Polarized light detecting device and fabrication methods of the same

Information

  • Patent Grant
  • 8835831
  • Patent Number
    8,835,831
  • Date Filed
    Monday, March 14, 2011
    13 years ago
  • Date Issued
    Tuesday, September 16, 2014
    10 years ago
Abstract
Described herein is a device operable to detect polarized light comprising: a substrate; a first subpixel; a second subpixel adjacent to the first subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a second direction parallel to the substrate; wherein the first direction and the second direction are different; the first plurality of features and the second plurality of features react differently to the polarized light.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. patent application Ser. Nos. 61/266,064, 61/357,429, 61/360,421, 12/204,686 (granted as U.S. Pat. No. 7,646,943), 12/270,233, 12/472,264, 12/472,271, 12/478,598, 12/573,582, 12/575,221, 12/633,297, 12/633,305, 12/633,313, 12/633,318, 12/633,323, 12/621,497, 12/648,942, 12/910,664, 12/945,492, 12/966,514, 12/966,535, 12/966,573, 12/967,880, 12/974,499 and 12/982,269, the disclosures of which are hereby incorporated by reference in their entirety.


BACKGROUND

Polarization is a property of certain types of waves that describes the orientation of their oscillations. Electromagnetic waves including visible light can exhibit polarization. By convention, the polarization of light is described by specifying the orientation of the light's electric field at a point in space over one period of the oscillation. When light travels in free space, in most cases it propagates as a transverse wave, i.e. the polarization is perpendicular to the light's direction of travel. In this case, the electric field may be oriented in a single direction (linear polarization), or it may rotate as the wave travels (circular or elliptical polarization). In the latter cases, the oscillations can rotate either towards the right or towards the left in the direction of travel. Depending on which rotation is present in a given wave it is called the wave's chirality or handedness. Polarization of fully polarized light can be represented by a Jones vector. The x and y components of the complex amplitude of the electric field of light travel along z-direction, Ex(t) and Ey(t), are represented as







(





E
x



(
t
)








E
y



(
t
)





)

=



E
0



(





E

0

x









(

kz
-

ω





t

+

ϕ
x


)










E

0

y









(

kz
-

ω





t

+

ϕ
x


)







)


=


E
0










(

kz
-

ω





t


)





(





E

0

x






ⅈϕ
x









E

0

y






ⅈϕ
y






)


·

(





E

0

x






ⅈϕ
x









E

0

y






ⅈϕ
y






)









is the Jones vector. Polarization of light with any polarization, including unpolarized, partially polarized, and fully polarized light, can be described by the Stokes parameters, which are four mutually independent parameters.


A device that can detect polarization of light, or even measure the light's Jones vector or Stokes parameters can be useful in many application.


SUMMARY

According to an embodiment, a device operable to detect polarized light comprises: a substrate; a first subpixel; a second subpixel adjacent to the first subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly (i.e. at least 85°) from the substrate and extend essentially in parallel (i.e. at most 5°) in a second direction parallel to the substrate; wherein the first direction and the second direction are different; the first plurality of features and the second plurality of features react differently to the polarized light. The term “polarized light” as used herein means light with polarization.


According to an embodiment, the polarized light has linear polarization, circular or elliptical polarization. “Linear polarization” as used herein means the electric field of light is confined to a given plane along the direction of propagation of the light. “Circular polarization” as used herein means the electric field of light does not change strength but only changes direction in a rotary type manner. “Elliptical polarization” as used herein means electric field of light describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation of the light.


According to an embodiment, the first plurality of features is equally spaced from each other.


According to an embodiment, the first plurality of features comprises at least 2 features.


According to an embodiment, the first plurality of features has a pitch of about 0.5 micron to about 5 microns, a height of about 0.3 micron to 10 microns, an aspect ratio of at least 4:1, preferably at least 10:1, or a combination thereof.


According to an embodiment, space between features of the first plurality of features is filled with a transparent material.


According to an embodiment, each of the first plurality of features comprises a p-i-n diode or forms a p-i-n diode with the substrate, and wherein the p-i-n diode is functional to convert at least a portion of the polarized light to an electrical signal. A p-i-n diode means a diode with a wide, lightly doped or intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor region. An intrinsic semiconductor, also called an undoped semiconductor or i-type semiconductor, is a substantially pure semiconductor without any significant dopant species present. A heavily doped semiconductor is a semiconductor with such a high doping level that the semiconductor starts to behave electrically more like a metal than as a semiconductor. A lightly doped semiconductor is a doped semiconductor but not have a doping level as high as a heavily doped semiconductor. In a lightly doped semiconductor, dopant atoms create individual doping levels that can often be considered as localized states that can donate electrons or holes by thermal promotion (or an optical transition) to the conduction or valence bands respectively. At high enough impurity concentrations (i.e. heavily doped) the individual impurity atoms may become close enough neighbors that their doping levels merge into an impurity band and the behavior of such a system ceases to show the typical traits of a semiconductor, e.g. its increase in conductivity with temperature.


According to an embodiment, the substrate comprises electrical components configured to detect the electrical signal.


According to an embodiment, the device further comprises a first transparent electrode disposed on the first subpixel and electrically connected to each of the first plurality of features, and a second transparent electrode disposed on the second subpixel and electrically connected to each of the second plurality of features, wherein the first and second transparent electrodes are separate. The term “transparent” as used herein means a transmittance of at least 70%.


According to an embodiment, the device further comprises a reflective material deposited on areas of the substrate between features of the first plurality of features. A reflective material is a material with a reflectance of at least 50%.


According to an embodiment, each of the first plurality of features comprises an intrinsic semiconductor layer or a first lightly doped semiconductor layer, and a heavily doped semiconductor layer; the substrate comprises a second lightly doped semiconductor layer; wherein the second lightly doped semiconductor layer is an opposite type from the heavily doped semiconductor layer; intrinsic semiconductor layer or a first lightly doped semiconductor layer is disposed on the second lightly doped semiconductor layer; and the heavily doped semiconductor layer is disposed on the intrinsic semiconductor layer or the first lightly doped semiconductor layer; wherein the heavily doped semiconductor layer, the intrinsic layer or the first lightly doped semiconductor layer, and the heavily doped semiconductor layer form a p-i-n diode. One semiconductor having an opposite type from another semiconductor means the former is n type if the latter is p type or, the former is p type if the latter is n type.


According to an embodiment, each of the first plurality of features comprises a core of intrinsic semiconductor or lightly doped semiconductor, and a shell of heavily doped semiconductor; the substrate comprises a lightly doped semiconductor layer; wherein the lightly doped semiconductor layer is an opposite type from the shell; the core is disposed on the lightly doped semiconductor layer; the shell is conformally disposed over the core; wherein the shell, the core and the lightly doped semiconductor layer form a p-i-n diode.


According to an embodiment, each of the first plurality of features comprises a core of lightly doped semiconductor, an intermediate shell of intrinsic semiconductor and an outer shell of doped semiconductor; wherein the intermediate shell is conformally disposed over the core; the outer shell is conformally disposed over the intermediate shell; the outer shell is of an opposite type from the core; wherein the outer shell, the intermediate shell and the core form the p-i-n diode.


According to an embodiment, each of the first plurality of features comprises a first heavily doped semiconductor layer, a lightly doped semiconductor layer or intrinsic semiconductor layer, a second heavily doped layer; wherein the first heavily doped semiconductor layer is disposed on the lightly doped semiconductor layer or intrinsic semiconductor layer; the lightly doped semiconductor layer or intrinsic semiconductor layer is disposed on the second heavily doped layer; the first heavily doped layer is of an opposite type from the second heavily doped layer; wherein the first heavily doped layer, the lightly doped semiconductor layer or intrinsic semiconductor layer and the second heavily doped layer form the p-i-n diode.


According to an embodiment, a polarization detector array comprises any of the device above, and electronic circuitry functional to detect the electrical signal.


According to an embodiment, the electronic circuitry is further functional to calculate an interpolation of subpixels of the device, adjust a gain and/or calculate Stoke's parameters.


According to an embodiment, the device comprises a first subpixel, a second subpixel, a third subpixel and a fourth subpixel, wherein features on the second, third and fourth subpixels extend in transverse directions at 45°, 90° and −45° relative to a transverse direction in which features on the first subpixel extend.


According to an embodiment, a method of fabricating a device operable to detect polarized light comprising a substrate, a first subpixel, a second subpixel adjacent to the first subpixel, a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a second direction parallel to the substrate, wherein the first direction and the second direction are different and wherein the first plurality of features and the second plurality of features react differently to the polarized light; the method comprises: lithography, ion implantation, annealing, evaporation, atomic layer deposition, chemical vapor deposition, dry etch or a combination thereof.





BRIEF DESCRIPTION OF FIGURES


FIG. 1 is a perspective view of the device according one embodiment.



FIG. 2 shows a schematic of the features in one subpixel when light with different polarization impinges thereon.



FIG. 3 shows a method of fabricating the device of FIG. 1.



FIG. 4 is a perspective view of the device according one embodiment.



FIG. 5 shows a method of fabricating the device of FIG. 4.



FIG. 6 is a perspective view of the device according one embodiment.



FIG. 7 shows a method of fabricating the device of FIG. 6.



FIG. 8 is a perspective view of the device according one embodiment.



FIG. 9 shows a method of fabricating the device of FIG. 8.



FIG. 10 shows a polarization detector array with the device of FIG. 1, 4, 6 or 8 integrated therein.



FIG. 11 shows a schematic of a light detector apparatus wherein the device of FIG. 1, 4, 6 or 8 is used as fore optics.



FIG. 12 shows a top view and a perspective view of a feature in the device of FIG. 1, wherein the feature has metal layers on its sidewalls.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part thereof. In drawings, similar symbols typically identify similar components, unless the context dictates otherwise. The illustrate embodiments described in the detailed description, drawings, and Claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.


This disclosure is drawn to, among other things, methods of use, methods of fabrication, apparatuses, systems, and devices related to a device operable to detect and distinguish light of different polarization. According to an embodiment, the device comprises a substrate having a plurality of regions defined thereon (hereafter referred to as “subpixels”; a group of related “subpixels” may be referred to as a “pixel”). In each subpixel, the device comprises a plurality of features extending essentially perpendicularly from the substrate, wherein the plurality of features also extend essentially in parallel in a direction parallel to the substrate (hereafter referred to as a “transverse direction”). The term “feature” used herein means a structure whose dimensions in a direction perpendicular to the substrate (hereafter referred to as the “normal direction”) and in the transverse direction are substantially greater than a dimension of the structure in a direction perpendicular to both the normal direction and the transverse direction (hereafter referred to as the “thickness direction”). A feature can have any suitable shape in a cross-section parallel to the substrate, such as a rectangle, an ellipse, convex-convex (i.e. like a double-convex lens), concave-concave (i.e. like a double-concave lens), plano-convex (i.e. like a plano-convex lens), plano-concave (i.e. like a plano-concave lens). The plurality of features can be equally or unequally spaced from each other. The plurality of features in different subpixels are functional to react differently to light with a same polarization. Here, the term “react” is meant to broadly encompass absorbing, reflecting, coupling to, detecting, interacting with, converting to electrical signals, etc. The plurality of features in a first subpixel extends in a first transverse direction; the plurality of features in a second subpixel extends in a second transverse direction, wherein the first and second pixels are adjacent and the first transverse direction is different from the second transverse direction.



FIG. 1 shows a device 10 according to one embodiment. For brevity, two subpixels 10a and 10b of a substrate 110 are illustrated. The device 10, however, can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000. The subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns). In each of the subpixels 10a and 10b, the device 10 comprises a plurality of features 100 (e.g. at least 2 features), respectively. The features 100 in the subpixel 10a and the features 100 in the subpixel 10b extend in different transverse directions. The features 100 preferably have a pitch (i.e. spacing between adjacent features 100 in the thickness direction thereof) of about 0.5 to 5 microns (further preferably about 1 micron), a height (i.e. dimension in the normal direction) of about 0.3 to 10 microns (further preferably about 5 micron) and an aspect ratio (i.e. ratio of a dimension in the transverse direction to a dimension in the thickness direction) of at least 4:1, preferably at least 10:1. Each of the features 100 forms a p-i-n diode with the substrate 110, the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal. Each feature 100 comprises a heavily doped semiconductor layer 124 disposed on a lightly doped semiconductor layer or intrinsic semiconductor layer 121. The substrate 110 comprises another lightly doped semiconductor layer 122 of an opposite type from the heavily doped semiconductor layer 124. The lightly doped semiconductor layer or intrinsic semiconductor layer 121 of the feature 100 is disposed on the lightly doped semiconductor layer 122. The layers 121, 122 and 124 form the p-i-n diode. Space between the features 100 can be filled with a transparent material. The device 10 preferably further comprises electrical components configured to detect the electrical signal from the features 100, for example, a transparent electrode disposed on each subpixel and electrically connected to all features 100 therein. The transparent electrode on each subpixel preferably is separate from the transparent electrode on adjacent subpixels. A reflective material can be deposited on areas of the substrate 110 between the features 100. The substrate 110 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).



FIG. 2 shows a schematic of the features 100 in one subpixel when light with different polarization impinges thereon. For light 15a with a wavelength of about 400 nm and a linear polarization essentially in the thickness direction of the features 100, the absorptance of the features 100 is about 35%. In contrast, for light 15b with the same wavelength as light 15a and a linear polarization essentially in the transverse direction of the features 100, the absorptance of the features 100 is about 95%.



FIG. 3 shows an exemplary method of fabrication of the device 10.


In step 1000, a silicon substrate 110 is provided, wherein the silicon substrate comprises an intrinsic layer or a lightly doped n type silicon epitaxial layer 121, a heavily doped n type layer 123 and a lightly doped n type layer 122 sandwiched between the layers 121 and 123. A substrate of semiconductor material other than silicon (e.g. III-V or II-VI group compound semiconductor) can also be used.


In step 1001, a heavily doped p type layer 124 is fabricated on the layer 121 by a method such as ion implantation and subsequent annealing. An exemplary dopant suitable for use in the ion implantation is boron or boron difluoride.


In step 1002, a resist layer 125 (e.g. a photoresist or an e-beam resist) is deposited on the heavily doped p type layer 124, by a suitable method such as spin coating.


In step 1003, a pattern is formed in the resist layer 125 using a lithography technique (e.g. photolithrograph or e-beam lithography) by removing portions 126 of the resist layer 125. The heavily doped p type layer 124 is exposed under the removed portions 126. The pattern corresponds to shapes and positions of the features 100.


In step 1004, a metal layer 125 is deposited on the resist layer 125 and the exposed portions of the heavily doped p type layer 124, using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 125 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.


In step 1005, remainder of the resist layer 125 and portions of the metal layer 125 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.


In step 1006, features 100 are formed by etching into the substrate 110 using a suitable technique, such as dry etching with remainder of the metal layer 125 as etch mask, until portions of the lightly doped n type layer 122 not directly below the remainder of the metal layer 125 are exposed. The features 100 now comprise remainder of the layers 121 and 124.


In step 1007, a layer of oxide 128 (e.g. HfO2, SiO2, Al2O3) is deposited isotropically over the features 100 and exposed portions of the layer 122, using suitable technique such as atomic layer deposition (ALD) and chemical vapor deposition (CVD). The layer of oxide 128 is functional to passivate surfaces of the features 100.


In step 1008, a metal layer 130 is deposited on the heavily doped n type layer 123 using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 130 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof. A rapid thermal annealing can be conducted following the deposition of the metal layer 130 to form an Ohmic contact between the metal 130 and the heavily doped n type layer 123.


In step 1009, a reflective layer 129 is deposited anisotropically on and between the features 100 such that sidewalls of the features 100 are preferably free of the reflective layer 129. The reflective layer 129 can be deposited by thermal evaporation or e-beam evaporation. Exemplary metal suitable for use in the reflective layer 129 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.


In step 1010, a sacrificial layer 131 preferably with a refractive index lower than that of the features 100 is deposited by spin coating or evaporation to fill space between the features 100. The sacrificial layer 131 can be a suitable material such as polyimide or oxide.


In step 1011, the sacrificial layer 131 is planarized using a suitable technique such as chemical mechanical polishing (CMP) until the heavily doped p type layer 124 of the features 100 is exposed.


In step 1012, a transparent conductive oxide (TCO) layer 132 is deposited on the sacrificial layer 131 and the exposed heavily doped p type layer 124 of the features 100, using a suitable method such as thermal evaporation, e-beam evaporation, and sputtering. The TCO layer can comprise one or more suitable materials such as indium tin oxide, aluminum zinc oxide, zinc indium oxide, zinc oxide and graphene.


In step 1013, another resist layer 133 is deposited on the TCO layer 132 using a technique such as spin-coating. A pattern is formed in the resist layer 133 using a lithography technique (e.g. photolithrograph or e-beam lithography) by removing portions 134 of the resist layer 133. The TCO layer 132 is exposed under the removed portions 134. The pattern corresponds to gaps to be made in the TCO layer 132 for electrically separating the TCO layer 132 into transparent electrodes for each subpixel.


In step 1014, the TCO layer 132 is dry etched using the resist layer 133 as etch mask until portions of the sacrificial layer 131 is exposed in the removed portions 134 of the resist layer 133.


In step 1015, remainder of the resist layer 133 is removed by plasma ashing or dissolution in a suitable solvent.


In step 1016, the sacrificial layer 131 is optionally removed by a suitable method such as wet etching. For example, polyimide can be removed by a suitable photoresist developer. A thermal annealing (e.g. at 450° C. for 30 minutes) can be applied to form an Ohmic contact between the TCO layer 132 and the features 100.



FIG. 4 shows a device 20 according to one embodiment. For brevity, two subpixels 20a and 20b of a substrate 210 are illustrated. The device 20, however, can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000. The subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns). In each of the subpixels 20a and 20b, the device 20 comprises a plurality of features 200 (e.g. at least 2 features), respectively. The features 200 in the subpixel 20a and the features 200 in the subpixel 20b extend in different transverse directions. The features 200 preferably have a pitch (i.e. spacing between adjacent features 100 in the thickness direction thereof) of about 0.5 to 5 microns (further preferably about 1 micron), a height (i.e. dimension in the normal direction) of about 0.3 to 10 microns (further preferably about 5 micron) and an aspect ratio (i.e. ratio of a dimension in the transverse direction to a dimension in the thickness direction) of at least 4:1, preferably at least 10:1. Each of the features 200 forms a p-i-n diode with the substrate 210, the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal. Each feature 200 comprises a core 221 of lightly doped semiconductor or intrinsic semiconductor, and a shell 223 of heavily doped semiconductor, the shell 223 being conformally disposed over the core 221. The substrate 210 comprises a lightly doped semiconductor layer 222 of an opposite type from the shell 223. The core 221 is disposed on the lightly doped semiconductor layer 222. The shell 223, core 221 and layer 222 form the p-i-n diode. Space between the features 200 can be filled with a transparent material. The device 20 preferably further comprises electrical components configured to detect the electrical signal from the features 200, for example, an electrode disposed between and electrically connected to the features 200 on each subpixel. The electrode disposed between the features 200 on each subpixel preferably is separate from the electrode disposed between the features 200 on adjacent subpixels. The electrode can also function as a reflective layer. The substrate 210 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).



FIG. 5 shows an exemplary method of fabrication of the device 20.


In step 2000, a silicon substrate 210 is provided, wherein the silicon substrate comprises an intrinsic layer or a lightly doped n type silicon epitaxial layer 221, a heavily doped n type layer 223 and a lightly doped n type layer 222 sandwiched between the layers 221 and 223. A substrate of semiconductor material other than silicon (e.g. III-V or II-VI group compound semiconductor) can also be used.


In step 2001, a resist layer 225 (e.g. a photoresist or an e-beam resist) is deposited on the layer 221, by a suitable method such as spin coating.


In step 2002, a pattern is formed in the resist layer 225 using a lithography technique (e.g. photolithrograph or e-beam lithography) by removing portions 226 of the resist layer 225. The layer 221 is exposed under the removed portions 226. The pattern corresponds to shapes and positions of the features 200.


In step 2003, a metal layer 227 is deposited on the resist layer 225 and the exposed portions of the layer 221, using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 227 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.


In step 2004, remainder of the resist layer 225 and portions of the metal layer 227 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.


In step 2005, features 200 are formed by etching into the substrate 210 using a suitable technique, such as dry etching with remainder of the metal layer 227 as etch mask, until portions of the lightly doped n type layer 222 not directly below the remainder of the metal layer 227 are exposed. The features 200 now comprise remainder of the layer 221.


In step 2006, remainder of the metal layer 227 is removed by a suitable technique such as wet etching with a suitable metal etchant.


In step 2007, a resist layer 229 (e.g. a photoresist or an e-beam resist) is deposited on the layer 222 and the features 200, by a suitable method such as spin coating. The resist layer 229 is then patterned using a lithography technique to expose portions of the layer 222 at boundaries of the subpixels.


In step 2008, a silicon nitride or aluminum oxide layer 230 is deposited anisotropically over the exposed portions of the layer 222 and on the resist layer 229 using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.


In step 2009, remainder of the resist layer 229 and any portions of the layer 230 thereon are removed by plasma ashing or dissolution in a suitable solvent.


In step 2010, a p-type dopant layer 231 is deposited isotropically over the features 200, remainder of on the layer 230, and the layer 222, using a suitable technique such as ALD or CVD. ALD is preferred. The p-type dopant layer 231 can comprise a suitable p-type dopant such as trimethyboron, triiospropylborane, triethoxyborane, triisopropoxyborane, and a combination thereof.


In step 2011, an oxide layer 232 is deposited isotropically over the p-type dopant layer 231 using a suitable technique such as ALD or CVD.


In step 2012, a heavily doped p type layer 233 is formed by annealing the device 20 to diffuse the p-type dopant layer 231 into the layer 222. The annealing can be done in a suitable atmosphere (e.g. argon) at about 850° C. for 10 to 30 minutes.


In step 2013, the oxide layer 232 is removed by a suitable method such as etching with buffered HF followed by washing. Now the heavily doped p type layer 233 is exposed.


In step 2014, a layer of oxide 234 (e.g. HfO2, SiO2, Al2O3) is deposited isotropically over the layer 233 and remainder of on the layer 230, using suitable technique such as atomic layer deposition (ALD) and chemical vapor deposition (CVD). The layer of oxide 234 is functional to passivate surfaces of the layer 233.


In step 2015, a resist layer 235 (e.g. a photoresist or an e-beam resist) is deposited on the layer 234, by a suitable method such as spin coating. The resist layer 235 is then patterned using a lithography technique to expose portions of the layer 234.


In step 2016, exposed portions of the layer 234 is removed by a suitable technique such as dry etching to expose portions of the layer 233. The resist layer 235 is then removed by ashing or dissolution in a suitable solvent.


In step 2017, a resist layer 237 (e.g. a photoresist or an e-beam resist) is deposited on the layers 233 and 234, by a suitable method such as spin coating. The resist layer 237 is then patterned using a lithography technique such that only the features 200 and the layer 230 remain under the resist layer 237.


In step 2018, a metal layer 239 is deposited anisotropically on and between the features 200 such that sidewalls of the features 200 are preferably free of the metal layer 239. The metal layer 239 can be deposited by thermal evaporation or e-beam evaporation. Exemplary metal suitable for use in the metal layer 239 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof. The resist layer 237 is then removed by plasma ashing or dissolution in a suitable solvent.


In step 2019, the device 20 is annealed under a suitable atmosphere (e.g. H2 and N2) at about 450° C. for about 30 minutes, such that the metal layer 239 and the exposed portions of the heavily doped p type layer 233 form an Ohmic contact.


In step 2020, a resist layer 238 (e.g. a photoresist or an e-beam resist) is deposited on the layers 239 and 234, by a suitable method such as spin coating. The resist layer 238 is then patterned using a lithography technique to expose the remainder of the layer 230 and any portion of the layer 234 thereon.


In step 2021, an oxide layer 240 is deposited anisotropically over any portion of the layer 234 on the remainder of the layer 230, and over the resist layer 238, using a suitable technique such as thermal evaporation or e-beam evaporation. The oxide layer 240 is an electrical insulator.


In step 2022, a metal layer 241 is deposited anisotropically over the oxide layer 240, using a suitable technique such as thermal evaporation or e-beam evaporation. The metal layer 241 is optically opaque.


In step 2023, the resist layer 238 and any portions of the oxide layer 240 and the metal layer 241 thereon are removed by a suitable technique such as plasma ashing and dissolution in a suitable solvent.



FIG. 6 shows a device 30 according to one embodiment. For brevity, two subpixels 30a and 30b of a substrate 310 are illustrated. The device 30, however, can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000. The subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns). In each of the subpixels 30a and 30b, the device 30 comprises a plurality of features 300 (e.g. at least 2 features), respectively. The features 300 in the subpixel 30a and the features 300 in the subpixel 30b extend in different transverse directions. The features 300 preferably have a pitch (i.e. spacing between adjacent features 100 in the thickness direction thereof) of about 0.5 to 5 microns (further preferably about 1 micron), a height (i.e. dimension in the normal direction) of about 0.3 to 10 microns (further preferably about 5 micron) and an aspect ratio (i.e. ratio of a dimension in the transverse direction to a dimension in the thickness direction) of at least 4:1, preferably at least 10:1. Each of the features 300 preferably comprises a p-i-n diode, the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal. Each feature 300 comprises a core 321 of lightly doped semiconductor, an intermediate shell 331 of intrinsic semiconductor and an outer shell 332 of doped semiconductor. The intermediate shell 331 is conformally disposed over the core 321. The outer shell 332 is conformally disposed over the intermediate shell 331. The outer shell 332 is of an opposite type from the core 321. The outer shell 332, the intermediate shell 331 and the core 321 form the p-i-n diode. Space between the features 300 can be filled with a transparent material. The device 20 preferably further comprises electrical components configured to detect the electrical signal from the features 300, for example, an electrode disposed between and electrically connected to the features 300 on each subpixel. The electrode disposed between the features 300 on each subpixel preferably is separate from the electrode disposed between the features 300 on adjacent subpixels. The electrode can also function as a reflective layer. The substrate 310 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).



FIG. 7 shows an exemplary method of fabrication of the device 30.


In step 3000, a silicon substrate 310 is provided, wherein the silicon substrate comprises a lightly doped n type silicon epitaxial layer 321, a heavily doped n type layer 323 and a n type layer 322 sandwiched between the layers 321 and 323. A substrate of semiconductor material other than silicon (e.g. III-V or II-VI group compound semiconductor) can also be used.


In step 3001, a resist layer 325 (e.g. a photoresist or an e-beam resist) is deposited on the layer 321, by a suitable method such as spin coating.


In step 3002, a pattern is formed in the resist layer 325 using a lithography technique (e.g. photolithrograph or e-beam lithography) by removing portions 326 of the resist layer 325. The layer 321 is exposed under the removed portions 326. The pattern corresponds to shapes and positions of the features 300.


In step 3003, a metal layer 327 is deposited on the resist layer 325 and the exposed portions of the layer 321, using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 327 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.


In step 3004, remainder of the resist layer 325 and portions of the metal layer 327 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.


In step 3005, features 300 are formed by etching into the substrate 310 using a suitable technique, such as dry etching with remainder of the metal layer 327 as etch mask, until portions of the lightly doped n type layer 322 not directly below the remainder of the metal layer 327 are exposed. The features 300 now comprise remainder of the layer 321.


In step 3006, remainder of the metal layer 327 is removed by a suitable technique such as wet etching with a suitable metal etchant.


In step 3007, a resist layer 329 (e.g. a photoresist or an e-beam resist) is deposited on the layer 322 and the features 300, by a suitable method such as spin coating. The resist layer 329 is then patterned using a lithography technique to expose portions of the layer 322 at boundaries of the subpixels.


In step 3008, a silicon nitride or aluminum oxide layer 330 is deposited anisotropically over the exposed portions of the layer 322 and on the resist layer 329 using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering.


In step 3009, remainder of the resist layer 329 and any portions of the layer 330 thereon are removed by plasma ashing or dissolution in a suitable solvent.


In step 3010, an intrinsic amorphous silicon (a-Si) layer 331 is deposited isotropically over the features 300, remainder of on the layer 330, and the layer 322, using a suitable technique such as ALD or CVD. ALD is preferred.


In step 3011, a p type doped a-Si layer 332 is deposited isotropically over the layer 331 using a suitable technique such as ALD or CVD. The device 30 is then annealed in a suitable atmosphere (e.g. forming gas) at about 450° C. for about 30 minutes.


In step 3012, a resist layer 333 (e.g. a photoresist or an e-beam resist) is deposited on the layer 332, by a suitable method such as spin coating. The resist layer 333 is then patterned using a lithography technique to expose any portion of the layer 332 on the remainder of the layer 330.


In step 3013, exposed portions of the layer 332 and any portion of the layer 331 thereunder are removed by a suitable method such as dry etch, until the layer 330 is exposed.


In step 3014, the resist layer 333 is removed by plasma ashing or dissolution in a suitable solvent.


In step 3015, a resist layer 334 (e.g. a photoresist or an e-beam resist) is deposited by a suitable method such as spin coating. The resist layer 334 is then patterned using a lithography technique such that only the features 300 and the layer 330 remain under the resist layer 334.


In step 3016, a metal layer 335 is deposited anisotropically on and between the features 300 such that sidewalls of the features 300 are preferably free of the metal layer 335. A metal layer 336 is deposited on the layer 323. The metal layers 335 and 336 can be deposited by thermal evaporation or e-beam evaporation. Exemplary metal suitable for use in the metal layer 335 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.


In step 3017, the resist layer 334 and any portion of the metal layer 335 thereon are removed by plasma ashing or dissolution in a suitable solvent. The device 30 is then annealed under a suitable atmosphere (e.g. H2 and N2) at about 450° C. for about 30 minutes, such that the metal layers 335 and 336 form Ohmic contacts with the layer 332 and 323, respectively.


In step 3018, a resist layer 337 (e.g. a photoresist or an e-beam resist) is deposited on the layers 332 and 335, by a suitable method such as spin coating. The resist layer 337 is then patterned using a lithography technique to expose the remainder of the layer 330.


In step 3019, an oxide layer 338 and a metal layer 339 are sequentially deposited anisotropically, using a suitable technique such as thermal evaporation or e-beam evaporation. The oxide layer 338 is an electrical insulator. The metal layer 241 is optically opaque.


In step 3020, the resist layer 337 and any portions of the oxide layer 338 and the metal layer 339 thereon are removed by a suitable technique such as plasma ashing and dissolution in a suitable solvent.



FIG. 8 shows a device 40 according to one embodiment. For brevity, two subpixels 40a and 40b of a substrate 410 are illustrated. The device 40, however, can comprise a plurality of pixels such as more than 100, more than 1000, more than 1000000. The subpixels preferably have a pitch of about 1 micron to 100 microns (more preferably 5 microns). In each of the subpixels 40a and 40b, the device 40 comprises a plurality of features 400 (e.g. at least 2 features), respectively. The features 400 in the subpixel 40a and the features 400 in the subpixel 40b extend in different transverse directions. The features 400 preferably have a pitch (i.e. spacing between adjacent features 100 in the thickness direction thereof) of about 0.5 to 5 microns (further preferably about 1 micron), a height (i.e. dimension in the normal direction) of about 0.3 to 10 microns (further preferably about 5 micron) and an aspect ratio (i.e. ratio of a dimension in the transverse direction to a dimension in the thickness direction) of at least 4:1, preferably at least 10:1. Each of the features 400 preferably comprises a p-i-n diode therein, the p-i-n diode being functional to convert at least a portion of light impinged thereon to an electrical signal, wherein the p-i-n diode is formed along the normal direction. For example, each feature 400 comprises a first heavily doped semiconductor layer 435, a lightly doped semiconductor layer or intrinsic semiconductor layer 421, a second heavily doped layer 424. The first heavily doped semiconductor layer 435 is disposed on the lightly doped semiconductor layer or intrinsic semiconductor layer 421. The lightly doped semiconductor layer or intrinsic semiconductor layer 421 is disposed on the second heavily doped layer 424. The first heavily doped layer 435 is of an opposite type from the second heavily doped layer 424. The first heavily doped layer 435, the lightly doped semiconductor layer or intrinsic semiconductor layer 421 and the second heavily doped layer 424 form the p-i-n diode. Space between the features 300 can be filled with a transparent material. The features 400 preferably are bonded to the substrate 410. The device 40 preferably further comprises electrical components configured to detect the electrical signal from the features 400, for example, Readout Integrated Circuits (ROIC) in the substrate 410. The ROIC can be electrically connected to the second heavily doped layer 424. The substrate 410 can have a thickness in the normal direction of about 5 to 700 microns (preferably 120 microns).



FIG. 9 shows an exemplary method of fabrication of the device 40.


In step 4000, a silicon substrate 423 is provided, wherein the silicon substrate 423 comprises an silicon oxide layer 422 thereon and an intrinsic layer or a lightly doped p type silicon layer 421 on the silicon oxide layer 422. A substrate of semiconductor material other than silicon (e.g. III-V or II-VI group compound semiconductor) can also be used.


In step 4001, a heavily doped n type layer 424 is fabricated on the layer 421 by a method such as ion implantation and subsequent annealing. An exemplary dopant suitable for use in the ion implantation is phosphorous or arsenic.


In step 4002, a resist layer 425 (e.g. a photoresist or an e-beam resist) is deposited on the heavily doped n type layer 424, by a suitable method such as spin coating.


In step 4003, a pattern is formed in the resist layer 425 using a lithography technique (e.g. photolithrograph or e-beam lithography) by removing portions 426 of the resist layer 425. The heavily doped n type layer 424 is exposed under the removed portions 426. The pattern corresponds to shapes and positions of the features 400.


In step 4004, a metal layer 427 is deposited on the resist layer 425 and the exposed portions of the heavily doped n type layer 424, using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 427 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.


In step 4005, remainder of the resist layer 425 and portions of the metal layer 427 thereon are lift-off by a suitable technique such as plasma ashing and dissolution in a suitable solvent.


In step 4006, features 400 are formed by etching into the layer 421 using a suitable technique, such as dry etching with remainder of the metal layer 125 as etch mask, until portions of the silicon oxide layer 422 not directly below the remainder of the metal layer 427 are exposed. The features 400 now comprise remainder of the layers 421 and 424.


In step 4007, remainder of the metal layer 427 is removed by a suitable method such as etching with a suitable metal etchant.


In step 4008, a metal layer 429 is deposited anisotropically on the heavily doped n type layer 424 and exposed portions of the silicon oxide layer 422, using a suitable technique such as thermal evaporation, e-beam evaporation, and sputtering. Exemplary metal suitable for use in the metal layer 429 are aluminum, gold, chromium, silver, copper, titanium, nickel or a combination thereof.


In step 4009, an oxide layer 428 (e.g. HfO2, SiO2, Al2O3) is deposited isotropically over the features 400 and the metal layer 429, using suitable technique such as atomic layer deposition (ALD) and chemical vapor deposition (CVD). The oxide layer 428 is functional to passivate surfaces of the features 400.


In step 4010, portions of the oxide layer 428 above the metal layer 429 are removed by a suitable technique such as anisotropic dry etch. Now the metal layer 429 is exposed.


In step 4011, a silicide layer 430 is formed from the heavily doped n type layer 424 and portions of the metal layer 429 thereon by annealing the device 40. Remainder of the metal layer 429 is removed by a suitable technique such as etching with a suitable metal etchant.


In step 4012, a sacrificial layer 431 is deposited by pouring, spin coating or evaporation to fill space between the features 400. The sacrificial layer 431 can be a suitable material such as polydimethylsiloxane, polyimide or oxide.


In step 4013, the substrate using a suitable technique such as etching with potassium hydroxide, until the silicon oxide layer 422 is exposed.


In step 4014, a glass substrate 432 is bonded to the exposed silicon oxide layer 422, using a suitable technique such as using a UV removable glue. The glass substrate 432 can provide mechanical support.


In step 4015, the sacrificial layer is removed by a suitable method such as wet etching. For example, polyimide can be removed by a suitable photoresist developer.


In step 4016, the features 40 are bonded to ROIC in the substrate 410 using a tin-silver alloy layer between the substrate 410 and the features 40 and annealing at about 220° C.


In step 4017, the glass substrate 432 is released from the silicon oxide layer 422 by illumination with UV light.


In step 4018, a heavily doped p type layer 435 is formed on the layer 421 of the features 400 by a suitable technique such as ion implantation through the silicon oxide layer 422. The heavily doped p type layer 435 can be annealed by laser to activate implanted dopant.


In step 4019, the silicon oxide layer 422 is removed by a suitable technique such as etching with HF.


In step 4020, an insulating material 433 is deposited by spin coating, evaporation or CVD to fill space between the features 400. The insulating material 433 preferably has a lower refractive index than the features 400. The insulating material 433 can be any suitable material such as silicon oxide and polyimide.


In step 4021, the insulating material 433 is planarized using a suitable technique such as chemical mechanical polishing (CMP) until the heavily doped p type layer 432 of the features 400 is exposed.


In step 4022, a transparent conductive oxide (TCO) layer 434 is deposited on the insulating material 433, using a suitable method such as thermal evaporation, e-beam evaporation, and sputtering. The TCO layer can comprise one or more suitable materials such as indium tin oxide, aluminum zinc oxide, zinc oxide, zinc indium oxide and graphene.


In step 4023, the insulating material 433 is optionally removed by a suitable method such as wet etching.


According to one embodiment as shown in FIG. 10, the device 10, 20, 30 or 40 can be integrated with electronic circuitry into a polarization detector array. The electronic circuitry can include address decoders in both directions of the detector array, a correlated double sampling circuit (CDS), a signal processor, a multiplexor. The electronic circuitry is functional to detect the electrical signal converted by the features 100, 200, 300 or 400 from at least a portion of light impinged thereon. The electric circuitry can be further functional to calculate an interpolation of electrical signals from several subpixels, the features on which extend in the same transverse direction. Other function of the electronic circuitry can include a gain adjustment, a calculation of Stoke's parameters. In particular, the subpixels can be arranged into a group (i.e. pixel). For example, in FIG. 10, a subpixel A and subpixels B, C and D can be arranged adjacent to each other and referred to as a pixel, wherein features on the subpixels B, C and D extend in transverse directions at 45°, 90° and −45° relative to a transverse direction in which features on the subpixel A extend.


The device 10, 20, 30 or 40 can also be used as fore optics in a light detector apparatus as shown in the schematic in FIG. 11.


According to an embodiment as shown in FIG. 12, the features 100, 200, 300 and 400 can each comprise a metal layer on each sidewall (i.e. surface extending in the transverse direction and the normal direction). The metal layer preferably has a thickness of about 5 nm to about 100 nm, more preferably about 50 nm. The metal layer substantially covers the entire sidewall and the metal layer does not extend to either end of the features in the normal direction.


The foregoing detailed description has set forth various embodiments of the devices and/or processes by the use of diagrams, flowcharts, and/or examples. Insofar as such diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof.


Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use engineering practices to integrate such described devices and/or processes into data processing systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system via a reasonable amount of experimentation.


The subject matter described herein sometimes illustrates different components contained within, or connected with, other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermediate components.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.


All references, including but not limited to patents, patent applications, and non-patent literature are hereby incorporated by reference herein in their entirety.


While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following Claims.

Claims
  • 1. A device operable to detect polarized light comprising: a substrate; a first subpixel; a second subpixel adjacent to the first subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a second direction parallel to the substrate; wherein the first direction and the second direction are different; the first plurality of features and the second plurality of features react differently to the polarized light; wherein each of the first plurality of features comprises a p-i-n diode or forms a p-i-n diode with the substrate, and wherein the p-i-n diode is functional to convert at least a portion of the polarized light to an electrical signal.
  • 2. The device of claim 1, wherein the polarized light has linear polarization, circular or elliptical polarization.
  • 3. The device of claim 1, wherein the first plurality of features is equally spaced from each other.
  • 4. The device of claim 1, wherein the first plurality of features comprises at least 2 features.
  • 5. The device of claim 1, wherein the first plurality of features has a pitch of about 0.5 micron to about 5 microns, a height of about 0.3 micron to 10 microns, an aspect ratio of at least 4:1, or a combination thereof.
  • 6. The device of claim 1, wherein space between features of the first plurality of features is filled with a transparent material.
  • 7. The device of claim 1, wherein the substrate comprises electrical components configured to detect the electrical signal.
  • 8. The device of claim 1, further comprising a first transparent electrode disposed on the first subpixel and electrically connected to each of the first plurality of features, and a second transparent electrode disposed on the second subpixel and electrically connected to each of the second plurality of features, wherein the first and second transparent electrodes are separate.
  • 9. The device of claim 1, further comprising a reflective material deposited on areas of the substrate between features of the first plurality of features.
  • 10. The device of claim 1, wherein each of the first plurality of features comprises an intrinsic semiconductor layer or a first lightly doped semiconductor layer, and a heavily doped semiconductor layer; the substrate comprises a second lightly doped semiconductor layer; wherein the second lightly doped semiconductor layer is an opposite type from the heavily doped semiconductor layer; intrinsic semiconductor layer or a first lightly doped semiconductor layer is disposed on the second lightly doped semiconductor layer; and the heavily doped semiconductor layer is disposed on the intrinsic semiconductor layer or the first lightly doped semiconductor layer; wherein the heavily doped semiconductor layer, the intrinsic layer or the first lightly doped semiconductor layer, and the heavily doped semiconductor layer form a p-i-n diode.
  • 11. The device of claim 1, wherein each of the first plurality of features comprises a core of intrinsic semiconductor or lightly doped semiconductor, and a shell of heavily doped semiconductor; the substrate comprises a lightly doped semiconductor layer; wherein the lightly doped semiconductor layer is an opposite type from the shell; the core is disposed on the lightly doped semiconductor layer; the shell is conformally disposed over the core; wherein the shell, the core and the lightly doped semiconductor layer form a p-i-n diode.
  • 12. The device of claim 1, wherein each of the first plurality of features comprises a core of lightly doped semiconductor, an intermediate shell of intrinsic semiconductor and an outer shell of doped semiconductor; wherein the intermediate shell is conformally disposed over the core; the outer shell is conformally disposed over the intermediate shell; the outer shell is of an opposite type from the core; wherein the outer shell, the intermediate shell and the core form the p-i-n diode.
  • 13. The device of claim l, wherein each of the first plurality of features comprises a first heavily doped semiconductor layer, a lightly doped semiconductor layer or intrinsic semiconductor layer, a second heavily doped layer; wherein the first heavily doped semiconductor layer is disposed on the lightly doped semiconductor layer or intrinsic semiconductor layer; the lightly doped semiconductor layer or intrinsic semiconductor layer is disposed on the second heavily doped layer; the first heavily doped layer is of an opposite type from the second heavily doped layer; wherein the first heavily doped layer, the lightly doped semiconductor layer or intrinsic semiconductor layer and the second heavily doped layer form the p-i-n diode.
  • 14. A polarization detector array, comprising the device of claim 1 and electronic circuitry functional to detect an electrical signal.
  • 15. The polarization detector array of claim 14, wherein the electronic circuitry is further functional to calculate an interpolation of subpixels of the device, adjust a gain and/or calculate Stoke's parameters.
  • 16. The polarization detector array of claim 14, wherein the device comprises a first subpixel, a second subpixel, a third subpixel and a fourth subpixel, wherein features on the second, third and fourth subpixels extend in transverse directions at 45. degree., 90. degree. and −45. degree. relative to a transverse direction in which features on the first subpixel extend.
  • 17. The device of claim 1, wherein the first plurality of features or the second plurality of features have a shape in a cross-section parallel to the substrate selected from the group consisting of a rectangle, an ellipse, convex-convex, concave-concave, plano- convex, and plano-concave.
  • 18. The device of claim 1, further comprising a metal layer on each sidewall of each of the first plurality of features and the second plurality of features wherein the metal layer substantially covers the entire sidewall and the metal layer does not extend to either end of the features in a direction perpendicular to the substrate.
  • 19. A method of fabricating a device of claim 1; the method comprising: forming at least one of the first plurality of features and the second plurality of features by conducting lithography, ion implantation, annealing, evaporation, atomic layer deposition, chemical vapor deposition, dry etch or a combination thereof.
  • 20. The method of claim 19, further comprising making a p-i-n diode, in at least one of the first plurality of features and the second plurality of features.
  • 21. The method of claim 19, wherein the first plurality of features and the second plurality of features are substantially shaped as blocks or prisms having a substantially rectangular shaped base, wherein the blocks or prisms protrude from a surface of the substantially rectangular shaped base.
  • 22. A method of detecting polarized light, comprising obtaining the device of claim 1, exposing the device to polarized light, and detecting the polarization of polarized light.
  • 23. The method of claim 22, wherein the features react to polarized light by converting at least a portion thereof to electrical signal.
  • 24. A device operable to detect polarized light comprising: a substrate; a first subpixel; a second subpixel adjacent to the first subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel; wherein the first plurality of features and the second plurality of features react differently to the polarized light such that polarization of polarized light is determined; wherein each of the first plurality of features comprises a p-i-n diode or forms a p-i-n diode with the substrate, and wherein the p-i-n diode is functional to convert at least a portion of the polarized light to an electrical signal.
  • 25. The device of claim 24, wherein the first plurality of features are arranged in a different orientation than the second plurality of features.
  • 26. The device of claim 24, wherein the features react to polarized light by converting at least a portion thereof to electrical signal.
  • 27. The device of claim 24, wherein each of the first plurality of features comprises a p-i-n diode or forms a p-i-n diode with the substrate, and wherein the p-i-n diode is functional to convert at least a portion of the polarized light to an electrical signal.
  • 28. The device of claim 27, wherein the substrate comprises electrical components configured to detect the electrical signal.
  • 29. The device of claim 24, wherein the first plurality of features and the second plurality of features are substantially shaped as blocks or prisms having a substantially rectangular shaped base, wherein the blocks or prisms protrude from a surface of the substantially rectangular shaped base.
  • 30. A polarization detector array, comprising the device of claim 24 and electronic circuitry functional to detect an electrical signal.
  • 31. The polarization detector array of claim 30, wherein the electronic circuitry is further functional to calculate an interpolation of subpixels of the device, adjust a gain and/or calculate Stoke's parameters.
  • 32. A method of fabricating a device of claim 24; the method comprising: conducting lithography, ion implantation, annealing, evaporation, atomic layer deposition, chemical vapor deposition, dry etch or a combination thereof.
  • 33. The method of claim 32, wherein the method includes making a p-i-n diode.
  • 34. The method of claim 32, wherein the first plurality of features and the second plurality of features are substantially shaped as blocks or prisms having a substantially rectangular shaped base, wherein the blocks or prisms protrude from a surface of the substantially rectangular shaped base.
  • 35. A method of detecting polarized light, comprising obtaining the device of claim 24, exposing the device to polarized light, and detecting the polarization of polarized light.
  • 36. The method of claim 35, wherein the features react to polarized light by converting at least a portion thereof to electrical signal.
US Referenced Citations (372)
Number Name Date Kind
1918848 Land et al. Jul 1933 A
3903427 Pack Sep 1975 A
4017332 James Apr 1977 A
4357415 Hartman Nov 1982 A
4387265 Dalal Jun 1983 A
4400221 Rahilly Aug 1983 A
4443890 Eumurian Apr 1984 A
4513168 Borden Apr 1985 A
4620237 Traino Oct 1986 A
4827335 Saito May 1989 A
4846556 Haneda Jul 1989 A
4880613 Satoh Nov 1989 A
4896941 Hayashi Jan 1990 A
4950625 Nakashima Aug 1990 A
4971928 Fuller Nov 1990 A
4972244 Buffet Nov 1990 A
5096520 Faris Mar 1992 A
5124543 Kawashima Jun 1992 A
5247349 Olego Sep 1993 A
5272518 Vincent Dec 1993 A
5311047 Chang May 1994 A
5347147 Jones Sep 1994 A
5362972 Yazawa Nov 1994 A
5374841 Goodwin Dec 1994 A
5401968 Cox Mar 1995 A
5449626 Hezel Sep 1995 A
5468652 Gee Nov 1995 A
5602661 Schadt et al. Feb 1997 A
5612780 Rickenbach Mar 1997 A
5671914 Kalkhoran Sep 1997 A
5696863 Kleinerman Dec 1997 A
5723945 Schermerhorn Mar 1998 A
5747796 Heard May 1998 A
5767507 Unlu et al. Jun 1998 A
5798535 Huang Aug 1998 A
5844290 Furumiya Dec 1998 A
5853446 Carre Dec 1998 A
5857053 Kane Jan 1999 A
5877492 Fujieda Mar 1999 A
5880495 Chen Mar 1999 A
5900623 Tsang et al. May 1999 A
5943463 Unuma Aug 1999 A
6033582 Lee Mar 2000 A
6037243 Ha et al. Mar 2000 A
6046466 Ishida et al. Apr 2000 A
6074892 Bowers et al. Jun 2000 A
6100551 Lee Aug 2000 A
6270548 Campbell Aug 2001 B1
6301420 Greenaway Oct 2001 B1
6326649 Chang Dec 2001 B1
6388243 Berezin May 2002 B1
6388648 Clifton May 2002 B1
6407439 Hier Jun 2002 B1
6459034 Muramoto et al. Oct 2002 B2
6463204 Ati Oct 2002 B1
6542231 Garrett Apr 2003 B1
6563995 Keaton May 2003 B2
6566723 Vook May 2003 B1
6680216 Kwasnick et al. Jan 2004 B2
6709929 Zhang Mar 2004 B2
6720594 Rahn Apr 2004 B2
6771314 Bawolek Aug 2004 B1
6805139 Savas Oct 2004 B1
6812473 Amemiya Nov 2004 B1
6927145 Yang Aug 2005 B1
6960526 Shah Nov 2005 B1
6967120 Jang Nov 2005 B2
6969899 Yaung Nov 2005 B2
6987258 Mates Jan 2006 B2
6996147 Majumdar Feb 2006 B2
7052927 Fletcher et al. May 2006 B1
7064372 Duan Jun 2006 B2
7105428 Pan Sep 2006 B2
7109517 Zaidi Sep 2006 B2
7135698 Mitra Nov 2006 B2
7153720 Augusto Dec 2006 B2
7163659 Stasiak Jan 2007 B2
7208783 Palsule Apr 2007 B2
7230286 Cohen Jun 2007 B2
7235475 Kamins Jun 2007 B2
7241434 Anthony Jul 2007 B2
7254151 Lieber Aug 2007 B2
7262400 Yaung Aug 2007 B2
7265328 Mouli Sep 2007 B2
7272287 Bise Sep 2007 B2
7285812 Tang et al. Oct 2007 B2
7306963 Linden Dec 2007 B2
7307327 Bahl Dec 2007 B2
7311889 Awano Dec 2007 B2
7330404 Peng Feb 2008 B2
7335962 Mouli Feb 2008 B2
7336860 Cyr Feb 2008 B2
7358583 Reznik Apr 2008 B2
7381966 Starikov Jun 2008 B2
7446025 Cohen Nov 2008 B2
7462774 Roscheisen Dec 2008 B2
7471428 Ohara Dec 2008 B2
7491269 Legagneux Feb 2009 B2
7507293 Li Mar 2009 B2
7521322 Tang et al. Apr 2009 B2
7524694 Adkisson Apr 2009 B2
7582587 Gruev Sep 2009 B2
7582857 Gruev et al. Sep 2009 B2
7598482 Verhulst Oct 2009 B1
7622367 Nuzzo Nov 2009 B1
7626685 Jin Dec 2009 B2
7646138 Williams Jan 2010 B2
7646943 Wober Jan 2010 B1
7647695 MacNutt Jan 2010 B2
7655860 Parsons Feb 2010 B2
7663202 Wang et al. Feb 2010 B2
7692860 Sato et al. Apr 2010 B2
7704806 Chae Apr 2010 B2
7713779 Firon May 2010 B2
7719678 Kamins May 2010 B2
7719688 Kamins May 2010 B2
7732769 Snider Jun 2010 B2
7732839 Sebe Jun 2010 B2
7736954 Hussain Jun 2010 B2
7740824 Godfried Jun 2010 B2
7888155 Chen Feb 2011 B2
8030729 Quitoriano Oct 2011 B2
8035184 Dutta et al. Oct 2011 B1
8049203 Samuelson Nov 2011 B2
8063450 Wernersson et al. Nov 2011 B2
8067299 Samuelson Nov 2011 B2
8084728 Tsang Dec 2011 B2
8093675 Tsunemi et al. Jan 2012 B2
8118170 Sato Feb 2012 B2
8143658 Samuelson Mar 2012 B2
8193524 Bjoerk Jun 2012 B2
8212136 Landis Jul 2012 B2
8212138 Landis Jul 2012 B2
8222705 Ogino Jul 2012 B2
8242353 Karg Aug 2012 B2
8269985 Wober Sep 2012 B2
8274039 Wober Sep 2012 B2
8330090 Agarwal Dec 2012 B2
8455857 Samuelson Jun 2013 B2
8546742 Wober Oct 2013 B2
20020003201 Yu Jan 2002 A1
20020020846 Pi et al. Feb 2002 A1
20020021879 Lee Feb 2002 A1
20020104821 Bazylenko Aug 2002 A1
20020109082 Nakayama Aug 2002 A1
20020130311 Lieber Sep 2002 A1
20020172820 Majumdar Nov 2002 A1
20030003300 Korgel Jan 2003 A1
20030006363 Campbell Jan 2003 A1
20030077907 Kao et al. Apr 2003 A1
20030089899 Lieber May 2003 A1
20030103744 Koyama Jun 2003 A1
20030132480 Chau Jul 2003 A1
20030189202 Li Oct 2003 A1
20030227090 Okabe Dec 2003 A1
20040026684 Empedocles Feb 2004 A1
20040058058 Shchegolikhin Mar 2004 A1
20040065362 Watabe Apr 2004 A1
20040075464 Samuelson Apr 2004 A1
20040109666 Kim Jun 2004 A1
20040118337 Mizutani Jun 2004 A1
20040118377 Bloms Jun 2004 A1
20040122328 Wang Jun 2004 A1
20040124366 Zeng Jul 2004 A1
20040155247 Benthien Aug 2004 A1
20040180461 Yaung Sep 2004 A1
20040213307 Lieber Oct 2004 A1
20040217086 Kawashima Nov 2004 A1
20040223681 Block Nov 2004 A1
20040241965 Merritt Dec 2004 A1
20040261840 Schmit Dec 2004 A1
20050009224 Yang Jan 2005 A1
20050082676 Andry Apr 2005 A1
20050087601 Gerst, III Apr 2005 A1
20050095699 Miyauchi et al. May 2005 A1
20050116271 Kato Jun 2005 A1
20050133476 Islam Jun 2005 A1
20050164514 Rauf Jul 2005 A1
20050190453 Dobashi Sep 2005 A1
20050201704 Ellwood Sep 2005 A1
20050218468 Owen Oct 2005 A1
20050242409 Yang Nov 2005 A1
20050284517 Shinohara Dec 2005 A1
20060011362 Tao Jan 2006 A1
20060113622 Adkisson Jun 2006 A1
20060121371 Wu Jun 2006 A1
20060146323 Bratkovski Jul 2006 A1
20060162766 Gee Jul 2006 A1
20060260674 Tran Nov 2006 A1
20060273262 Sayag Dec 2006 A1
20060273389 Cohen Dec 2006 A1
20060284118 Asmussen Dec 2006 A1
20070012985 Stumbo Jan 2007 A1
20070023799 Boettiger Feb 2007 A1
20070025504 Tumer Feb 2007 A1
20070029545 Striakhilev Feb 2007 A1
20070052050 Dierickx Mar 2007 A1
20070076481 Tennant Apr 2007 A1
20070082255 Sun Apr 2007 A1
20070099292 Miller May 2007 A1
20070104441 Ahn et al. May 2007 A1
20070108371 Stevens May 2007 A1
20070114622 Adkisson May 2007 A1
20070120254 Hurkx et al. May 2007 A1
20070126037 Ikeda Jun 2007 A1
20070137697 Kempa Jun 2007 A1
20070138376 Naughton Jun 2007 A1
20070138380 Adkisson Jun 2007 A1
20070138459 Wong Jun 2007 A1
20070139740 Igura Jun 2007 A1
20070140638 Yang Jun 2007 A1
20070145512 Rhodes Jun 2007 A1
20070148599 True Jun 2007 A1
20070152248 Choi Jul 2007 A1
20070155025 Zhang Jul 2007 A1
20070164270 Majumdar Jul 2007 A1
20070170418 Bowers Jul 2007 A1
20070172623 Kresse Jul 2007 A1
20070187787 Ackerson Aug 2007 A1
20070196239 Vink Aug 2007 A1
20070200054 Reznik Aug 2007 A1
20070205483 Williams Sep 2007 A1
20070217754 Sasaki Sep 2007 A1
20070228421 Shioya et al. Oct 2007 A1
20070238265 Kurashina Oct 2007 A1
20070238285 Borden Oct 2007 A1
20070241260 Jaeger Oct 2007 A1
20070246689 Ge Oct 2007 A1
20070248958 Jovanovich Oct 2007 A1
20070272828 Xu Nov 2007 A1
20070285378 Lankhorst Dec 2007 A1
20070290193 Tucker Dec 2007 A1
20080001498 Muller Jan 2008 A1
20080029701 Onozawa Feb 2008 A1
20080036038 Hersee Feb 2008 A1
20080044984 Hsieh Feb 2008 A1
20080047601 Nag Feb 2008 A1
20080047604 Korevaar et al. Feb 2008 A1
20080055451 Kanbe Mar 2008 A1
20080065451 Kanbe Mar 2008 A1
20080073742 Adkisson Mar 2008 A1
20080079022 Yamamoto Apr 2008 A1
20080079076 Sheen Apr 2008 A1
20080083963 Hsu Apr 2008 A1
20080088014 Adkisson Apr 2008 A1
20080090401 Bratkovski Apr 2008 A1
20080092938 Majumdar Apr 2008 A1
20080096308 Santori Apr 2008 A1
20080108170 Adkisson May 2008 A1
20080116537 Adkisson May 2008 A1
20080128760 Jun Jun 2008 A1
20080145965 Reznik Jun 2008 A1
20080149944 Samuelson Jun 2008 A1
20080157253 Starikov Jul 2008 A1
20080166883 Liu et al. Jul 2008 A1
20080169017 Korevaar Jul 2008 A1
20080169019 Korevaar Jul 2008 A1
20080173615 Kim Jul 2008 A1
20080188029 Rhodes Aug 2008 A1
20080191278 Maekawa Aug 2008 A1
20080191298 Lin Aug 2008 A1
20080211945 Hong Sep 2008 A1
20080218740 Williams Sep 2008 A1
20080224115 Bakkers Sep 2008 A1
20080225140 Raynor Sep 2008 A1
20080233280 Blanchet Sep 2008 A1
20080237568 Kobayashi Oct 2008 A1
20080246020 Kawashima Oct 2008 A1
20080246123 Kamins Oct 2008 A1
20080248304 Hanrath Oct 2008 A1
20080251780 Li Oct 2008 A1
20080258747 Kluth Oct 2008 A1
20080260225 Szu Oct 2008 A1
20080266556 Kamins Oct 2008 A1
20080283728 Inoue Nov 2008 A1
20080283883 Shim Nov 2008 A1
20080297281 Ayazi Dec 2008 A1
20080311693 Maxwell Dec 2008 A1
20080311712 Anwar et al. Dec 2008 A1
20090001498 Wang Jan 2009 A1
20090020150 Atwater Jan 2009 A1
20090032687 Lapstun Feb 2009 A1
20090046362 Guo Feb 2009 A1
20090046749 Mizuuchi Feb 2009 A1
20090050204 Habib Feb 2009 A1
20090057650 Lieber Mar 2009 A1
20090127442 Lee May 2009 A1
20090146198 Joe Jun 2009 A1
20090151782 Ko Jun 2009 A1
20090152664 Klem Jun 2009 A1
20090153961 Murakami et al. Jun 2009 A1
20090165844 Dutta Jul 2009 A1
20090173976 Augusto Jul 2009 A1
20090179289 Park Jul 2009 A1
20090188552 Wang Jul 2009 A1
20090189144 Quitoriano Jul 2009 A1
20090189145 Wang et al. Jul 2009 A1
20090199597 Danley Aug 2009 A1
20090201400 Zhang et al. Aug 2009 A1
20090206405 Doyle Aug 2009 A1
20090224245 Umezaki Sep 2009 A1
20090224349 Gambino Sep 2009 A1
20090233445 Lee Sep 2009 A1
20090243016 Kawahara et al. Oct 2009 A1
20090244514 Jin Oct 2009 A1
20090260687 Park Oct 2009 A1
20090261438 Choi Oct 2009 A1
20090266974 Verhulst Oct 2009 A1
20090272423 Niira Nov 2009 A1
20090278998 El-Ghoroury et al. Nov 2009 A1
20090289320 Cohen Nov 2009 A1
20090305454 Cohen Dec 2009 A1
20100006817 Ohlsson et al. Jan 2010 A1
20100019252 Bratkovski et al. Jan 2010 A1
20100019296 Cha Jan 2010 A1
20100019355 Kamins Jan 2010 A1
20100090341 Wan Apr 2010 A1
20100101633 Park Apr 2010 A1
20100104494 Meng Apr 2010 A1
20100110433 Nedelcu et al. May 2010 A1
20100116976 Wober May 2010 A1
20100132779 Hong Jun 2010 A1
20100133986 Kim Jun 2010 A1
20100136721 Song Jun 2010 A1
20100148221 Yu Jun 2010 A1
20100163714 Wober Jul 2010 A1
20100163941 Jung Jul 2010 A1
20100187404 Klem Jul 2010 A1
20100200065 Choi Aug 2010 A1
20100207103 Farrow Aug 2010 A1
20100218816 Guha Sep 2010 A1
20100229939 Shen Sep 2010 A1
20100230653 Chen Sep 2010 A1
20100237454 Fujisawa Sep 2010 A1
20100244108 Kohnke et al. Sep 2010 A1
20100244169 Maeda et al. Sep 2010 A1
20100249877 Naughton Sep 2010 A1
20100258184 Laughlin Oct 2010 A1
20100276572 Iwabuchi Nov 2010 A1
20100277607 Choi Nov 2010 A1
20100282314 Coakley Nov 2010 A1
20100295019 Wang et al. Nov 2010 A1
20100302440 Wober Dec 2010 A1
20100304061 Ye et al. Dec 2010 A1
20100308214 Wober Dec 2010 A1
20100320444 Dutta Dec 2010 A1
20110036396 Jayaraman Feb 2011 A1
20110037133 Su et al. Feb 2011 A1
20110080508 Katsuno et al. Apr 2011 A1
20110127490 Mi Jun 2011 A1
20110133060 Yu et al. Jun 2011 A1
20110133160 Yu et al. Jun 2011 A1
20110135814 Miyauchi et al. Jun 2011 A1
20110139176 Cheung et al. Jun 2011 A1
20110147870 Ang et al. Jun 2011 A1
20110180894 Samuelson Jul 2011 A1
20110195577 Kushibiki et al. Aug 2011 A1
20110226937 Yu Sep 2011 A1
20110248315 Nam Oct 2011 A1
20110249219 Evans Oct 2011 A1
20110249322 Wang Oct 2011 A1
20110253982 Wang et al. Oct 2011 A1
20110272014 Mathai et al. Nov 2011 A1
20110297214 Kim Dec 2011 A1
20110309237 Seo et al. Dec 2011 A1
20110315988 Yu et al. Dec 2011 A1
20110316106 Kim Dec 2011 A1
20120009714 Mouli Jan 2012 A1
20120029328 Shimizu Feb 2012 A1
20120075513 Chipman et al. Mar 2012 A1
20120196401 Graham Aug 2012 A1
20120258563 Ogino Oct 2012 A1
Foreign Referenced Citations (22)
Number Date Country
0809303 Sep 2006 EP
2348399 Apr 2000 GB
59198413708 Jan 1984 JP
2002151715 May 2002 JP
2005252210 Sep 2005 JP
2007201091 Aug 2007 JP
200845402 Nov 2008 TW
200915551 Apr 2009 TW
8603347 Jun 1986 WO
0002379 Jan 2000 WO
03107439 Dec 2003 WO
2005064337 Jul 2005 WO
2008069565 Jun 2008 WO
2008079076 Jul 2008 WO
2008131313 Oct 2008 WO
2008135905 Nov 2008 WO
2008135905 Nov 2008 WO
2008143727 Nov 2008 WO
2009116018 Sep 2009 WO
2009137241 Nov 2009 WO
2010019887 Feb 2010 WO
2010039631 Apr 2010 WO
Non-Patent Literature Citations (105)
Entry
U.S. Office Action for U.S. Appl. No. 13/494,661, notification date Nov. 7, 2012.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/060348, mailed Mar. 9, 2012.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/064635, mailed Apr. 13, 2012.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/066097, mailed Mar. 12, 2012.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/067712, mailed May 3, 2012.
William Shockley and H. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. of Appl. Physics, Mar. 1961, 32(3).
International Preliminary Report on Patentability for PCT International Application No. PCT/US2010/035722, mailed Nov. 3, 2011.
Baomin Wang and Paul W. Leu, Nanotechology 23 (2012) 194003, 7 pages.
Sangmoo Jeon, et al., Nano Lett. 2012, 12, 2971-2976.
Sangmoo Jeong et al., J. Vac. Sci. Technol. A 30(6), Nov./Dec. 2012.
Sarkar et. al., Integrated polarization-analyzing CMOS image sensor for detecting incoming light ray direction, Sensors Application Symposium (SAS), Mar. 29, 2012, p. 194-199, 1010 IEEE.
Jin-Kon Kim; ‘New Functional Nanomaterials Based on Block Copolymers’ http://www.ziu.edu.cn/adver/subjectizyhd/jz0707061313.html, Jul. 7, 2011.
Junger, et. al., Polarization- and wavelength-sensitive sub-wavelength structures fabricated in the metal layers of deep submicron CMOS processes, Proc. of SPIE, vol. 7712, 2010.
Sarkar et. al., Integrated polarization-analyzing CMOS image sensor for detecting incoming light ray direction, Sensors Application Symposium (SAS) p. 194-199, 1010 IEEE.
Deptuch et al., Vertically Integrated Circuits at Fermilab, IEEE Transactions on Nuclear Science, Aug. 2010, vol. 54, Issue 4, pp. 2178-2186.
Loose et al., CMOS Detector Technology, Scientific Detector Workshop, Sicily, 2005, Experimental Astronomy, vol. 19, Issue 1-3, pp. 111-134.
Guillaumee, et al., Polarization Sensitive Silicon Photodiodes Using Nanostructured Metallic Grids, Applied Physics Letters 94, 2009.
Gadelrab et al., The Source-Gated Amorphous Silicon Photo-Transistor, IEEE Transactions on Electron Devices, Oct. 1997, vol. 44, No. 10, pp. 1789-1794.
Lin et al., Reducing Dark Current in a High-Speed Si-Based Interdigitated Trench-Electrode MSM Photodetector, IEEE Transactions on Electron Devices, May 2003, vol. 50, No. 5, pp. 1306-1313.
Ye et al., Fabrication Techniques of High Aspect Ratio Vertical Lightpipes Using a Dielectric Photo Mask, SPIE, Proceedings, Feb. 2010, vol. 7591.
CMOS image sensor pixel microlens array optimization using FDTD Solutions, http://www.lumericalcom/ fdtd—microlens/cmos—image—sensor—pixel—microlens.php, pp. 1-2, Jun. 25, 2008.
“CMOS image sensor pixel optical efficiency and optical crosstalk optimization using FDTD Solutions” www.lumerical.com/fdtd—microlens/cmos—image—sensor—pixel—microlens.php, Mar. 19, 2009.
Adler, Nanowire Lawns Make for Sheets of Image Sensors, NewScientist.com, Jul. 28, 2008.
Babinec et al., High-Flux, Low-Power Diamond Nanowire Single-Photon Source Arrays: An Enabling Material for Optical and Quantum Computing and Cryptography, obtained on Jul. 22, 2010 at URL: <http://otd.harvard.edu/technologies/tech.php?case=3702>.
Baillie et al., ‘Zero-space microlenses for CMOS image sensors: optical modeling and lithographic process development’, Publication Date May 2004, http://adsabs.harvard.edu/abs/2004SPIE.5377..953B, pp. 1-2.vbTab.
Barclay et al., Chip-Based Microcavities Coupled to NV Centers in Single Crystal Diamond, Applied Physics Letters, Nov. 12, 2009, vol. 95, Issue 19.
Brouri et al., Photon Antibunching in the Flurescence of Individual Colored Centers in Diamond, Optics Letters, Sep. 1, 2000, vol. 25, Issue 17.
Chung, Sung-Wook et al. Silicon Nanowire Devices. Applied Physics Letters, vol. 76, No. 15 (Apr. 10, 2000), pp. 2068-2070.
Ekroll, On the Nature of Simultaneous Color Contrast, Dissertation, University of Kiel, 2005.
Fan et al., Large-Scale, Heterogeneous Integration of Nanowire Arrays for Image Sensor Circuitry, Proceedings of the National Academy of Sciences (PNAS) of the United States of America, Aug. 12, 2008, vol. 105, No. 32.
Fang et al., Fabrication of Slantingly-Aligned Silicon Nanowire Arrays for Solar Cell Applications, Nanotechnology, 2008, vol. 19, No. 25.
Furumiya, et al. “High-sensitivity and no-crosstalk pixel technology for embedded CMOS image sensor”; IEEE Electron Device Letters, vol. 48, No. 10, Oct. 2001.
Gambino et al., ‘CMOS Imager with Copper Wiring and Lightpipe,’ Electron Devices Meeting, 2006. IEDM '06, International Publication Date: Dec. 11-13, 2006, pp. 1-4.
Garnett et al., Light Trapping in Silicon Nanowire Solar Cells, Nanoletters, Jan. 28, 2010, vol. 10, No. 3, pp. 1082-1087.
Ge et al., Orientation-Controlled Growth of Single-Crystal Silicon-Nanowire Arrays, Advanced Materials, Jan. 18, 2005, vol. 17, No. 1, pp. 56-61.
Hanrath et al., Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals, J. Am. Chem. Soc., Feb. 20, 2002, vol. 124, No. 7, pp. 1424-1429.
Hanrath et al., Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals, Advanced Materials, Mar. 4, 2003, vol. 15, No. 5, pp. 437-440.
Hochbaum et al., Controlled Growth of Si Nanowire Arrays for Device Integration, Nano Letters, Mar. 2005, vol. 5, No. 3, pp. 457-460.
Holmes et al., Control of Thickness and Orientation of Solution-Grown Silicon Nanowires, Science, Feb. 25, 2000, vol. 287, No. 5457, pp. 1471-1473.
International Preliminary Report on Patentability for PCT International Patent Application No. PCT/U62009/055963, mailed Mar. 17, 2011.
International Search Report and Written Opinion for PCT International Application No. PCT/US2010/035722, mailed Jul. 20, 2010.
International Search Report and Written Opinion for PCT International Application No. PCT/US2010/035726, mailed Jul. 21, 2010.
International Search Report and Written Opinion for PCT International Application No. PCT/US2010/057227, mailed Jan. 26, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2009/055963, mailed Oct. 15, 2009.vbTab.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/035727, mailed Sep. 27, 2010.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/051435, mailed Dec. 3, 2010.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059468, mailed Feb. 11, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059491, mailed Feb. 9, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059501, mailed Feb. 15, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059504, mailed Apr. 7, 2011.
Jin-Kon Kim; ‘New Functional Nanomaterials Based on Block Copolymers’ http:// www.ziu.edu.cn/adver/subjectizyhd/jz0707061313.html.
Juan et al., High Aspect Ratio Polymide Etching Using an Oxygen Plasma Generated by Electron Cyclotron Resonance Source, Journal of Vacuum Science and Technology, Jan./Feb. 1994, vol. 12, No. 1., pp. 422-426.
Kalkofen et al., Atomic Layer Deposition of Boron Oxide As Dopant Source for Shallow Doping of Silicon, Meeting Abstract 943 ,217th ECS Meeting, MA2010-01, Apr. 25-30, 2010, Vancouver Canada, El-Advanced Gate Stack Source / Drain, and Channel Engneering for Si-Based CMOS 6; New Materials, Processes, and Equipment.
Kane, Why Nanowires Make Great Photodetectors, EurekAlert.com article, Apr. 25, 2007.
Kempa, Thomas J. et al. Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices. Nano Letters. 2008, vol. 8, No. 10, 3456-3460.
Kim et al., Electronic Structure of Vertically Aligned Mn-Doped CoFe2O4 Nanowires and Their Application as Humidity Sensors and Photodetectors, Journal of Physical Chemistry C, Apr. 7, 2009.
Law, et al., ‘Semiconductor Nanowires and Nanotubes’; Annu. Rev. Mater. Res. 2004, 34:83-122.
Lee et al., Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes, Nano Letters, 2010, vol. 10, pages 2783-2788.
Lin et al., Fabrication of Nanowire Anisotropic Conductive Film for Ultra-fine Pitch Flip Chip Interconnection, Electronic Components and Technology Conference, Jun. 20, 2005, 55th Proceedings, pp. 66-70.
Loncar et al., Diamond Nanotechnology, SPIE Newsroom, May 18, 2010, obtained at url: <http://spie.org/x40194.xml?ArticleID=x40194>.
Lu et al., Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate, NanoLetters, Jan. 2003, vol. 3, No. 1, pp. 93-99.
Lugstein et al., Ga/Au Alloy Catalyst for Single Crystal Silicon-Nanowire Epitaxy, Applied Physics Letters, Jan. 8, 2007, vol. 90, No. 2, pp. 023109-1-023109-3.
Madou, Properties and Growth of Silicon, Including Crystalline Silicon, Fundamentals of Microfabrication, 2nd Ed., CRC Press, 2002, pp. 125-204.
Makarova et al., Fabrication of High Density, High-Aspect-Ratio Polyimide Nanofilters, Journal of Vacuum Science and Technology, Nov./Dec. 2009, vol. 27, No. 6., pp. 2585-2587.
Morales et al., A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, Jan. 9, 1998, vol. 279, pp. 208-211.
N.L. Dmitruk, et al.; ‘Modeling and Measurement of Optical Response of 1D Array of Metallic Nanowires for Sensing and Detection Application’; 26th International Conference on Microelectronics (MIEL 2008), NIS, Serbia, May 11-14, 2008.
Nguyen et al., Deep Reactive Ion etching of Polyimide for Microfluidic Applications, Journal of the Korean Physical Society, Sep. 2007, vol. 51, No. 3, pp. 984-988.
Pain et al., A Back-Illuminated Megapixel CMOS Image Sensor, IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, Karuizawa, Japan, Jun. 9-11, 2005, Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena California.
Parraga et al., Color and Luminance Information in Natural Scenes, Journal of Optical Society of America A, Optics, Image, Science and Vision, Jun. 1998, vol. 15, No. 6.
Rosfjord et al., Nanowire Single-Photon Detector with an Integrated Optical Cavity and Anti-Reflection Coating, Optics Express: The International Electronic Journal of Optics, Jan. 23, 2006, vol. 14, No. 2, pp. 527-534.
Rugani, First All-Nanowire Sensor, Technology Review, Aug. 13, 2008, Published by MIT.
Rutter, Diamond-Based Nanowire Devices Advance Quantum Science, SEAS Communications, Feb. 14, 2010, obtained at url:<http://news.harvard.edu/gazette/story/2010/02/digging-deep-into-diamonds/>.
Schmidt et al., Realization of a Silicon Nanowire Vertical Surround-Gate Field-Effect Transistor, Small, Jan. 2006, vol. 2, No. 1, pp. 85-88.
Song et al., Vertically Standing Ge Nanowires on GaAs(110) Substrates, Nanotechnology 19, Feb. 21, 2008.
T. H. Hsu, et al. ‘Light Guide for Pixel Crosstalk Improvement in Deep Submicron CMOS Image Sensor’; IEEE Electron Device Letters, vol. 25, No. 1, Jan. 2004.
Thelander et al., Nanowire-Based One-Dimensional Electronics, Materials Today, Oct. 2006, vol. 9, No. 10, pp. 28-35.
Trentler, Timothy J. et al. Solution-Liquid-Solid Growth of Cyrstalline III-V Semiconductors: An Analogy to Vapor Liquid-Solid Growth. vol. 270(5243), Dec. 15, 1995, pp. 1791-1794.
Tseng, et al. ‘Crosstalk improvement technology applicable to 0.14μm CMOS image sensor’; IEEE International Electron Devices Meeting, Dec. 13-15, 2004; IEDM Technical Digest, pp. 997-1000.vbTab.
Verheijen, Marcel A. et al. Growth Kinetics of Heterostructured GaP-GaAs Nanowires. J. Am. Chem. Soc. 2006, 128, 1353-1359.
Wagner, R.S. and Ellis, W.C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letters. vol. 4, No. 5 (Mar. 1, 1964), pp. 89-90.
Wong et al., Lateral Nanoconcentrator Nanowire Multijunction Photovoltaic Cells, GCEP Progress report, Apr. 20, 2009, pp. 1-18.
Zhang et al., Ultrahigh Responsivity Visible and Infrared Detection Using Silicon Nanowire Phototransistors, Nanoletters, May 14, 2010, vol. 10, No. 6, pp. 2117-2120.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2009/063592, mailed Jan. 13, 2010.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/051446, mailed Jan. 3, 2011.
Ozgur Yavuzcetin, et al.; ‘Index-tuned Anti-reflective Coating using a Nanostructured Metamaterial’; http://www.umass.edu/research/rld/bioportal/vuewtech.php?tid=40, Feb. 28, 2007.
Reynard Corporation; ‘Anti-Reflection Coatings (AR)’, http://www.reynardcorp.com/coating—anti—reflection.php, Jun. 4, 2009.
Shimizu et al., Homoepitaxial Growth of Vertical Si Nanowires on Si(100) Substrate using Anodic Aluminum Oxide Template, (abstract only), Materials Research Society, Fall 2007.
Wang, Introduction to Nanotechnology—Where Opportunities arise Great Future Being Built from Small Things, Fall 2008.
International Preliminary Report and Written Opinion re PCT/US2010/059468, mailed Jun. 21, 2012.
International Preliminary Report and Written Opinion re PCT/US2010/059491, mailed Jun. 21, 2012.
International Preliminary Report and Written Opinion re PCT/US2010/059496, mailed Jun. 21, 2012.
International Preliminary Report and Written Opinion re PCT/US2010/059504, mailed Jun. 21, 2012.
International Search Report and Written Opinion re PCT/US2011/57325, mailed Jun. 22, 2012.
U.S. Office Action for U.S. Appl. No. 12/573,582, dated Jun. 28, 2012.
Taiwanese Office Action of Taiwan Patent Application No. 099116881, issued Jul. 18, 2013 (8 pages).
Canadian Office Action of Canadian Application No. 3,676,376, dated Oct. 11, 2013.
Catrysse, et al., An Integrated Color Pixel in 0.18pm CMOS Technology, Proceedings IEDM 2001, pp. 559-562.
Choi et al., Optimization of sidewall roughness in silica waveguides to reduce propagation losses, May 2001, Lasers and Electro-Optics, 2001. CLEO '01. Technical Digest. Summaries of papers presented at the Conference on, pp. 175-176.
Geyer et al., Model for the Mass Transport during Metal-Assisted Chemical Etching with Contiguous Metal Films as Catalysts, J. Phys. Chem. C 2012, 116, 13446-13451.
Hopkins, Addressing sidewall roughness using dry etching silicon and Si02, Jul. 1, 2004, ElectrolQ, vol. 47, Issue 7.
Mei-Ling Kuo et al. “Realization of a near-perfect antireflection coating for silicon solar energy utilization” (Nov. 1, 2008, vol. 33, No. 21, Optics Letters).
Mukhopadhyay, When PDMS Isn't the Best, American Chemical Society, May 1, 2007.
Seo, et. al., “Multicolored vertical silicon nanowires,” Nano Letters, vol. 11 issue 4, pp. 1851-1856, 2010.
U.S. Final Office Action for U.S. Appl. No. 12/966,514, mailed Mar. 19, 2013, 50 pages.
U.S. Final Office Action for U.S. Appl. No. 13/494,661, mailed Mar. 7, 2013, 10 pages.
Related Publications (1)
Number Date Country
20110309240 A1 Dec 2011 US