This document claims priority to Japanese Patent Application Number 2014-066729 filed Mar. 27, 2014, the entire contents of which are hereby incorporated by reference.
In recent years, high integration and high density in semiconductor device demands smaller and smaller wiring patterns or interconnections and also more and more interconnection layers. Multilayer interconnections in smaller circuits result in greater steps which reflect surface irregularities on lower interconnection layers. An increase in the number of interconnection layers makes film coating performance (step coverage) poor over stepped configurations of thin films. Therefore, better multilayer interconnections need to have the improved step coverage and proper surface planarization. Further, since the depth of focus of a photolithographic optical system is smaller with miniaturization of a photolithographic process, a surface of the semiconductor device needs to be planarized such that irregular steps on the surface of the semiconductor device will fall within the depth of focus.
Thus, in a manufacturing process of a semiconductor device, it increasingly becomes important to planarize a surface of the semiconductor device. One of the most important planarizing technologies is chemical mechanical polishing (CMP). In the chemical mechanical polishing, while a polishing liquid containing abrasive particles such as silica (SiO2) or ceria (CeO2) therein is supplied onto a polishing surface of a polishing pad, a wafer is brought into sliding contact with the polishing pad, so that the wafer is polished.
A polishing apparatus for performing CMP has a polishing table that supports a polishing pad thereon, and a top ring for holding a wafer. In the case where the wafer is polished using such polishing apparatus, the top ring holds the wafer and presses the wafer against the polishing pad at a predetermined pressure. At this time, the polishing table and the top ring are moved relative to each other to bring the wafer into sliding contact with the polishing pad to thereby polish a surface of the wafer.
In the above-described polishing apparatus, because a frictional force is generated between the wafer and the polishing pad during polishing, this frictional force is received by the retaining ring to prevent the wafer from being slipped out of the lower part of the top ring. Further, the retaining ring presses the polishing pad to deform the polishing pad, so that a polishing pressure applied to an edge portion (peripheral portion) of the wafer is adjusted and thus the polishing amount of the edge portion (peripheral portion) of the wafer is controlled by the deformation of the polishing pad.
In the polishing apparatus described above, the wafer is brought into contact with an inner wall surface of the retaining ring at the time of top ring stabilizing, and chipping may occur. Here, “top ring stabilizing” refers to an operation to stabilize a pressure of an air bag (pressure chamber) of the top ring by adding a polishing process before starting actual process polishing. Since the retaining ring is made of a resin such as PEEK or PPS, when chipping of the wafer occurs, a fragment of the wafer cuts into (bites into) the inner wall of the retaining ring. As the number of polished wafers increases, the fragment of the wafer which has cut into the inner wall surface of the retaining ring falls onto the polishing pad, thus causing a scratch of the wafer surface.
According to an embodiment, there is provided a polishing apparatus which can reduce scratches that are generated on a surface of a substrate during polishing by detecting a foreign matter such as a fragment of the substrate on an inner circumferential surface of a retaining ring for holding an edge portion (peripheral portion) of the substrate.
Embodiments, which will be described below, relate to a polishing apparatus for polishing a substrate such as a semiconductor wafer by pressing the substrate against a polishing surface on a polishing table.
In an embodiment, there is provided a polishing apparatus comprising: a polishing table having a polishing surface; a top ring having a substrate holding surface to hold a beck surface of a substrate and a retaining ring to retain the substrate on the substrate holding surface, the top ring being configured to hold the substrate and to press the substrate against the polishing surface; an imaging device configured to image an inner circumferential surface of the retaining ring; and an image processor configured to process an image obtained by the imaging device to judge whether there is a foreign matter on the inner circumferential surface of the retaining ring.
According to the embodiment, when the top ring does not hold the substrate, the imaging device images the inner circumferential surface of the retaining ring, and the image processor processes the obtained image. Thus, it can be judged whether there is a foreign matter on the inner circumferential surface of the retaining ring. In the case where the foreign matter such as a chipping of a wafer is detected, measures such as issuing an alarm is taken, so that generation of scratches on the surface of the substrate caused by the foreign matter which falls down onto the polishing surface can be reduced in the subsequent polishing processes.
In an embodiment, the polishing apparatus further comprises a lighting configured to emit a light to the inner circumferential surface of the retaining ring.
According to the embodiment, since the lighting can emit the light to the inner circumferential surface of the retaining ring, even if the interior of the polishing apparatus is dark, the imaging device can image the inner circumferential surface of the retaining ring without hindrance.
In an embodiment, the lighting is turned on at the time of imaging by the imaging device, and is turned off after the imaging.
In an embodiment, the imaging device is arranged at a location where the imaging device images the inner circumferential surface of the retaining ring from obliquely below.
In an embodiment, the top ring is supported by a top ring head shaft through a top ring head so as to be oscillatable between a substrate transfer position for transferring the substrate to and from the top ring and a substrate polishing position above the polishing surface; and the imaging device is provided at a location adjacent to the top ring head shaft.
In an embodiment, the imaging device images the inner circumferential surface of the retaining ring when the top ring is located at the substrate transfer position.
In an embodiment, the imaging device images the inner circumferential surface of the retaining ring when the top ring does not hold the substrate.
In an embodiment, the retaining ring and the substrate holding surface are movable relative to each other in a vertical direction; and the imaging device images the inner circumferential surface of the retaining ring after a lower surface of the retaining ring is positioned lower than the substrate holding surface.
In an embodiment, the top ring comprises a membrane which is an elastic membrane configured to define a plurality of pressure chambers into which a pressurized fluid is supplied, and the top ring is configured to press the substrate against the polishing surface with a fluid pressure by supplying the pressurized fluid into the plurality of pressure chambers; and the lower surface of the retaining ring is positioned lower than the substrate holding surface by lifting the membrane constituting the substrate holding surface relative to the retaining ring.
In an embodiment, the top ring comprises a carrier configured to hold the membrane and a pressure chamber formed above the carrier; and the carrier is lifted to lift the membrane by creating a vacuum in the pressure chamber formed above the carrier.
In an embodiment, the top ring comprises a pressure chamber formed above the retaining ring; and the retaining ring is lowered to position the lower surface of the retaining ring lower than the substrate holding surface by allowing a pressure of the pressure chamber formed above the retaining ring to be atmospheric pressure.
In an embodiment, the Imaging device comprises a CCD camera.
In an embodiment, the foreign matter comprises a fragment of the substrate.
In an embodiment, the imaging device and the image processor are incorporated in the polishing apparatus, or are capable of being incorporated in an existing polishing apparatus.
According to the above-described embodiments, scratches that are generated on the surface of the substrate during polishing can be reduced by detecting the foreign matter such as a fragment of the substrate on the inner circumferential surface of the retaining ring for holding the edge portion (peripheral portion) of the substrate.
A polishing apparatus according to embodiments will be described in detail below with reference to
The polishing table 3 is coupled through a table shaft 3a to a motor (not shown) disposed below the polishing table 3, and is rotatable about the table shaft 3a by the motor. The polishing pad 2 is attached to an upper surface of the polishing table 3, and the upper surface of the polishing pad 2 constitutes a polishing surface 2a for polishing the substrate W. A polishing liquid supply nozzle 4 is provided above the polishing table 3 to supply a polishing liquid onto the polishing pad 2.
The top ring 1 is coupled to a top ring shaft 5 that is vertically moved by a vertically moving mechanism (not shown) disposed in a top ring head 6. When the top ring shaft 5 is moved up and down, the top ring 1 in its entirety is elevated and lowered relative to the top ring head 6 as indicated by an arrow, so that positioning of the top ring 1 is performed. The top ring shaft 5 is rotated by a rotating mechanism (not shown) housed in the top ring head 6. Thus, the top ring 1 is rotated about its own axis, as indicated by an arrow, by the rotation of the top ring shaft 5. The top ring head 6 is supported by a top ring head shaft 7 which is rotatably supported by a frame (not shown).
The top ring 1 is configured to hold the substrate W on its lower surface. The top ring head 6 is configured to be pivotable about the top ring shaft 7, so that the top ring 1, holding the substrate W on its lower surface, is moved from a substrate transfer position (pusher) to a substrate polishing position above the polishing table 3 by the pivotal movement of the top ring head 6. The top ring 1 is then lowered to press the substrate W against the polishing surface 2a of the polishing pad 2. At this time, the top ring 1 and the polishing table 3 are rotated respectively and the polishing liquid is supplied onto the polishing pad 2 from the polishing liquid supply nozzle 4 disposed above the polishing table 3. In this manner, the substrate W is brought into sliding contact with the polishing surface 2a of the polishing pad 2 in the presence of the polishing liquid between the polishing pad 2 and the substrate W, whereby the surface of the substrate W is polished. When polishing of the substrate W is completed, the top ring head 6 is pivoted about the top ring head shaft 7 to position the top ring 1 at the substrate transfer position (pusher), and the polished substrate W is removed (released) from the top ring 1.
Next, the structure of the top ring 1 will be described with reference to
In a space formed inside the top ring body 11 and the retaining ring 12, an annular pressure sheet 13 made of an elastic membrane and fixed to the top ring body 11, and a generally disc-shaped carrier 14 held by the pressure sheet 13 are housed. A membrane (elastic membrane) 15, which is brought into contact with a back surface of the substrate W, is attached to a lower surface of the carrier 14. The membrane 15 has a lower surface which serves as a substrate holding surface 15a. The membrane 15 has a plurality of concentric partition walls 15b which define four pressure chambers: a central chamber 20; a ripple chamber 21; an outer chamber 22; and an edge chamber 23, which are located between the membrane 15 and the carrier 14. Pressurized fluid (e.g., pressurized air) is supplied into the pressure chambers 20, 21, 22, and 23 or vacuum is developed in the pressure chambers 20, 21, 22, and 23 through fluid passages 31, 32, 33, and 34, respectively. The central chamber 20, constituting a central pressure chamber, has a circular shape, and the ripple chamber 21, the outer chamber 22, and the edge chamber 23, constituting other pressure chambers, have an annular shape. These pressure chambers 20, 21, 22, and 23 are in a concentric arrangement.
Internal pressures of the pressure chambers 20, 21, 22, and 23 can be changed independently by a pressure regulator to thereby independently adjust pressing forces on four zones of the substrate W: a central portion; an inner intermediate portion; an outer intermediate portion; and a peripheral portion. Further, by elevating or lowering the top ring 1 in its entirety, the retaining ring 12 can press the polishing pad 2 at a predetermined pressing force. A pressure chamber 25 is formed between the carrier 14 and the top ring body 11. Pressurized fluid is supplied into the pressure chamber 25 or vacuum is developed in the pressure chamber 25 through a fluid passage 35. With these operations, the carrier 14 and the membrane (elastic membrane) 15 in their entirety can move up and down.
As shown in
In the top ring 1 configured as shown in
Therefore, according to the embodiment, there is provided a foreign matter detection device for detecting a foreign matter such as a fragment of the substrate which has cut into the inner circumferential surface of the retaining ring 12 or an abrasive particle which has adhered to the inner circumferential surface of the retaining ring 12.
The foreign matter detection device configured as shown in
As shown in
Particularly, in the case where the interior of the polishing apparatus is subjected to light shielding in order to inhibit oxidization of metal, such as copper, exposed on the substrate, a lighting in the interior of the polishing apparatus (particularly, in the interior of the polishing unit comprising the polishing table 3 and the top ring 1) is required in addition to the spotlight. The lighting is preferably turned on at the timing after the polished substrate is removed from the transfer position.
The images of the entire circumference of the inner circumferential surface 12S obtained by the CCD camera 8 are processed by the image processor 9. If there is a foreign matter such as a chipping of the substrate (wafer) on the inner circumferential surface 12S, the foreign matter is observed in the image as a brighter region or a darker region in a background having predetermined brightness. By distinguishing the region brighter than the background or the region darker than the background by the image processor 9, the foreign matter can be detected. Further, the chipping of the wafer, and the retaining ring can be distinguished by the contrast of their colors. Specifically, in the case where the retaining ring is white, the wafer is blackish, and therefore the chipping can be detected based on the contrast of their colors. Since the inner surface of the retaining ring is cleaned and dirt is basically rinsed out by spraying pure water or the like onto the inner surface of the retaining ring before imaging the chipping by the CCD camera, misdetection in which dirt adhering to the inner surface of the retaining ring is detected as a chipping is prevented. Although water droplets remain on the inner surface of the retaining ring, misdetection is avoided because a slurry used is white, and is not black even if the slurry is slightly solidified and adheres to the inner surface of the retaining ring. However, since there is a possibility of misdetection due to a shadow of a water droplet or the like, the number of chippings (e.g., in consideration of the number of shadows of water droplets, the number of chippings (including the number of shadows of water droplets or the like) to issue an alarm is determined) or the area of chippings (e.g., when the total area of chippings becomes a predetermined area (mm2) or more because chippings which have different sizes and overlap one another are forced to be counted as one) is defined to issue an alarm.
The image processor 9 issues an alarm when detecting the foreign matter such as a fragment of the substrate (wafer). At the beginning of the dummy dispense state, detection of the foreign matter such as a chipping is performed, and if the foreign matter is detected, the alarm is issued. After issuing the alarm, the operation of the dummy dispense is continued as it is. As described above, the conditions for detecting the foreign matter depend on operations, including the number of foreign matters such as wafer fragments, the area of the foreign matter such as a wafer fragment, and the like. After detecting the foreign matter, the state of the foreign matter can be checked by the monitor 10, and then the image processor 9 can be reset.
In the case where the process does not affect photocorrosion, inspection of the foreign matter can be performed for each substrate or by specifying the number of substrates. If the foreign matter is detected during the process, the process is interlocked. The CCD camera 8 is enclosed by a cover and is purged with N2 so as not to be corroded. In order to prevent imaging result from being affected by dirt of the cover, pure water is supplied onto the cover at all times so that the cover does not become dirty, and at the time of imaging, supply of pure water is stopped and N2 gas is ejected onto the cover to remove water droplets. The cover is processed to apply hydrophilicity or water-repellency, so that misdetection due to water droplets is avoided. Similarly, the lighting 16 is enclosed by a cover and is purged with N2. In order to prevent the lighting from being dimmed by the dirt of the cover, pure water is supplied onto the cover at all times so that the cover does not become dirty, and at the time of imaging, supply of pure water is stopped and N2 gas is ejected onto the cover to remove water droplets. The cover is processed to apply hydrophilicity or water-repellency, so that diffusion of light caused by water droplets is avoided. As shown in
Although the embodiments of the present invention have been described above, it should be noted that the present invention is not limited to the above embodiments, but may be reduced to practice in various different embodiments within the scope of the technical concept of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2014-066729 | Mar 2014 | JP | national |