156



146
87



147
197



148
116



149
170



150
61



151
177



152
91



153
198



154
172



155
120



156
201



157
62



158
143



159
103



160
178



161
93



162
202



163
107



164
180



165
151



166
209



167
94



168
204



169
155



170
210



171
109



172
184



173
115



174
167



175
225



176
157



177
110



178
117



179
212



180
171



181
226



182
216



183
158



184
118



185
173



186
121



187
199



188
179



189
228



190
122



191
174



192
181



193
203



194
63



195
232



196
124



197
205



198
182



199
211



200
185



201
240



202
206



203
95



204
213



205
186



206
227



207
111



208
214



209
188



210
217



211
229



212
159



213
119



214
218



215
230



216
233



217
175



218
123



219
220



220
183



221
234



222
125



223
241



224
207



225
187



226
236



227
126



228
242



229
189



230
215



231
244



232
219



233
190



234
248



235
231



236
221



237
235



238
222



239
237



240
243



241
238



242
245



243
127



244
246



245
249



246
250



247
191



248
252



249
223



250
239



251
247



252
251



253
253



254
254



255
255










Sequence Q19, having a sequence length of 128:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 12, 33, 65, 20, 34, 24, 36, 7, 66, 11, 40, 68, 19, 13, 48, 14, 72, 21, 35, 22, 80, 25, 37, 26, 96, 38, 67, 41, 28, 69, 42, 49, 70, 44, 73, 50, 74, 52, 15, 81, 23, 76, 56, 82, 27, 97, 39, 84, 29, 43, 98, 88, 30, 71, 45, 100, 51, 46, 75, 104, 53, 77, 54, 83, 57, 112, 78, 85, 58, 99, 86, 60, 89, 101, 90, 31, 102, 105, 92, 47, 106, 55, 113, 79, 108, 59, 114, 87, 116, 61, 91, 120, 62, 103, 93, 107, 94, 109, 115, 110, 117, 118, 121, 122, 63, 124, 95, 111, 119, 123, 125, 126, 127]









TABLE Q19







having a sequence length of 128:










Reliability
Polarized



or sequence
channel



number of
sequence



reliability
number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
9



11
6



12
17



13
10



14
18



15
12



16
33



17
65



18
20



19
34



20
24



21
36



22
7



23
66



24
11



25
40



26
68



27
19



28
13



29
48



30
14



31
72



32
21



33
35



34
22



35
80



36
25



37
37



38
26



39
96



40
38



41
67



42
41



43
28



44
69



45
42



46
49



47
70



48
44



49
73



50
50



51
74



52
52



53
15



54
81



55
23



56
76



57
56



58
82



59
27



60
97



61
39



62
84



63
29



64
43



65
98



66
88



67
30



68
71



69
45



70
100



71
51



72
46



73
75



74
104



75
53



76
77



77
54



78
83



79
57



80
112



81
78



82
85



83
58



84
99



85
86



86
60



87
89



88
101



89
90



90
31



91
102



92
105



93
92



94
47



95
106



96
55



97
113



98
79



99
108



100
59



101
114



102
87



103
116



104
61



105
91



106
120



107
62



108
103



109
93



110
107



111
94



112
109



113
115



114
110



115
117



116
118



117
121



118
122



119
63



120
124



121
95



122
111



123
119



124
123



125
125



126
126



127
127










Sequence Q20, having a sequence length of 64:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 9, 6, 17, 10, 18, 12, 33, 20, 34, 24, 36, 7, 11, 40, 19, 13, 48, 14, 21, 35, 22, 25, 37, 26, 38, 41, 28, 42, 49, 44, 50, 52, 15, 23, 56, 27, 39, 29, 43, 30, 45, 51, 46, 53, 54, 57, 58, 60, 31, 47, 55, 59, 61, 62, 63]









TABLE Q20







having a sequence length of 64:










Reliability
Polarized



or sequence
channel



number of
sequence



reliability
number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
9



10
6



11
17



12
10



13
18



14
12



15
33



16
20



17
34



18
24



19
36



20
7



21
11



22
40



23
19



24
13



25
48



26
14



27
21



28
35



29
22



30
25



31
37



32
26



33
38



34
41



35
28



36
42



37
49



38
44



39
50



40
52



41
15



42
23



43
56



44
27



45
39



46
29



47
43



48
30



49
45



50
51



51
46



52
53



53
54



54
57



55
58



56
60



57
31



58
47



59
55



60
59



61
61



62
62



63
63










Sequence Z16, having a sequence length of 1024:


[0, 1, 2, 7, 3, 8, 11, 24, 4, 10, 13, 28, 16, 33, 35, 76, 5, 12, 14, 32, 19, 38, 42, 80, 22, 46, 50, 88, 57, 95, 101, 162, 6, 17, 21, 40, 23, 47, 53, 90, 29, 55, 60, 96, 66, 108, 113, 175, 34, 62, 72, 111, 75, 120, 129, 186, 84, 131, 141, 209, 146, 218, 236, 333, 9, 18, 26, 54, 30, 58, 63, 103, 36, 68, 73, 114, 83, 123, 135, 193, 43, 79, 86, 130, 91, 138, 145, 214, 99, 148, 160, 228, 174, 242, 256, 357, 51, 89, 97, 144, 109, 154, 169, 239, 118, 170, 183, 250, 195, 269, 282, 379, 133, 191, 211, 271, 216, 283, 301, 401, 233, 307, 315, 417, 337, 435, 460, 581, 15, 25, 31, 67, 39, 77, 81, 134, 44, 87, 92, 143, 100, 153, 157, 238, 56, 93, 102, 155, 112, 168, 177, 252, 122, 184, 192, 264, 213, 279, 297, 394, 65, 106, 119, 173, 124, 185, 198, 273, 142, 208, 217, 285, 232, 306, 323, 416, 156, 225, 240, 311, 251, 325, 341, 433, 270, 348, 367, 453, 387, 470, 506, 622, 71, 121, 137, 201, 152, 215, 231, 309, 161, 234, 244, 327, 257, 340, 356, 450, 178, 253, 265, 346, 284, 366, 385, 472, 293, 389, 409, 494, 423, 518, 529, 643, 197, 274, 287, 370, 312, 392, 412, 510, 336, 413, 434, 523, 459, 535, 567, 670, 355, 449, 461, 552, 478, 577, 589, 690, 509, 597, 615, 695, 631, 714, 743, 835, 20, 37, 41, 85, 48, 94, 104, 167, 49, 105, 115, 176, 126, 194, 202, 295, 61, 116, 127, 205, 139, 212, 223, 296, 147, 222, 237, 321, 254, 335, 338, 432, 69, 136, 149, 207, 164, 226, 241, 334, 171, 248, 258, 344, 268, 364, 376, 468, 172, 266, 277, 363, 292, 386, 399, 495, 318, 408, 425, 517, 447, 531, 555, 666, 78, 159, 165, 246, 182, 262, 276, 358, 187, 281, 286, 384, 302, 400, 410, 515, 235, 298, 313, 406, 326, 422, 437, 528, 350, 448, 464, 550, 481, 574, 591, 686, 260, 328, 345, 431, 362, 452, 466, 568, 381, 475, 487, 579, 512, 601, 613, 707, 405, 505, 521, 609, 532, 623, 633, 721, 560, 660, 671, 750, 677, 779, 794, 850, 82, 179, 181, 291, 227, 305, 314, 407, 247, 320, 324, 428, 349, 444, 462, 570, 259, 347, 361, 451, 369, 467, 483, 583, 391, 489, 511, 598, 527, 616, 630, 726, 294, 365, 374, 482, 395, 500, 520, 610, 427, 522, 533, 626, 561, 639, 667, 751, 446, 546, 573, 662, 585, 673, 688, 770, 605, 692, 693, 790, 722, 801, 813, 880, 317, 388, 420, 524, 442, 534, 554, 642, 465, 569, 575, 672, 593, 679, 691, 777, 484, 586, 606, 687, 617, 694, 723, 802, 648, 729, 740, 816, 760, 834, 846, 904, 516, 619, 638, 724, 663, 727, 756, 821, 676, 754, 772, 841, 786, 852, 865, 924, 680, 780, 798, 858, 808, 870, 879, 930, 828, 885, 892, 946, 914, 954, 963, 984, 27, 45, 52, 98, 59, 117, 128, 199, 64, 132, 140, 204, 151, 220, 224, 330, 70, 150, 158, 219, 166, 263, 272, 354, 188, 275, 290, 368, 304, 393, 411, 525, 74, 163, 180, 267, 190, 288, 299, 378, 200, 308, 316, 424, 332, 426, 441, 536, 210, 329, 339, 438, 359, 455, 473, 564, 372, 469, 488, 588, 493, 600, 608, 745, 107, 189, 196, 303, 206, 319, 331, 421, 229, 343, 351, 454, 382, 477, 486, 580, 245, 353, 371, 471, 396, 491, 497, 594, 419, 498, 504, 612, 545, 629, 656, 753, 261, 383, 404, 503, 415, 519, 526, 624, 436, 544, 557, 647, 582, 664, 674, 773, 457, 566, 587, 675, 614, 685, 709, 787, 636, 712, 730, 803, 741, 819, 832, 916, 110, 203, 221, 342, 243, 352, 390, 480, 255, 375, 397, 499, 418, 508, 513, 618, 280, 402, 403, 514, 440, 541, 553, 644, 456, 562, 578, 669, 595, 681, 700, 774, 300, 430, 443, 556, 474, 572, 576, 682, 490, 590, 599, 696, 625, 710, 718, 805, 507, 611, 635, 715, 646, 735, 742, 822, 659, 747, 764, 837, 789, 854, 861, 925, 322, 463, 476, 592, 496, 604, 627, 713, 539, 632, 649, 738, 653, 744, 758, 831, 547, 651, 658, 755, 683, 763, 783, 851, 704, 788, 797, 859, 812, 877, 888, 933, 563, 689, 698, 775, 719, 791, 800, 871, 731, 810, 823, 884, 838, 894, 906, 949, 766, 825, 842, 897, 856, 909, 913, 961, 867, 921, 929, 966, 940, 974, 983, 1003, 125, 230, 249, 373, 278, 398, 414, 530, 289, 429, 439, 543, 458, 559, 584, 701, 310, 445, 479, 571, 492, 596, 603, 706, 501, 607, 628, 728, 650, 736, 749, 829, 360, 485, 502, 602, 538, 621, 637, 739, 542, 641, 655, 746, 665, 759, 769, 849, 548, 661, 678, 768, 703, 782, 795, 860, 716, 807, 811, 876, 824, 889, 900, 944, 377, 537, 540, 645, 549, 652, 668, 762, 565, 684, 697, 778, 711, 792, 809, 874, 634, 702, 720, 796, 732, 817, 826, 886, 761, 827, 844, 898, 857, 908, 915, 960, 654, 734, 748, 818, 767, 839, 848, 902, 785, 853, 864, 912, 873, 922, 932, 969, 799, 869, 878, 928, 891, 935, 943, 976, 903, 947, 953, 981, 958, 989, 991, 1008, 380, 551, 558, 699, 620, 708, 717, 806, 640, 725, 737, 820, 757, 830, 843, 901, 657, 752, 765, 833, 776, 845, 862, 911, 793, 863, 872, 919, 887, 931, 939, 972, 705, 771, 781, 855, 804, 868, 875, 926, 815, 882, 890, 936, 899, 941, 950, 980, 840, 895, 905, 945, 917, 955, 959, 987, 923, 965, 968, 993, 975, 996, 998, 1011, 733, 784, 814, 883, 836, 893, 896, 942, 847, 907, 910, 952, 920, 956, 967, 990, 866, 918, 927, 964, 938, 970, 971, 997, 948, 977, 979, 999, 985, 1004, 1006, 1016, 881, 934, 937, 973, 951, 978, 982, 1001, 957, 986, 988, 1005, 994, 1007, 1012, 1018, 962, 992, 995, 1009, 1000, 1010, 1013, 1019, 1002, 1014, 1015, 1020, 1017, 1021, 1022, 1023]









TABLE Z16







having a sequence length of 1024.










Polarized
Reliability



channel
or sequence



sequence
number of



number
reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
11



7
24



8
4



9
10



10
13



11
28



12
16



13
33



14
35



15
76



16
5



17
12



18
14



19
32



20
19



21
38



22
42



23
80



24
22



25
46



26
50



27
88



28
57



29
95



30
101



31
162



32
6



33
17



34
21



35
40



36
23



37
47



38
53



39
90



40
29



41
55



42
60



43
96



44
66



45
108



46
113



47
175



48
34



49
62



50
72



51
111



52
75



53
120



54
129



55
186



56
84



57
131



58
141



59
209



60
146



61
218



62
236



63
333



64
9



65
18



66
26



67
54



68
30



69
58



70
63



71
103



72
36



73
68



74
73



75
114



76
83



77
123



78
135



79
193



80
43



81
79



82
86



83
130



84
91



85
138



86
145



87
214



88
99



89
148



90
160



91
228



92
174



93
242



94
256



95
357



96
51



97
89



98
97



99
144



100
109



101
154



102
169



103
239



104
118



105
170



106
183



107
250



108
195



109
269



110
282



111
379



112
133



113
191



114
211



115
271



116
216



117
283



118
301



119
401



120
233



121
307



122
315



123
417



124
337



125
435



126
460



127
581



128
15



129
25



130
31



131
67



132
39



133
77



134
81



135
134



136
44



137
87



138
92



139
143



140
100



141
153



142
157



143
238



144
56



145
93



146
102



147
155



148
112



149
168



150
177



151
252



152
122



153
184



154
192



155
264



156
213



157
279



158
297



159
394



160
65



161
106



162
119



163
173



164
124



165
185



166
198



167
273



168
142



169
208



170
217



171
285



172
232



173
306



174
323



175
416



176
156



177
225



178
240



179
311



180
251



181
325



182
341



183
433



184
270



185
348



186
367



187
453



188
387



189
470



190
506



191
622



192
71



193
121



194
137



195
201



196
152



197
215



198
231



199
309



200
161



201
234



202
244



203
327



204
257



205
340



206
356



207
450



208
178



209
253



210
265



211
346



212
284



213
366



214
385



215
472



216
293



217
389



218
409



219
494



220
423



221
518



222
529



223
643



224
197



225
274



226
287



227
370



228
312



229
392



230
412



231
510



232
336



233
413



234
434



235
523



236
459



237
535



238
567



239
670



240
355



241
449



242
461



243
552



244
478



245
577



246
589



247
690



248
509



249
597



250
615



251
695



252
631



253
714



254
743



255
835



256
20



257
37



258
41



259
85



260
48



261
94



262
104



263
167



264
49



265
105



266
115



267
176



268
126



269
194



270
202



271
295



272
61



273
116



274
127



275
205



276
139



277
212



278
223



279
296



280
147



281
222



282
237



283
321



284
254



285
335



286
338



287
432



288
69



289
136



290
149



291
207



292
164



293
226



294
241



295
334



296
171



297
248



298
258



299
344



300
268



301
364



302
376



303
468



304
172



305
266



306
277



307
363



308
292



309
386



310
399



311
495



312
318



313
408



314
425



315
517



316
447



317
531



318
555



319
666



320
78



321
159



322
165



323
246



324
182



325
262



326
276



327
358



328
187



329
281



330
286



331
384



332
302



333
400



334
410



335
515



336
235



337
298



338
313



339
406



340
326



341
422



342
437



343
528



344
350



345
448



346
464



347
550



348
481



349
574



350
591



351
686



352
260



353
328



354
345



355
431



356
362



357
452



358
466



359
568



360
381



361
475



362
487



363
579



364
512



365
601



366
613



367
707



368
405



369
505



370
521



371
609



372
532



373
623



374
633



375
721



376
560



377
660



378
671



379
750



380
677



381
779



382
794



383
850



384
82



385
179



386
181



387
291



388
227



389
305



390
314



391
407



392
247



393
320



394
324



395
428



396
349



397
444



398
462



399
570



400
259



401
347



402
361



403
451



404
369



405
467



406
483



407
583



408
391



409
489



410
511



411
598



412
527



413
616



414
630



415
726



416
294



417
365



418
374



419
482



420
395



421
500



422
520



423
610



424
427



425
522



426
533



427
626



428
561



429
639



430
667



431
751



432
446



433
546



434
573



435
662



436
585



437
673



438
688



439
770



440
605



441
692



442
693



443
790



444
722



445
801



446
813



447
880



448
317



449
388



450
420



451
524



452
442



453
534



454
554



455
642



456
465



457
569



458
575



459
672



460
593



461
679



462
691



463
777



464
484



465
586



466
606



467
687



468
617



469
694



470
723



471
802



472
648



473
729



474
740



475
816



476
760



477
834



478
846



479
904



480
516



481
619



482
638



483
724



484
663



485
727



486
756



487
821



488
676



489
754



490
772



491
841



492
786



493
852



494
865



495
924



496
680



497
780



498
798



499
858



500
808



501
870



502
879



503
930



504
828



505
885



506
892



507
946



508
914



509
954



510
963



511
984



512
27



513
45



514
52



515
98



516
59



517
117



518
128



519
199



520
64



521
132



522
140



523
204



524
151



525
220



526
224



527
330



528
70



529
150



530
158



531
219



532
166



533
263



534
272



535
354



536
188



537
275



538
290



539
368



540
304



541
393



542
411



543
525



544
74



545
163



546
180



547
267



548
190



549
288



550
299



551
378



552
200



553
308



554
316



555
424



556
332



557
426



558
441



559
536



560
210



561
329



562
339



563
438



564
359



565
455



566
473



567
564



568
372



569
469



570
488



571
588



572
493



573
600



574
608



575
745



576
107



577
189



578
196



579
303



580
206



581
319



582
331



583
421



584
229



585
343



586
351



587
454



588
382



589
477



590
486



591
580



592
245



593
353



594
371



595
471



596
396



597
491



598
497



599
594



600
419



601
498



602
504



603
612



604
545



605
629



606
656



607
753



608
261



609
383



610
404



611
503



612
415



613
519



614
526



615
624



616
436



617
544



618
557



619
647



620
582



621
664



622
674



623
773



624
457



625
566



626
587



627
675



628
614



629
685



630
709



631
787



632
636



633
712



634
730



635
803



636
741



637
819



638
832



639
916



640
110



641
203



642
221



643
342



644
243



645
352



646
390



647
480



648
255



649
375



650
397



651
499



652
418



653
508



654
513



655
618



656
280



657
402



658
403



659
514



660
440



661
541



662
553



663
644



664
456



665
562



666
578



667
669



668
595



669
681



670
700



671
774



672
300



673
430



674
443



675
556



676
474



677
572



678
576



679
682



680
490



681
590



682
599



683
696



684
625



685
710



686
718



687
805



688
507



689
611



690
635



691
715



692
646



693
735



694
742



695
822



696
659



697
747



698
764



699
837



700
789



701
854



702
861



703
925



704
322



705
463



706
476



707
592



708
496



709
604



710
627



711
713



712
539



713
632



714
649



715
738



716
653



717
744



718
758



719
831



720
547



721
651



722
658



723
755



724
683



725
763



726
783



727
851



728
704



729
788



730
797



731
859



732
812



733
877



734
888



735
933



736
563



737
689



738
698



739
775



740
719



741
791



742
800



743
871



744
731



745
810



746
823



747
884



748
838



749
894



750
906



751
949



752
766



753
825



754
842



755
897



756
856



757
909



758
913



759
961



760
867



761
921



762
929



763
966



764
940



765
974



766
983



767
1003



768
125



769
230



770
249



771
373



772
278



773
398



774
414



775
530



776
289



777
429



778
439



779
543



780
458



781
559



782
584



783
701



784
310



785
445



786
479



787
571



788
492



789
596



790
603



791
706



792
501



793
607



794
628



795
728



796
650



797
736



798
749



799
829



800
360



801
485



802
502



803
602



804
538



805
621



806
637



807
739



808
542



809
641



810
655



811
746



812
665



813
759



814
769



815
849



816
548



817
661



818
678



819
768



820
703



821
782



822
795



823
860



824
716



825
807



826
811



827
876



828
824



829
889



830
900



831
944



832
377



833
537



834
540



835
645



836
549



837
652



838
668



839
762



840
565



841
684



842
697



843
778



844
711



845
792



846
809



847
874



848
634



849
702



850
720



851
796



852
732



853
817



854
826



855
886



856
761



857
827



858
844



859
898



860
857



861
908



862
915



863
960



864
654



865
734



866
748



867
818



868
767



869
839



870
848



871
902



872
785



873
853



874
864



875
912



876
873



877
922



878
932



879
969



880
799



881
869



882
878



883
928



884
891



885
935



886
943



887
976



888
903



889
947



890
953



891
981



892
958



893
989



894
991



895
1008



896
380



897
551



898
558



899
699



900
620



901
708



902
717



903
806



904
640



905
725



906
737



907
820



908
757



909
830



910
843



911
901



912
657



913
752



914
765



915
833



916
776



917
845



918
862



919
911



920
793



921
863



922
872



923
919



924
887



925
931



926
939



927
972



928
705



929
771



930
781



931
855



932
804



933
868



934
875



935
926



936
815



937
882



938
890



939
936



940
899



941
941



942
950



943
980



944
840



945
895



946
905



947
945



948
917



949
955



950
959



951
987



952
923



953
965



954
968



955
993



956
975



957
996



958
998



959
1011



960
733



961
784



962
814



963
883



964
836



965
893



966
896



967
942



968
847



969
907



970
910



971
952



972
920



973
956



974
967



975
990



976
866



977
918



978
927



979
964



980
938



981
970



982
971



983
997



984
948



985
977



986
979



987
999



988
985



989
1004



990
1006



991
1016



992
881



993
934



994
937



995
973



996
951



997
978



998
982



999
1001



1000
957



1001
986



1002
988



1003
1005



1004
994



1005
1007



1006
1012



1007
1018



1008
962



1009
992



1010
995



1011
1009



1012
1000



1013
1010



1014
1013



1015
1019



1016
1002



1017
1014



1018
1015



1019
1020



1020
1017



1021
1021



1022
1022



1023
1023










Sequence Z17, having a sequence length of 512:


[0, 1, 2, 7, 3, 8, 11, 24, 4, 10, 13, 27, 16, 32, 34, 69, 5, 12, 14, 31, 19, 37, 41, 73, 22, 44, 48, 81, 54, 88, 93, 144, 6, 17, 21, 39, 23, 45, 50, 83, 28, 52, 56, 89, 61, 99, 103, 155, 33, 58, 66, 101, 68, 109, 116, 165, 77, 118, 126, 179, 131, 187, 199, 269, 9, 18, 26, 51, 29, 55, 59, 95, 35, 63, 67, 104, 76, 112, 121, 169, 42, 72, 79, 117, 84, 124, 130, 183, 91, 133, 142, 193, 154, 205, 215, 286, 49, 82, 90, 129, 100, 137, 149, 202, 107, 150, 162, 210, 171, 225, 234, 299, 119, 167, 180, 227, 185, 235, 248, 313, 196, 252, 258, 323, 273, 334, 347, 407, 15, 25, 30, 62, 38, 70, 74, 120, 43, 80, 85, 128, 92, 136, 140, 201, 53, 86, 94, 138, 102, 148, 157, 212, 111, 163, 168, 221, 182, 232, 246, 309, 60, 98, 108, 153, 113, 164, 173, 228, 127, 178, 186, 237, 195, 251, 263, 322, 139, 190, 203, 254, 211, 265, 276, 332, 226, 281, 294, 345, 304, 355, 369, 426, 65, 110, 123, 174, 135, 184, 194, 253, 143, 197, 206, 267, 216, 275, 285, 342, 158, 213, 222, 279, 236, 293, 302, 356, 242, 306, 318, 365, 326, 377, 385, 435, 172, 229, 239, 296, 255, 308, 320, 371, 272, 321, 333, 381, 346, 390, 398, 442, 284, 341, 348, 393, 358, 405, 411, 453, 370, 414, 422, 458, 430, 460, 469, 492, 20, 36, 40, 78, 46, 87, 96, 147, 47, 97, 105, 156, 114, 170, 175, 244, 57, 106, 115, 176, 125, 181, 189, 245, 132, 188, 200, 262, 214, 271, 274, 331, 64, 122, 134, 177, 145, 191, 204, 270, 151, 209, 217, 277, 224, 291, 298, 354, 152, 223, 231, 290, 241, 303, 311, 366, 260, 317, 327, 376, 339, 386, 395, 440, 71, 141, 146, 207, 161, 220, 230, 287, 166, 233, 238, 301, 249, 312, 319, 374, 198, 247, 256, 315, 266, 325, 335, 384, 283, 340, 350, 392, 359, 403, 412, 450, 219, 268, 278, 330, 289, 344, 352, 399, 300, 357, 363, 406, 373, 416, 421, 459, 314, 368, 379, 419, 387, 427, 431, 461, 396, 437, 443, 470, 447, 478, 482, 495, 75, 159, 160, 240, 192, 250, 257, 316, 208, 261, 264, 329, 282, 337, 349, 401, 218, 280, 288, 343, 295, 353, 361, 408, 307, 364, 372, 415, 383, 423, 429, 465, 243, 292, 297, 360, 310, 367, 378, 420, 328, 380, 388, 428, 397, 433, 441, 471, 338, 391, 402, 438, 409, 445, 452, 475, 417, 455, 456, 481, 462, 484, 487, 501, 259, 305, 324, 382, 336, 389, 394, 434, 351, 400, 404, 444, 413, 448, 454, 477, 362, 410, 418, 451, 424, 457, 463, 485, 436, 467, 468, 488, 474, 491, 494, 504, 375, 425, 432, 464, 439, 466, 473, 489, 446, 472, 476, 493, 480, 496, 498, 506, 449, 479, 483, 497, 486, 499, 500, 507, 490, 502, 503, 508, 505, 509, 510, 511]









TABLE Z17







having a sequence length of 512:










Polarized
Reliability



channel
or sequence



sequence
number of



number
reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
11



7
24



8
4



9
10



10
13



11
27



12
16



13
32



14
34



15
69



16
5



17
12



18
14



19
31



20
19



21
37



22
41



23
73



24
22



25
44



26
48



27
81



28
54



29
88



30
93



31
144



32
6



33
17



34
21



35
39



36
23



37
45



38
50



39
83



40
28



41
52



42
56



43
89



44
61



45
99



46
103



47
155



48
33



49
58



50
66



51
101



52
68



53
109



54
116



55
165



56
77



57
118



58
126



59
179



60
131



61
187



62
199



63
269



64
9



65
18



66
26



67
51



68
29



69
55



70
59



71
95



72
35



73
63



74
67



75
104



76
76



77
112



78
121



79
169



80
42



81
72



82
79



83
117



84
84



85
124



86
130



87
183



88
91



89
133



90
142



91
193



92
154



93
205



94
215



95
286



96
49



97
82



98
90



99
129



100
100



101
137



102
149



103
202



104
107



105
150



106
162



107
210



108
171



109
225



110
234



111
299



112
119



113
167



114
180



115
227



116
185



117
235



118
248



119
313



120
196



121
252



122
258



123
323



124
273



125
334



126
347



127
407



128
15



129
25



130
30



131
62



132
38



133
70



134
74



135
120



136
43



137
80



138
85



139
128



140
92



141
136



142
140



143
201



144
53



145
86



146
94



147
138



148
102



149
148



150
157



151
212



152
111



153
163



154
168



155
221



156
182



157
232



158
246



159
309



160
60



161
98



162
108



163
153



164
113



165
164



166
173



167
228



168
127



169
178



170
186



171
237



172
195



173
251



174
263



175
322



176
139



177
190



178
203



179
254



180
211



181
265



182
276



183
332



184
226



185
281



186
294



187
345



188
304



189
355



190
369



191
426



192
65



193
110



194
123



195
174



196
135



197
184



198
194



199
253



200
143



201
197



202
206



203
267



204
216



205
275



206
285



207
342



208
158



209
213



210
222



211
279



212
236



213
293



214
302



215
356



216
242



217
306



218
318



219
365



220
326



221
377



222
385



223
435



224
172



225
229



226
239



227
296



228
255



229
308



230
320



231
371



232
272



233
321



234
333



235
381



236
346



237
390



238
398



239
442



240
284



241
341



242
348



243
393



244
358



245
405



246
411



247
453



248
370



249
414



250
422



251
458



252
430



253
460



254
469



255
492



256
20



257
36



258
40



259
78



260
46



261
87



262
96



263
147



264
47



265
97



266
105



267
156



268
114



269
170



270
175



271
244



272
57



273
106



274
115



275
176



276
125



277
181



278
189



279
245



280
132



281
188



282
200



283
262



284
214



285
271



286
274



287
331



288
64



289
122



290
134



291
177



292
145



293
191



294
204



295
270



296
151



297
209



298
217



299
277



300
224



301
291



302
298



303
354



304
152



305
223



306
231



307
290



308
241



309
303



310
311



311
366



312
260



313
317



314
327



315
376



316
339



317
386



318
395



319
440



320
71



321
141



322
146



323
207



324
161



325
220



326
230



327
287



328
166



329
233



330
238



331
301



332
249



333
312



334
319



335
374



336
198



337
247



338
256



339
315



340
266



341
325



342
335



343
384



344
283



345
340



346
350



347
392



348
359



349
403



350
412



351
450



352
219



353
268



354
278



355
330



356
289



357
344



358
352



359
399



360
300



361
357



362
363



363
406



364
373



365
416



366
421



367
459



368
314



369
368



370
379



371
419



372
387



373
427



374
431



375
461



376
396



377
437



378
443



379
470



380
447



381
478



382
482



383
495



384
75



385
159



386
160



387
240



388
192



389
250



390
257



391
316



392
208



393
261



394
264



395
329



396
282



397
337



398
349



399
401



400
218



401
280



402
288



403
343



404
295



405
353



406
361



407
408



408
307



409
364



410
372



411
415



412
383



413
423



414
429



415
465



416
243



417
292



418
297



419
360



420
310



421
367



422
378



423
420



424
328



425
380



426
388



427
428



428
397



429
433



430
441



431
471



432
338



433
391



434
402



435
438



436
409



437
445



438
452



439
475



440
417



441
455



442
456



443
481



444
462



445
484



446
487



447
501



448
259



449
305



450
324



451
382



452
336



453
389



454
394



455
434



456
351



457
400



458
404



459
444



460
413



461
448



462
454



463
477



464
362



465
410



466
418



467
451



468
424



469
457



470
463



471
485



472
436



473
467



474
468



475
488



476
474



477
491



478
494



479
504



480
375



481
425



482
432



483
464



484
439



485
466



486
473



487
489



488
446



489
472



490
476



491
493



492
480



493
496



494
498



495
506



496
449



497
479



498
483



499
497



500
486



501
499



502
500



503
507



504
490



505
502



506
503



507
508



508
505



509
509



510
510



511
511










Sequence Z18, having a sequence length of 256:


[0, 1, 2, 7, 3, 8, 11, 23, 4, 10, 13, 26, 16, 31, 33, 62, 5, 12, 14, 30, 19, 35, 38, 65, 21, 41, 43, 71, 49, 77, 82, 122, 6, 17, 20, 37, 22, 42, 45, 73, 27, 47, 51, 78, 55, 86, 90, 128, 32, 52, 59, 88, 61, 94, 99, 134, 68, 101, 107, 143, 112, 150, 157, 194, 9, 18, 25, 46, 28, 50, 53, 84, 34, 57, 60, 91, 67, 97, 104, 137, 39, 64, 69, 100, 74, 106, 111, 146, 80, 113, 120, 152, 127, 161, 167, 203, 44, 72, 79, 110, 87, 116, 124, 159, 92, 125, 131, 163, 138, 171, 177, 207, 102, 135, 144, 173, 148, 178, 184, 213, 155, 186, 190, 218, 196, 222, 227, 243, 15, 24, 29, 56, 36, 63, 66, 103, 40, 70, 75, 109, 81, 115, 119, 158, 48, 76, 83, 117, 89, 123, 129, 165, 96, 132, 136, 169, 145, 176, 183, 212, 54, 85, 93, 126, 98, 133, 140, 174, 108, 142, 149, 180, 154, 185, 191, 217, 118, 151, 160, 188, 164, 192, 198, 220, 172, 200, 205, 225, 209, 229, 233, 247, 58, 95, 105, 141, 114, 147, 153, 187, 121, 156, 162, 193, 168, 197, 202, 224, 130, 166, 170, 199, 179, 204, 208, 230, 182, 210, 214, 232, 219, 236, 238, 249, 139, 175, 181, 206, 189, 211, 215, 235, 195, 216, 221, 237, 226, 239, 241, 250, 201, 223, 228, 240, 231, 242, 244, 251, 234, 245, 246, 252, 248, 253, 254, 255]









TABLE Z18







having a sequence length of 256:










Polarized
Reliability



channel
or sequence



sequence
number of



number
reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
11



7
23



8
4



9
10



10
13



11
26



12
16



13
31



14
33



15
62



16
5



17
12



18
14



19
30



20
19



21
35



22
38



23
65



24
21



25
41



26
43



27
71



28
49



29
77



30
82



31
122



32
6



33
17



34
20



35
37



36
22



37
42



38
45



39
73



40
27



41
47



42
51



43
78



44
55



45
86



46
90



47
128



48
32



49
52



50
59



51
88



52
61



53
94



54
99



55
134



56
68



57
101



58
107



59
143



60
112



61
150



62
157



63
194



64
9



65
18



66
25



67
46



68
28



69
50



70
53



71
84



72
34



73
57



74
60



75
91



76
67



77
97



78
104



79
137



80
39



81
64



82
69



83
100



84
74



85
106



86
111



87
146



88
80



89
113



90
120



91
152



92
127



93
161



94
167



95
203



96
44



97
72



98
79



99
110



100
87



101
116



102
124



103
159



104
92



105
125



106
131



107
163



108
138



109
171



110
177



111
207



112
102



113
135



114
144



115
173



116
148



117
178



118
184



119
213



120
155



121
186



122
190



123
218



124
196



125
222



126
227



127
243



128
15



129
24



130
29



131
56



132
36



133
63



134
66



135
103



136
40



137
70



138
75



139
109



140
81



141
115



142
119



143
158



144
48



145
76



146
83



147
117



148
89



149
123



150
129



151
165



152
96



153
132



154
136



155
169



156
145



157
176



158
183



159
212



160
54



161
85



162
93



163
126



164
98



165
133



166
140



167
174



168
108



169
142



170
149



171
180



172
154



173
185



174
191



175
217



176
118



177
151



178
160



179
188



180
164



181
192



182
198



183
220



184
172



185
200



186
205



187
225



188
209



189
229



190
233



191
247



192
58



193
95



194
105



196
114



197
147



198
153



199
187



200
121



201
156



202
162



203
193



204
168



205
197



206
202



207
224



208
130



209
166



210
170



211
199



212
179



213
204



214
208



215
230



216
182



217
210



218
214



219
232



220
219



221
236



222
238



223
249



224
139



225
175



226
181



227
206



228
189



229
211



230
215



231
235



232
195



233
216



234
221



235
237



236
226



237
239



238
241



239
250



240
201



241
223



242
228



243
240



244
231



245
242



246
244



247
251



248
234



249
245



250
246



251
252



252
248



253
253



254
254



255
255










Sequence Z19, having a sequence length of 128:


[0, 1, 2, 7, 3, 8, 11, 22, 4, 10, 13, 24, 15, 28, 30, 53, 5, 12, 14, 27, 18, 32, 34, 55, 20, 36, 38, 59, 43, 63, 67, 90, 6, 16, 19, 33, 21, 37, 40, 61, 25, 42, 45, 64, 48, 69, 72, 94, 29, 46, 50, 71, 52, 75, 77, 96, 57, 79, 83, 100, 86, 104, 107, 119, 9, 17, 23, 41, 26, 44, 47, 68, 31, 49, 51, 73, 56, 76, 81, 98, 35, 54, 58, 78, 62, 82, 85, 102, 66, 87, 89, 105, 93, 109, 111, 121, 39, 60, 65, 84, 70, 88, 91, 108, 74, 92, 95, 110, 99, 112, 114, 122, 80, 97, 101, 113, 103, 115, 116, 123, 106, 117, 118, 124, 120, 125, 126, 127]









TABLE Z19







having a sequence length of 128:










Polarized
Reliability



channel
or sequence



sequence
number of



number
reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
11



7
22



8
4



9
10



10
13



11
24



12
15



13
28



14
30



15
53



16
5



17
12



18
14



19
27



20
18



21
32



22
34



23
55



24
20



25
36



26
38



27
59



28
43



29
63



30
67



31
90



32
6



33
16



34
19



35
33



36
21



37
37



38
40



39
61



40
25



41
42



42
45



43
64



44
48



45
69



46
72



47
94



48
29



49
46



50
50



51
71



52
52



53
75



54
77



55
96



57
79



58
83



59
100



60
86



61
104



62
107



63
119



64
9



65
17



66
23



67
41



68
26



69
44



70
47



71
68



72
31



73
49



74
51



75
73



76
56



77
76



78
81



79
98



80
35



81
54



82
58



83
78



84
62



85
82



86
85



87
102



88
66



89
87



90
89



91
105



92
93



93
109



94
111



95
121



96
39



97
60



98
65



99
84



100
70



101
88



102
91



103
108



104
74



105
92



106
95



107
110



108
99



109
112



110
114



111
122



112
80



113
97



114
101



115
113



116
103



117
115



118
116



119
123



120
106



121
117



122
118



123
124



124
120



125
125



126
126



127
127










Sequence Z20, having a sequence length of 64:


[0, 1, 2, 7, 3, 8, 10, 20, 4, 9, 12, 21, 14, 24, 26, 41, 5, 11, 13, 23, 16, 27, 29, 42, 18, 30, 32, 44, 35, 46, 48, 57, 6, 15, 17, 28, 19, 31, 33, 45, 22, 34, 36, 47, 38, 49, 51, 58, 25, 37, 39, 50, 40, 52, 53, 59, 43, 54, 55, 60, 56, 61, 62, 63]









TABLE Z20







having a sequence length of 64:










Polarized
Reliability



channel
or sequence



sequence
number of



number
reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
10



7
20



8
4



9
9



10
12



11
21



12
14



13
24



14
26



15
41



16
5



17
11



18
13



19
23



20
16



21
27



22
29



23
42



24
18



25
30



26
32



27
44



28
35



29
46



30
48



31
57



32
6



33
15



34
17



35
28



36
19



37
31



38
33



39
45



40
22



41
34



42
36



43
47



44
38



45
49



46
51



47
58



48
25



49
37



50
39



51
50



52
40



53
52



54
53



55
59



56
43



57
54



58
55



59
60



60
56



61
61



62
62



63
63










Fifth group of sequences (a criterion that preferentially considers a minimum code distance).


Sequence Q21, having a sequence length of 1024:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 6, 9, 17, 10, 18, 128, 12, 33, 256, 20, 34, 24, 65, 36, 7, 129, 66, 512, 11, 40, 68, 19, 13, 130, 48, 14, 72, 257, 21, 132, 35, 258, 26, 513, 80, 37, 25, 22, 136, 96, 260, 38, 514, 264, 67, 41, 144, 28, 69, 42, 516, 49, 160, 272, 70, 520, 288, 528, 131, 44, 544, 73, 192, 50, 74, 52, 15, 133, 320, 81, 23, 134, 76, 137, 82, 384, 56, 27, 97, 39, 259, 84, 138, 145, 261, 29, 43, 98, 515, 88, 140, 30, 146, 71, 262, 265, 517, 161, 45, 576, 518, 100, 51, 148, 521, 46, 75, 640, 266, 273, 522, 104, 162, 53, 193, 152, 77, 164, 268, 274, 54, 83, 530, 57, 112, 529, 524, 135, 78, 289, 194, 85, 276, 58, 168, 139, 99, 86, 60, 89, 768, 196, 290, 141, 101, 280, 545, 546, 532, 147, 176, 142, 90, 536, 292, 200, 263, 31, 149, 321, 322, 577, 102, 105, 296, 163, 92, 47, 150, 548, 208, 324, 385, 304, 267, 578, 106, 153, 386, 165, 55, 328, 113, 519, 552, 641, 154, 79, 108, 224, 269, 166, 523, 560, 580, 195, 277, 169, 275, 291, 59, 270, 114, 156, 87, 197, 116, 170, 61, 525, 531, 177, 278, 281, 526, 642, 293, 388, 91, 584, 769, 198, 172, 120, 201, 62, 143, 336, 282, 103, 178, 294, 93, 533, 644, 534, 547, 770, 392, 297, 592, 323, 202, 284, 151, 209, 180, 107, 325, 94, 537, 400, 298, 204, 352, 305, 155, 300, 210, 608, 648, 109, 184, 115, 167, 225, 326, 157, 110, 772, 549, 656, 538, 117, 212, 330, 171, 550, 329, 306, 226, 387, 308, 271, 579, 416, 216, 337, 158, 776, 118, 540, 553, 279, 332, 389, 173, 121, 199, 179, 228, 283, 122, 393, 174, 312, 672, 390, 554, 556, 203, 561, 181, 295, 448, 353, 338, 63, 581, 340, 285, 394, 232, 124, 354, 582, 784, 704, 527, 286, 182, 562, 643, 585, 205, 299, 211, 401, 185, 396, 240, 586, 645, 593, 535, 301, 402, 344, 206, 564, 800, 327, 356, 307, 95, 417, 213, 186, 404, 111, 539, 568, 594, 649, 771, 302, 832, 588, 646, 227, 360, 214, 188, 551, 609, 896, 331, 309, 418, 449, 217, 408, 229, 541, 159, 420, 596, 650, 773, 310, 333, 119, 368, 339, 391, 657, 313, 218, 542, 610, 334, 230, 233, 774, 658, 612, 175, 123, 450, 652, 341, 220, 557, 314, 555, 600, 583, 424, 395, 777, 673, 355, 287, 183, 234, 125, 342, 563, 674, 616, 558, 660, 778, 452, 397, 432, 316, 345, 241, 207, 785, 403, 357, 187, 587, 565, 664, 624, 780, 236, 126, 242, 398, 705, 346, 456, 358, 405, 303, 569, 595, 189, 786, 215, 676, 589, 566, 647, 361, 706, 244, 348, 419, 406, 311, 708, 219, 598, 601, 651, 611, 409, 680, 788, 362, 570, 597, 572, 464, 801, 590, 421, 802, 369, 792, 190, 602, 653, 248, 688, 231, 410, 364, 335, 422, 613, 659, 654, 315, 221, 370, 425, 235, 451, 480, 775, 412, 614, 343, 222, 317, 372, 543, 426, 453, 237, 559, 833, 804, 712, 834, 661, 808, 779, 617, 604, 433, 720, 816, 836, 347, 897, 243, 662, 454, 318, 675, 376, 428, 625, 238, 359, 567, 618, 665, 736, 898, 457, 399, 781, 591, 666, 678, 349, 434, 677, 840, 782, 626, 571, 620, 787, 363, 245, 458, 127, 407, 436, 465, 350, 246, 681, 460, 249, 599, 411, 365, 668, 707, 573, 789, 803, 790, 682, 440, 709, 466, 628, 371, 423, 366, 250, 413, 574, 468, 603, 481, 689, 793, 191, 373, 655, 900, 805, 427, 615, 710, 414, 252, 848, 684, 713, 605, 690, 632, 482, 794, 806, 472, 223, 663, 835, 904, 809, 714, 619, 796, 374, 429, 455, 692, 721, 837, 716, 864, 810, 606, 912, 722, 696, 377, 817, 435, 812, 484, 319, 430, 621, 838, 667, 239, 378, 459, 437, 627, 622, 488, 380, 461, 679, 841, 818, 724, 669, 496, 629, 928, 737, 899, 783, 738, 901, 842, 438, 467, 247, 820, 849, 683, 351, 791, 441, 728, 670, 462, 469, 442, 251, 367, 630, 740, 902, 711, 844, 850, 905, 685, 691, 824, 633, 483, 795, 744, 470, 852, 686, 444, 473, 253, 634, 485, 415, 375, 960, 865, 575, 807, 906, 715, 913, 693, 797, 866, 811, 717, 474, 254, 694, 723, 636, 486, 798, 607, 697, 489, 431, 379, 908, 752, 914, 856, 868, 839, 929, 813, 718, 819, 476, 916, 725, 698, 490, 739, 814, 843, 623, 497, 439, 381, 671, 463, 726, 930, 872, 821, 920, 700, 729, 492, 932, 961, 741, 903, 845, 498, 880, 382, 822, 851, 631, 443, 825, 730, 471, 445, 687, 635, 742, 846, 500, 745, 826, 732, 446, 962, 936, 255, 853, 504, 637, 907, 475, 746, 867, 487, 695, 799, 854, 828, 753, 857, 964, 909, 719, 477, 915, 869, 699, 748, 944, 638, 754, 491, 910, 858, 478, 815, 727, 917, 870, 493, 873, 701, 968, 383, 860, 756, 918, 931, 976, 499, 921, 874, 702, 823, 494, 731, 760, 881, 933, 501, 743, 922, 876, 847, 934, 827, 733, 502, 992, 882, 447, 963, 937, 747, 505, 855, 924, 734, 829, 884, 938, 506, 965, 749, 945, 966, 940, 969, 911, 946, 755, 888, 830, 859, 639, 871, 970, 750, 508, 948, 977, 757, 479, 919, 861, 875, 972, 978, 758, 862, 952, 761, 993, 923, 703, 495, 935, 877, 883, 980, 762, 925, 994, 878, 503, 885, 939, 984, 764, 996, 926, 735, 967, 886, 941, 507, 947, 889, 831, 1000, 942, 971, 751, 509, 949, 890, 973, 1008, 510, 950, 979, 759, 892, 863, 953, 974, 981, 954, 763, 995, 879, 982, 956, 985, 765, 997, 927, 887, 986, 766, 998, 1001, 943, 891, 988, 1002, 1009, 511, 951, 893, 1004, 975, 1010, 894, 955, 1012, 983, 957, 1016, 958, 987, 767, 999, 989, 1003, 990, 1005, 1011, 895, 1006, 1013, 1014, 1017, 959, 1018, 1020, 991, 1007, 1015, 1019, 1021, 1022, 1023]









TABLE Q21







having a sequence length of 1024:










Reliability
Polarized



or sequence
channel



number of
sequence



reliability
number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
6



11
9



12
17



13
10



14
18



15
128



16
12



17
33



18
256



19
20



20
34



21
24



22
65



23
36



24
7



25
129



26
66



27
512



28
11



29
40



30
68



31
19



32
13



33
130



34
48



35
14



36
72



37
257



38
21



39
132



40
35



41
258



42
26



43
513



44
80



45
37



46
25



47
22



48
136



49
96



50
260



51
38



52
514



53
264



54
67



55
41



56
144



57
28



58
69



59
42



60
516



61
49



62
160



63
272



64
70



65
520



66
288



67
528



68
131



69
44



70
544



71
73



72
192



73
50



74
74



75
52



76
15



77
133



78
320



79
81



80
23



81
134



82
76



83
137



84
82



85
384



86
56



87
27



88
97



89
39



90
259



91
84



92
138



93
145



94
261



95
29



96
43



97
98



98
515



99
88



100
140



101
30



102
146



103
71



104
262



105
265



106
517



107
161



108
45



109
576



110
518



111
100



112
51



113
148



114
521



115
46



116
75



117
640



118
266



119
273



120
522



121
104



122
162



123
53



124
193



125
152



126
77



127
164



128
268



129
274



130
54



131
83



132
530



133
57



134
11



135
529



136
524



137
135



138
78



139
289



140
194



141
85



142
276



143
58



144
168



145
139



146
99



147
86



148
60



149
89



150
768



151
196



152
290



153
141



154
101



155
280



156
545



157
546



158
532



159
147



160
176



161
142



162
90



163
536



164
292



165
200



166
263



167
31



168
149



169
321



170
322



171
577



172
102



173
105



174
296



175
163



176
92



177
47



178
150



179
548



180
208



181
324



182
385



183
304



184
267



185
578



186
106



187
153



188
386



189
165



190
55



191
328



192
113



193
519



194
552



195
641



196
154



197
79



198
108



199
224



200
269



201
166



202
523



203
560



204
580



205
195



206
277



207
169



208
275



209
291



210
59



211
270



212
114



213
156



214
87



215
197



216
116



217
170



218
61



219
525



220
531



221
177



222
278



223
281



224
526



225
642



226
293



227
388



228
91



229
584



230
769



231
198



232
172



233
120



234
201



235
62



236
143



237
336



238
282



239
103



240
178



241
294



242
93



243
533



244
644



245
534



246
547



247
770



248
392



249
297



250
592



251
323



252
202



253
284



254
151



255
209



256
180



257
107



258
325



259
94



260
537



261
400



262
298



263
204



264
352



265
305



266
155



267
300



268
210



269
608



270
648



271
109



272
184



273
115



274
167



275
225



276
326



277
157



278
110



279
772



280
549



281
656



282
538



283
117



284
212



285
330



286
171



287
550



288
329



289
306



290
226



291
387



292
308



293
271



294
579



295
416



296
216



297
337



298
158



299
776



300
118



301
540



302
553



303
279



304
332



305
389



306
173



307
121



308
199



309
179



310
228



311
283



312
122



313
393



314
174



315
312



316
672



317
390



318
554



319
556



320
203



321
561



322
181



323
295



324
448



325
353



326
338



327
63



328
581



329
340



330
285



331
394



332
232



333
124



334
354



335
582



336
784



337
704



338
527



339
286



340
182



341
562



342
643



343
585



344
205



345
299



346
211



347
401



348
185



349
396



350
240



351
586



352
645



353
593



354
535



355
301



356
402



357
344



358
206



359
564



360
800



361
327



362
356



363
307



364
95



365
417



366
213



367
186



368
404



369
111



370
539



371
568



372
594



373
649



374
771



375
302



376
832



377
588



378
646



379
227



380
360



381
214



382
188



383
551



384
609



385
896



386
331



387
309



388
418



389
449



390
217



391
408



392
229



393
541



394
159



395
420



396
596



397
650



398
773



399
310



400
333



401
119



402
368



403
339



404
391



405
657



406
313



407
218



408
542



409
610



410
334



411
230



412
233



413
774



414
658



415
612



416
175



417
123



418
450



419
652



420
341



421
220



422
557



423
314



424
555



425
600



426
583



427
424



428
395



429
777



430
673



431
355



432
287



433
183



434
234



435
125



436
342



437
563



438
674



439
616



440
558



441
660



442
778



443
452



444
397



445
432



446
316



447
345



448
241



449
207



450
785



451
403



452
357



453
187



454
587



455
565



456
664



457
624



458
780



459
236



460
126



461
242



462
398



463
705



464
346



465
456



466
358



467
405



468
303



469
569



470
595



471
189



472
786



473
215



474
676



475
589



476
566



477
647



478
361



479
706



480
244



481
348



482
419



483
406



484
311



485
219



486
219



487
498



488
601



489
651



490
611



491
409



492
680



493
788



494
362



495
570



496
597



497
572



498
464



499
801



500
590



501
421



502
802



503
369



504
792



505
190



506
602



507
653



508
248



509
688



510
231



511
410



512
364



513
335



514
422



515
613



516
659



517
654



518
315



519
221



520
370



521
425



522
235



523
451



524
480



525
775



526
412



527
614



528
343



529
222



530
317



531
372



532
543



533
426



534
453



535
237



536
559



537
833



538
804



539
712



540
834



541
661



542
808



543
779



544
617



545
604



546
433



547
720



548
816



549
836



550
347



551
897



552
243



553
662



554
454



555
318



556
675



557
376



558
428



559
625



560
238



561
359



562
567



563
618



564
665



565
736



566
898



567
457



568
399



569
781



570
591



571
666



572
678



573
349



574
434



575
677



576
840



577
782



578
626



579
571



580
620



581
787



582
363



583
345



584
458



585
127



586
407



587
436



588
465



589
350



590
246



591
681



592
460



593
249



594
599



595
411



596
365



597
668



598
707



599
573



600
789



601
803



602
790



603
682



604
440



605
709



606
466



607
628



608
371



609
423



610
366



611
250



612
413



614
468



615
603



616
481



617
689



618
793



619
191



620
373



621
655



622
900



623
805



624
427



625
615



626
710



627
414



628
252



629
848



630
684



631
713



632
605



633
690



634
632



635
482



636
795



637
806



638
472



639
223



640
663



641
835



642
904



643
809



644
714



645
619



646
796



647
374



648
429



649
455



650
692



651
721



652
837



653
716



654
864



655
810



656
606



657
912



658
722



659
696



660
377



661
817



662
435



663
812



664
484



665
319



666
430



667
621



668
838



669
667



670
239



671
378



672
459



673
437



674
627



675
622



676
488



677
380



678
461



679
679



680
841



681
818



682
724



683
669



684
496



685
629



686
928



687
727



688
899



689
783



690
728



691
901



692
842



693
438



694
467



695
247



696
820



697
849



698
683



699
351



700
791



701
441



702
728



703
670



704
462



705
469



706
442



707
251



708
367



709
630



710
740



711
902



712
711



713
844



714
850



715
905



716
685



717
691



718
824



719
633



720
483



721
295



722
744



723
470



724
852



725
686



726
444



727
473



728
253



729
634



730
485



731
415



732
375



733
960



734
895



735
575



736
807



737
906



738
715



739
913



740
693



741
797



742
866



743
811



744
717



745
474



746
254



747
694



748
723



749
636



750
486



751
798



752
607



753
697



754
489



755
431



756
379



757
908



758
752



759
914



760
856



761
868



762
839



763
929



764
813



765
718



766
819



767
476



768
916



769
725



770
698



771
490



772
739



773
814



774
843



775
623



776
497



777
439



778
381



779
671



780
463



781
726



782
930



783
872



784
821



785
920



786
700



787
729



788
492



789
932



790
961



791
741



792
903



793
845



794
498



795
880



796
382



797
822



798
851



799
631



800
443



801
825



802
730



803
471



804
445



805
687



806
635



807
742



808
846



809
500



810
745



811
826



812
732



813
446



814
962



815
936



816
255



817
853



818
504



819
637



820
907



821
475



822
746



823
867



824
487



825
695



826
799



827
854



828
828



829
753



830
857



831
964



832
909



833
719



834
477



835
915



836
869



837
699



838
748



839
944



840
638



841
754



842
491



843
910



844
858



845
478



846
815



847
727



848
917



849
870



850
493



851
873



852
701



853
968



854
383



855
860



856
756



857
918



858
931



859
976



860
499



861
921



862
874



863
702



864
823



865
494



866
731



867
760



868
881



869
933



870
501



871
743



872
922



873
876



874
847



875
934



876
827



877
733



878
502



879
992



880
882



881
447



882
963



883
937



884
747



885
505



886
855



887
924



888
724



889
829



890
884



891
938



892
506



893
965



894
729



895
945



896
966



897
940



898
969



899
911



900
946



901
755



902
888



903
830



904
859



905
639



906
871



907
970



908
750



909
508



910
948



911
977



912
757



913
479



914
919



915
861



916
875



917
972



918
978



919
758



920
862



921
852



922
761



923
993



924
923



925
703



926
495



927
935



928
877



929
883



930
980



931
762



932
925



933
994



934
878



935
503



936
885



937
939



938
984



939
764



940
996



941
926



942
735



943
967



944
886



945
941



946
504



947
947



948
889



949
831



950
1000



951
942



952
971



953
751



954
509



955
949



956
890



957
973



958
1008



959
510



960
950



961
979



962
759



963
892



964
863



965
853



966
974



967
981



968
954



969
763



970
995



971
879



972
982



973
956



974
985



975
765



976
997



977
927



978
887



979
986



980
766



981
998



982
1001



983
943



984
891



985
988



986
1002



987
1009



988
511



989
951



990
893



991
1004



992
975



993
1010



994
894



995
955



996
1012



997
983



998
957



999
1016



1000
958



1001
987



1002
767



1003
999



1004
989



1005
1003



1006
990



1007
1005



1008
1011



1009
895



1010
1006



1011
1013



1012
1014



1013
1017



1014
959



1015
1018



1016
1020



1017
991



1018
1007



1019
1015



1020
1019



1021
1021



1022
1022



1023
1023










Sequence Q22, having a sequence length of 512:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 6, 9, 17, 10, 18, 128, 12, 33, 256, 20, 34, 24, 65, 36, 7, 129, 66, 11, 40, 68, 19, 13, 130, 48, 14, 72, 257, 21, 132, 35, 258, 26, 80, 37, 25, 22, 136, 96, 260, 38, 264, 67, 41, 144, 28, 69, 42, 49, 160, 272, 70, 288, 131, 44, 73, 192, 50, 74, 52, 15, 133, 320, 81, 23, 134, 76, 137, 82, 384, 56, 27, 97, 39, 259, 84, 138, 145, 261, 29, 43, 98, 88, 140, 30, 146, 71, 262, 265, 161, 45, 100, 51, 148, 46, 75, 266, 273, 104, 162, 53, 193, 152, 77, 164, 268, 274, 54, 83, 57, 112, 135, 78, 289, 194, 85, 276, 58, 168, 139, 99, 86, 60, 89, 196, 290, 141, 101, 280, 147, 176, 142, 90, 292, 200, 263, 31, 149, 321, 322, 102, 105, 296, 163, 92, 47, 150, 208, 324, 385, 304, 267, 106, 153, 386, 165, 55, 328, 113, 154, 79, 108, 224, 269, 166, 195, 277, 169, 275, 291, 59, 270, 114, 156, 87, 197, 116, 170, 61, 177, 278, 281, 293, 388, 91, 198, 172, 120, 201, 62, 143, 336, 282, 103, 178, 294, 93, 392, 297, 323, 202, 284, 151, 209, 180, 107, 325, 94, 400, 298, 204, 352, 305, 155, 300, 210, 109, 184, 115, 167, 225, 326, 157, 110, 117, 212, 330, 171, 329, 306, 226, 387, 308, 271, 416, 216, 337, 158, 118, 279, 332, 389, 173, 121, 199, 179, 228, 283, 122, 393, 174, 312, 390, 203, 181, 295, 448, 353, 338, 63, 340, 285, 394, 232, 124, 354, 286, 182, 205, 299, 211, 401, 185, 396, 240, 301, 402, 344, 206, 327, 356, 307, 95, 417, 213, 186, 404, 111, 302, 227, 360, 214, 188, 331, 309, 418, 449, 217, 408, 229, 159, 420, 310, 333, 119, 368, 339, 391, 313, 218, 334, 230, 233, 175, 123, 450, 341, 220, 314, 424, 395, 355, 287, 183, 234, 125, 342, 452, 397, 432, 316, 345, 241, 207, 403, 357, 187, 236, 126, 242, 398, 346, 456, 358, 405, 303, 189, 215, 361, 244, 348, 419, 406, 311, 219, 409, 362, 464, 421, 369, 190, 248, 231, 410, 364, 335, 422, 315, 221, 370, 425, 235, 451, 480, 412, 343, 222, 317, 372, 426, 453, 237, 433, 347, 243, 454, 318, 376, 428, 238, 359, 457, 399, 349, 434, 363, 245, 458, 127, 407, 436, 465, 350, 246, 460, 249, 411, 365, 440, 466, 371, 423, 366, 250, 413, 468, 481, 191, 373, 427, 414, 252, 482, 472, 223, 374, 429, 455, 377, 435, 484, 319, 430, 239, 378, 459, 437, 488, 380, 461, 496, 438, 467, 247, 351, 441, 462, 469, 442, 251, 367, 483, 470, 444, 473, 253, 485, 415, 375, 474, 254, 486, 489, 431, 379, 476, 490, 497, 439, 381, 463, 492, 498, 382, 443, 471, 445, 500, 446, 255, 504, 475, 487, 477, 491, 478, 493, 383, 499, 494, 501, 502, 447, 505, 506, 508, 479, 495, 503, 507, 509, 510, 511]









TABLE Q22







having a sequence length of 512:










Reliability
Polarized



or sequence
channel



number of
sequence



reliability
number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
6



11
9



12
17



13
10



14
18



15
128



16
12



17
33



18
256



19
20



20
34



21
24



22
65



23
36



24
7



25
129



26
66



27
11



28
40



29
68



30
19



31
13



32
130



33
48



34
14



35
72



36
257



37
21



38
132



39
35



40
258



41
26



42
80



43
37



44
25



45
22



46
136



47
96



48
260



49
38



50
264



51
67



52
41



53
144



54
28



55
69



56
42



57
49



58
160



59
272



60
70



61
288



62
131



63
44



64
73



65
192



66
50



67
74



68
52



69
15



70
133



71
320



72
81



73
23



74
134



75
76



76
137



77
82



78
384



79
56



80
27



81
97



82
39



83
259



84
148



85
138



86
145



87
261



88
29



89
43



90
98



91
88



92
140



93
30



94
146



95
71



96
262



97
265



98
161



99
45



100
100



101
51



102
148



103
46



104
75



105
266



106
273



107
104



108
162



109
53



110
193



111
152



112
77



113
164



114
268



115
274



116
54



117
83



118
57



119
112



120
135



121
78



122
289



123
194



124
85



125
276



126
58



127
168



128
139



129
99



130
86



131
60



132
89



133
196



134
290



135
141



136
101



137
280



138
147



139
176



140
142



141
90



142
292



143
200



144
263



145
31



146
149



147
321



148
322



149
102



150
105



151
296



152
163



153
92



154
47



155
150



156
208



157
324



158
385



159
304



160
267



161
106



162
153



163
386



164
165



165
55



166
328



167
113



168
154



169
240



170
108



171
224



172
269



173
166



174
195



175
277



176
169



177
275



178
291



179
59



180
270



181
114



182
156



183
87



184
197



185
116



186
170



187
61



188
177



189
278



190
281



191
293



192
388



193
91



194
198



195
172



196
120



197
201



198
62



199
143



200
336



201
282



202
103



203
178



204
294



205
93



206
392



207
297



208
323



209
202



210
284



211
151



212
209



213
180



214
107



215
325



216
94



217
400



218
298



219
204



220
352



221
305



222
155



223
300



224
210



225
109



226
184



227
115



228
167



229
225



230
326



231
157



232
110



233
117



234
212



235
330



236
171



237
329



238
306



239
226



240
387



241
308



242
271



243
416



244
216



245
337



246
158



247
118



248
279



249
332



250
389



251
173



252
121



253
199



254
179



255
228



256
283



257
122



258
393



259
174



260
312



261
390



262
203



263
181



264
295



265
448



266
353



267
338



268
63



269
340



270
285



271
394



272
232



273
124



274
354



275
286



276
182



277
205



278
299



279
211



280
401



281
185



282
396



283
240



284
301



285
402



286
344



287
206



288
327



289
356



290
307



291
95



292
417



293
213



294
186



295
404



296
111



297
302



298
227



299
360



300
214



301
188



302
331



303
309



304
418



305
449



306
217



307
408



308
229



309
159



310
420



311
310



312
333



313
119



314
368



315
339



316
391



317
313



318
218



319
334



320
230



321
233



322
175



323
123



324
450



325
341



326
220



327
314



328
424



329
395



330
355



331
287



332
183



333
234



334
125



335
342



336
452



337
397



338
432



339
316



340
345



341
241



342
207



343
403



344
357



345
187



346
236



347
126



348
242



349
398



350
346



351
456



352
358



353
405



354
303



355
189



356
215



357
361



358
244



359
248



360
419



361
406



362
311



363
219



364
409



365
362



366
464



367
421



368
369



369
190



370
248



371
231



372
410



373
264



374
335



375
422



376
315



377
221



378
370



379
425



380
435



381
451



382
480



383
412



384
343



385
222



386
317



387
372



388
426



389
453



390
237



391
433



392
347



393
243



394
454



395
318



396
376



397
428



398
238



399
359



400
457



401
399



402
349



403
434



404
363



405
245



406
458



407
127



408
407



409
436



410
465



411
350



412
246



413
460



414
249



415
411



416
365



417
440



418
466



419
371



420
423



421
366



422
250



423
413



424
468



425
481



426
191



427
373



428
427



429
414



430
252



431
482



432
472



433
223



434
374



435
429



436
455



437
377



438
435



439
484



440
319



441
430



442
239



443
378



444
459



445
437



446
488



447
380



448
461



449
496



450
438



451
467



452
247



453
453



454
441



455
462



456
469



457
442



458
251



459
367



460
483



461
470



462
444



463
473



464
253



465
485



466
415



467
375



468
474



469
254



470
486



471
489



472
431



473
379



474
476



475
490



476
497



477
439



478
381



479
463



480
492



481
498



482
382



483
443



484
471



485
445



486
500



487
446



488
255



489
504



490
475



491
487



492
477



493
491



494
478



495
493



496
383



497
499



498
494



499
501



500
502



501
447



502
505



503
506



504
508



505
479



506
495



507
503



508
507



509
509



510
510



511
511










Sequence Q23, having a sequence length of 256:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 6, 9, 17, 10, 18, 128, 12, 33, 20, 34, 24, 65, 36, 7, 129, 66, 11, 40, 68, 19, 13, 130, 48, 14, 72, 21, 132, 35, 26, 80, 37, 25, 22, 136, 96, 38, 67, 41, 144, 28, 69, 42, 49, 160, 70, 131, 44, 73, 192, 50, 74, 52, 15, 133, 81, 23, 134, 76, 137, 82, 56, 27, 97, 39, 84, 138, 145, 29, 43, 98, 88, 140, 30, 146, 71, 161, 45, 100, 51, 148, 46, 75, 104, 162, 53, 193, 152, 77, 164, 54, 83, 57, 112, 135, 78, 194, 85, 58, 168, 139, 99, 86, 60, 89, 196, 141, 101, 147, 176, 142, 90, 200, 31, 149, 102, 105, 163, 92, 47, 150, 208, 106, 153, 165, 55, 113, 154, 79, 108, 224, 166, 195, 169, 59, 114, 156, 87, 197, 116, 170, 61, 177, 91, 198, 172, 120, 201, 62, 143, 103, 178, 93, 202, 151, 209, 180, 107, 94, 204, 155, 210, 109, 184, 115, 167, 225, 157, 110, 117, 212, 171, 226, 216, 158, 118, 173, 121, 199, 179, 228, 122, 174, 203, 181, 63, 232, 124, 182, 205, 211, 185, 240, 206, 95, 213, 186, 111, 227, 214, 188, 217, 229, 159, 119, 218, 230, 233, 175, 123, 220, 183, 234, 125, 241, 207, 187, 236, 126, 242, 189, 215, 244, 219, 190, 248, 231, 221, 235, 222, 237, 243, 238, 245, 127, 246, 249, 250, 191, 252, 223, 239, 247, 251, 253, 254, 255]









TABLE Q23







having a sequence length of 256:










Reliability
Polarized



or sequence
channel



number of
sequence



reliability
number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
6



11
9



12
17



13
10



14
18



15
128



16
12



17
33



18
20



19
34



20
24



21
65



22
36



23
7



24
129



25
66



26
11



27
40



28
68



29
19



30
13



31
130



32
48



33
14



34
72



35
21



36
132



37
35



38
26



39
80



40
37



41
25



42
22



43
136



44
96



45
38



46
67



47
41



48
144



49
28



50
69



51
42



52
49



53
160



54
70



55
131



56
44



57
73



58
192



59
50



60
74



61
52



62
15



63
133



64
81



65
23



66
134



67
76



68
137



69
82



70
56



71
27



72
97



73
39



74
84



75
138



76
145



77
29



78
43



79
98



80
88



81
140



82
30



83
146



84
71



85
161



86
45



87
100



88
51



89
148



90
46



91
75



92
104



93
162



94
53



95
193



96
152



97
77



98
164



99
54



100
83



101
57



102
112



103
135



104
78



105
194



106
85



107
58



108
168



109
139



110
99



111
86



112
60



113
89



114
196



115
141



116
101



117
147



118
176



119
142



120
90



121
200



122
31



123
149



124
102



125
105



126
163



127
92



128
47



129
150



130
208



131
106



132
153



133
165



134
55



135
113



136
154



137
79



138
108



139
224



140
166



141
195



142
169



143
59



144
114



145
156



146
87



147
197



148
116



149
170



150
61



151
177



152
91



153
198



154
172



155
120



156
201



157
62



158
143



159
103



160
178



161
93



162
202



163
151



164
209



165
180



166
107



197
94



168
204



169
155



170
210



171
109



172
184



173
115



174
167



175
225



176
157



177
110



178
117



179
212



180
171



181
226



182
216



183
158



184
118



185
173



186
121



187
199



188
179



189
228



190
122



191
174



192
203



193
181



194
63



195
232



196
124



197
182



198
205



199
211



200
185



201
240



202
206



203
95



204
213



205
186



206
111



207
227



208
214



209
188



210
217



211
229



212
159



213
119



214
218



215
230



216
233



217
175



218
123



219
220



220
183



221
234



222
125



223
241



224
207



225
187



226
236



227
126



228
242



229
189



230
215



231
244



232
219



233
190



234
248



235
231



236
221



237
235



238
222



239
237



240
243



241
238



242
245



243
127



244
246



245
249



246
250



247
191



248
252



249
223



250
239



251
247



252
251



253
253



254
254



255
255










Sequence Q24, having a sequence length of 128:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 6, 9, 17, 10, 18, 12, 33, 20, 34, 24, 65, 36, 7, 66, 11, 40, 68, 19, 13, 48, 14, 72, 21, 35, 26, 80, 37, 25, 22, 96, 38, 67, 41, 28, 69, 42, 49, 70, 44, 73, 50, 74, 52, 15, 81, 23, 76, 82, 56, 27, 97, 39, 84, 29, 43, 98, 88, 30, 71, 45, 100, 51, 46, 75, 104, 53, 77, 54, 83, 57, 112, 78, 85, 58, 99, 86, 60, 89, 101, 90, 31, 102, 105, 92, 47, 106, 55, 113, 79, 108, 59, 114, 87, 116, 61, 91, 120, 62, 103, 93, 107, 94, 109, 115, 110, 117, 118, 121, 122, 63, 124, 95, 111, 119, 123, 125, 126, 127]









TABLE Q24







having a sequence length of 128:










Reliability or
Polarized



sequence
channel



number of reliability
sequence number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
64



10
6



11
9



12
17



13
10



14
18



15
12



16
33



17
20



18
34



19
24



20
65



21
36



22
7



23
66



24
11



25
40



26
68



27
19



28
13



29
48



30
14



31
72



32
21



33
35



34
26



35
80



36
37



37
25



38
22



39
96



40
38



41
67



42
41



43
28



44
69



45
42



46
49



47
70



48
44



49
73



50
50



51
74



52
52



53
15



54
81



55
23



56
76



57
82



58
56



59
27



60
97



61
39



62
84



63
29



64
43



65
98



66
88



67
30



68
71



69
45



70
100



71
51



72
46



73
75



74
104



75
53



76
77



77
54



78
83



79
57



80
112



81
78



82
85



83
58



84
99



85
86



86
60



87
89



88
101



89
90



90
31



91
102



92
105



93
92



94
47



95
106



96
55



97
113



98
79



99
108



100
59



101
114



102
87



103
116



104
61



105
91



106
120



107
62



108
103



109
93



110
107



111
94



112
109



113
115



114
110



115
117



116
118



117
121



118
122



119
63



120
124



121
95



122
111



123
119



124
123



125
125



126
126



127
127










Sequence Q25, having a sequence length of 64:


[0, 1, 2, 4, 8, 16, 32, 3, 5, 6, 9, 17, 10, 18, 12, 33, 20, 34, 24, 36, 7, 11, 40, 19, 13, 48, 14, 21, 35, 26, 37, 25, 22, 38, 41, 28, 42, 49, 44, 50, 52, 15, 23, 56, 27, 39, 29, 43, 30, 45, 51, 46, 53, 54, 57, 58, 60, 31, 47, 55, 59, 61, 62, 63]









TABLE Q25







having a sequence length of 64:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
2



3
4



4
8



5
16



6
32



7
3



8
5



9
6



10
9



11
17



12
10



13
18



14
12



15
33



16
20



17
34



18
24



19
36



20
7



21
11



22
40



23
19



24
13



25
48



26
14



27
21



28
35



29
26



30
37



31
25



32
22



33
38



34
41



35
28



36
42



37
49



38
44



39
50



40
52



41
15



42
23



43
56



44
27



45
39



46
29



47
43



48
30



49
45



50
51



51
46



52
53



53
54



54
57



55
58



56
60



57
31



58
47



59
55



60
59



61
61



62
62



63
63










Sequence Z21, having a sequence length of 1024:


[0, 1, 2, 7, 3, 8, 10, 24, 4, 11, 13, 28, 16, 32, 35, 76, 5, 12, 14, 31, 19, 38, 47, 80, 21, 46, 42, 87, 57, 95, 101, 167, 6, 17, 20, 40, 23, 45, 51, 89, 29, 55, 59, 96, 69, 108, 115, 177, 34, 61, 73, 112, 75, 123, 130, 190, 86, 133, 143, 210, 148, 218, 235, 327, 9, 22, 26, 54, 30, 58, 64, 103, 36, 71, 74, 116, 82, 126, 138, 197, 44, 79, 84, 131, 91, 141, 147, 214, 99, 149, 162, 228, 176, 242, 259, 364, 49, 88, 97, 146, 111, 154, 172, 239, 121, 173, 186, 257, 198, 271, 278, 369, 134, 192, 212, 273, 216, 283, 300, 401, 233, 307, 312, 417, 333, 435, 460, 585, 15, 25, 33, 68, 39, 77, 81, 137, 48, 83, 92, 145, 100, 153, 161, 236, 56, 93, 102, 159, 113, 168, 178, 254, 125, 187, 196, 266, 213, 277, 298, 394, 62, 107, 122, 175, 127, 189, 201, 274, 144, 207, 217, 286, 232, 306, 314, 416, 160, 221, 240, 309, 256, 322, 340, 433, 272, 348, 367, 453, 382, 471, 505, 619, 72, 124, 140, 205, 151, 215, 231, 308, 165, 234, 252, 320, 263, 344, 358, 449, 180, 255, 268, 346, 284, 366, 381, 473, 296, 390, 407, 486, 421, 519, 529, 639, 199, 275, 290, 379, 310, 392, 411, 510, 332, 412, 434, 522, 459, 535, 560, 670, 350, 448, 461, 552, 480, 583, 590, 695, 508, 593, 611, 707, 628, 728, 746, 816, 18, 37, 41, 90, 50, 94, 104, 166, 53, 105, 118, 184, 128, 200, 211, 293, 63, 119, 129, 208, 142, 206, 222, 303, 155, 223, 238, 311, 253, 330, 339, 432, 66, 139, 152, 209, 164, 226, 241, 323, 174, 249, 262, 345, 267, 355, 375, 468, 183, 265, 289, 363, 292, 387, 399, 484, 315, 406, 423, 518, 446, 530, 555, 665, 78, 169, 170, 251, 181, 258, 276, 361, 191, 288, 285, 386, 304, 400, 410, 513, 237, 297, 326, 403, 329, 420, 436, 528, 357, 447, 464, 550, 481, 573, 589, 699, 264, 325, 334, 431, 362, 452, 466, 561, 380, 478, 494, 582, 512, 596, 610, 708, 402, 503, 520, 608, 531, 620, 647, 732, 557, 660, 671, 756, 677, 778, 796, 854, 85, 182, 188, 291, 227, 305, 317, 404, 248, 313, 331, 428, 349, 444, 462, 568, 261, 347, 356, 451, 368, 467, 483, 586, 391, 491, 511, 595, 526, 612, 627, 731, 295, 365, 388, 482, 395, 501, 514, 609, 427, 521, 533, 624, 558, 648, 666, 755, 445, 546, 574, 662, 587, 673, 693, 777, 604, 701, 706, 800, 726, 804, 813, 881, 324, 389, 418, 523, 443, 534, 554, 649, 465, 567, 584, 672, 592, 678, 704, 780, 498, 588, 606, 694, 614, 705, 723, 803, 638, 727, 745, 821, 767, 834, 845, 913, 524, 616, 635, 720, 664, 730, 750, 824, 676, 754, 771, 842, 788, 850, 865, 926, 684, 776, 794, 860, 809, 870, 878, 935, 818, 885, 892, 946, 909, 954, 959, 988, 27, 43, 52, 98, 60, 106, 110, 193, 65, 114, 120, 202, 136, 219, 224, 338, 67, 135, 132, 220, 158, 243, 245, 354, 163, 260, 282, 370, 301, 393, 408, 532, 70, 156, 157, 246, 179, 280, 287, 383, 194, 302, 318, 424, 319, 422, 440, 536, 203, 321, 341, 437, 359, 455, 476, 562, 371, 469, 495, 579, 497, 599, 613, 735, 109, 171, 185, 294, 204, 328, 335, 426, 229, 343, 351, 454, 377, 475, 500, 570, 250, 353, 372, 470, 396, 496, 487, 594, 425, 488, 506, 615, 545, 632, 656, 752, 269, 384, 409, 490, 415, 515, 527, 625, 439, 544, 563, 645, 580, 667, 675, 775, 457, 559, 578, 674, 607, 685, 709, 799, 634, 719, 729, 806, 749, 819, 840, 905, 117, 195, 225, 342, 244, 352, 378, 477, 270, 373, 397, 489, 419, 507, 517, 621, 281, 405, 414, 516, 441, 541, 553, 640, 456, 564, 571, 669, 597, 683, 703, 779, 316, 430, 438, 556, 474, 575, 572, 679, 492, 591, 603, 698, 630, 716, 725, 805, 509, 617, 633, 717, 650, 740, 747, 825, 659, 753, 770, 837, 786, 852, 863, 925, 337, 463, 479, 598, 485, 605, 626, 712, 539, 631, 644, 738, 653, 744, 765, 833, 547, 651, 658, 748, 682, 769, 781, 847, 702, 787, 802, 866, 812, 877, 888, 942, 565, 687, 690, 772, 710, 791, 807, 871, 722, 810, 822, 884, 838, 894, 908, 953, 758, 829, 841, 901, 856, 912, 919, 962, 867, 922, 931, 969, 939, 975, 980, 1002, 150, 230, 247, 374, 279, 398, 413, 525, 299, 429, 442, 543, 458, 569, 577, 689, 336, 450, 472, 581, 493, 600, 602, 700, 504, 618, 636, 721, 646, 741, 751, 826, 360, 499, 502, 601, 538, 623, 637, 736, 542, 643, 655, 743, 663, 764, 773, 846, 548, 661, 681, 766, 696, 784, 797, 864, 718, 801, 811, 876, 828, 889, 903, 949, 376, 537, 540, 641, 549, 652, 668, 762, 576, 680, 692, 774, 713, 793, 808, 874, 629, 697, 714, 798, 724, 817, 827, 886, 760, 830, 844, 904, 855, 915, 920, 964, 654, 734, 742, 823, 761, 836, 849, 906, 783, 851, 862, 916, 873, 928, 934, 971, 795, 868, 880, 929, 890, 936, 944, 978, 902, 948, 956, 984, 963, 990, 994, 1009, 385, 551, 566, 688, 622, 691, 711, 792, 642, 715, 737, 820, 757, 832, 843, 899, 657, 739, 759, 835, 768, 848, 857, 914, 785, 861, 872, 924, 887, 932, 941, 977, 686, 763, 782, 858, 789, 869, 875, 927, 815, 883, 891, 937, 897, 945, 951, 983, 839, 895, 900, 947, 910, 955, 960, 989, 921, 965, 968, 995, 973, 998, 1000, 1014, 733, 790, 814, 882, 831, 893, 896, 943, 853, 898, 907, 952, 917, 957, 966, 992, 859, 911, 918, 961, 930, 967, 972, 997, 938, 974, 979, 1001, 985, 1004, 1006, 1017, 879, 923, 933, 970, 940, 976, 981, 1003, 950, 982, 986, 1005, 991, 1007, 1010, 1018, 958, 987, 993, 1008, 996, 1011, 1012, 1019, 999, 1013, 1015, 1020, 1016, 1021, 1022, 1023]









TABLE Z21







having a sequence length of 1024:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
10



7
24



8
4



9
11



10
13



11
28



12
16



13
32



14
35



15
76



16
5



17
12



18
14



19
31



20
19



21
38



22
47



23
80



24
21



25
46



26
42



27
87



28
57



29
95



30
101



31
167



32
6



33
17



34
20



35
40



36
23



37
45



38
51



39
89



40
29



41
55



42
59



43
96



44
69



45
108



46
115



47
177



48
34



49
61



50
73



51
112



52
75



53
123



54
130



55
190



56
86



57
133



58
143



59
210



60
148



61
218



62
235



63
327



64
9



65
22



66
26



67
54



68
30



69
58



70
64



71
103



72
36



73
71



74
74



75
116



76
82



77
126



78
138



79
197



80
44



81
79



82
84



83
131



84
91



85
141



86
147



87
214



88
99



89
149



90
162



91
228



92
176



93
242



94
259



95
364



96
49



97
88



98
97



99
146



100
111



101
154



102
172



103
239



104
121



105
173



106
186



107
257



108
198



109
271



110
278



111
369



112
134



113
192



114
212



115
273



116
216



117
283



118
300



119
401



120
233



121
307



122
312



123
417



124
333



125
435



126
460



127
585



128
15



129
25



130
33



131
68



132
39



133
77



134
81



135
137



136
48



137
83



138
92



139
145



140
100



141
153



142
161



143
236



144
56



145
93



146
102



147
159



148
113



149
168



150
178



151
254



152
125



153
187



154
196



155
266



156
213



157
277



158
298



159
394



160
62



161
107



162
122



163
175



164
127



165
189



166
201



167
274



168
144



169
207



170
217



171
286



172
232



173
306



174
314



175
416



176
160



177
221



178
240



179
309



180
256



181
322



182
340



183
433



184
272



185
348



186
367



187
453



188
382



189
471



190
505



191
619



192
72



193
124



194
140



195
205



196
151



197
215



198
231



199
308



200
165



201
234



202
252



203
320



204
263



205
344



206
358



207
449



208
180



209
255



210
268



211
346



212
284



213
366



214
381



215
473



216
296



217
390



218
407



219
486



220
421



221
519



222
529



223
639



224
199



225
275



226
290



227
379



228
310



229
392



230
411



231
510



232
332



233
412



234
434



235
522



236
459



237
535



238
560



239
670



240
350



241
448



242
461



243
552



244
480



245
583



246
590



247
695



248
508



249
593



250
611



251
707



252
628



253
728



254
746



255
816



256
18



257
37



258
41



259
90



260
50



261
94



262
104



263
166



264
53



265
105



266
118



267
184



268
128



269
200



270
211



271
293



272
63



273
119



274
129



275
208



276
142



277
206



278
222



279
303



280
155



281
223



282
238



283
311



284
253



285
330



286
339



287
432



288
66



289
139



290
152



291
209



292
164



293
226



294
241



295
323



296
174



297
249



298
262



299
345



300
267



301
355



302
375



303
468



304
183



305
265



306
289



307
363



308
292



309
387



310
399



311
484



312
315



313
406



314
423



315
518



316
446



317
530



318
555



319
665



320
78



321
169



322
170



323
251



324
181



325
258



326
276



327
361



328
191



329
288



330
285



331
386



332
304



333
400



334
410



335
513



336
237



337
297



338
326



339
403



340
329



341
420



342
436



343
528



344
357



345
447



346
464



347
550



348
481



349
573



350
589



351
699



352
264



353
325



354
334



355
431



356
362



357
452



358
466



359
561



360
380



361
478



362
494



363
582



364
512



365
596



366
610



367
708



368
402



369
503



370
520



371
608



372
531



373
620



374
647



375
732



376
557



377
660



378
671



379
756



380
677



381
778



382
796



383
854



384
85



385
182



386
188



387
291



388
227



389
305



390
317



391
404



392
248



393
313



394
331



395
428



396
349



397
444



398
462



399
568



400
261



401
347



402
356



403
451



404
368



405
467



406
483



407
586



408
391



409
491



410
511



411
595



412
526



413
612



414
627



415
731



416
295



417
365



418
388



419
482



420
395



421
501



422
514



423
609



424
427



425
521



426
533



427
624



428
558



429
648



430
666



431
755



432
445



433
546



434
574



435
662



436
587



437
673



438
693



439
777



440
604



441
701



442
706



443
800



444
726



445
804



446
813



447
881



448
324



449
389



450
418



451
523



452
443



453
534



454
554



455
649



456
465



457
567



458
584



459
672



460
592



461
678



462
704



463
780



464
498



465
588



466
606



467
694



468
614



469
705



470
723



471
803



472
638



473
727



474
745



475
821



476
767



477
834



478
845



479
913



480
524



481
616



482
635



483
720



484
664



485
730



486
750



487
824



488
676



489
754



490
771



491
842



492
788



493
850



494
865



495
926



496
684



497
776



498
794



499
860



500
809



501
870



502
878



503
935



504
818



505
885



506
892



507
946



508
909



509
954



510
959



511
988



512
27



513
43



514
52



515
98



516
60



517
106



518
110



519
193



520
65



521
114



522
120



523
202



524
136



525
219



526
224



527
338



528
67



529
135



530
132



531
220



532
158



533
243



534
245



535
354



536
163



537
260



538
282



539
370



540
301



541
393



542
408



543
532



544
70



545
156



546
157



547
246



548
179



549
280



550
287



551
383



552
194



553
302



554
318



555
424



556
319



557
422



558
440



559
536



560
203



561
321



562
341



563
437



564
359



565
455



566
476



567
562



568
371



569
469



570
495



571
579



572
497



573
599



574
613



575
735



576
109



577
171



578
185



579
294



580
204



581
328



582
335



583
426



584
229



585
343



586
351



587
454



588
377



589
475



590
500



591
570



592
250



593
353



594
372



595
470



596
396



597
496



598
487



599
594



600
425



601
488



602
506



603
615



604
545



605
632



606
656



607
752



608
269



609
384



610
409



611
490



612
415



613
515



614
527



615
625



616
439



617
544



618
563



619
645



620
580



621
667



622
675



623
775



624
457



625
559



626
578



627
674



628
607



629
685



630
709



631
799



632
634



633
719



634
729



635
806



636
749



637
819



638
840



639
905



640
117



641
195



642
225



643
342



644
244



645
352



646
378



647
477



648
270



649
373



650
397



651
489



652
419



653
507



654
517



655
621



656
281



657
405



658
414



659
516



660
441



661
541



662
553



663
640



664
456



665
564



666
571



667
669



668
597



669
683



670
703



671
779



672
316



673
430



674
438



675
556



676
474



677
575



678
572



679
679



680
492



681
591



682
603



683
698



684
630



685
716



686
725



687
805



688
509



689
617



690
633



691
717



692
650



693
740



694
747



695
825



696
659



697
753



698
770



699
837



700
786



701
852



702
863



703
925



704
337



705
463



706
479



707
598



708
485



709
605



710
626



711
712



712
539



713
631



714
644



715
738



716
653



717
744



718
765



719
833



720
547



721
651



722
658



723
748



724
682



725
769



726
781



727
847



728
702



729
787



730
802



731
866



732
812



733
877



734
888



735
942



736
565



737
687



738
690



739
772



740
710



741
791



742
807



743
871



744
722



745
810



746
822



747
884



748
838



749
894



750
908



751
953



752
758



753
829



754
841



755
901



756
856



757
912



758
919



759
962



760
867



761
922



762
931



763
969



764
939



765
975



766
980



767
1002



768
150



769
230



770
247



771
374



772
279



773
398



774
413



775
525



776
299



777
429



778
442



779
543



780
458



781
569



782
577



783
689



784
336



785
450



786
472



787
581



788
493



789
600



790
602



791
700



792
504



793
618



794
636



795
721



796
646



797
741



798
751



799
826



800
360



801
499



802
502



803
601



804
538



805
623



806
637



807
736



808
542



809
643



810
655



811
743



812
663



813
764



814
773



815
846



816
548



817
661



818
681



819
766



820
696



821
784



822
797



823
864



824
718



825
801



826
811



827
876



828
828



829
889



830
903



831
949



832
376



833
537



834
540



835
641



836
549



837
652



838
668



839
762



840
576



841
680



842
692



843
774



844
713



845
793



846
808



847
874



848
629



849
697



850
714



851
798



852
724



853
817



854
827



855
886



856
760



857
830



858
844



859
904



860
855



861
915



862
920



863
964



864
654



865
734



866
742



867
823



868
761



869
836



870
849



871
906



872
783



873
851



874
862



875
916



876
873



877
928



878
934



879
971



880
795



881
868



882
880



883
929



884
890



885
936



886
944



887
978



888
902



889
948



890
956



891
984



892
963



893
990



894
994



895
1009



896
385



897
551



898
566



899
688



900
622



901
691



902
711



903
792



904
642



905
715



906
737



907
820



908
757



909
832



910
843



911
899



912
657



913
739



914
759



915
835



916
768



917
848



918
857



919
914



920
785



921
861



922
872



923
924



924
887



925
932



926
941



927
977



928
686



929
763



930
782



931
858



932
789



933
869



934
875



935
927



936
815



937
883



938
891



939
937



940
897



941
945



942
951



943
983



944
839



945
895



946
900



947
947



948
910



949
955



950
960



951
989



952
921



953
965



954
968



955
995



956
973



957
998



958
1000



959
1014



960
733



961
790



962
814



963
882



964
831



965
893



966
896



967
943



968
853



969
898



970
907



971
952



972
917



973
957



974
966



975
992



976
859



977
911



978
918



979
961



980
930



981
967



982
972



983
997



984
938



985
974



986
979



987
1001



988
985



989
1004



990
1006



991
1017



992
879



993
923



994
933



995
970



996
940



997
976



998
981



999
1003



1000
950



1001
982



1002
986



1003
1005



1004
991



1005
1007



1006
1010



1007
1018



1008
958



1009
987



1010
993



1011
1008



1012
996



1013
1011



1014
1012



1015
1019



1016
999



1017
1013



1018
1015



1019
1020



1020
1016



1021
1021



1022
1022



1023
1023










Sequence Z22, having a sequence length of 512:


[0, 1, 2, 7, 3, 8, 10, 24, 4, 11, 13, 27, 16, 31, 34, 69, 5, 12, 14, 30, 19, 37, 45, 73, 21, 44, 41, 80, 54, 88, 93, 145, 6, 17, 20, 39, 23, 43, 49, 82, 28, 52, 56, 89, 63, 99, 103, 154, 33, 57, 66, 101, 68, 109, 116, 165, 79, 118, 126, 179, 131, 187, 198, 268, 9, 22, 26, 51, 29, 55, 60, 95, 35, 64, 67, 104, 75, 112, 121, 169, 42, 72, 77, 117, 84, 124, 130, 183, 91, 132, 141, 193, 153, 205, 216, 291, 47, 81, 90, 129, 100, 136, 149, 202, 107, 150, 161, 214, 170, 225, 232, 296, 119, 167, 181, 227, 185, 233, 247, 313, 196, 252, 257, 323, 273, 334, 347, 407, 15, 25, 32, 62, 38, 70, 74, 120, 46, 76, 85, 128, 92, 135, 140, 199, 53, 86, 94, 138, 102, 146, 155, 211, 111, 162, 168, 222, 182, 231, 246, 309, 58, 98, 108, 152, 113, 164, 173, 228, 127, 176, 186, 236, 195, 251, 259, 322, 139, 188, 203, 254, 213, 263, 276, 332, 226, 281, 294, 345, 301, 355, 369, 426, 65, 110, 123, 174, 133, 184, 194, 253, 143, 197, 209, 262, 219, 277, 287, 342, 156, 212, 224, 279, 234, 293, 300, 356, 244, 306, 318, 363, 326, 377, 385, 433, 171, 229, 239, 298, 255, 308, 320, 371, 272, 321, 333, 380, 346, 390, 398, 442, 283, 341, 348, 393, 358, 405, 412, 452, 370, 414, 422, 458, 430, 464, 469, 488, 18, 36, 40, 83, 48, 87, 96, 144, 50, 97, 105, 160, 114, 172, 180, 242, 59, 106, 115, 177, 125, 175, 189, 248, 137, 190, 201, 256, 210, 270, 275, 331, 61, 122, 134, 178, 142, 191, 204, 264, 151, 207, 218, 278, 223, 284, 297, 354, 159, 221, 238, 290, 241, 303, 311, 362, 260, 317, 327, 376, 339, 386, 395, 440, 71, 147, 148, 208, 157, 215, 230, 288, 166, 237, 235, 302, 249, 312, 319, 374, 200, 245, 267, 315, 269, 325, 335, 384, 286, 340, 350, 392, 359, 402, 411, 453, 220, 266, 274, 330, 289, 344, 352, 399, 299, 357, 365, 404, 373, 416, 421, 459, 314, 368, 378, 419, 387, 427, 434, 467, 396, 437, 443, 473, 447, 478, 482, 496, 78, 158, 163, 240, 192, 250, 261, 316, 206, 258, 271, 329, 282, 337, 349, 401, 217, 280, 285, 343, 295, 353, 361, 408, 307, 364, 372, 415, 383, 423, 429, 466, 243, 292, 304, 360, 310, 367, 375, 420, 328, 379, 388, 428, 397, 435, 441, 472, 338, 391, 403, 438, 409, 445, 450, 477, 417, 454, 457, 483, 462, 485, 487, 501, 265, 305, 324, 381, 336, 389, 394, 436, 351, 400, 406, 444, 413, 448, 455, 479, 366, 410, 418, 451, 424, 456, 461, 484, 432, 463, 468, 490, 474, 492, 494, 505, 382, 425, 431, 460, 439, 465, 470, 491, 446, 471, 475, 493, 480, 495, 498, 506, 449, 476, 481, 497, 486, 499, 500, 507, 489, 502, 503, 508, 504, 509, 510, 511]









TABLE Z22







having a sequence length of 512:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
10



7
24



8
4



9
11



10
13



11
27



12
16



13
31



14
34



15
69



16
5



17
12



18
14



19
30



20
19



21
37



22
45



23
73



24
21



25
44



26
41



27
80



28
54



29
88



30
93



31
145



32
6



33
17



34
20



35
39



36
23



37
43



38
49



39
82



40
28



41
52



42
56



43
89



44
63



45
99



46
103



47
154



48
33



49
57



50
66



51
101



52
68



53
109



54
116



55
165



56
79



57
118



58
126



59
179



60
131



61
187



62
198



63
268



64
9



65
22



66
26



67
51



68
29



69
55



70
60



71
95



72
35



73
64



74
67



75
104



76
75



77
112



78
121



79
169



80
42



81
72



82
77



83
117



84
84



85
124



86
130



87
183



88
91



89
132



90
141



91
193



92
153



93
205



94
216



95
291



96
47



97
81



98
90



99
129



100
100



101
136



102
149



103
202



104
107



105
150



106
161



107
214



108
170



109
225



110
232



111
296



112
119



113
167



114
181



115
227



116
185



117
233



118
247



119
313



120
196



121
252



122
257



123
323



124
273



125
334



126
347



127
407



128
15



129
25



130
32



131
62



132
38



133
70



134
74



135
120



136
46



137
76



138
85



139
128



140
92



141
135



142
140



143
199



144
53



145
86



146
94



147
138



148
102



149
146



150
155



151
211



152
111



153
162



154
168



155
222



156
182



157
231



158
246



159
309



160
58



161
98



162
108



163
152



164
113



165
164



166
173



167
228



168
127



169
176



170
186



171
236



172
195



173
251



174
259



175
322



176
139



177
188



178
203



179
254



180
213



181
263



182
276



183
332



184
226



185
281



186
294



187
345



188
301



189
355



190
369



191
426



192
65



193
110



194
123



195
174



196
133



197
184



198
194



199
253



200
143



201
197



202
209



203
262



204
219



205
277



206
287



207
342



208
156



209
212



210
224



211
279



212
234



213
293



214
300



215
356



216
244



217
306



218
318



219
363



220
326



221
377



222
385



223
433



224
171



225
229



226
239



227
298



228
255



229
308



230
320



231
371



232
272



233
321



234
333



235
380



236
346



237
390



238
398



239
442



240
283



241
341



242
348



243
393



244
358



245
405



246
412



247
452



248
370



249
414



250
422



251
458



252
430



253
464



254
469



255
488



256
18



257
36



258
40



259
83



260
48



261
87



262
96



263
144



264
50



265
97



266
105



267
160



268
114



269
172



270
180



271
242



272
59



273
106



274
115



275
177



276
125



277
175



278
189



279
248



280
137



281
190



282
201



283
256



284
210



285
270



286
275



287
331



288
61



289
122



290
134



291
178



292
142



293
191



294
204



295
264



296
151



297
207



298
218



299
278



300
223



301
284



302
297



303
354



304
159



305
221



306
238



307
290



308
241



309
303



310
311



311
362



312
260



313
317



314
327



315
376



316
339



317
386



318
395



319
440



320
71



321
147



322
148



323
208



324
157



325
215



326
230



327
288



328
166



329
237



330
235



331
302



332
249



333
312



334
319



335
374



336
200



337
245



338
267



339
315



340
269



341
325



342
335



343
384



344
286



345
340



346
350



347
392



348
359



349
402



350
411



351
453



352
220



353
266



354
274



355
330



356
289



357
344



358
352



359
399



360
299



361
357



362
365



363
404



364
373



365
416



366
421



367
459



368
314



369
368



370
378



371
419



372
387



373
427



374
434



375
467



376
396



377
437



378
443



379
473



380
447



381
478



382
482



383
496



384
78



385
158



386
163



387
240



388
192



389
250



390
261



391
316



392
206



393
258



394
271



395
329



396
282



397
337



398
349



399
401



400
217



401
280



402
285



403
343



404
295



405
353



406
361



407
408



408
307



409
364



410
372



411
415



412
383



413
423



414
429



415
466



416
243



417
292



418
304



419
360



420
310



421
367



422
375



423
420



424
328



425
379



426
388



427
428



428
397



429
435



430
441



431
472



432
338



433
391



434
403



435
438



436
409



437
445



438
450



439
477



440
417



441
454



442
457



443
483



444
462



445
485



446
487



447
501



448
265



449
305



450
324



451
381



452
336



453
389



454
394



455
436



456
351



457
400



458
406



459
444



460
413



461
448



462
455



463
479



464
366



465
410



466
418



467
451



468
424



469
456



470
461



471
484



472
432



473
463



474
468



475
490



476
474



477
492



478
494



479
505



480
382



481
425



482
431



483
460



484
439



485
465



486
470



487
491



488
446



489
471



490
475



491
493



492
480



493
495



494
498



495
506



496
449



497
476



498
481



499
497



500
486



501
499



502
500



503
507



504
489



505
502



506
503



507
508



508
504



509
509



510
510



511
511










Sequence Z23, having a sequence length of 256:


[0, 1, 2, 7, 3, 8, 10, 23, 4, 11, 13, 26, 16, 30, 33, 62, 5, 12, 14, 29, 18, 35, 42, 65, 20, 41, 38, 71, 49, 77, 82, 122, 6, 17, 19, 37, 22, 40, 45, 73, 27, 47, 51, 78, 56, 86, 90, 128, 32, 52, 59, 88, 61, 94, 99, 134, 70, 101, 107, 143, 112, 150, 157, 194, 9, 21, 25, 46, 28, 50, 54, 84, 34, 57, 60, 91, 67, 97, 104, 137, 39, 64, 69, 100, 74, 106, 111, 146, 80, 113, 120, 152, 127, 161, 167, 203, 44, 72, 79, 110, 87, 116, 124, 159, 92, 125, 131, 166, 138, 171, 177, 206, 102, 135, 144, 173, 148, 178, 184, 213, 155, 186, 190, 218, 196, 222, 227, 243, 15, 24, 31, 55, 36, 63, 66, 103, 43, 68, 75, 109, 81, 115, 119, 158, 48, 76, 83, 117, 89, 123, 129, 163, 96, 132, 136, 169, 145, 176, 183, 212, 53, 85, 93, 126, 98, 133, 140, 174, 108, 142, 149, 180, 154, 185, 191, 217, 118, 151, 160, 188, 165, 193, 197, 220, 172, 200, 205, 225, 209, 229, 233, 247, 58, 95, 105, 141, 114, 147, 153, 187, 121, 156, 162, 192, 168, 198, 202, 224, 130, 164, 170, 199, 179, 204, 208, 230, 182, 210, 214, 232, 219, 236, 238, 249, 139, 175, 181, 207, 189, 211, 215, 235, 195, 216, 221, 237, 226, 239, 241, 250, 201, 223, 228, 240, 231, 242, 244, 251, 234, 245, 246, 252, 248, 253, 254, 255]









TABLE Z23







having a sequence length of 256:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
10



7
23



8
4



9
11



10
13



11
26



12
16



13
30



14
33



15
62



16
5



17
12



18
14



19
29



20
18



21
35



22
42



23
65



24
20



25
41



26
38



27
71



28
49



29
77



30
82



31
122



32
6



33
17



34
19



35
37



36
22



37
40



38
45



39
73



40
27



41
47



42
51



43
78



44
56



45
86



46
90



47
128



48
32



49
52



50
59



51
88



52
61



53
94



54
99



55
134



56
70



57
101



58
107



59
143



60
112



61
150



62
157



63
194



64
9



65
21



66
25



67
46



68
28



69
50



70
54



71
84



72
34



73
57



74
60



75
91



76
67



77
97



78
104



79
137



80
39



81
64



82
69



83
100



84
74



85
106



86
111



87
146



88
80



89
113



90
120



91
152



92
127



93
161



94
167



95
203



96
44



97
72



98
79



99
110



100
87



101
116



102
124



103
159



104
92



105
125



106
131



107
166



108
138



109
171



110
177



111
206



112
102



113
135



114
144



115
173



116
148



117
178



118
184



119
213



120
155



121
186



122
190



123
218



124
196



125
222



126
227



127
243



128
15



129
24



130
31



131
55



132
36



133
63



134
66



135
103



136
43



137
68



138
75



139
109



140
81



141
115



142
119



143
158



144
48



145
76



146
83



147
117



148
89



149
123



150
129



151
163



152
96



153
132



154
136



155
169



156
145



157
176



158
183



159
212



160
53



161
85



162
93



163
126



164
98



165
133



166
140



167
174



168
108



169
142



170
149



171
180



172
154



173
185



174
191



175
217



176
118



177
151



178
160



179
188



180
165



181
193



182
197



183
220



184
172



185
200



186
205



187
225



188
209



189
229



190
233



191
247



192
58



193
95



194
105



195
141



196
114



197
147



198
153



199
187



200
121



201
156



202
162



203
192



204
168



205
198



206
202



207
224



208
130



209
164



210
170



211
199



212
179



213
204



214
208



215
230



216
182



217
210



218
214



219
232



220
219



221
236



222
238



223
249



224
139



225
175



226
181



227
207



228
189



229
211



230
215



231
235



232
195



233
216



234
221



235
237



236
226



237
239



238
241



239
250



240
201



241
223



242
228



243
240



244
231



245
242



246
244



247
251



248
234



249
245



250
246



251
252



252
248



253
253



254
254



255
255










Sequence Z24, having a sequence length of 128:


[0, 1, 2, 7, 3, 8, 10, 22, 4, 11, 13, 24, 15, 28, 30, 53, 5, 12, 14, 27, 17, 32, 38, 55, 19, 37, 34, 59, 43, 63, 67, 90, 6, 16, 18, 33, 21, 36, 40, 61, 25, 42, 45, 64, 48, 69, 72, 94, 29, 46, 50, 71, 52, 75, 77, 96, 58, 79, 83, 100, 86, 104, 107, 119, 9, 20, 23, 41, 26, 44, 47, 68, 31, 49, 51, 73, 56, 76, 81, 98, 35, 54, 57, 78, 62, 82, 85, 102, 66, 87, 89, 105, 93, 109, 111, 121, 39, 60, 65, 84, 70, 88, 91, 108, 74, 92, 95, 110, 99, 112, 114, 122, 80, 97, 101, 113, 103, 115, 116, 123, 106, 117, 118, 124, 120, 125, 126, 127]









TABLE Z24







having a length of 128:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
10



7
22



8
4



9
11



10
13



11
24



12
15



13
28



14
30



15
53



16
5



17
12



18
14



19
27



20
17



21
32



22
38



23
55



24
19



25
37



26
34



27
59



28
43



29
63



30
67



31
90



32
6



33
16



34
18



35
33



36
21



37
36



38
40



39
61



40
25



41
42



42
45



43
64



44
48



45
69



46
72



47
94



48
29



49
46



50
50



51
71



52
52



53
75



54
77



55
96



56
58



57
79



58
83



59
100



60
86



61
104



62
107



63
119



64
9



65
20



66
23



67
41



68
26



69
44



70
47



71
68



72
31



73
49



74
51



75
73



76
56



77
76



78
81



79
98



80
35



81
54



82
57



83
78



84
62



85
82



86
85



87
102



88
66



89
87



90
89



91
105



92
93



93
109



94
111



95
121



96
39



97
60



98
65



99
84



100
70



101
88



102
91



103
108



104
74



105
92



106
95



107
110



108
99



109
112



110
114



111
122



112
80



113
97



114
101



115
113



116
103



117
115



118
116



119
123



120
106



121
117



122
118



123
124



124
120



125
125



126
126



127
127










Sequence Z25, having a sequence length of 64:


[0, 1, 2, 7, 3, 8, 9, 20, 4, 10, 12, 21, 14, 24, 26, 41, 5, 11, 13, 23, 16, 27, 32, 42, 18, 31, 29, 44, 35, 46, 48, 57, 6, 15, 17, 28, 19, 30, 33, 45, 22, 34, 36, 47, 38, 49, 51, 58, 25, 37, 39, 50, 40, 52, 53, 59, 43, 54, 55, 60, 56, 61, 62, 63]









TABLE Z25







having a sequence length of 64:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
2



3
7



4
3



5
8



6
9



7
20



8
4



9
10



10
12



11
21



12
14



13
24



14
26



15
41



16
5



17
11



18
13



19
23



20
16



21
27



22
32



23
42



24
18



25
31



26
29



27
44



28
35



29
46



30
48



31
57



32
6



33
15



34
17



35
28



36
19



37
30



38
33



39
45



40
22



41
34



42
36



43
47



44
38



45
49



46
51



47
58



48
25



49
37



50
39



51
50



52
40



53
52



54
53



55
59



56
43



57
54



58
55



59
60



60
56



61
61



62
62



63
63










Sixth group of sequences (a criterion that considers optimal performance of List 4).


Sequence Q26, having a sequence length of 1024:


[0, 1, 4, 8, 2, 16, 32, 6, 64, 512, 3, 12, 5, 18, 128, 9, 33, 17, 10, 36, 66, 24, 256, 20, 65, 34, 7, 129, 40, 11, 72, 132, 513, 19, 48, 68, 13, 257, 14, 21, 130, 26, 80, 35, 258, 38, 136, 96, 22, 516, 37, 25, 67, 264, 41, 144, 28, 69, 260, 49, 74, 160, 42, 520, 134, 70, 44, 81, 272, 15, 50, 131, 192, 73, 23, 514, 137, 52, 288, 76, 133, 82, 27, 97, 259, 39, 528, 56, 138, 84, 29, 145, 261, 43, 320, 544, 98, 140, 265, 30, 88, 146, 262, 100, 518, 161, 71, 45, 273, 51, 148, 266, 576, 46, 75, 104, 164, 193, 53, 162, 515, 384, 268, 77, 152, 54, 85, 524, 289, 112, 274, 57, 78, 135, 517, 194, 83, 290, 168, 276, 86, 530, 58, 139, 322, 196, 101, 640, 60, 147, 176, 280, 99, 89, 521, 292, 141, 321, 200, 90, 545, 31, 142, 102, 263, 529, 47, 386, 105, 296, 208, 522, 153, 92, 149, 267, 548, 163, 324, 113, 150, 578, 165, 55, 304, 106, 275, 536, 269, 385, 154, 768, 79, 108, 224, 166, 532, 59, 169, 114, 195, 577, 328, 270, 277, 87, 546, 156, 116, 388, 519, 336, 291, 278, 197, 641, 61, 177, 170, 552, 91, 281, 201, 198, 523, 62, 143, 294, 584, 172, 392, 103, 644, 120, 293, 282, 531, 352, 178, 202, 560, 323, 297, 93, 580, 107, 151, 209, 525, 284, 180, 400, 769, 94, 204, 298, 526, 326, 155, 533, 305, 109, 325, 642, 210, 184, 225, 538, 167, 300, 592, 115, 387, 329, 547, 110, 416, 770, 212, 271, 117, 550, 306, 157, 648, 226, 171, 330, 608, 337, 389, 534, 308, 216, 549, 121, 390, 537, 158, 279, 332, 579, 118, 173, 776, 338, 179, 553, 199, 353, 656, 283, 312, 540, 448, 228, 581, 393, 122, 181, 772, 232, 295, 561, 174, 394, 586, 63, 203, 672, 354, 554, 401, 340, 646, 124, 285, 582, 182, 299, 556, 240, 211, 593, 286, 344, 784, 396, 205, 527, 95, 418, 562, 185, 643, 213, 402, 704, 307, 327, 585, 356, 535, 206, 186, 649, 301, 111, 564, 302, 800, 360, 227, 588, 417, 159, 645, 404, 594, 309, 214, 539, 449, 331, 609, 119, 771, 217, 188, 551, 229, 568, 333, 408, 650, 310, 596, 339, 420, 541, 218, 657, 368, 773, 123, 230, 555, 175, 832, 391, 313, 610, 241, 652, 450, 334, 777, 220, 542, 341, 600, 424, 314, 658, 183, 774, 233, 612, 355, 673, 125, 287, 583, 395, 557, 234, 785, 316, 345, 563, 187, 660, 452, 778, 403, 558, 342, 397, 587, 207, 616, 236, 676, 432, 705, 346, 565, 361, 674, 126, 242, 896, 357, 780, 405, 589, 215, 664, 398, 566, 303, 597, 358, 801, 419, 624, 456, 786, 348, 189, 569, 244, 590, 410, 647, 219, 706, 311, 595, 362, 802, 464, 680, 406, 788, 421, 598, 231, 570, 248, 651, 369, 834, 190, 708, 409, 613, 315, 572, 364, 659, 422, 335, 221, 688, 451, 792, 370, 611, 425, 601, 235, 804, 343, 653, 412, 833, 480, 712, 222, 602, 317, 543, 453, 654, 426, 614, 372, 775, 433, 559, 237, 898, 617, 347, 808, 243, 720, 454, 665, 318, 604, 376, 661, 428, 779, 238, 675, 359, 836, 458, 625, 399, 662, 677, 245, 567, 434, 816, 457, 618, 349, 787, 465, 781, 897, 363, 666, 407, 591, 127, 620, 246, 736, 436, 678, 571, 350, 681, 249, 626, 460, 707, 840, 411, 782, 365, 789, 440, 599, 374, 668, 628, 423, 900, 466, 848, 803, 250, 790, 371, 709, 191, 573, 689, 481, 682, 413, 603, 793, 366, 713, 468, 710, 429, 574, 655, 252, 806, 414, 684, 904, 373, 615, 482, 632, 805, 223, 794, 864, 427, 690, 472, 714, 835, 455, 809, 377, 605, 619, 435, 663, 721, 319, 796, 430, 692, 912, 239, 606, 716, 461, 810, 484, 838, 667, 378, 817, 621, 437, 837, 722, 247, 696, 380, 737, 679, 459, 812, 627, 488, 899, 841, 441, 622, 928, 351, 724, 783, 469, 629, 818, 438, 669, 462, 738, 683, 251, 842, 849, 496, 901, 820, 728, 467, 633, 902, 367, 670, 791, 442, 844, 630, 474, 685, 850, 483, 691, 711, 379, 865, 795, 415, 824, 960, 740, 253, 905, 634, 444, 693, 744, 485, 807, 686, 906, 470, 575, 715, 375, 866, 913, 473, 852, 636, 797, 431, 694, 811, 486, 752, 723, 798, 489, 856, 908, 254, 717, 607, 930, 476, 697, 725, 914, 439, 819, 839, 868, 492, 718, 698, 381, 813, 623, 814, 498, 872, 739, 929, 445, 671, 916, 821, 463, 726, 961, 843, 490, 631, 729, 700, 382, 741, 845, 920, 471, 822, 851, 932, 730, 497, 880, 635, 742, 443, 687, 903, 825, 475, 753, 962, 846, 732, 500, 853, 936, 826, 446, 695, 745, 867, 637, 487, 799, 907, 746, 828, 493, 857, 699, 964, 915, 477, 854, 909, 719, 504, 748, 944, 858, 873, 638, 478, 754, 869, 917, 727, 499, 910, 815, 870, 931, 255, 968, 860, 701, 756, 922, 491, 731, 823, 874, 976, 918, 502, 933, 743, 760, 881, 494, 702, 921, 827, 876, 934, 847, 505, 733, 963, 882, 937, 747, 383, 855, 924, 992, 734, 829, 965, 501, 938, 884, 945, 749, 859, 755, 479, 966, 830, 888, 940, 750, 871, 506, 970, 911, 757, 946, 969, 861, 977, 447, 875, 919, 639, 758, 948, 862, 761, 508, 972, 923, 877, 952, 886, 935, 978, 762, 503, 883, 703, 993, 925, 878, 980, 941, 764, 495, 926, 885, 994, 735, 939, 984, 967, 889, 947, 831, 507, 942, 751, 973, 996, 890, 949, 759, 892, 971, 1000, 953, 509, 863, 981, 950, 974, 763, 1008, 979, 879, 954, 986, 995, 891, 927, 510, 765, 956, 997, 982, 887, 985, 943, 998, 1001, 766, 988, 951, 1004, 893, 1010, 957, 975, 511, 1002, 894, 983, 1009, 955, 987, 1012, 958, 999, 1005, 989, 1016, 990, 1011, 767, 1003, 1014, 1006, 1017, 895, 1013, 991, 1018, 959, 1020, 1015, 1007, 1019, 1021, 1022, 1023]









TABLE Q26







having a sequence length of 1024:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
4



3
8



4
2



5
16



6
32



7
6



8
64



9
512



10
3



11
12



12
5



13
18



14
128



15
9



16
33



17
17



18
10



19
36



20
66



21
24



22
256



23
20



24
65



25
34



26
7



27
129



28
40



29
11



30
72



31
132



32
513



33
19



34
48



35
68



36
13



37
257



38
14



39
21



40
130



41
26



42
80



43
35



44
258



45
38



46
136



47
96



48
22



49
516



50
37



51
25



52
67



53
264



54
41



55
144



56
28



57
69



58
260



59
49



60
74



61
160



62
42



63
520



64
134



65
70



66
44



67
81



68
272



69
15



70
50



71
131



72
192



73
73



74
23



75
514



76
137



77
52



78
288



79
76



80
133



81
82



82
27



83
97



84
259



85
39



86
528



87
56



88
138



89
84



90
29



91
145



92
261



93
43



94
320



95
544



96
98



97
140



98
265



99
30



100
88



101
146



102
262



103
100



104
518



105
161



106
71



107
45



108
273



109
51



110
148



111
266



112
576



113
46



114
75



115
104



116
164



117
193



118
53



119
162



120
515



121
384



122
268



123
77



124
152



125
54



126
85



127
524



128
289



129
112



130
274



131
57



132
78



133
135



134
517



135
194



136
83



137
290



138
168



139
276



140
86



141
530



142
58



143
139



144
322



145
196



146
101



147
640



148
60



149
147



150
176



151
280



152
99



153
89



154
521



155
292



156
141



157
321



158
200



159
90



160
545



161
31



162
142



163
102



164
263



165
529



166
47



167
386



168
105



169
296



170
208



171
522



172
153



173
92



174
149



175
267



176
548



177
163



178
324



179
113



180
150



181
578



182
165



183
55



184
304



185
106



186
275



187
536



188
269



189
385



190
154



191
768



192
79



193
108



194
224



195
166



196
532



197
59



198
169



199
114



200
195



201
577



202
328



203
270



204
277



205
87



206
546



207
156



208
116



209
388



210
519



211
336



212
291



213
278



214
197



215
641



216
61



217
177



218
170



219
552



220
91



221
281



222
201



223
198



224
523



225
62



226
143



227
294



228
584



229
172



230
392



231
103



232
644



233
120



234
293



235
282



236
531



237
352



238
178



239
202



240
560



241
323



242
297



243
93



244
580



245
107



246
151



247
209



248
525



249
284



250
180



251
400



252
769



253
94



254
204



255
298



256
526



257
326



258
155



259
533



260
305



261
109



262
325



263
642



264
210



265
184



266
225



267
538



268
167



269
300



270
592



271
115



272
387



273
329



274
547



275
110



276
416



277
770



278
212



279
271



280
117



281
550



282
306



283
157



284
648



285
226



286
171



287
330



288
608



289
337



290
389



291
534



292
308



293
216



294
549



295
121



296
390



297
537



298
158



299
279



300
332



301
579



302
118



303
173



304
776



305
338



306
179



307
553



308
199



309
353



310
656



311
283



312
312



313
540



314
448



315
228



316
581



317
393



318
122



319
181



320
772



321
232



322
295



323
561



324
174



325
394



326
586



327
63



328
203



329
672



330
354



331
554



332
401



333
340



334
646



335
124



336
285



337
582



338
182



339
299



340
556



341
240



342
211



343
593



344
286



345
344



346
784



347
396



348
205



349
527



350
95



351
418



352
562



353
185



354
643



355
213



356
402



357
704



358
307



359
327



360
585



361
356



362
535



363
206



364
186



365
649



366
301



367
111



368
564



369
302



370
800



371
360



372
227



373
588



374
417



375
159



376
645



377
404



378
594



379
309



380
214



381
539



382
449



383
331



384
609



385
119



386
771



387
217



388
188



389
551



390
229



391
568



392
333



393
408



394
650



395
310



396
596



397
339



398
420



399
541



400
218



401
657



402
368



403
773



404
123



405
230



406
555



407
175



408
832



409
391



410
313



411
610



412
241



413
652



414
450



415
334



416
777



417
220



418
542



419
341



420
600



421
424



422
314



423
658



424
183



425
774



426
233



427
612



428
355



429
673



430
125



431
287



432
583



433
395



434
557



435
234



436
785



437
316



438
345



439
563



440
187



441
660



442
452



443
778



444
403



445
558



446
342



447
397



448
587



449
207



450
616



451
236



452
676



453
432



454
705



455
346



456
565



457
361



458
674



459
126



460
242



461
896



462
357



463
780



464
405



465
589



466
215



467
664



468
398



469
566



470
303



471
597



472
358



473
801



474
419



475
624



476
456



477
786



478
348



479
189



480
569



481
244



482
590



483
410



484
647



485
219



486
706



487
311



488
595



489
362



490
802



491
464



492
680



493
406



494
788



495
421



496
598



497
231



498
570



499
248



500
651



501
369



502
834



503
190



504
708



505
409



506
613



507
315



508
572



509
364



510
659



511
422



512
335



513
221



514
688



515
451



516
792



517
370



518
611



519
425



520
601



521
235



522
804



523
343



524
653



525
412



526
833



527
480



528
712



529
222



530
602



531
317



532
543



533
453



534
654



535
426



536
614



537
372



538
775



539
433



540
559



541
237



542
898



543
617



544
347



545
808



546
243



547
720



548
454



549
665



550
318



551
604



552
376



553
661



554
428



555
779



556
238



557
675



558
359



559
836



560
458



561
625



562
399



563
662



564
677



565
245



566
567



567
434



568
816



569
457



570
618



571
349



572
787



573
465



574
781



575
897



576
363



577
666



578
407



579
591



580
127



581
620



582
246



583
736



584
436



585
678



586
571



587
350



588
681



589
249



590
626



591
460



592
707



593
840



594
411



595
782



596
365



597
789



598
440



599
599



600
374



601
668



602
628



603
423



604
900



605
466



606
848



607
803



608
250



609
790



610
371



611
709



612
191



613
573



614
689



615
481



616
682



617
413



618
603



619
793



620
366



621
713



622
468



623
710



624
429



625
574



626
655



627
252



628
806



629
414



630
684



631
904



632
373



633
615



634
482



635
632



636
805



637
223



638
794



639
864



640
427



641
690



642
472



643
714



644
835



645
455



646
809



647
377



648
605



649
619



650
435



651
663



652
721



653
319



654
796



655
430



656
692



657
912



658
239



659
606



660
716



661
461



662
810



663
484



664
838



665
667



666
378



667
817



668
621



669
437



670
837



671
722



672
247



673
696



674
380



675
737



676
679



677
459



678
812



679
627



680
488



681
899



682
841



683
441



684
622



685
928



686
351



687
724



688
783



689
469



690
629



691
818



692
438



693
669



694
462



695
738



696
683



697
251



698
842



699
849



700
496



701
901



702
820



703
728



704
467



705
633



706
902



707
367



708
670



709
791



710
442



711
844



712
630



713
474



714
685



715
850



716
483



717
691



718
711



719
379



720
865



721
795



722
415



723
824



724
960



725
740



726
253



727
905



728
634



729
444



730
693



731
744



732
485



733
807



734
686



735
906



736
470



737
575



738
715



739
375



740
866



741
913



742
473



743
852



744
636



745
797



746
431



747
694



748
811



749
486



750
752



751
723



752
798



753
489



754
856



755
908



756
254



757
717



758
607



759
930



760
476



761
697



762
725



763
914



764
439



765
819



766
839



767
868



768
492



769
718



770
698



771
381



772
813



773
623



774
814



775
498



776
872



777
739



778
929



779
445



780
671



781
916



782
821



783
463



784
726



785
961



786
843



787
490



788
631



789
729



790
700



791
382



792
741



793
845



794
920



795
471



796
822



797
851



798
932



799
730



800
497



801
880



802
635



803
742



804
443



805
687



806
903



807
825



808
475



809
753



810
962



811
846



812
732



813
500



814
853



815
936



816
826



817
446



818
695



819
745



820
867



821
637



822
487



823
799



824
907



825
746



826
828



827
493



828
857



829
699



830
964



831
915



832
477



833
854



834
909



835
719



836
504



837
748



838
944



839
858



840
873



841
638



842
478



843
754



844
869



845
917



846
727



847
499



848
910



849
815



850
870



851
931



852
255



853
968



854
860



855
701



856
756



857
922



858
491



859
731



860
823



861
874



862
976



863
918



864
502



865
933



866
743



867
760



868
881



869
494



870
702



871
921



872
827



873
876



874
934



875
847



876
505



877
733



878
963



879
882



880
937



881
747



882
383



883
855



884
924



885
992



886
734



887
829



888
965



889
501



890
938



891
884



892
945



893
749



894
859



895
755



896
479



897
966



898
830



899
888



900
940



901
750



902
871



903
506



904
970



905
911



906
757



907
946



908
969



909
861



910
977



911
447



912
875



913
919



914
639



915
758



916
948



917
862



918
761



919
508



920
972



921
923



922
877



923
952



924
886



925
935



926
978



927
762



928
503



929
883



930
703



931
993



932
925



933
878



934
980



935
941



936
764



937
495



938
926



939
885



940
994



941
735



942
939



943
984



944
967



945
889



946
947



947
831



948
507



949
942



950
751



951
973



952
996



953
890



954
949



955
759



956
892



957
971



958
1000



959
953



960
509



961
863



962
981



963
950



964
974



965
763



966
1008



967
979



968
879



969
954



970
986



971
995



972
891



973
927



974
510



975
765



976
956



977
997



978
982



979
887



980
985



981
943



982
998



983
1001



984
766



985
988



986
951



987
1004



988
893



989
1010



990
957



991
975



992
511



993
1002



994
894



995
983



996
1009



997
955



998
987



999
1012



1000
958



1001
999



1002
1005



1003
989



1004
1016



1005
990



1006
1011



1007
767



1008
1003



1009
1014



1010
1006



1011
1017



1012
895



1013
1013



1014
991



1015
1018



1016
959



1017
1020



1018
1015



1019
1007



1020
1019



1021
1021



1022
1022



1023
1023










Sequence Q27, having a sequence length of 512:


[0, 1, 4, 8, 2, 16, 32, 6, 64, 3, 12, 5, 18, 128, 9, 33, 17, 10, 36, 66, 24, 256, 20, 65, 34, 7, 129, 40, 11, 72, 132, 19, 48, 68, 13, 257, 14, 21, 130, 26, 80, 35, 258, 38, 136, 96, 22, 37, 25, 67, 264, 41, 144, 28, 69, 260, 49, 74, 160, 42, 134, 70, 44, 81, 272, 15, 50, 131, 192, 73, 23, 137, 52, 288, 76, 133, 82, 27, 97, 259, 39, 56, 138, 84, 29, 145, 261, 43, 320, 98, 140, 265, 30, 88, 146, 262, 100, 161, 71, 45, 273, 51, 148, 266, 46, 75, 104, 164, 193, 53, 162, 384, 268, 77, 152, 54, 85, 289, 112, 274, 57, 78, 135, 194, 83, 290, 168, 276, 86, 58, 139, 322, 196, 101, 60, 147, 176, 280, 99, 89, 292, 141, 321, 200, 90, 31, 142, 102, 263, 47, 386, 105, 296, 208, 153, 92, 149, 267, 163, 324, 113, 150, 165, 55, 304, 106, 275, 269, 385, 154, 79, 108, 224, 166, 59, 169, 114, 195, 328, 270, 277, 87, 156, 116, 388, 336, 291, 278, 197, 61, 177, 170, 91, 281, 201, 198, 62, 143, 294, 172, 392, 103, 120, 293, 282, 352, 178, 202, 323, 297, 93, 107, 151, 209, 284, 180, 400, 94, 204, 298, 326, 155, 305, 109, 325, 210, 184, 225, 167, 300, 115, 387, 329, 110, 416, 212, 271, 117, 306, 157, 226, 171, 330, 337, 389, 308, 216, 121, 390, 158, 279, 332, 118, 173, 338, 179, 199, 353, 283, 312, 448, 228, 393, 122, 181, 232, 295, 174, 394, 63, 203, 354, 401, 340, 124, 285, 182, 299, 240, 211, 286, 344, 396, 205, 95, 418, 185, 213, 402, 307, 327, 356, 206, 186, 301, 111, 302, 360, 227, 417, 159, 404, 309, 214, 449, 331, 119, 217, 188, 229, 333, 408, 310, 339, 420, 218, 368, 123, 230, 175, 391, 313, 241, 450, 334, 220, 341, 424, 314, 183, 233, 355, 125, 287, 395, 234, 316, 345, 187, 452, 403, 342, 397, 207, 236, 432, 346, 361, 126, 242, 357, 405, 215, 398, 303, 358, 419, 456, 348, 189, 244, 410, 219, 311, 362, 464, 406, 421, 231, 248, 369, 190, 409, 315, 364, 422, 335, 221, 451, 370, 425, 235, 343, 412, 480, 222, 317, 453, 426, 372, 433, 237, 347, 243, 454, 318, 376, 428, 238, 359, 458, 399, 245, 434, 457, 349, 465, 363, 407, 127, 246, 436, 350, 249, 460, 411, 365, 440, 374, 423, 466, 250, 371, 191, 481, 413, 366, 468, 429, 252, 414, 373, 482, 223, 427, 472, 455, 377, 435, 319, 430, 239, 461, 484, 378, 437, 247, 380, 459, 488, 441, 351, 469, 438, 462, 251, 496, 467, 367, 442, 474, 483, 379, 415, 253, 444, 485, 470, 375, 473, 431, 486, 489, 254, 476, 439, 492, 381, 498, 445, 463, 490, 382, 471, 497, 443, 475, 500, 446, 487, 493, 477, 504, 478, 499, 255, 491, 502, 494, 505, 383, 501, 479, 506, 447, 508, 503, 495, 507, 509, 510, 511]









TABLE Q27







having a sequence length of 512:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
4



3
8



4
2



5
16



6
32



7
6



8
64



9
3



10
12



11
5



12
18



13
128



14
9



15
33



16
17



17
10



18
36



19
66



20
24



21
256



22
20



23
65



24
34



25
7



26
129



27
40



28
11



29
72



30
132



31
19



32
48



33
68



34
13



35
257



36
14



37
21



38
130



39
26



40
80



41
35



42
258



43
38



44
136



45
96



46
22



47
37



48
25



49
67



50
264



51
41



52
144



53
28



54
69



55
260



56
49



57
74



58
160



59
42



60
134



61
70



62
44



63
81



64
272



65
15



66
50



67
131



68
192



69
73



70
23



71
137



72
52



73
288



74
76



75
133



76
82



77
27



78
97



79
259



80
39



81
56



82
138



83
84



84
29



85
145



86
261



87
43



88
320



89
98



90
140



91
265



92
30



93
88



94
146



95
262



96
100



97
161



98
71



99
45



100
273



101
51



102
148



103
266



104
46



105
75



106
104



107
164



108
193



109
53



110
162



111
384



112
268



113
77



114
152



115
54



116
85



117
289



118
112



119
274



120
57



121
78



122
135



123
194



124
83



125
290



126
168



127
276



128
86



129
58



130
139



131
322



132
196



133
101



134
60



135
147



136
176



137
280



138
99



139
89



140
292



141
141



142
321



143
200



144
90



145
31



146
142



147
102



148
263



149
47



150
386



151
105



152
296



153
208



154
153



155
92



156
149



157
267



158
163



159
324



160
113



161
150



162
165



163
55



164
304



165
106



166
275



167
269



168
385



169
154



170
79



171
108



172
224



173
166



174
59



175
169



176
114



177
195



178
328



179
270



180
277



181
87



182
156



183
116



184
388



185
336



186
291



187
278



188
197



189
61



190
177



191
170



192
91



193
281



194
201



195
198



196
62



197
143



198
294



199
172



200
392



201
103



202
120



203
293



204
282



205
352



206
178



207
202



208
323



209
297



210
93



211
107



212
151



213
209



214
284



215
180



216
400



217
94



218
204



219
298



220
326



221
155



222
305



223
109



224
325



225
210



226
184



227
225



228
167



229
300



230
115



231
387



232
329



233
110



234
416



235
212



236
271



237
117



238
306



239
157



240
226



241
171



242
330



243
337



244
389



245
308



246
216



247
121



248
390



249
158



250
279



251
332



252
118



253
173



254
338



255
179



256
199



257
353



258
283



259
312



260
448



261
228



262
393



263
122



264
181



265
232



266
295



267
174



268
394



269
63



270
203



271
354



272
401



273
340



274
124



275
285



276
182



277
299



278
240



279
211



280
286



281
344



282
396



283
205



284
95



285
418



286
185



287
213



288
402



289
307



290
327



291
356



292
206



293
186



294
301



295
111



296
302



297
360



298
227



299
417



300
159



301
404



302
309



303
214



304
449



305
331



306
119



307
217



308
188



309
229



310
333



311
408



312
310



313
339



314
420



315
218



316
368



317
123



318
230



319
175



320
391



321
313



322
241



323
450



324
334



325
220



326
341



327
424



328
314



329
183



330
233



331
355



332
125



333
287



334
395



335
234



336
316



337
345



338
187



339
452



340
403



341
342



342
397



343
207



344
236



345
432



346
346



347
361



348
126



349
242



350
357



351
405



352
215



353
398



354
303



355
358



356
419



357
456



358
348



359
189



360
244



361
410



362
219



363
311



364
362



365
464



366
406



367
421



368
231



369
248



370
369



371
190



372
409



373
315



374
364



375
422



376
335



377
221



378
451



379
370



380
425



381
235



382
343



383
412



384
480



385
222



386
317



387
453



388
426



389
372



390
433



391
237



392
347



393
243



394
454



395
318



396
376



397
428



398
238



399
359



400
458



401
399



402
245



403
434



404
457



405
349



406
465



407
363



408
407



409
127



410
246



411
436



412
350



413
249



414
460



415
411



416
365



417
440



418
374



419
423



420
466



421
250



422
371



423
191



424
481



425
413



426
366



427
468



428
429



429
252



430
414



431
373



432
482



433
223



434
427



435
472



436
455



437
377



438
435



439
319



440
430



441
239



442
461



443
484



444
378



445
437



446
247



447
380



448
459



449
488



450
441



451
351



452
469



453
438



454
462



455
251



456
496



457
467



458
367



459
442



460
474



461
483



462
379



463
415



464
253



465
444



466
485



467
470



468
375



469
473



470
431



471
486



472
489



473
254



474
476



475
439



476
492



477
381



478
498



479
445



480
463



481
490



482
382



483
471



484
497



485
443



486
475



487
500



488
446



489
487



490
493



491
477



492
504



493
478



494
499



495
255



496
491



497
502



498
494



499
505



500
383



501
501



502
479



503
506



504
447



505
508



506
503



507
495



508
507



509
509



510
510



511
511










Sequence Q28, having a sequence length of 256:


[0, 1, 4, 8, 2, 16, 32, 6, 64, 3, 12, 5, 18, 128, 9, 33, 17, 10, 36, 66, 24, 20, 65, 34, 7, 129, 40, 11, 72, 132, 19, 48, 68, 13, 14, 21, 130, 26, 80, 35, 38, 136, 96, 22, 37, 25, 67, 41, 144, 28, 69, 49, 74, 160, 42, 134, 70, 44, 81, 15, 50, 131, 192, 73, 23, 137, 52, 76, 133, 82, 27, 97, 39, 56, 138, 84, 29, 145, 43, 98, 140, 30, 88, 146, 100, 161, 71, 45, 51, 148, 46, 75, 104, 164, 193, 53, 162, 77, 152, 54, 85, 112, 57, 78, 135, 194, 83, 168, 86, 58, 139, 196, 101, 60, 147, 176, 99, 89, 141, 200, 90, 31, 142, 102, 47, 105, 208, 153, 92, 149, 163, 113, 150, 165, 55, 106, 154, 79, 108, 224, 166, 59, 169, 114, 195, 87, 156, 116, 197, 61, 177, 170, 91, 201, 198, 62, 143, 172, 103, 120, 178, 202, 93, 107, 151, 209, 180, 94, 204, 155, 109, 210, 184, 225, 167, 115, 110, 212, 117, 157, 226, 171, 216, 121, 158, 118, 173, 179, 199, 228, 122, 181, 232, 174, 63, 203, 124, 182, 240, 211, 205, 95, 185, 213, 206, 186, 111, 227, 159, 214, 119, 217, 188, 229, 218, 123, 230, 175, 241, 220, 183, 233, 125, 234, 187, 207, 236, 126, 242, 215, 189, 244, 219, 231, 248, 190, 221, 235, 222, 237, 243, 238, 245, 127, 246, 249, 250, 191, 252, 223, 239, 247, 251, 253, 254, 255]









TABLE Q28







having a sequence length of 256:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
4



3
8



4
2



5
16



6
32



7
6



8
64



9
3



10
12



11
5



12
18



13
128



14
9



15
33



16
17



17
10



18
36



19
66



20
24



21
20



22
65



23
34



24
7



25
129



26
40



27
11



28
72



29
132



30
19



31
48



32
68



33
13



34
14



35
21



36
130



37
26



38
80



39
35



40
38



41
136



42
96



43
22



44
37



45
25



46
67



47
41



48
144



49
28



50
69



51
49



52
74



53
160



54
42



55
134



56
70



57
44



58
81



59
15



60
50



61
131



62
192



63
73



64
23



65
137



66
52



67
76



68
133



69
82



70
27



71
97



72
39



73
56



74
138



75
84



76
29



77
145



78
43



79
98



80
140



81
30



82
88



83
146



84
100



85
161



86
71



87
45



88
51



89
148



90
46



91
75



92
104



93
164



94
193



95
53



96
162



97
77



98
152



99
54



100
85



101
112



102
57



103
78



104
135



105
194



106
83



107
168



108
86



109
58



110
139



111
196



112
101



113
60



114
147



115
176



116
99



117
89



118
141



119
200



120
90



121
31



122
142



123
102



124
47



125
105



126
208



127
153



128
92



129
149



130
163



131
113



132
150



133
165



134
55



135
106



136
154



137
79



138
108



139
224



140
166



141
59



142
169



143
114



144
195



145
87



146
156



147
116



148
197



149
61



150
177



151
170



152
91



153
201



154
198



155
62



156
143



157
172



158
103



159
120



160
178



161
202



162
93



163
107



164
151



165
209



166
180



167
94



168
204



169
155



170
109



171
210



172
184



173
225



174
167



175
115



176
110



177
212



178
117



179
157



180
226



181
171



182
216



183
121



184
158



185
118



186
173



187
179



188
199



189
228



190
122



191
181



192
232



193
174



194
63



195
203



196
124



197
182



198
240



199
211



200
205



201
95



202
185



203
213



204
206



205
186



206
111



207
227



208
159



209
214



210
119



211
217



212
188



213
229



214
218



215
123



216
230



217
175



218
241



219
220



220
183



221
233



222
125



223
234



224
187



225
207



226
236



227
126



228
242



229
215



230
189



231
244



232
219



233
231



234
248



235
190



236
221



237
235



238
222



239
237



240
243



241
238



242
245



243
127



244
246



245
249



246
250



247
191



248
252



249
223



250
239



251
247



252
251



253
253



254
254



255
255










Sequence Q29, having a sequence length of 128:


[0, 1, 4, 8, 2, 16, 32, 6, 64, 3, 12, 5, 18, 9, 33, 17, 10, 36, 66, 24, 20, 65, 34, 7, 40, 11, 72, 19, 48, 68, 13, 14, 21, 26, 80, 35, 38, 96, 22, 37, 25, 67, 41, 28, 69, 49, 74, 42, 70, 44, 81, 15, 50, 73, 23, 52, 76, 82, 27, 97, 39, 56, 84, 29, 43, 98, 30, 88, 100, 71, 45, 51, 46, 75, 104, 53, 77, 54, 85, 112, 57, 78, 83, 86, 58, 101, 60, 99, 89, 90, 31, 102, 47, 105, 92, 113, 55, 106, 79, 108, 59, 114, 87, 116, 61, 91, 62, 103, 120, 93, 107, 94, 109, 115, 110, 117, 121, 118, 122, 63, 124, 95, 111, 119, 123, 125, 126, 127]









TABLE Q29







having a sequence length of 128:










Reliability or sequence
Polarized channel



number of reliability
sequence number














0
0



1
1



2
4



3
8



4
2



5
16



6
32



7
6



8
64



9
3



10
12



11
5



12
18



13
9



14
33



15
17



16
10



17
36



18
66



19
24



20
20



21
65



22
34



23
7



24
40



25
11



26
72



27
19



28
48



29
68



30
13



31
14



32
21



33
26



34
80



35
35



36
38



37
96



38
22



39
37



40
25



41
67



42
41



43
28



44
69



45
49



46
74



47
42



48
70



49
44



50
81



51
15



52
50



53
73



54
23



55
52



56
76



57
82



58
27



59
97



60
39



61
56



62
84



63
29



64
43



65
98



66
30



67
88



68
100



69
71



70
45



71
51



72
46



73
75



74
104



75
53



76
77



77
54



78
85



79
112



80
57



81
78



82
83



83
86



84
58



85
101



86
60



87
99



88
89



89
90



90
31



91
102



92
47



93
105



94
92



95
113



96
55



97
106



98
79



99
108



100
59



101
114



102
87



103
116



104
61



105
91



106
62



107
103



108
120



109
93



110
107



111
94



112
109



113
115



114
110



115
117



116
121



117
118



118
122



119
63



120
124



121
95



122
111



123
119



124
123



125
125



126
126



127
127










Sequence Q30, having a sequence length of 64:


[0, 1, 4, 8, 2, 16, 32, 6, 3, 12, 5, 18, 9, 33, 17, 10, 36, 24, 20, 34, 7, 40, 11, 19, 48, 13, 14, 21, 26, 35, 38, 22, 37, 25, 41, 28, 49, 42, 44, 15, 50, 23, 52, 27, 39, 56, 29, 43, 30, 45, 51, 46, 53, 54, 57, 58, 60, 31, 47, 55, 59, 61, 62, 63]









TABLE Q30







having a sequence length of 64:










Reliability
Polarized



or sequence
channel



number of
sequence



reliability
number














0
0



1
1



2
4



3
8



4
2



5
16



6
32



7
6



8
3



9
12



10
5



11
18



12
9



13
33



14
17



15
10



16
36



17
24



18
20



19
34



20
7



21
40



22
11



23
19



24
48



25
13



26
14



27
21



28
26



29
35



30
38



31
22



32
37



33
25



34
41



35
28



36
49



37
42



38
44



39
15



40
50



41
23



42
52



43
27



44
39



45
56



46
29



47
43



48
30



49
45



50
51



51
46



52
53



53
54



54
57



55
58



56
60



57
31



58
47



59
55



60
59



61
61



62
62



63
63










Sequence Z26, having a sequence length of 1024:


[0, 1, 4, 10, 2, 12, 7, 26, 3, 15, 18, 29, 11, 36, 38, 69, 5, 17, 13, 33, 23, 39, 48, 74, 21, 51, 41, 82, 56, 90, 99, 161, 6, 16, 25, 43, 19, 50, 45, 85, 28, 54, 62, 93, 66, 107, 113, 166, 34, 59, 70, 109, 77, 118, 125, 183, 87, 131, 142, 197, 148, 216, 225, 327, 8, 24, 20, 52, 35, 57, 65, 106, 30, 73, 60, 114, 79, 123, 132, 192, 42, 67, 81, 136, 89, 126, 140, 205, 100, 153, 159, 220, 173, 243, 253, 350, 47, 83, 96, 152, 103, 146, 163, 231, 115, 168, 185, 245, 193, 261, 275, 367, 129, 179, 199, 271, 208, 280, 302, 385, 233, 295, 318, 404, 335, 430, 459, 580, 14, 27, 40, 71, 31, 80, 64, 133, 46, 76, 88, 143, 97, 156, 162, 226, 55, 91, 101, 149, 110, 174, 180, 246, 124, 172, 190, 258, 207, 283, 298, 375, 61, 105, 119, 177, 116, 182, 195, 268, 138, 198, 218, 286, 229, 303, 324, 407, 150, 217, 238, 306, 250, 319, 338, 424, 265, 353, 364, 440, 388, 479, 503, 612, 72, 117, 135, 200, 145, 214, 223, 308, 158, 222, 239, 328, 254, 348, 363, 449, 170, 247, 264, 342, 278, 355, 380, 466, 293, 387, 400, 485, 417, 513, 529, 637, 194, 266, 285, 372, 315, 390, 405, 497, 321, 426, 435, 521, 451, 541, 556, 658, 341, 412, 460, 546, 481, 565, 582, 672, 499, 589, 608, 697, 627, 726, 756, 852, 22, 37, 44, 84, 58, 92, 102, 164, 53, 98, 111, 175, 122, 188, 203, 279, 68, 108, 130, 186, 139, 204, 213, 299, 151, 221, 235, 311, 249, 336, 344, 431, 78, 128, 137, 212, 155, 234, 227, 322, 169, 242, 255, 339, 269, 366, 369, 470, 184, 260, 282, 358, 292, 379, 395, 487, 312, 410, 422, 507, 437, 531, 550, 653, 94, 157, 144, 241, 178, 262, 257, 359, 202, 273, 287, 383, 300, 392, 415, 512, 211, 289, 305, 397, 333, 419, 446, 523, 345, 438, 455, 544, 478, 571, 587, 686, 237, 309, 330, 428, 361, 462, 472, 558, 371, 457, 489, 576, 509, 596, 620, 707, 402, 501, 517, 610, 537, 632, 600, 739, 552, 647, 666, 719, 674, 771, 791, 882, 121, 189, 167, 272, 209, 290, 296, 409, 230, 317, 325, 433, 347, 447, 468, 562, 251, 332, 356, 444, 377, 464, 493, 578, 393, 505, 483, 594, 525, 617, 629, 722, 276, 374, 351, 474, 398, 495, 511, 603, 421, 519, 535, 640, 554, 624, 655, 746, 453, 539, 567, 650, 584, 669, 692, 764, 598, 683, 710, 804, 729, 779, 817, 911, 314, 382, 414, 515, 442, 533, 548, 645, 476, 569, 560, 677, 591, 661, 694, 783, 491, 573, 605, 704, 622, 689, 736, 795, 642, 742, 713, 808, 760, 832, 842, 896, 527, 615, 634, 716, 663, 732, 749, 822, 680, 753, 787, 858, 768, 827, 869, 937, 700, 800, 775, 847, 813, 889, 864, 928, 836, 876, 903, 948, 919, 960, 974, 992, 9, 32, 75, 120, 49, 134, 104, 210, 63, 154, 171, 224, 127, 248, 256, 349, 86, 165, 141, 236, 196, 259, 291, 362, 187, 297, 267, 381, 313, 399, 418, 532, 95, 160, 206, 274, 176, 294, 281, 389, 219, 307, 331, 406, 340, 434, 445, 540, 240, 323, 352, 439, 368, 456, 469, 566, 391, 480, 498, 586, 508, 613, 625, 737, 112, 201, 181, 301, 244, 316, 337, 432, 228, 360, 326, 448, 373, 465, 482, 579, 270, 343, 378, 488, 396, 471, 496, 599, 420, 520, 530, 618, 551, 648, 659, 758, 288, 384, 411, 518, 427, 506, 536, 633, 450, 543, 570, 649, 581, 668, 684, 773, 475, 561, 590, 679, 602, 690, 712, 788, 635, 705, 728, 802, 744, 821, 841, 914, 147, 215, 263, 354, 232, 376, 334, 484, 284, 365, 394, 500, 413, 524, 534, 626, 310, 401, 423, 510, 441, 553, 563, 651, 467, 549, 577, 665, 601, 693, 708, 780, 329, 429, 458, 557, 452, 564, 585, 676, 492, 588, 616, 696, 630, 714, 734, 805, 514, 614, 641, 717, 656, 730, 747, 818, 673, 761, 770, 829, 790, 855, 870, 930, 357, 454, 486, 592, 504, 611, 623, 718, 528, 621, 643, 738, 660, 757, 769, 835, 547, 652, 671, 751, 687, 762, 784, 846, 703, 789, 799, 859, 812, 877, 886, 941, 583, 675, 695, 777, 725, 792, 803, 866, 731, 819, 825, 881, 837, 893, 901, 950, 750, 809, 843, 895, 856, 906, 915, 955, 867, 918, 927, 965, 936, 975, 984, 1007, 191, 252, 277, 386, 320, 403, 425, 538, 304, 416, 443, 555, 463, 574, 595, 688, 346, 436, 477, 572, 494, 597, 609, 709, 516, 619, 638, 721, 654, 745, 752, 823, 370, 473, 490, 607, 522, 636, 628, 733, 545, 646, 662, 748, 678, 772, 774, 849, 568, 667, 691, 765, 702, 782, 796, 860, 723, 807, 816, 872, 826, 887, 898, 947, 408, 526, 502, 644, 559, 670, 664, 766, 593, 682, 698, 786, 711, 793, 811, 875, 606, 699, 715, 797, 743, 814, 833, 883, 754, 828, 839, 894, 854, 909, 917, 961, 639, 720, 740, 820, 767, 844, 850, 902, 776, 840, 861, 912, 873, 922, 933, 968, 801, 868, 879, 929, 891, 939, 924, 979, 899, 945, 953, 972, 956, 988, 994, 1012, 461, 575, 542, 681, 604, 701, 706, 806, 631, 727, 735, 824, 755, 834, 848, 905, 657, 741, 763, 831, 781, 845, 863, 913, 794, 871, 857, 921, 884, 932, 938, 973, 685, 778, 759, 851, 798, 865, 874, 925, 815, 880, 890, 942, 900, 935, 949, 981, 838, 892, 907, 946, 916, 954, 963, 986, 923, 959, 969, 997, 976, 990, 1000, 1016, 724, 785, 810, 878, 830, 888, 897, 944, 853, 908, 904, 957, 920, 951, 964, 991, 862, 910, 926, 967, 934, 962, 978, 995, 943, 980, 970, 998, 985, 1003, 1005, 1014, 885, 931, 940, 971, 952, 977, 982, 1001, 958, 983, 993, 1008, 987, 1002, 1010, 1019, 966, 996, 989, 1006, 999, 1013, 1009, 1018, 1004, 1011, 1015, 1020, 1017, 1021, 1022, 1023]









TABLE Z26







having a sequence length of 1024:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
4



3
10



4
2



5
12



6
7



7
26



8
3



9
15



10
18



11
29



12
11



13
36



14
38



15
69



16
5



17
17



18
13



19
33



20
23



21
39



22
48



23
74



24
21



25
51



26
41



27
82



28
56



29
90



30
99



31
161



32
6



33
16



34
25



35
43



36
19



37
50



38
45



39
85



40
28



41
54



42
62



43
93



44
66



45
107



46
113



47
166



48
34



49
59



50
70



51
109



52
77



53
118



54
125



55
183



56
87



57
131



58
142



59
197



60
148



61
216



62
225



63
327



64
8



65
24



66
20



67
52



68
35



69
57



70
65



71
106



72
30



73
73



74
60



75
114



76
79



77
123



78
132



79
192



80
42



81
67



82
81



83
136



84
89



85
126



86
140



87
205



88
100



89
153



90
159



91
220



92
173



93
243



94
253



95
350



96
47



97
83



98
96



99
152



100
103



101
146



102
163



103
231



104
115



105
168



106
185



107
245



108
193



109
261



110
275



111
367



112
129



113
179



114
199



115
271



116
208



117
280



118
302



119
385



120
233



121
295



122
318



123
404



124
335



125
430



126
459



127
580



128
14



129
27



130
40



131
71



132
31



133
80



134
64



135
133



136
46



137
76



138
88



139
143



140
97



141
156



142
162



143
226



144
55



145
91



146
101



147
149



148
110



149
174



150
180



151
246



152
124



153
172



154
190



155
258



156
207



157
283



158
298



159
375



160
61



161
105



162
119



163
177



164
116



165
182



166
195



167
268



168
138



169
198



170
218



171
286



172
229



173
303



174
324



175
407



176
150



177
217



178
238



179
306



180
250



181
319



182
338



183
424



184
265



185
353



186
364



187
440



188
388



189
479



190
503



191
612



192
72



193
117



194
135



195
200



196
145



197
214



198
223



199
308



200
158



201
222



202
239



203
328



204
254



205
348



206
363



207
449



208
170



209
247



210
264



211
342



212
278



213
355



214
380



215
466



216
293



217
387



218
400



219
485



220
417



221
513



222
529



223
637



224
194



225
266



226
285



227
372



228
315



229
390



230
405



231
497



232
321



233
426



234
435



235
521



236
451



237
541



238
556



239
658



240
341



241
412



242
460



243
546



244
481



245
565



246
582



247
672



248
499



249
589



250
608



251
697



252
627



253
726



254
756



255
852



256
22



257
37



258
44



259
84



260
58



261
92



262
102



263
164



264
53



265
98



266
111



267
175



268
122



269
188



270
203



271
279



272
68



273
108



274
130



275
186



276
139



277
204



278
213



279
299



280
151



281
221



282
235



283
311



284
249



285
336



286
344



287
431



288
78



289
128



290
137



291
212



292
155



293
234



294
227



295
322



296
169



297
242



298
255



299
339



300
269



301
366



302
369



303
470



304
184



305
260



306
282



307
358



308
292



309
379



310
395



311
487



312
312



313
410



314
422



315
507



316
437



317
531



318
550



319
653



320
94



321
157



322
144



323
241



324
178



325
262



326
257



327
359



328
202



329
273



330
287



331
383



332
300



333
392



334
415



335
512



336
211



337
289



338
305



339
397



340
333



341
419



342
446



343
523



344
345



345
438



346
455



347
544



348
478



349
571



350
587



351
686



352
237



353
309



354
330



355
428



356
361



357
462



358
472



359
558



360
371



361
457



362
489



363
576



364
509



365
596



366
620



367
707



368
402



369
501



370
517



371
610



372
537



373
632



374
600



375
739



376
552



377
647



378
666



379
719



380
674



381
771



382
791



383
882



384
121



385
189



386
167



387
272



388
209



389
290



390
296



391
409



392
230



393
317



394
325



395
433



396
347



397
447



398
468



399
562



400
251



401
332



402
356



403
444



404
377



405
464



406
493



407
578



408
393



409
505



410
483



411
594



412
525



413
617



414
629



415
722



416
276



417
374



418
351



419
474



420
398



421
495



422
511



423
603



424
421



425
519



426
535



427
640



428
554



429
624



430
655



431
746



432
453



433
539



434
567



435
650



436
584



437
669



438
692



439
764



440
598



441
683



442
710



443
804



444
729



445
779



446
817



447
911



448
314



449
382



450
414



451
515



452
442



453
533



454
548



455
645



456
476



457
569



458
560



459
677



460
591



461
661



462
694



463
783



464
491



465
573



466
605



467
704



468
622



469
689



470
736



471
795



472
642



473
742



474
713



475
808



476
760



477
832



478
842



479
896



480
527



481
615



482
634



483
716



484
663



485
732



486
749



487
822



488
680



489
753



490
787



491
858



492
768



493
827



494
869



495
937



496
700



497
800



498
775



499
847



500
813



501
889



502
864



503
928



504
836



505
876



506
903



507
948



508
919



509
960



510
974



511
992



512
9



513
32



514
75



515
120



516
49



517
134



518
104



519
210



520
63



521
154



522
171



523
224



524
127



525
248



526
256



527
349



528
86



529
165



530
141



531
236



532
196



533
259



534
291



535
362



536
187



537
297



538
267



539
381



540
313



541
399



542
418



543
532



544
95



545
160



546
206



547
274



548
176



549
294



550
281



551
389



552
219



553
307



554
331



555
406



556
340



557
434



558
445



559
540



560
240



561
323



562
352



563
439



564
368



565
456



566
469



567
566



568
391



569
480



570
498



571
586



572
508



573
613



574
625



575
737



576
112



577
201



578
181



579
301



580
244



581
316



582
337



583
432



584
228



585
360



586
326



587
448



588
373



589
465



590
482



591
579



592
270



593
343



594
378



595
488



596
396



597
471



598
496



599
599



600
420



601
520



602
530



603
618



604
551



605
648



606
659



607
758



608
288



609
384



610
411



611
518



612
427



613
506



614
536



615
633



616
450



617
543



618
570



619
649



620
581



621
668



622
684



623
773



624
475



625
561



626
590



627
679



628
602



629
690



630
712



631
788



632
635



633
705



634
728



635
802



636
744



637
821



638
841



639
914



640
147



641
215



642
263



643
354



644
232



645
376



646
334



647
484



648
284



649
365



650
394



651
500



652
413



653
524



654
534



655
626



656
310



657
401



658
423



659
510



660
441



661
553



662
563



663
651



664
467



665
549



666
577



667
665



668
601



669
693



670
708



671
780



672
329



673
429



674
458



675
557



676
452



677
564



678
585



679
676



680
492



681
588



682
616



683
696



684
630



685
714



686
734



687
805



688
514



689
614



690
641



691
717



692
656



693
730



694
747



695
818



696
673



697
761



698
770



699
829



700
790



701
855



702
870



703
930



704
357



705
454



706
486



707
592



708
504



709
611



710
623



711
718



712
528



713
621



714
643



715
738



716
660



717
757



718
769



719
835



720
547



721
652



722
671



723
751



724
687



725
762



726
784



727
846



728
703



729
789



730
799



731
859



732
812



733
877



734
886



735
941



736
583



737
675



738
695



739
777



740
725



741
792



742
803



743
866



744
731



745
819



746
825



747
881



748
837



749
893



750
901



751
950



752
750



753
809



754
843



755
895



756
856



757
906



758
915



759
955



760
867



761
918



762
927



763
965



764
936



765
975



766
984



767
1007



768
191



769
252



770
277



771
386



772
320



773
403



774
425



775
538



776
304



777
416



778
443



779
555



780
463



781
574



782
595



783
688



784
346



785
436



786
477



787
572



788
494



789
597



790
609



791
709



792
516



793
619



794
638



795
721



796
654



797
745



798
752



799
823



800
370



801
473



802
490



803
607



804
522



805
636



806
628



807
733



808
545



809
646



810
662



811
748



812
678



813
772



814
774



815
849



816
568



817
667



818
691



819
765



820
702



821
782



822
796



823
860



824
723



825
807



826
816



827
872



828
826



829
887



830
898



831
947



832
408



833
526



834
502



835
644



836
559



837
670



838
664



839
766



840
593



841
682



842
698



843
786



844
711



845
793



846
811



847
875



848
606



849
699



850
715



851
797



852
743



853
814



854
833



855
883



856
754



857
828



858
839



859
894



860
854



861
909



862
917



863
961



864
639



865
720



866
740



867
820



868
767



869
844



870
850



871
902



872
776



873
840



874
861



875
912



876
873



877
922



878
933



879
968



880
801



881
868



882
879



883
929



884
891



885
939



886
924



887
979



888
899



889
945



890
953



891
972



892
956



893
988



894
994



895
1012



896
461



897
575



898
542



899
681



900
604



901
701



902
706



903
806



904
631



905
727



906
735



907
824



908
755



909
834



910
848



911
905



912
657



913
741



914
763



915
831



916
781



917
845



918
863



919
913



920
794



921
871



922
857



923
921



924
884



925
932



926
938



927
973



928
685



929
778



930
759



931
851



932
798



933
865



934
874



935
925



936
815



937
880



938
890



939
942



940
900



941
935



942
949



943
981



944
838



945
892



946
907



947
946



948
916



949
954



950
963



951
986



952
923



953
959



954
969



955
997



956
976



957
990



958
1000



959
1016



960
724



961
785



962
810



963
878



964
830



965
888



966
897



967
944



968
853



969
908



970
904



971
957



972
920



973
951



974
964



975
991



976
862



977
910



978
926



979
967



980
934



981
962



982
978



983
995



984
943



985
980



986
970



987
998



988
985



989
1003



990
1005



991
1014



992
885



993
931



994
940



995
971



996
952



997
977



998
982



999
1001



1000
958



1001
983



1002
993



1003
1008



1004
987



1005
1002



1006
1010



1007
1019



1008
966



1009
996



1010
989



1011
1006



1012
999



1013
1013



1014
1009



1015
1018



1016
1004



1017
1011



1018
1015



1019
1020



1020
1017



1021
1021



1022
1022



1023
1023










Sequence Z27, having a sequence length of 512:


[0, 1, 4, 9, 2, 11, 7, 25, 3, 14, 17, 28, 10, 34, 36, 65, 5, 16, 12, 31, 22, 37, 46, 70, 20, 48, 39, 77, 53, 84, 92, 145, 6, 15, 24, 41, 18, 47, 43, 80, 27, 51, 59, 87, 62, 99, 104, 149, 32, 56, 66, 101, 72, 109, 115, 163, 81, 120, 129, 174, 134, 189, 196, 269, 8, 23, 19, 49, 33, 54, 61, 98, 29, 69, 57, 105, 74, 113, 121, 170, 40, 63, 76, 124, 83, 116, 128, 181, 93, 139, 144, 192, 155, 210, 217, 284, 45, 78, 89, 138, 96, 133, 147, 201, 106, 151, 165, 211, 171, 223, 233, 295, 118, 160, 176, 230, 183, 237, 252, 306, 202, 247, 263, 317, 274, 332, 348, 409, 13, 26, 38, 67, 30, 75, 60, 122, 44, 71, 82, 130, 90, 141, 146, 197, 52, 85, 94, 135, 102, 156, 161, 212, 114, 154, 169, 221, 182, 239, 249, 300, 58, 97, 110, 158, 107, 162, 173, 228, 126, 175, 191, 241, 199, 253, 267, 319, 136, 190, 206, 255, 215, 264, 276, 329, 226, 286, 293, 338, 308, 359, 371, 423, 68, 108, 123, 177, 132, 188, 195, 256, 143, 194, 207, 270, 218, 283, 292, 343, 153, 213, 225, 279, 235, 287, 303, 352, 246, 307, 315, 362, 325, 377, 385, 433, 172, 227, 240, 298, 261, 309, 318, 368, 265, 330, 335, 381, 344, 391, 398, 441, 278, 322, 349, 393, 360, 402, 410, 446, 369, 413, 421, 455, 429, 464, 473, 495, 21, 35, 42, 79, 55, 86, 95, 148, 50, 91, 103, 157, 112, 167, 179, 236, 64, 100, 119, 166, 127, 180, 187, 250, 137, 193, 204, 258, 214, 275, 280, 333, 73, 117, 125, 186, 140, 203, 198, 266, 152, 209, 219, 277, 229, 294, 296, 354, 164, 222, 238, 289, 245, 302, 312, 363, 259, 321, 328, 373, 336, 386, 395, 439, 88, 142, 131, 208, 159, 224, 220, 290, 178, 232, 242, 305, 251, 310, 324, 376, 185, 243, 254, 313, 273, 326, 341, 382, 281, 337, 346, 392, 358, 405, 412, 451, 205, 257, 271, 331, 291, 350, 355, 399, 297, 347, 364, 407, 374, 416, 426, 458, 316, 370, 379, 422, 389, 431, 418, 468, 396, 437, 444, 462, 447, 477, 482, 500, 111, 168, 150, 231, 184, 244, 248, 320, 200, 262, 268, 334, 282, 342, 353, 401, 216, 272, 288, 340, 301, 351, 366, 408, 311, 372, 361, 415, 383, 425, 430, 463, 234, 299, 285, 356, 314, 367, 375, 419, 327, 380, 388, 434, 397, 428, 440, 470, 345, 390, 403, 438, 411, 445, 453, 475, 417, 450, 459, 485, 465, 479, 488, 504, 260, 304, 323, 378, 339, 387, 394, 436, 357, 404, 400, 448, 414, 442, 454, 480, 365, 406, 420, 457, 427, 452, 467, 483, 435, 469, 460, 486, 474, 491, 493, 502, 384, 424, 432, 461, 443, 466, 471, 489, 449, 472, 481, 496, 476, 490, 498, 507, 456, 484, 478, 494, 487, 501, 497, 506, 492, 499, 503, 508, 505, 509, 510, 511]









TABLE Z27







having a sequence length of 512:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
4



3
9



4
2



5
11



6
7



7
25



8
3



9
14



10
17



11
28



12
10



13
34



14
36



15
65



16
5



17
16



18
12



19
31



20
22



21
37



22
46



23
70



24
20



25
48



26
39



27
77



28
53



29
84



30
92



31
145



32
6



33
15



34
24



35
41



36
18



37
47



38
43



39
80



40
27



41
51



42
59



43
87



44
62



45
99



46
104



47
149



48
32



49
56



50
66



51
101



52
72



53
109



54
115



55
163



56
81



57
120



58
129



59
174



60
134



61
189



62
196



63
269



64
8



65
23



66
19



67
49



68
33



69
54



70
61



71
98



72
29



73
69



74
57



75
105



76
74



77
113



78
121



79
170



80
40



81
63



82
76



83
124



84
83



85
116



86
128



87
181



88
93



89
139



90
144



91
192



92
155



93
210



94
217



95
284



96
45



97
78



98
89



99
138



100
96



101
133



102
147



103
201



104
106



105
151



106
165



107
211



108
171



109
223



110
233



111
295



112
118



113
160



114
176



115
230



116
183



117
237



118
252



119
306



120
202



121
247



122
263



123
317



124
274



125
332



126
348



127
409



128
13



129
26



130
38



131
67



132
30



133
75



134
60



135
122



136
44



137
71



138
82



139
130



140
90



141
141



142
146



143
197



144
52



145
85



146
94



147
135



148
102



149
156



150
161



151
212



152
114



153
154



154
169



155
221



156
182



157
239



158
249



159
300



160
58



161
97



162
110



163
158



164
107



165
162



166
173



167
228



168
126



169
175



170
191



171
241



172
199



173
253



174
267



175
319



176
136



177
190



178
206



179
255



180
215



181
264



182
276



183
329



184
226



185
286



186
293



187
338



188
308



189
359



190
371



191
423



192
68



193
108



194
123



195
177



196
132



197
188



198
195



199
256



200
143



201
194



202
207



203
270



204
218



205
283



206
292



207
343



208
153



209
213



210
225



211
279



212
235



213
287



214
303



215
352



216
246



217
307



218
315



219
362



220
325



221
377



222
385



223
433



224
172



225
227



226
240



227
298



228
261



229
309



230
318



231
368



232
265



233
330



234
335



235
381



236
344



237
391



238
398



239
441



240
278



241
322



242
349



243
393



244
360



245
402



246
410



247
446



248
369



249
413



250
421



251
455



252
429



253
464



254
473



255
495



256
21



257
35



258
42



259
79



260
55



261
86



262
95



263
148



264
50



265
91



266
103



267
157



268
112



269
167



270
179



271
236



272
64



273
100



274
119



275
166



276
127



277
180



278
187



279
250



280
137



281
193



282
204



283
258



284
214



285
275



286
280



287
333



288
73



289
117



290
125



291
186



292
140



293
203



294
198



295
266



296
152



297
209



298
219



299
277



300
229



301
294



302
296



303
354



304
164



305
222



306
238



307
289



308
245



309
302



310
312



311
363



312
259



313
321



314
328



315
373



316
336



317
386



318
395



319
439



320
88



321
142



322
131



323
208



324
159



325
224



326
220



327
290



328
178



329
232



330
242



331
305



332
251



333
310



334
324



335
376



336
185



337
243



338
254



339
313



340
273



341
326



342
341



343
382



344
281



345
337



346
346



347
392



348
358



349
405



350
412



351
451



352
205



353
257



354
271



355
331



356
291



357
350



358
355



359
399



360
297



361
347



362
364



363
407



364
374



365
416



366
426



367
458



368
316



369
370



370
379



371
422



372
389



373
431



374
418



375
468



376
396



377
437



378
444



379
462



380
447



381
477



382
482



383
500



384
111



385
168



386
150



387
231



388
184



389
244



390
248



391
320



392
200



393
262



394
268



395
334



396
282



397
342



398
353



399
401



400
216



401
272



402
288



403
340



404
301



405
351



406
366



407
408



408
311



409
372



410
361



411
415



412
383



413
425



414
430



415
463



416
234



417
299



418
285



419
356



420
314



421
367



422
375



423
419



424
327



425
380



426
388



427
434



428
397



429
428



430
440



431
470



432
345



433
390



434
403



435
438



436
411



437
445



438
453



439
475



440
417



441
450



442
459



443
485



444
465



445
479



446
488



447
504



448
260



449
304



450
323



451
378



452
339



453
387



454
394



455
436



456
357



457
404



458
400



459
448



460
414



461
442



462
454



463
480



464
365



465
406



466
420



467
457



468
427



469
452



470
467



471
483



472
435



473
469



474
460



475
486



476
474



477
491



478
493



479
502



480
384



481
424



482
432



483
461



484
443



485
466



486
471



487
489



488
449



489
472



490
481



491
496



492
476



493
490



494
498



495
507



496
456



497
484



498
478



499
494



500
487



501
501



502
497



503
506



504
492



505
499



506
503



507
508



508
505



509
509



510
510



511
511










Sequence Z28, having a sequence length of 256:


[0, 1, 4, 9, 2, 11, 7, 24, 3, 14, 17, 27, 10, 33, 34, 59, 5, 16, 12, 30, 21, 35, 43, 64, 20, 45, 37, 70, 49, 76, 81, 121, 6, 15, 23, 39, 18, 44, 40, 72, 26, 47, 54, 78, 57, 87, 90, 124, 31, 51, 60, 88, 66, 95, 99, 134, 73, 102, 109, 141, 113, 149, 155, 194, 8, 22, 19, 46, 32, 50, 56, 86, 28, 63, 52, 91, 67, 97, 103, 137, 38, 58, 69, 106, 75, 100, 108, 145, 82, 117, 120, 152, 128, 162, 167, 201, 42, 71, 79, 116, 84, 112, 123, 158, 92, 125, 135, 163, 138, 170, 176, 206, 101, 131, 143, 175, 147, 178, 185, 210, 159, 183, 190, 215, 196, 222, 227, 243, 13, 25, 36, 61, 29, 68, 55, 104, 41, 65, 74, 110, 80, 118, 122, 156, 48, 77, 83, 114, 89, 129, 132, 164, 98, 127, 136, 169, 146, 179, 184, 208, 53, 85, 96, 130, 93, 133, 140, 174, 107, 142, 151, 181, 157, 186, 193, 217, 115, 150, 160, 187, 166, 191, 197, 220, 172, 202, 205, 224, 212, 230, 235, 247, 62, 94, 105, 144, 111, 148, 154, 188, 119, 153, 161, 195, 168, 200, 204, 225, 126, 165, 171, 199, 177, 203, 209, 229, 182, 211, 214, 232, 219, 236, 238, 249, 139, 173, 180, 207, 189, 213, 216, 233, 192, 221, 223, 237, 226, 239, 241, 250, 198, 218, 228, 240, 231, 242, 244, 251, 234, 245, 246, 252, 248, 253, 254, 255]









TABLE Z28







having a sequence length of 256:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
4



3
9



4
2



5
11



6
7



7
24



8
3



9
14



10
17



11
27



12
10



13
33



14
34



15
59



16
5



17
16



18
12



19
30



20
21



21
35



22
43



23
64



24
20



25
45



26
37



27
70



28
49



29
76



30
81



31
121



32
6



33
15



34
23



35
39



36
18



37
44



38
40



39
72



40
26



41
47



42
54



43
78



44
57



45
87



46
90



47
124



48
31



49
51



50
60



51
88



52
66



53
95



54
99



55
134



56
73



57
102



58
109



59
141



60
113



61
149



62
155



63
194



64
8



65
22



66
19



67
46



68
32



69
50



70
56



71
86



72
28



73
63



74
52



75
91



76
67



77
97



78
103



79
137



80
38



81
58



82
69



83
106



84
75



85
100



86
108



87
145



88
82



89
117



90
120



91
152



92
128



93
162



94
167



95
201



96
42



97
71



98
79



99
116



100
84



101
112



102
123



103
158



104
92



105
125



106
135



107
163



108
138



109
170



110
176



111
206



112
101



113
131



114
143



115
175



116
147



117
178



118
185



119
210



120
159



121
183



122
190



123
215



124
196



125
222



126
227



127
243



128
13



129
25



130
36



131
61



132
29



133
68



134
55



135
104



136
41



137
65



138
74



139
110



140
80



141
118



142
122



143
156



144
48



145
77



146
83



147
114



148
89



149
129



150
132



151
164



152
98



153
127



154
136



155
169



156
146



157
179



158
184



159
208



160
53



161
85



162
96



163
130



164
93



165
133



166
140



167
174



168
107



169
142



170
151



171
181



172
157



173
186



174
193



175
217



176
115



177
150



178
160



179
187



180
166



181
191



182
197



183
220



184
172



185
202



186
205



187
224



188
212



189
230



190
235



191
247



192
62



193
94



194
105



195
144



196
111



197
148



198
154



199
188



200
119



201
153



202
161



203
195



204
168



205
200



206
204



207
225



208
126



209
165



210
171



211
199



212
177



213
203



214
209



215
229



216
182



217
211



218
214



219
232



220
219



221
236



222
238



223
249



224
139



225
173



226
180



227
207



228
189



229
213



230
216



231
233



232
192



233
221



234
223



235
237



236
226



237
239



238
241



239
250



240
198



241
218



242
228



243
240



244
231



245
242



246
244



247
251



248
234



249
245



250
246



251
252



252
248



253
253



254
254



255
255










Sequence Z29, having a sequence length of 128:


[0, 1, 4, 9, 2, 11, 7, 23, 3, 13, 16, 25, 10, 30, 31, 51, 5, 15, 12, 27, 20, 32, 38, 54, 19, 40, 33, 58, 43, 63, 66, 90, 6, 14, 22, 35, 17, 39, 36, 60, 24, 42, 47, 64, 49, 70, 72, 92, 28, 45, 52, 71, 55, 75, 77, 96, 61, 80, 84, 100, 86, 104, 106, 119, 8, 21, 18, 41, 29, 44, 48, 69, 26, 53, 46, 73, 56, 76, 81, 98, 34, 50, 57, 82, 62, 78, 83, 102, 67, 88, 89, 105, 94, 109, 111, 121, 37, 59, 65, 87, 68, 85, 91, 107, 74, 93, 97, 110, 99, 112, 114, 122, 79, 95, 101, 113, 103, 115, 117, 123, 108, 116, 118, 124, 120, 125, 126, 127]









TABLE Z29







having a sequence length of 128:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
4



3
9



4
2



5
11



6
7



7
23



8
3



9
13



10
16



11
25



12
10



13
30



14
31



15
51



16
5



17
15



18
12



19
27



20
20



21
32



22
38



23
54



24
19



25
40



26
33



27
58



28
43



29
63



30
66



31
90



32
6



33
14



34
22



35
35



36
17



37
39



38
36



39
60



40
24



41
42



42
47



43
64



44
49



45
70



46
72



47
92



48
28



49
45



50
52



51
71



52
55



53
75



54
77



55
96



56
61



57
80



58
84



59
100



60
86



61
104



62
106



63
119



64
8



65
21



66
18



67
41



68
29



69
44



70
48



71
69



72
26



73
53



74
46



75
73



76
56



77
76



78
81



79
98



80
34



81
50



82
57



83
82



84
62



85
78



86
83



87
102



88
67



89
88



90
89



91
105



92
94



93
109



94
111



95
121



96
37



97
59



98
65



99
87



100
68



101
85



102
91



103
107



104
74



105
93



106
97



107
110



108
99



109
112



110
114



111
122



112
79



113
95



114
101



115
113



116
103



117
115



118
117



119
123



120
108



121
116



122
118



123
124



124
120



125
125



126
126



127
127










Sequence Z30, having a sequence length of 64:


[0, 1, 4, 8, 2, 10, 7, 20, 3, 12, 15, 22, 9, 25, 26, 39, 5, 14, 11, 23, 18, 27, 31, 41, 17, 33, 28, 43, 35, 46, 48, 57, 6, 13, 19, 29, 16, 32, 30, 44, 21, 34, 37, 47, 38, 49, 51, 58, 24, 36, 40, 50, 42, 52, 53, 59, 45, 54, 55, 60, 56, 61, 62, 63]









TABLE Z30







having a sequence length of 64:










Polarized channel
Reliability or sequence



sequence number
number of reliability














0
0



1
1



2
4



3
8



4
2



5
10



6
7



7
20



8
3



9
12



10
15



11
22



12
9



13
25



14
26



15
39



16
5



17
14



18
11



19
23



20
18



21
27



22
31



23
41



24
17



25
33



26
28



27
43



28
35



29
46



30
48



31
57



32
6



33
13



34
19



35
29



36
16



37
32



38
30



39
44



40
21



41
34



42
37



43
47



44
38



45
49



46
51



47
58



48
24



49
36



50
40



51
50



52
42



53
52



54
53



55
59



56
45



57
54



58
55



59
60



60
56



61
61



62
62



63
63










It should be noted that, the foregoing sequences are merely some examples. Use of the foregoing sequences in a polar code encoding process helps improve encoding/decoding performance of a polar code. In any one of the sequences described, adjustments or equivalent replacements in the following aspects may be made without affecting an overall effect.


1. Positions of a small quantity of elements in a sequence are interchanged. For example, a position of a sequence number may be adjusted within a specified range. For example, the specified range is 5, and a position of an element whose sequence number is 10 may be adjusted within five positions to the left or right.


2. Some of the elements in the sequence are adjusted, but channel sets for transmitting T bit information that are selected based on the sequence are consistent or similar.


3. The sequence includes N elements starting from 0 and ending with N−1, and the N elements starting from 0 and ending with N−1 represent sequence numbers of N polarized channels. Actually, the sequence numbers of the N polarized channels may also start from 1 and end with N. This can be achieved by adding 1 to each sequence number in the foregoing sequence, and this is also a sequence number form in the foregoing calculation manners. Certainly, the sequence number or an identifier of the foregoing polarized channel may also be represented by using another manner. The specific representation manner does not affect a specific position of a polarized channel in a sequence;


4. The sequence numbers of the N polarized channels in the foregoing sequence are arranged in ascending order of the reliability of the N polarized channels. In this case, selecting K polarized channels in descending order of reliability is selecting polarized channels that correspond to the last K sequence numbers in any of the foregoing sequences. Actually, the sequence numbers of the N polarized channels may also be arranged in descending order of the reliability of the N polarized channels. This can be achieved by arranging the elements in the foregoing sequence in a reverse or inverted order. In this case, selecting K polarized channels in descending order of reliability is selecting polarized channels that correspond to the first K sequence numbers; and


5. The foregoing sequences may further be represented by using a normalized reliability or an equivalent reliability of each channel. For example, if a sequential position of a channel x in the foregoing sequence is n (a leftmost position is denoted as 1), a reliability of the channel may be represented as n or normalized n/N, where N is a length of the sequence.


Based on a same invention concept of the polar code encoding method shown in FIG. 2, as shown in FIG. 3, an embodiment of this application further provides a polar code encoding apparatus 300. The polar code encoding apparatus 300 is configured to perform the polar code encoding method shown in FIG. 2. Part or all of the polar code encoding method shown in FIG. 3 may be implemented by using hardware or may be implemented by using software. When part or all of the polar code encoding method is implemented by using hardware, the polar code encoding apparatus 300 includes: an input interface circuit 301, configured to obtain to-be-encoded bits; a logic circuit 302, configured to perform the polar code encoding method shown in FIG. 2, where for details, refer to the descriptions in the foregoing method embodiments, and details are not described herein again; and an output interface circuit 303, configured to output a bit sequence after encoding.


Further, the bit sequence that is obtained after the encoding and that is output by the encoding apparatus 300 is output to a transceiver 320 after being modulated by a modulator 310. The transceiver 320 performs corresponding processing (including but not limited to processing such as digital-to-analog conversion and/or frequency conversion) on the modulated sequence and sends the processed sequence by using an antenna 330.


Optionally, the polar code encoding apparatus 300 may be a chip or an integrated circuit during specific implementation.


Optionally, when part or all of the polar code encoding method in the foregoing embodiment is implemented by using software, as shown in FIG. 4, the polar code encoding apparatus 300 includes: a memory 401, configured to store a program; a processor 402, configured to execute the program stored in the memory 401. When the program is executed, the polar code encoding apparatus 300 is caused to implement the polar code encoding method provided in the embodiment in FIG. 2.


Optionally, the memory 401 may be a physically independent unit. Alternatively, as shown in FIG. 5, a memory 501 is integrated with a processor 502.


Optionally, when part of or all of the encoding method in the embodiment in FIG. 2 is implemented by using software, the polar code encoding apparatus 300 may include only the processor 402. The memory 401 configured to store the program is located outside the polar code encoding apparatus 300. The processor 402 is connected to the memory 401 by using a circuit/wire and is configured to read and execute the program stored in the memory 401.


The processor 402 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.


The processor 402 may further include a hardware chip. The foregoing hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination of an ASIC and a PLD. The foregoing PLD may be a complex programmable logical device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.


The memory in the foregoing embodiment may include a volatile memory, for example, a random-access memory (RAM). Alternatively, the memory may include a non-volatile memory, for example, a flash memory, a hard disk drive (HDD), or a solid-state drive (SSD). Alternatively, the memory may include a combination of the foregoing types of memories.


Based on the polar code encoding method shown in FIG. 2, as shown in FIG. 6, an embodiment of this application further provides a polar code encoding apparatus 300. The polar code encoding apparatus 300 is configured to perform the polar code encoding method shown in FIG. 2. The polar code encoding apparatus 300 includes:


an obtaining unit 601, configured to obtain a first sequence used to encode K to-be-encoded bits, where the first sequence includes sequence numbers of N polarized channels, the sequence numbers of the N polarized channels are arranged in the first sequence based on reliability of the N polarized channels, K is a positive integer, N is a mother code length of a polar code, N is a positive integer power of 2, and K≤N;


a selection unit 602, configured to select sequence numbers of K polarized channels from the first sequence in ascending order of the reliability; and


an encoding unit 603, configured to place the to-be-encoded bits based on the selected sequence numbers of the K polarized channels, and perform polar code encoding on the to-be-encoded bits.


The first sequence may be any one of the sequences described above, or may be a sequence obtained by selecting, from a second sequence having a length of Nmax, sequence numbers (starting from 0) less than N. The second sequence may be any one of the sequences described above. A reliability of an ith polarized channel in the N polarized channels may be determined by using any one of the formulas described above.


An embodiment of this application further provides a computer storage medium storing a computer program. The computer program is configured to perform the polar code encoding method shown in FIG. 2.


An embodiment of this application further provides a computer program product including an instruction. When run on a computer, the instruction causes the computer to perform the polar code encoding method shown in FIG. 2.


Persons skilled in the art should understand that the embodiments of this application may be provided as a method, a system, or a computer program product. Therefore, this application may use a form of hardware only embodiments, software only embodiments, or embodiments with a combination of software and hardware. Moreover, this application may use a form of a computer program product that is implemented on one or more computer-usable storage media (including but not limited to a disk memory, a CD-ROM, an optical memory, and the like) that include computer usable program code.


This application is described with reference to the flowcharts and/or block diagrams of the method, the device (system), and the computer program product according to the embodiments of this application. It should be understood that computer program instructions may be used to implement each process and/or each block in the flowcharts and/or the block diagrams and a combination of a process and/or a block in the flowcharts and/or the block diagrams. These computer program instructions may be provided for a general-purpose computer, a dedicated computer, an embedded processor, or a processor of any other programmable data processing device to generate a machine, so that the instructions executed by a computer or a processor of any other programmable data processing device generate an apparatus for implementing a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.


These computer program instructions may be stored in a computer readable memory that can instruct the computer or any other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory generate an artifact that includes an instruction apparatus. The instruction apparatus implements a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.


These computer program instructions may be loaded onto a computer or another programmable data processing device, so that a series of operations and steps are performed on the computer or the another programmable device, thereby generating computer-implemented processing. Therefore, the instructions executed on the computer or the another programmable device provide steps for implementing a specific function in one or more processes in the flowcharts and/or in one or more blocks in the block diagrams.


Although some preferred embodiments of this application have been described, persons skilled in the art can make changes and modifications to these embodiments once they learn the basic inventive concept. Therefore, the following claims are intended to be construed as to cover the preferred embodiments and all changes and modifications falling within the scope of this application.


Obviously, persons skilled in the art can make various modifications and variations to the embodiments of this application without departing from the spirit and scope of the embodiments of this application. This application is intended to cover these modifications and variations provided that they fall within the scope of protection defined by the following claims and their equivalent technologies.

Claims
  • 1. An encoding method, comprising: obtaining, by an encoding apparatus, a first sequence used to encode K to-be-encoded bits, the first sequence comprising sequence numbers of N polarized channels, wherein the first sequence is same as a second sequence or a subset of the second sequence, the second sequence comprises sequence numbers of Nmax polarized channels, K is a positive integer, N=2n, n is a positive integer, n is equal to or greater than 5, K≤N, and Nmax=1024;selecting, by the encoding apparatus, sequence numbers of K polarized channels from the first sequence;performing, by the encoding apparatus, polar code encoding on the K to-be-encoded bits based on the selected sequence numbers of the K polarized channels, to obtain a bit sequence after encoding; andoutputting, by the encoding apparatus, the bit sequence after encoding to a receiving device;wherein the second sequence is the sequence shown in Sequence Q11 or Table Q11;the Sequence Q11 comprising:[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 256, 34, 24, 36, 7, 129, 66, 512, 11, 40, 68, 130, 19, 13, 48, 14, 72, 257, 21, 132, 35, 258, 26, 513, 80, 37, 25, 22, 136, 260, 264, 38, 514, 96, 67, 41, 144, 28, 69, 42, 516, 49, 74, 272, 160, 520, 288, 528, 192, 544, 70, 44, 131, 81, 50, 73, 15, 320, 133, 52, 23, 134, 384, 76, 137, 82, 56, 27, 97, 39, 259, 84, 138, 145, 261, 29, 43, 98, 515, 88, 140, 30, 146, 71, 262, 265, 161, 576, 45, 100, 640, 51, 148, 46, 75, 266, 273, 517, 104, 162, 53, 193, 152, 77, 164, 768, 268, 274, 518, 54, 83, 57, 521, 112, 135, 78, 289, 194, 85, 276, 522, 58, 168, 139, 99, 86, 60, 280, 89, 290, 529, 524, 196, 141, 101, 147, 176, 142, 530, 321, 31, 200, 90, 545, 292, 322, 532, 263, 149, 102, 105, 304, 296, 163, 92, 47, 267, 385, 546, 324, 208, 386, 150, 153, 165, 106, 55, 328, 536, 577, 548, 113, 154, 79, 269, 108, 578, 224, 166, 519, 552, 195, 270, 641, 523, 275, 580, 291, 59, 169, 560, 114, 277, 156, 87, 197, 116, 170, 61, 531, 525, 642, 281, 278, 526, 177, 293, 388, 91, 584, 769, 198, 172, 120, 201, 336, 62, 282, 143, 103, 178, 294, 93, 644, 202, 592, 323, 392, 297, 770, 107, 180, 151, 209, 284, 648, 94, 204, 298, 400, 608, 352, 325, 533, 155, 210, 305, 547, 300, 109, 184, 534, 537, 115, 167, 225, 326, 306, 772, 157, 656, 329, 110, 117, 212, 171, 776, 330, 226, 549, 538, 387, 308, 216, 416, 271, 279, 158, 337, 550, 672, 118, 332, 579, 540, 389, 173, 121, 553, 199, 784, 179, 228, 338, 312, 704, 390, 174, 554, 581, 393, 283, 122, 448, 353, 561, 203, 63, 340, 394, 527, 582, 556, 181, 295, 285, 232, 124, 205, 182, 643, 562, 286, 585, 299, 354, 211, 401, 185, 396, 344, 586, 645, 593, 535, 240, 206, 95, 327, 564, 800, 402, 356, 307, 301, 417, 213, 568, 832, 588, 186, 646, 404, 227, 896, 594, 418, 302, 649, 771, 360, 539, 111, 331, 214, 309, 188, 449, 217, 408, 609, 596, 551, 650, 229, 159, 420, 310, 541, 773, 610, 657, 333, 119, 600, 339, 218, 368, 652, 230, 391, 313, 450, 542, 334, 233, 555, 774, 175, 123, 658, 612, 341, 777, 220, 314, 424, 395, 673, 583, 355, 287, 183, 234, 125, 557, 660, 616, 342, 316, 241, 778, 563, 345, 452, 397, 403, 207, 674, 558, 785, 432, 357, 187, 236, 664, 624, 587, 780, 705, 126, 242, 565, 398, 346, 456, 358, 405, 303, 569, 244, 595, 189, 566, 676, 361, 706, 589, 215, 786, 647, 348, 419, 406, 464, 680, 801, 362, 590, 409, 570, 788, 597, 572, 219, 311, 708, 598, 601, 651, 421, 792, 802, 611, 602, 410, 231, 688, 653, 248, 369, 190, 364, 654, 659, 335, 480, 315, 221, 370, 613, 422, 425, 451, 614, 543, 235, 412, 343, 372, 775, 317, 222, 426, 453, 237, 559, 833, 804, 712, 834, 661, 808, 779, 617, 604, 433, 720, 816, 836, 347, 897, 243, 662, 454, 318, 675, 618, 898, 781, 376, 428, 665, 736, 567, 840, 625, 238, 359, 457, 399, 787, 591, 678, 434, 677, 349, 245, 458, 666, 620, 363, 127, 191, 782, 407, 436, 626, 571, 465, 681, 246, 707, 350, 599, 668, 790, 460, 249, 682, 573, 411, 803, 789, 709, 365, 440, 628, 689, 374, 423, 466, 793, 250, 371, 481, 574, 413, 603, 366, 468, 655, 900, 805, 615, 684, 710, 429, 794, 252, 373, 605, 848, 690, 713, 632, 482, 806, 427, 904, 414, 223, 663, 692, 835, 619, 472, 455, 796, 809, 714, 721, 837, 716, 864, 810, 606, 912, 722, 696, 377, 435, 817, 319, 621, 812, 484, 430, 838, 667, 488, 239, 378, 459, 622, 627, 437, 380, 818, 461, 496, 669, 679, 724, 841, 629, 351, 467, 438, 737, 251, 462, 442, 441, 469, 247, 683, 842, 738, 899, 670, 783, 849, 820, 728, 928, 791, 367, 901, 630, 685, 844, 633, 711, 253, 691, 824, 902, 686, 740, 850, 375, 444, 470, 483, 415, 485, 905, 795, 473, 634, 744, 852, 960, 865, 693, 797, 906, 715, 807, 474, 636, 694, 254, 717, 575, 913, 798, 811, 379, 697, 431, 607, 489, 866, 723, 486, 908, 718, 813, 476, 856, 839, 725, 698, 914, 752, 868, 819, 814, 439, 929, 490, 623, 671, 739, 916, 463, 843, 381, 497, 930, 821, 726, 961, 872, 492, 631, 729, 700, 443, 741, 845, 920, 382, 822, 851, 730, 498, 880, 742, 445, 471, 635, 932, 687, 903, 825, 500, 846, 745, 826, 732, 446, 962, 936, 475, 853, 867, 637, 907, 487, 695, 746, 828, 753, 854, 857, 504, 799, 255, 964, 909, 719, 477, 915, 638, 748, 944, 869, 491, 699, 754, 858, 478, 968, 383, 910, 815, 976, 870, 917, 727, 493, 873, 701, 931, 756, 860, 499, 731, 823, 922, 874, 918, 502, 933, 743, 760, 881, 494, 702, 921, 501, 876, 847, 992, 447, 733, 827, 934, 882, 937, 963, 747, 505, 855, 924, 734, 829, 965, 938, 884, 506, 749, 945, 966, 755, 859, 940, 830, 911, 871, 639, 888, 479, 946, 750, 969, 508, 861, 757, 970, 919, 875, 862, 758, 948, 977, 923, 972, 761, 877, 952, 495, 703, 935, 978, 883, 762, 503, 925, 878, 735, 993, 885, 939, 994, 980, 926, 764, 941, 967, 886, 831, 947, 507, 889, 984, 751, 942, 996, 971, 890, 509, 949, 973, 1000, 892, 950, 863, 759, 1008, 510, 979, 953, 763, 974, 954, 879, 981, 982, 927, 995, 765, 956, 887, 985, 997, 986, 943, 891, 998, 766, 511, 988, 1001, 951, 1002, 893, 975, 894, 1009, 955, 1004, 1010, 957, 983, 958, 987, 1012, 999, 1016, 767, 989, 1003, 990, 1005, 959, 1011, 1013, 895, 1006, 1014, 1017, 1018, 991, 1020, 1007, 1015, 1019, 1021, 1022, 1023];the Table Q11 comprising:
  • 2. The method according to claim 1, wherein the sequence numbers of the Nmax polarized channels are arranged in the second sequence based on reliability of the Nmax polarized channels.
  • 3. The method according to claim 1, wherein ordering of the sequence numbers of the polarized channels in the first sequence is consistent with ordering of sequence numbers less than N in the sequence numbers of the polarized channels in the second sequence.
  • 4. The method according to claim 1, wherein the sequence numbers of the K polarized channels are selected based on reliability of the N polarized channels.
  • 5. The method according to claim 1, wherein the first sequence is pre-stored.
  • 6. The method according to claim 1, wherein the K to-be-encoded bits comprise a cyclic redundancy check (CRC) bit.
  • 7. The method according to claim 1, wherein the K to-be-encoded bits comprise a parity check (PC) bit.
  • 8. The method according to claim 1, wherein after performing the polar code encoding on the to-be-encoded bits, the encoding apparatus performs, based on a target code length, rate matching on the bit sequence after encoding, wherein the outputting the bit sequence after encoding to a receiving device comprises outputting the bit sequence after rate matching to a receiving device.
  • 9. A polar code encoding apparatus, comprising: a memory storage comprising instructions; anda processor in communication with the memory, wherein the processor is configured to execute the instructions to perform the steps:obtaining a first sequence used to encode K to-be-encoded bits, the first sequence comprising sequence numbers of N polarized channels, wherein the first sequence is same as a second sequence or a subset of the second sequence, the second sequence comprises sequence numbers of Nmax polarized channels, K is a positive integer, N=2n, n is a positive integer, n is equal to or greater than 5, K≤N, and Nmax=1024;selecting sequence numbers of K polarized channels from the first sequence;performing polar code encoding on the K to-be-encoded bits based on the selected sequence numbers of the K polarized channels, to obtain a bit sequence after encoding; andoutputting, by the encoding apparatus, the bit sequence after encoding to a receiving device;wherein the second sequence is the sequence shown in Sequence Q11 or Table Q11;the Sequence Q11 comprising:[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 256, 34, 24, 36, 7, 129, 66, 512, 11, 40, 68, 130, 19, 13, 48, 14, 72, 257, 21, 132, 35, 258, 26, 513, 80, 37, 25, 22, 136, 260, 264, 38, 514, 96, 67, 41, 144, 28, 69, 42, 516, 49, 74, 272, 160, 520, 288, 528, 192, 544, 70, 44, 131, 81, 50, 73, 15, 320, 133, 52, 23, 134, 384, 76, 137, 82, 56, 27, 97, 39, 259, 84, 138, 145, 261, 29, 43, 98, 515, 88, 140, 30, 146, 71, 262, 265, 161, 576, 45, 100, 640, 51, 148, 46, 75, 266, 273, 517, 104, 162, 53, 193, 152, 77, 164, 768, 268, 274, 518, 54, 83, 57, 521, 112, 135, 78, 289, 194, 85, 276, 522, 58, 168, 139, 99, 86, 60, 280, 89, 290, 529, 524, 196, 141, 101, 147, 176, 142, 530, 321, 31, 200, 90, 545, 292, 322, 532, 263, 149, 102, 105, 304, 296, 163, 92, 47, 267, 385, 546, 324, 208, 386, 150, 153, 165, 106, 55, 328, 536, 577, 548, 113, 154, 79, 269, 108, 578, 224, 166, 519, 552, 195, 270, 641, 523, 275, 580, 291, 59, 169, 560, 114, 277, 156, 87, 197, 116, 170, 61, 531, 525, 642, 281, 278, 526, 177, 293, 388, 91, 584, 769, 198, 172, 120, 201, 336, 62, 282, 143, 103, 178, 294, 93, 644, 202, 592, 323, 392, 297, 770, 107, 180, 151, 209, 284, 648, 94, 204, 298, 400, 608, 352, 325, 533, 155, 210, 305, 547, 300, 109, 184, 534, 537, 115, 167, 225, 326, 306, 772, 157, 656, 329, 110, 117, 212, 171, 776, 330, 226, 549, 538, 387, 308, 216, 416, 271, 279, 158, 337, 550, 672, 118, 332, 579, 540, 389, 173, 121, 553, 199, 784, 179, 228, 338, 312, 704, 390, 174, 554, 581, 393, 283, 122, 448, 353, 561, 203, 63, 340, 394, 527, 582, 556, 181, 295, 285, 232, 124, 205, 182, 643, 562, 286, 585, 299, 354, 211, 401, 185, 396, 344, 586, 645, 593, 535, 240, 206, 95, 327, 564, 800, 402, 356, 307, 301, 417, 213, 568, 832, 588, 186, 646, 404, 227, 896, 594, 418, 302, 649, 771, 360, 539, 111, 331, 214, 309, 188, 449, 217, 408, 609, 596, 551, 650, 229, 159, 420, 310, 541, 773, 610, 657, 333, 119, 600, 339, 218, 368, 652, 230, 391, 313, 450, 542, 334, 233, 555, 774, 175, 123, 658, 612, 341, 777, 220, 314, 424, 395, 673, 583, 355, 287, 183, 234, 125, 557, 660, 616, 342, 316, 241, 778, 563, 345, 452, 397, 403, 207, 674, 558, 785, 432, 357, 187, 236, 664, 624, 587, 780, 705, 126, 242, 565, 398, 346, 456, 358, 405, 303, 569, 244, 595, 189, 566, 676, 361, 706, 589, 215, 786, 647, 348, 419, 406, 464, 680, 801, 362, 590, 409, 570, 788, 597, 572, 219, 311, 708, 598, 601, 651, 421, 792, 802, 611, 602, 410, 231, 688, 653, 248, 369, 190, 364, 654, 659, 335, 480, 315, 221, 370, 613, 422, 425, 451, 614, 543, 235, 412, 343, 372, 775, 317, 222, 426, 453, 237, 559, 833, 804, 712, 834, 661, 808, 779, 617, 604, 433, 720, 816, 836, 347, 897, 243, 662, 454, 318, 675, 618, 898, 781, 376, 428, 665, 736, 567, 840, 625, 238, 359, 457, 399, 787, 591, 678, 434, 677, 349, 245, 458, 666, 620, 363, 127, 191, 782, 407, 436, 626, 571, 465, 681, 246, 707, 350, 599, 668, 790, 460, 249, 682, 573, 411, 803, 789, 709, 365, 440, 628, 689, 374, 423, 466, 793, 250, 371, 481, 574, 413, 603, 366, 468, 655, 900, 805, 615, 684, 710, 429, 794, 252, 373, 605, 848, 690, 713, 632, 482, 806, 427, 904, 414, 223, 663, 692, 835, 619, 472, 455, 796, 809, 714, 721, 837, 716, 864, 810, 606, 912, 722, 696, 377, 435, 817, 319, 621, 812, 484, 430, 838, 667, 488, 239, 378, 459, 622, 627, 437, 380, 818, 461, 496, 669, 679, 724, 841, 629, 351, 467, 438, 737, 251, 462, 442, 441, 469, 247, 683, 842, 738, 899, 670, 783, 849, 820, 728, 928, 791, 367, 901, 630, 685, 844, 633, 711, 253, 691, 824, 902, 686, 740, 850, 375, 444, 470, 483, 415, 485, 905, 795, 473, 634, 744, 852, 960, 865, 693, 797, 906, 715, 807, 474, 636, 694, 254, 717, 575, 913, 798, 811, 379, 697, 431, 607, 489, 866, 723, 486, 908, 718, 813, 476, 856, 839, 725, 698, 914, 752, 868, 819, 814, 439, 929, 490, 623, 671, 739, 916, 463, 843, 381, 497, 930, 821, 726, 961, 872, 492, 631, 729, 700, 443, 741, 845, 920, 382, 822, 851, 730, 498, 880, 742, 445, 471, 635, 932, 687, 903, 825, 500, 846, 745, 826, 732, 446, 962, 936, 475, 853, 867, 637, 907, 487, 695, 746, 828, 753, 854, 857, 504, 799, 255, 964, 909, 719, 477, 915, 638, 748, 944, 869, 491, 699, 754, 858, 478, 968, 383, 910, 815, 976, 870, 917, 727, 493, 873, 701, 931, 756, 860, 499, 731, 823, 922, 874, 918, 502, 933, 743, 760, 881, 494, 702, 921, 501, 876, 847, 992, 447, 733, 827, 934, 882, 937, 963, 747, 505, 855, 924, 734, 829, 965, 938, 884, 506, 749, 945, 966, 755, 859, 940, 830, 911, 871, 639, 888, 479, 946, 750, 969, 508, 861, 757, 970, 919, 875, 862, 758, 948, 977, 923, 972, 761, 877, 952, 495, 703, 935, 978, 883, 762, 503, 925, 878, 735, 993, 885, 939, 994, 980, 926, 764, 941, 967, 886, 831, 947, 507, 889, 984, 751, 942, 996, 971, 890, 509, 949, 973, 1000, 892, 950, 863, 759, 1008, 510, 979, 953, 763, 974, 954, 879, 981, 982, 927, 995, 765, 956, 887, 985, 997, 986, 943, 891, 998, 766, 511, 988, 1001, 951, 1002, 893, 975, 894, 1009, 955, 1004, 1010, 957, 983, 958, 987, 1012, 999, 1016, 767, 989, 1003, 990, 1005, 959, 1011, 1013, 895, 1006, 1014, 1017, 1018, 991, 1020, 1007, 1015, 1019, 1021, 1022, 1023];the Table Q11 comprising:
  • 10. The apparatus according to claim 9, wherein the sequence numbers of the Nmax polarized channels are arranged in the second sequence based on reliability of the Nmax polarized channels.
  • 11. The apparatus according to claim 9, wherein ordering of the sequence numbers of the polarized channels in the first sequence is consistent with ordering of sequence numbers less than N in the sequence numbers of the polarized channels in the second sequence.
  • 12. The apparatus according to claim 9, wherein the sequence numbers of the K polarized channels are selected based reliability of the N polarized channels.
  • 13. The apparatus according to claim 9, wherein the first sequence is pre-stored.
  • 14. The apparatus according to claim 9, wherein the K to-be-encoded bits comprise a cyclic redundancy check (CRC) bit.
  • 15. The apparatus according to claim 9, wherein the K to-be-encoded bits comprise a parity check (PC) bit.
  • 16. The apparatus according to claim 9, wherein the processor is further configured to execute the instructions to perform: rate matching on the bit sequence after encoding based on a target code length, and output the bit sequence after rate matching to the receiving device.
  • 17. An apparatus, comprising: an input interface circuit, configured to obtain K to-be-encoded bits;a logic circuit, configured to: obtain a first sequence used to encode K to-be-encoded bits, the first sequence comprising sequence numbers of N polarized channels, wherein the first sequence is same as a second sequence or a subset of the second sequence, the second sequence comprises sequence numbers of Nmax polarized channels, K is a positive integer, N=2n, n is a positive integer, n is equal to or greater than 5, K≤N, and Nmax=1024;select sequence numbers of K polarized channels from the first sequence;perform polar code encoding on the K to-be-encoded bits based on the selected sequence numbers of the K polarized channels, to obtain a bit sequence after encoding; andan output interface circuit configured to output the bit sequence after encoding to a receiving device;wherein the second sequence is the sequence shown in Sequence Q11 or Table Q11;the Sequence Q11 comprising:[0, 1, 2, 4, 8, 16, 32, 3, 5, 64, 9, 6, 17, 10, 18, 128, 12, 33, 65, 20, 256, 34, 24, 36, 7, 129, 66, 512, 11, 40, 68, 130, 19, 13, 48, 14, 72, 257, 21, 132, 35, 258, 26, 513, 80, 37, 25, 22, 136, 260, 264, 38, 514, 96, 67, 41, 144, 28, 69, 42, 516, 49, 74, 272, 160, 520, 288, 528, 192, 544, 70, 44, 131, 81, 50, 73, 15, 320, 133, 52, 23, 134, 384, 76, 137, 82, 56, 27, 97, 39, 259, 84, 138, 145, 261, 29, 43, 98, 515, 88, 140, 30, 146, 71, 262, 265, 161, 576, 45, 100, 640, 51, 148, 46, 75, 266, 273, 517, 104, 162, 53, 193, 152, 77, 164, 768, 268, 274, 518, 54, 83, 57, 521, 112, 135, 78, 289, 194, 85, 276, 522, 58, 168, 139, 99, 86, 60, 280, 89, 290, 529, 524, 196, 141, 101, 147, 176, 142, 530, 321, 31, 200, 90, 545, 292, 322, 532, 263, 149, 102, 105, 304, 296, 163, 92, 47, 267, 385, 546, 324, 208, 386, 150, 153, 165, 106, 55, 328, 536, 577, 548, 113, 154, 79, 269, 108, 578, 224, 166, 519, 552, 195, 270, 641, 523, 275, 580, 291, 59, 169, 560, 114, 277, 156, 87, 197, 116, 170, 61, 531, 525, 642, 281, 278, 526, 177, 293, 388, 91, 584, 769, 198, 172, 120, 201, 336, 62, 282, 143, 103, 178, 294, 93, 644, 202, 592, 323, 392, 297, 770, 107, 180, 151, 209, 284, 648, 94, 204, 298, 400, 608, 352, 325, 533, 155, 210, 305, 547, 300, 109, 184, 534, 537, 115, 167, 225, 326, 306, 772, 157, 656, 329, 110, 117, 212, 171, 776, 330, 226, 549, 538, 387, 308, 216, 416, 271, 279, 158, 337, 550, 672, 118, 332, 579, 540, 389, 173, 121, 553, 199, 784, 179, 228, 338, 312, 704, 390, 174, 554, 581, 393, 283, 122, 448, 353, 561, 203, 63, 340, 394, 527, 582, 556, 181, 295, 285, 232, 124, 205, 182, 643, 562, 286, 585, 299, 354, 211, 401, 185, 396, 344, 586, 645, 593, 535, 240, 206, 95, 327, 564, 800, 402, 356, 307, 301, 417, 213, 568, 832, 588, 186, 646, 404, 227, 896, 594, 418, 302, 649, 771, 360, 539, 111, 331, 214, 309, 188, 449, 217, 408, 609, 596, 551, 650, 229, 159, 420, 310, 541, 773, 610, 657, 333, 119, 600, 339, 218, 368, 652, 230, 391, 313, 450, 542, 334, 233, 555, 774, 175, 123, 658, 612, 341, 777, 220, 314, 424, 395, 673, 583, 355, 287, 183, 234, 125, 557, 660, 616, 342, 316, 241, 778, 563, 345, 452, 397, 403, 207, 674, 558, 785, 432, 357, 187, 236, 664, 624, 587, 780, 705, 126, 242, 565, 398, 346, 456, 358, 405, 303, 569, 244, 595, 189, 566, 676, 361, 706, 589, 215, 786, 647, 348, 419, 406, 464, 680, 801, 362, 590, 409, 570, 788, 597, 572, 219, 311, 708, 598, 601, 651, 421, 792, 802, 611, 602, 410, 231, 688, 653, 248, 369, 190, 364, 654, 659, 335, 480, 315, 221, 370, 613, 422, 425, 451, 614, 543, 235, 412, 343, 372, 775, 317, 222, 426, 453, 237, 559, 833, 804, 712, 834, 661, 808, 779, 617, 604, 433, 720, 816, 836, 347, 897, 243, 662, 454, 318, 675, 618, 898, 781, 376, 428, 665, 736, 567, 840, 625, 238, 359, 457, 399, 787, 591, 678, 434, 677, 349, 245, 458, 666, 620, 363, 127, 191, 782, 407, 436, 626, 571, 465, 681, 246, 707, 350, 599, 668, 790, 460, 249, 682, 573, 411, 803, 789, 709, 365, 440, 628, 689, 374, 423, 466, 793, 250, 371, 481, 574, 413, 603, 366, 468, 655, 900, 805, 615, 684, 710, 429, 794, 252, 373, 605, 848, 690, 713, 632, 482, 806, 427, 904, 414, 223, 663, 692, 835, 619, 472, 455, 796, 809, 714, 721, 837, 716, 864, 810, 606, 912, 722, 696, 377, 435, 817, 319, 621, 812, 484, 430, 838, 667, 488, 239, 378, 459, 622, 627, 437, 380, 818, 461, 496, 669, 679, 724, 841, 629, 351, 467, 438, 737, 251, 462, 442, 441, 469, 247, 683, 842, 738, 899, 670, 783, 849, 820, 728, 928, 791, 367, 901, 630, 685, 844, 633, 711, 253, 691, 824, 902, 686, 740, 850, 375, 444, 470, 483, 415, 485, 905, 795, 473, 634, 744, 852, 960, 865, 693, 797, 906, 715, 807, 474, 636, 694, 254, 717, 575, 913, 798, 811, 379, 697, 431, 607, 489, 866, 723, 486, 908, 718, 813, 476, 856, 839, 725, 698, 914, 752, 868, 819, 814, 439, 929, 490, 623, 671, 739, 916, 463, 843, 381, 497, 930, 821, 726, 961, 872, 492, 631, 729, 700, 443, 741, 845, 920, 382, 822, 851, 730, 498, 880, 742, 445, 471, 635, 932, 687, 903, 825, 500, 846, 745, 826, 732, 446, 962, 936, 475, 853, 867, 637, 907, 487, 695, 746, 828, 753, 854, 857, 504, 799, 255, 964, 909, 719, 477, 915, 638, 748, 944, 869, 491, 699, 754, 858, 478, 968, 383, 910, 815, 976, 870, 917, 727, 493, 873, 701, 931, 756, 860, 499, 731, 823, 922, 874, 918, 502, 933, 743, 760, 881, 494, 702, 921, 501, 876, 847, 992, 447, 733, 827, 934, 882, 937, 963, 747, 505, 855, 924, 734, 829, 965, 938, 884, 506, 749, 945, 966, 755, 859, 940, 830, 911, 871, 639, 888, 479, 946, 750, 969, 508, 861, 757, 970, 919, 875, 862, 758, 948, 977, 923, 972, 761, 877, 952, 495, 703, 935, 978, 883, 762, 503, 925, 878, 735, 993, 885, 939, 994, 980, 926, 764, 941, 967, 886, 831, 947, 507, 889, 984, 751, 942, 996, 971, 890, 509, 949, 973, 1000, 892, 950, 863, 759, 1008, 510, 979, 953, 763, 974, 954, 879, 981, 982, 927, 995, 765, 956, 887, 985, 997, 986, 943, 891, 998, 766, 511, 988, 1001, 951, 1002, 893, 975, 894, 1009, 955, 1004, 1010, 957, 983, 958, 987, 1012, 999, 1016, 767, 989, 1003, 990, 1005, 959, 1011, 1013, 895, 1006, 1014, 1017, 1018, 991, 1020, 1007, 1015, 1019, 1021, 1022, 1023];the Table Q11 comprising:
  • 18. The apparatus according to claim 17, wherein the sequence numbers of the Nmax polarized channels are arranged in the second sequence based on reliability of the Nmax polarized channels.
  • 19. The apparatus according to claim 17, wherein ordering of the sequence numbers of the polarized channels in the first sequence is consistent with ordering of sequence numbers less than N in the sequence numbers of the polarized channels in the second sequence.
  • 20. The apparatus according to claim 18, wherein the sequence numbers of the K polarized channels are selected based on reliability of the N polarized channels.
  • 21. The apparatus according to claim 17, wherein the first sequence is pre-stored.
  • 22. The apparatus according to claim 17, wherein the K to-be-encoded bits comprise a cyclic redundancy check (CRC) bit.
  • 23. The apparatus according to claim 17, wherein the K to-be-encoded bits comprise a parity check (PC) bit.
  • 24. The apparatus according to claim 17, wherein the logic circuit is further configured to rate match on the bit sequence after encoding based on a target code length, and the output interface circuit is configured to output the bit sequence after rate matching to a receiving device.
Priority Claims (1)
Number Date Country Kind
201710653644.4 Aug 2017 CN national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/145,850, filed on Sep. 28, 2018, which is a continuation of International Application No. PCT/CN2018/085567, filed on May 4, 2018. The International Application claims priority to Chinese Patent Application No. 201710653644.4, filed on Aug. 2, 2017. All of the afore-mentioned patent applications are hereby incorporated by reference in their entireties.

US Referenced Citations (10)
Number Name Date Kind
20040186809 Schlesinger et al. Sep 2004 A1
20080209286 Hamada Aug 2008 A1
20140169492 Mahdavifar et al. Jun 2014 A1
20140331083 Aliev et al. Nov 2014 A1
20150103947 Shen et al. Apr 2015 A1
20150194987 Li et al. Jul 2015 A1
20160013810 Gross et al. Jan 2016 A1
20170213047 Huang et al. Jul 2017 A1
20180026663 Wu et al. Jan 2018 A1
20180331697 Lin Nov 2018 A1
Foreign Referenced Citations (34)
Number Date Country
102694625 Sep 2012 CN
103023518 Apr 2013 CN
103281166 Sep 2013 CN
103684477 Mar 2014 CN
103746708 Apr 2014 CN
105099622 Nov 2015 CN
105743621 Jul 2016 CN
106506079 Mar 2017 CN
106877973 Jun 2017 CN
106899379 Jun 2017 CN
107592181 Jan 2018 CN
108347300 Jul 2018 CN
108390740 Aug 2018 CN
108631942 Oct 2018 CN
108667568 Oct 2018 CN
108809333 Nov 2018 CN
108880743 Nov 2018 CN
109150384 Jan 2019 CN
109257140 Jan 2019 CN
109286402 Jan 2019 CN
109286403 Jan 2019 CN
109286404 Jan 2019 CN
109347488 Feb 2019 CN
109391343 Feb 2019 CN
2899911 Jul 2015 EP
2563568 Dec 2018 GB
20110060635 Jun 2011 KR
20180108373 Oct 2018 KR
20180137356 Dec 2018 KR
2571587 Dec 2015 RU
2014000532 Jan 2014 WO
2016082142 Jun 2016 WO
2017197358 Nov 2017 WO
2018120734 Jul 2018 WO
Non-Patent Literature Citations (27)
Entry
Huawei et al.,“Polar code design and rate matching”,3GPP TSG RAN WG1 Meeting #86 R1-167209,Gothenburg, Sweden, Aug. 22-26, 2016,Total 5 Pages.
Huawei et al.,“Construction schemes for polar codes”,3GPP TSG RAN WG1 Meeting #88 R1-1701702,Athens, Greece, Feb. 13-17, 2017,Total 7 Pages.
Huawei et al.,“Overview of Polar Codes”,3GPP TSG RAN WG1 Meeting #84bis R1-162161,Busan, Korea, Apr. 11 15, 2016,Total 7 Pages.
3GPP TS 38.212 V15.0.0 (Dec. 2017),3rd Generation Partnership Project;Technical Specification Group Radio Access Network;NR;Multiplexing and channel coding(Release 15),total 23 pages.
3GPP TSG-RAN WG1 NR AdHoc, R1-1700832, Qualcomm Incorporated:“Design of Polar codes for control channel”, Jan. 16 20, 2017, Spokane, USA, 5 pages. XP51208351.
3GPP TSG RAN WG1 #88bis, R1-1705425, Samsung:“Design of a Nested Sequence for Polar Codes”, Spokane, WA, Apr. 3 7, 2017. 8 pages. XP51243555.
3GPP TSG RAN WG1 NR Ad-Hoc#2, R1-1710003, Huawei, HiSilicon:“Channel coding chain for control channel”, Qingdao, China, Jun. 27-30, 2017 . 4 pages. XP51299228.
3GPP TSG RAN WG1 Meeting #89, R1-1708489, NTT DOCOMO:“Sequence design of Polar codes”, Hangzhou, China May 15-19, 2017. 6 pages. XP51273681.
Bo Yuan et al.,“Successive Cancellation Decoding of Polar Codes using Stochastic Computing”,2015 IEEE International Symposium on Circuits and Systems (ISCAS) ,total 4 pages.
Huawei et al.,“Channel coding chain for control channel”,3GPP TSG RAN WG1 RAN1 #89 Meeting R1-1706968 Hangzhou, China, May 15-19, 2017,total 4 pages.
Huawei et al.,“Channel coding chain for control channel”,3GPP TSG RAN WG1 NR Ad-Hoc#2 R1-1710003 Qingdao, China, Jun. 27-30, 2017 ,total 4 pages.
NTT DOCOMO,“Discussion on construction of Polar codes”,3GPP TSG RAN WG1 Meeting #88 R1-1702850,Athens, Greece Feb. 13-17, 2017,total 9 pages.
Samsung,“Design of a Nested Sequence for Polar Codes”,3GPP TSG RAN WG1 #88bis R1-1705425,Spokane, WA, Apr. 3 7, 2017,total 8 pages.
Qualcomm Incorporated,“FRANK polar construction: nested extension design of polar codes based on mutual information”,3GPP TSG-RAN WG1 #88b R1-1705633, Apr. 3 7, 2017,Spokane, USA,total 21 pages.
NTT DOCOMO,“Sequence design of Polar codes”,3GPP TSG RAN WG1 Meeting #88bis R1-1705758,Spokane, USA Apr. 3-7, 2017,total 5 pages.
Samsung,“Design of rate-matching polar code”,3GPP TSG RAN WG1 Meeting #88bis R1-1706814,Spokane, WA, Apr. 3-7, 2017,total 10 pages.
NEC,“Evaluation of sequence design for polar codes”,3GPP TSG RAN WG1 Meeting #89 R1-1707059,Hangzhou, China, May 15 20, 2017,total 5 pages.
LG Electronics,“Information bit allocation of Polar codes”,3GPP TSG RAN WG1 Meeting #89 R1-1707674,Hangzhou, China, May 15-19, 2017,total 5 pages.
LG Electronics,“Discussion of rate matching for Polar codes”,3GPP TSG RAN WG1 Meeting #88bis R1-1707675, Hangzhou, China, May 15-19, 2017,total 5 pages.
Samsung,“Design of a Nested polar code sequences”,3GPP TSG RAN WG1 Meeting #89 R1-1708051,Hangzhou, P. R. China May 15 19, 2017,total 3 pages.
NTT DOCOMO,“Sequence design of Polar codes”,3GPP TSG RAN WG1 Meeting #89 R1-1708489,Hangzhou, China May 15-19, 2017,total 6 pages.
Qualcomm Incorporated,“FRANK polar construction for NR control channel and performance comparison”,3GPP TSG-RAN WG1 #89 R1-1708646,May 15 19, 2017,Hangzhou, P. R. China,total 22 pages.
Nokia et al.,“Sequence design for Polar codes”,3GPP TSG RAN WG1 Meeting #89 R1-1708834,Hangzhou, P.R. China May 15 19, 2017,total 13 pages.
Samsung,“Design of Combined-and-Nested Polar Code Sequences”,3GPP TSG RAN WG1 NR Ad-Hoc#2 R1-1710749,Qingdao, P.R. China, Jun. 27 30, 2017,total 18 pages.
NTT DOCOMO,“Sequence design of Polar codes”,3GPP TSG RAN WG1 NR Ad-Hoc#2 R1-1711126,Qingdao, China Jun. 27-30, 2017,total 6 pages.
Qualcomm Incorporated,“Sequence construction of Polar codes for control channel”,3GPP TSG-RAN WG1 NR Ad-Hoc#2 R1-1711218,Jun. 27 30, 2017,Qingdao, P. R. China,total 17 pages.
Nokia et al.,“Sequence design for Polar codes”,3GPP TSG RAN WG1 NR Ad-Hoc #2 R1-1711542,Qingdao, P.R. China Jun. 27 30, 2017,total 13 pages.
Related Publications (1)
Number Date Country
20200274642 A1 Aug 2020 US
Continuations (2)
Number Date Country
Parent 16145850 Sep 2018 US
Child 16838945 US
Parent PCT/CN2018/085567 May 2018 US
Child 16145850 US