This invention relates to a polishing cloth and more particularly to a polishing cloth suited to the final polishing of hard disk substrates and silicon wafers.
It has been known to use a polishing cloth of the type produced by removing the non-foamed layer (referred to as the skin layer) which constitutes a surface portion of the foamed layer by buffing or by means of a knife so as to expose air bubble cells generated inside the foamed layer on the surface by 1–1000 μm. This was both because it is necessary to hold the polishing liquid in the air bubble cells and because the surface of a foamed resin material normally produced is not sufficiently smooth and flat. Surface roughness due to air bubble cells affects the surface flatness adversely, and it is becoming a serious problem because surface roughness results on surfaces polished by such a polishing cloth. The problem of surface roughness is recently becoming particularly important in the technical field of final polishing of hard disk substrates and silicon wafers and it is becoming essential to reduce such surface roughness.
In view of the problem of reducing surface roughness, Japanese Patent 3,187,769 disclosed the technology of using sandpaper or the like with fine particles to buff the surface of a polishing cloth after air bubbles are exposed, and Japanese Patent Publication Tokkai 2001-62704 disclosed the technology of minutely buffing the skin layer without exposing air bubbles on the surface to improve surface flatness. The former technology is not satisfactory because the surface flatness cannot be improved over a certain limit because air bubbles are exposed on the polishing surface. Neither is the latter technology satisfactory but it is because the polishing liquid cannot be retained.
It is therefore an object of this invention, in view of the failure of the prior art technologies to properly address the aforementioned problem, to provide a polishing
A polishing cloth embodying this invention may be characterized as comprising a base material and a surface layer stacked over the base material, the surface layer comprising a foamed layer and a non-foamed layer, the foamed layer including air bubble cells and the non-foamed layer having an externally exposed surface where linear cuts are formed so as to reach the air bubble cells such that the air bubble cells communicate with the exterior through the linear cuts. These linear cuts are controlled to be 10 μm or less in length. The base material may comprise any one selected from resin materials such as polyethylene terephthalate, vinyl polychloride and cellophane, rubber materials, paper materials, cloth materials such as a woven cloth and an unwoven cloth, metal materials and foamed materials. The surface layer comprises foamed polyurethane resin and may have unevenness produced by a gravure process or an embossing work process.
If a polishing cloth embodying this invention is used, not only can waviness, or surface roughness, of a polished product be significantly improved but damages due to the polishing process can also be reduced. Such polishing cloths can be produced by a method embodying this invention at a reduced production cost at an improved throughput without requiring any additional equipment or space for such a new equipment.
The invention is described next in detail with reference to the drawings.
As a variation, the surface of the skin layer 4 may be made uneven to reduce the frictional resistance by embossing, or by a so-called gravure process. The gravure process, or the embossing process, is a method of indenting a sheet-like material according to a design including a character pattern (say, on a metal sheet by using a press) so as to provide a raised appearance.
A method of producing the polishing cloth 1 of this invention includes the step of applying a foaming paint (or coating material) comprising a foaming resin on the surface of a base material. The foaming paint to be used according to this invention may preferably comprise foaming polyurethane resin (or polyurethane foam). This foaming polyurethane resin may preferably be formed by dissolving a mixture of organic diisocyanate, polyoles and a chain-elongating agent in a solvent and, if necessary, adding an additive such as a foaming agent and a foam improving agent. Examples of organic diisocyanate include diphenylmethane-4,4′-diisocyante and toolylene-2. Examples of polyole include polyester polyoles such as polyethylene adipate glycol, polypropylene adipate glycol and polyethylenepropylene adipate glycol, and polyether polyoles such as polyethylene ether glycol. Examples of chain-elongating agent include glycols such as ethylene glycol and propylene glycol, diamines such as ethylene diamine and trimethylene diamine, and amino-alcohol. Examples of solvent include water-miscible dimethyl formaldehyde, dimethyl sulfoxide, tetrahydro furan, dimethyl acetoamide, ethyl acetate and dioxane. Examples of compounding agent include water, fleon, silicone oil, vinyl polychloride, polyamides and polyacrylonitril. The foamable polyurethane resin may be coated by using an appropriate coating means such as a roll coater.
The method for producing a polishing cloth of this invention also includes the step of foaming the foamable coating material to form the surface layer. The foaming may be effected by a wet method or a dry method. If a wet method is used, the step of submerging in water for coagulation and thereafter washing and drying to remove the solvent is included.
The production method of this invention further includes the step of forming linear cuts on the surface of the skin layer. The linear cuts are formed by a buffing process but a different process may be employed for the purpose. The length of the linear cuts is controlled to be 10 μm or less. If an unwoven cloth is used as the base material, it is preferable to form the linear cuts after the surface of the foamable polyurethane resin is subjected to a thermal process, a press working process or a fine buffing process since the surface of the skin layer is not sufficiently flat and smooth.
Since the production method of this invention is an improvement over the prior art method for producing a prior art polishing cloth having externally exposed air bubble cells, a prior art production equipment may be employed without modifications. Thus, the number of production steps does not increase over the prior art method of production and there is no need for any extra equipment. In other words, there is no problem of an increase in the production cost or an additional space for equipment.
A comparison test was carried out between the polishing cloth of this invention and the prior art polishing cloth referenced with respect to
Table 1 shows other test conditions.
For measurements and evaluations, use was made of a scan-type white-color interferometer (New View 5000 produced by Zygo, Inc. with objective lens 10× and intermediate lens 0.8× and measurements taken within the wavelength range of 0.05–2 mm by filtering off wavelengths less than 0.05 mm and greater than 2.0 mm) to measure the average roughness Wa (in Å) as waviness.
Number | Date | Country | Kind |
---|---|---|---|
2002-313470 | Sep 2002 | JP | national |
2003-270047 | Jul 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3137611 | Krolik, Jr. | Jun 1964 | A |
3707401 | Jarema et al. | Dec 1972 | A |
3976525 | Mednick | Aug 1976 | A |
3983287 | Goossen et al. | Sep 1976 | A |
4714644 | Rich | Dec 1987 | A |
6929539 | Schutz et al. | Aug 2005 | B1 |
20030150169 | Annen | Aug 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040121714 A1 | Jun 2004 | US |