The present application claims priority from Japanese application serial no. 2004-137067, filed on May 6, 2004, the content of which is hereby incorporated by reference into this application.
The present invention relates to a method of polishing semiconductor substrates in such a manner as to prevent the semiconductor substrates from cracking, and to a polishing jig to be used in the polishing method.
In the field of semiconductor manufacture, during manufacturing processes, thick substrates typically undergo processing in order to prevent semiconductor substrates from cracking. After the formation of patterns, the reverse side of each substrate is polished for the thickness of the substrate to match specifications. During this polishing process, semiconductor substrates are fixed to circular quartz plates using wax. Each of the quartz plates is further mounted in the polishing holder used for applying a load to the semiconductor substrate. An alkali polishing liquid containing a polishing agent is supplied to the quartz-made polishing surface of a polishing apparatus, and the semiconductor substrate that has been pressed firmly against the polishing surface is polished.
The above process is described below using
Japanese Patent Laid-Open No. 2004-71667 describes solutions to the following problems associated with the related technology, in perspectives different from those of the present invention:
A space exists at section A in
In order to solve the above problem, the present invention provides a jig for fixing a semiconductor substrate, with a circular groove slightly larger than a diameter of the semiconductor substrate. The semiconductor substrate is fixed to this groove by means of wax. For the grooveless jig used in the related technology, the wax between the semiconductor substrate and the jig begins to melt and flow out with the start of polishing. In contrast to the related technology, the present invention provides a circular groove slightly larger than the diameter of the semiconductor substrate, the side of the semiconductor substrate that is fitted in the groove, therefore, is covered with the wax used for fixing the semiconductor substrate and the jig, and thus prevents the wax from melting and flowing out.
Preferred embodiments of the present invention will now be described in conjunction with the accompanying drawings, in which:
In the embodiments below, gallium arsenide, a compound semiconductor, is described as an example of a semiconductor substrate material. Compared with silicon, the compound semiconductors used for photosemiconductor devices, such as gallium arsenide (GaAs), indium phosphor (InP), and gallium nitride (GaN), have the properties of low hardness and brittleness. Also, the process of polishing to satisfy thickness specifications is performed nearly at the end of wafer processing, so the polishing process enhances an added value of the wafer. For an optical module that uses photosemiconductors, since the other components assembled during subsequent processes are high in price ratio, great damages result if cracks become conspicuous during subsequent processes.
Embodiments of the present invention are described hereunder with reference to the accompanying drawings.
In the present embodiment, the diameter of the gallium arsenide wafer 103 is 50.8 mm and the diameter of the groove in the quartz jig is 52.0 mm, so that there is only a difference of 0.6 mm between both dimensions at one side. The wax 104 is liquefied by heat and then uniformly applied to a groove interior of the quartz jig so as not to generate bubbles. Next after the gallium arsenide wafer vacuum-chucked by vacuum tweezers has been mounted, the wafer is fixed by pressurizing and cooling the wax. An excess of the wax fills in an entire space equivalent to the differential diameter of 0.6 mm at one side. This prevents the the problem encountered in the related technology, namely, the melting and outflow of the wax between the semiconductor substrate and the quartz jig. Hence, it is possible to suppress the damage to the semiconductor substrate being polished, and its cracking likely to occur during polishing and to cause damage during subsequent processes.
The damaging and cracking are also suppressed since sidewalls of the groove work as walls in such a manner that they will prevent cracking of the semiconductor substrate thinned down by polishing.
Additionally, in the present embodiment, the polishing liquid selected polishes only gallium arsenide and does not polish quartz. The thickness of the semiconductor substrate can therefore be easily controlled by matching the groove depth of the quartz jig to thickness specifications of the substrate after being polished. More specifically, whether the semiconductor substrate has been polished to completion can be judged by confirming that the difference in diameter (in other words, a difference in level) between the gallium arsenide substrate and the polishing jig has disappeared. In the above-described embodiment, a thickness of the wax is ignored for simplicity of description. In actuality, however, the thickness cannot be ignored and the depth of the groove needs to equal the thickness specifications of the substrate plus the thickness of the wax.
Furthermore, since the quartz jig for fixing is formed with accurate flatness, it is possible to obtain semiconductor substrates substantially free from in-plane thickness nonuniformity and required to have highly accurate flatness. Substrate thickness specifications are determined by particular characteristics of optical elements and a layout design for element mounting in subsequent processes.
Experiments indicate that even if difference in the groove diameter of the quartz jig is about 5 mm for a maximum diameter tolerance of the semiconductor substrate, it is possible to fill in the groove section with wax (for a groove depth of 100 μm). Preferable difference, however, is 2 mm or less.
The wax here does not refer only to beeswax, and the wax can be any kind of wax, only if it is solid at room temperature and can be changed into a liquid of a low viscosity by applying heat.
Although a gallium arsenide wafer is exemplified as the semiconductor substrate in the above embodiment, the substrate may be any other different type of compound semiconductor substrate or may be a silicon wafer. Although a surface plate made of quartz is exemplified as the surface plate, this may be a polishing cloth. Although a quartz jig is exemplified as the jig for attaching the semiconductor substrate, the kind of material is of no matter, only if the material is corrosion-resistant against the polishing liquid used (i.e., only if the material is resistant to corrosion/polishing). For example, the material may be glass or a ceramic material.
According to the present invention, since the wax for fixing the semiconductor substrate and the jig can be prevented from melting and flowing out, the cracks in the semiconductor substrate can also be prevented without damaging its outer surface.
Number | Date | Country | Kind |
---|---|---|---|
2004-137067 | May 2004 | JP | national |