Polishing pad with reduced moisture absorption

Information

  • Patent Grant
  • 6585574
  • Patent Number
    6,585,574
  • Date Filed
    Monday, June 19, 2000
    24 years ago
  • Date Issued
    Tuesday, July 1, 2003
    21 years ago
Abstract
A polishing pad for use in chemical mechanical polishing (CMP) is disclosed. The polishing pad has a pad surface for polishing wafer surfaces. The pad surface is composed of a polymeric matrix material. The polishing pad also contains a polymeric additive which is defined in the polymeric matrix of the pad surface and in cells of the pad surface. The polymeric additive may include one of a polyurethane, a polyamide, a polyester, a polyacrylonitrile, a polyacrylate, a polymethacrylate, a polyvinylchloride, and a polyvinylidene chloride. The polymeric additive is configured to be hydrophilic so that the pad surface is wettable to enable improved slurry distribution over the pad surface.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to semiconductor wafer polishing and, more particularly, to improved polishing pads to more efficiently polish wafer surfaces and decrease wafer polishing cost.




2. Description of the Related Art




In the semiconductor chip fabrication process, it is well-known that there is a need to polish a semiconductor wafer. This polishing is typically accomplished by a chemical mechanical polishing (CMP) process. Generally, integrated circuit devices are in the form of multi-level structures. At the substrate level, transistor devices having diffusion regions are formed. In subsequent levels, interconnect metallization lines are patterned and electrically connected to the transistor devices to define the desired functional device. As is well known, patterned conductive layers are insulated from other conductive layers by dielectric materials, such as silicon dioxide. As more metallization levels and associated dielectric layers are formed, the need to planarize the dielectric material grows. Without planarization, fabrication of further metallization layers becomes substantially more difficult due to the higher variations in the surface topography. In other applications, metallization line patterns are formed in the dielectric material, and then, metal CMP operations are performed to remove excess metallization.




During CMP, a semiconductor wafer is polished by use of a polishing material, such as a belt or pad, and a solution known as a slurry. The polishing material is typically made from some hydrophilic polymer such as polyurethane. A more detailed discussion regarding polishing pads is stated below. The slurry is generally made up of an aqueous solution with metallic or non-metallic particulates such as, for example, aluminum or silica abrasives that create the added friction needed for the polishing process. In one example of a CMP process, a polishing pad is put in motion (rotated or moved in a conveyer belt fashion) and a slurry solution is applied and spread over the surface of the polishing pad. Once the polishing pad having slurry on it is moving at a desired rate, the wafer is lowered onto the surface of the pad. In this manner, the wafer surface that is desired to be planarized is substantially smoothed, much like sandpaper may be used to sand wood.




Currently available polishing pads, typically polyurethane foam, are limited in effectiveness and consistency because they readily absorb moisture. In use, polishing pads are in continuous contact with aqueous slurries and cleaning solutions. Moisture absorption affects the performance of polishing pads in the following two ways:




1) Softening, swelling, or loss of rigidity through physical and chemical degradation, resulting in reduced planarizing effectiveness and reduced lifetime of the polishing pad,




2) Gradual changes in pad properties and integrity during use, resulting in unsteady and inconsistent performance.




Previous attempts to make polishing pads with reduced moisture absorption or with increased resistance to degradation have been limited because the pads are too hydrophobic, resulting in poor wetting, inefficient slurry distribution, and reduced or varying removal rates.




SUMMARY OF THE INVENTION




Broadly speaking, this invention fills these needs by providing a moisture resistant polishing pad with additives to improve wetting of the pad surface for good slurry distribution. It should be appreciated that the present invention can be implemented in numerous ways, including as a process, an apparatus, a system, a device, or a method. Several inventive embodiments of the present invention are described below.




In one embodiment, a polishing pad for use in chemical mechanical polishing (CMP) is disclosed. The polishing pad has a pad surface for polishing wafer surfaces. The pad surface is composed of a polymeric matrix material. The polishing pad also contains a polymeric additive which is defined in the polymeric matrix of the pad surface and in cells of the pad surface. The polymeric additive may include one of a polyurethane, a polyamide, a polyester, a polyacrylonitrile, a polyacrylate, a polymethacrylate, a polyvinylchloride, and a polyvinylidene chloride. The polymeric additive is configured to be hydrophilic so that the pad surface is wettable to enable improved slurry distribution over the pad surface.




In another embodiment, a polishing pad for use in chemical mechanical polishing (CMP) is disclosed. The polishing pad has a pad surface for polishing wafer surfaces. The pad surface is composed of a relatively non-polar polymeric matrix material. An additive is defined in the polymeric matrix of the pad surface and in cells of the pad surface where the additive is a surfactant. The additive is hydrophilic so that the pad surface is wettable which enables improved slurry distribution over the pad surface.




In yet another embodiment, a polishing system including a polishing pad for use in chemical mechanical polishing (CMP) is disclosed. The polishing pad has a pad surface for polishing wafer surfaces. The pad surface is composed of a polymeric matrix material which is either a thermoplastic material or a cross-linked material. A relatively polar polymeric additive is defined in the polymeric matrix of the pad surface and in cells of the pad surface. The additive is one of a polyurethane, a polyamide, a polyester, a polyacrylonitrile, a polyacrylate, a polymethacrylate, a polyvinylchloride, and a polyvinylidene chloride. The additive is also hydrophilic so that the pad surface is wettable which enables improved slurry distribution over the pad surface. The polymeric matrix material also absorbs less than 4% moisture by weight. The thermoplastic material used to make the polymeric matrix material is selected from the group consisting of a polytetrafluoroethylene material, a polyethylene material, an acrylonitrile butadiene styrene (ABS) material, a polypropylene material, a fluoronated polymer material, a polyurethane material, a thermoplastic elastomer material, and a polycarbonate material. The cross-linked material used to make the polymeric matrix material is selected from the group consisting of a polyurethane material, a phenolic material, an epoxy material, a natural or synthetic rubber material, and a thermoset material.




In another embodiment, a polishing pad is disclosed. The polishing pad has a pad surface for polishing wafer surfaces where the pad surface is composed of a polymeric matrix material. The polymeric matrix material includes one of a thermoplastic material and a cross-linked material. The polymeric matrix material is defined by cells that extend into the pad while some cells at the pad surface define invaginated features for receiving the slurry. A polymeric additive is defined in the polymeric matrix of the pad surface and in the cells of the pad surface where the polymeric additive includes one of a polyamide and a polyester. The additive is made to be hydrophilic such that the pad surface is wettable to enable improved slurry distribution over the pad surface. The thermoplastic material used to make the polymeric matrix material is selected from the group consisting of a polytetrafluoroethylene material, a polyethylene material, an acrylonitrile butadiene styrene (ABS) material, a polypropylene material, a fluoronated polymer material, a polyurethane material, a thermoplastic elastomer material, and a polycarbonate material. The cross-linked material used to make the polymeric matrix material is selected from the group consisting of a polyurethane material, a phenolic material, an epoxy material, a natural or synthetic rubber material, and a thermoset material.




The advantages of the present invention are numerous. Most notably, by creating a hydrophobic polishing pad which can be wetted, wafer polishing efficiency can be improved and wafer polishing costs may be lowered. The claimed invention reduces the problems of a polishing pad absorbing too much moisture and losing structural integrity. Therefore, the present invention allows more CMP operations to be conducted before the polishing pad must be changed thus increasing CMP processing output and lowering costs of CMP processing by increasing the life of each polishing pad.











Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.




BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements.





FIG. 1

shows a view of an exemplary CMP system in accordance with one embodiment of the present invention.





FIG. 2

shows a detailed side view of a polishing pad in accordance with one embodiment of the present invention.





FIG. 3

shows a polishing pad with a slurry coating in accordance with one embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The purpose of this invention is to produce a polishing pad or belt or other device with increased resistance to moisture absorption for improved wafer planarizing effectiveness and consistency. This invention overcomes the limitations of the present polishing pads through the use of a hydrophobic polishing pad material with hydrophilic additives. Although the descriptions of the invention refer to pads, the invention can be in any suitable form or shape, including but not limited to sheets, belts, disks, rollers and bobs.





FIG. 1

shows a view of an exemplary CMP system


100


in accordance with one embodiment of the present invention. A polishing head


104


may be used to secure and hold the wafer


101


in place during processing. A linear belt polishing pad


114


is preferably secured to a thin metal belt (not shown), which forms a continuous loop around rotating drums


118




a


and


118




b


. The linear belt polishing pad


114


may be secured to the metal belt by using a well-known glue or other adhesive material. The linear belt polishing pad


114


itself is preferably hydrophobic and made out of a polymeric matrix material


201


(shown in

FIG. 2

) with an additive


202


that is hydrophilic (also shown in FIG.


2


). This combination of hydrophilic and hydrophobic materials serves to improve pad longevity and wetting as described in the discussion regarding FIG.


2


. The linear belt polishing pad


114


generally rotates in a direction indicated by the arrows at a speed of about 400 feet per minute. As the belt rotates, polishing slurry


112


may be applied and spread over the surface


114




a


of the linear belt polishing pad


114


. The polishing head


104


may then be used to lower the wafer


101


onto the surface


114




a


of the rotating linear belt polishing pad


114


. In this manner, the surface of the wafer


101


that is desired to be planarized is substantially smoothed.




In some cases, the CMP operation is used to planarize materials such as oxide, and in other cases, it may be used to remove layers of metal. The rate of polishing may be changed by adjusting the polishing pressure


106


. The polishing rate is generally proportional to the amount of polishing pressure


106


applied to the linear belt polishing pad


114


against the polishing pad stabilizer


116


. After the desired amount of material is removed from the surface of the wafer


101


, the polishing head


104


may be used to raise the wafer


101


off of the linear belt polishing pad


114


. The wafer is then ready to proceed to the next step in the manufacturing process.




The CMP system


100


can be improved for the next wafer by conditioning the surface of the linear belt polishing pad


114


. Conditioning of the pad may be performed by removing excess slurry and residue build-up from the clogged belt pad. As more wafers are planarized, the belt pad will collect more residue build-up which can make efficient CMP operations difficult. One method of conditioning the belt pad is to use a polishing pad conditioning system


108


. A conditioning head


120


is preferably used to hold (and in some embodiments rotate) a conditioning disk


122


as a conditioning track


110


holds the conditioning head


120


. The conditioning track


110


moves the conditioning head


120


back and forth as the conditioning disk


122


scrapes the linear belt polishing pad


114


, preferably with a nickel-plated conditioning disk.




As explained in further detail below, a pad such as the linear belt polishing pad


114


is hydrophobic and therefore does not absorb moisture from the polishing slurry


112


. Therefore, the linear belt polishing pad


114


does not swell, soften, or lose its rigidity through the polishing process. Moreover, as seen below, pads such as the linear belt polishing pad


114


maintain their integrity while at the same time holding the polishing slurry


112


. This use of hydrophilic additives helps maintain polishing pad wetting for optimal wafer polishing.





FIG. 2

shows a detailed side view of a polishing pad


200


in accordance with one embodiment of the present invention. In this embodiment, the polishing pad


200


is made of a polymeric matrix material


201


. The polymeric matrix material


201


includes an additive


202


which is interspersed throughout the polymeric matrix material


201


. The additive


202


is hydrophilic and therefore attracts aqueous solutions such as the polishing slurry


112


. The polymeric matrix material


201


also contains open cells


204


and closed cells


206


. The open cells


204


and the closed cells


206


are spaces (or pores) within the polymeric matrix material


201


that can become exposed to the outside when the polishing pad


200


becomes worn with use. The cells


204


and


206


which are exposed become invaginated features of a pad surface


201




a


which can hold the polishing slurry


112


. The open cells


204


are two or more connected cells with an opening between them while the closed cells


206


are individual cells that are not connected with other cells. The polishing pad


200


also has a pad surface


201




a


that contacts and polishes a semiconductor wafer during a CMP polishing process. During the polishing process, the polishing pad


200


, because of the hydrophobic nature of its polymeric matrix material


201


, does not absorb the moisture from the polishing slurry


112


. The polymeric matrix material


201


can be any polymeric material or any combination of polymeric materials, including thermoplastic and cross-linked materials, that absorbs less than about 4% by weight of moisture after soaking in a solution (e.g., water or any other basic or acidic solution) for a period of time. For example, the period of time may be for about 24 hours. In one embodiment, the thermoplastic materials which may be used are, for example, polytetrafluoroethylene, polyethylene, ABS polypropylene, fluoronated polymers, polyurethane, thermoplastic elastomers, polycarbonate, and the like. The cross-linked materials which may be used are, for example, polyurethane, phenolics, epoxies, various natural and synthetic rubbers, other thermoset materials, and the like.




The polishing pad


200


can include a porous structure. The porosity can be achieved by any suitable method, including but not limited to blowing, frothing, and inclusion of filled or unfilled hollow microelements. The pores can be any combination or distribution of size, shape, and quality (open or closed cells as indicated above).




The polishing pad


200


can include any type of texturing or groove patterns, formed naturally or by any suitable methods. The texturing can be created during the manufacturing process, or it can be created during use.




The additive


202


which is suitable for improving wetting and distribution of slurry include any type of hydrophilic additives like surfactants, and relatively polar polymeric materials including but not limited to polyurethanes, polyamides, polyesters, polyacrylonitriles, polyacrylates, polymethacrylates, polyvinylchlorides, and polyvinylidene chlorides. Relatively polar polymeric materials include materials that have enough polarity to be hydrophilic. The additive


202


can be liquid, solid, semi-solid, or combinations of solid and liquid. For example, the surfactant may be a liquid or a paste while polyurethanes, polyamides, and polyesters are typically solid. The additive


202


can be reactive or non-reactive with the other materials in the polishing pad. In one example, the additive


202


may react with the polymeric matrix material


201


to actually bond with the polymeric matrix material


201


. The additive


202


can be located within the polymer matrix or within the pores (or cells) of the polishing material. The additive


202


can be any shape, size, or distribution, and can perform additional functions (e.g., hydrophilic hollow beads used to increase wetting and to create porosity). The additive


202


can remain in place and wear away with the polishing material, or they can pop out or smear to coat, fill in, or otherwise improve the interaction between the pad surface


201




a


and the polishing slurry


112


. By way of example, the additive


202


can be loosely held within the polymeric matrix material


201


, and when the polishing pad


200


becomes worn down, the additive


202


may be squeezed out of the polymeric matrix


201


. In that case, the additive


202


may be smeared onto the surface of the wafer


100


by the pressure exerted by the polishing pad


200


. In any event, the additive


202


improves the interaction between the pad surface


201




a


and the polishing slurry


112


by attracting the polishing slurry


112


to the hydrophobic polishing pad


200


by hydrophilic interactions.





FIG. 3

shows a polishing pad


200


with a slurry coating


210


in accordance with one embodiment of the present invention. In this embodiment, the polishing pad


200


, as described in

FIG. 1

, is being used in conjunction with the slurry coating


210


poured from a slurry dispenser


208


. The slurry coating


210


may be any solution with abrasive particulates which can be used for a CMP process such as a solution having Al


2


O


3


or silica abrasive and other chemical components. However, it should be understood by one of ordinary skill in the art that various other chemical compositions of the slurry coating


210


that work with metals such as copper or whatever substrate being polished may be used. The slurry coating


210


is dispensed to the polishing pad


200


before the start of the CMP process to fully wet the polishing pad


200


. After the slurry coating


210


has been dispensed, the wafer


101


is lowered onto the polishing pad


200


for the CMP process. The slurry coating


210


is held by the polymeric matrix material


201


of the polishing pad


200


because of the additive


202


and indentations (or invaginated features) formed by cells


212


.




The polishing pad


200


is capable of being wetted by the slurry coating


210


even though the polymeric matrix material


201


is hydrophobic because the additive


202


within the polymeric matrix material


201


is hydrophilic. The additive


202


attracts the slurry coating


210


while the rest of the polishing pad


200


repels the slurry. This combination of repulsion and attraction helps to maintain the integrity of the polishing pad


200


while creating the wetting needed for optimal wafer polishing. In addition, the cells


212


which are exposed to the slurry coating


210


holds the slurry coating


210


within it and contributes to the wetting of the polishing pad


200


.



Claims
  • 1. A polishing pad for use in chemical mechanical polishing (CMP), comprising:a pad surface for polishing wafer surfaces, the pad surface being composed of a polymeric matrix material, the polymeric matrix material being hydrophobic; and a polymeric additive being defined in the polymeric matrix of the pad surface and in cells of the pad surface, the polymeric additive includes one of a polyurethane, a polyamide, a polyester, a polyacrylonitrile, a polyacrylate, a polymethacrylate, a polyvinylchloride, and a polyvinylidene chloride; wherein the polymeric additive is configured to be hydrophilic such that the pad surface is rendered partially hydrophobic by the polymeric matrix material and partially hydrophilic by the polymeric additive making the pad surface wettable to enable improved slurry distribution over the pad surface.
  • 2. A polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 1, wherein the polymeric matrix material being configured to absorb less than about 4% moisture.
  • 3. A polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 2, wherein the polymeric matrix material is one of a thermoplastic material and a cross-linked material.
  • 4. A polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 2, wherein the polymeric matrix material is a combination of a thermoplastic material and a cross-linked material.
  • 5. A polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 3, wherein the thermoplastic material is selected from the group consisting of a polytetrafluoroethylene material, a polyethylene material, an acrylonitrile butadiene styrene (ABS) material, a polypropylene material, a fluoronated polymer material, a polyurethane material, a thermoplastic elastomer material, and a polycarbonate material.
  • 6. A polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 3, wherein the cross-linked material is selected from the group consisting of a polyurethane material, a phenolic material, an epoxy material, a natural or synthetic rubber material, and a thermoset material.
  • 7. A polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 2, wherein the less than about 4% moisture is absorbed after soaking for about 24 hours.
  • 8. A polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 1, wherein the polymeric matrix material is defined by cells that extend into the pad, and some cells at the pad surface defining invaginated features for receiving the slurry.
  • 9. A polishing pad for use in chemical mechanical polishing (CMP), comprising:a pad surface for polishing wafer surfaces, the pad surface being composed of a relatively non-polar polymeric matrix material; an additive being defined in the polymeric matrix of the pad surface and in cells of the pad surface, the additive being a surfactant; wherein the additive is configured to be hydrophilic such that a portion of the pad surface made up of the polymeric matrix material is hydrophobic and the portion of the pad surface made up of the additive is hydrophilic so the pad surface is wettable to enable improved slurry distribution over the pad surface.
  • 10. A polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 9, wherein the polymeric matrix material being configured to absorb less than about 4% moisture.
  • 11. A polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 10, wherein the less than about 4% moisture is absorbed after soaking for about 24 hours.
  • 12. A polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 10, wherein the polymeric matrix material is defined by cells that extend into the pad, and some cells at the pad surface defining invaginated features for receiving the slurry.
  • 13. A polishing system including a polishing pad for use in chemical mechanical polishing (CMP), comprising:a pad surface for polishing wafer surfaces, the pad surface being composed of a polymeric matrix material, the polymeric matrix material being hydrophobic, the polymeric matrix material includes one of a thermoplastic material and a cross-linked material; and a polymeric additive being defined in the polymeric matrix of the pad surface and in cells of the pad surface, the polymeric additive includes one of a polyurethane, a polyamide, a polyester, a polyacrylonitrile, a polyacrylate, a polymethacrylate, a polyvinylchloride, and a polyvinylidene chloride; the additive is configured to be hydrophilic such that the pad surface is wettable to enable improved slurry distribution over the pad surface, and the polymeric matrix material is configured to absorb less than about 4% moisture by weight; wherein the thermoplastic material is selected from the group consisting of a polytetrafluoroethylene material, a polyethylene material, an acrylonitrile butadiene styrene (ABS) material, a polypropylene material, a fluoronated polymer material, a polyurethane material, a thermoplastic elastomer material, and a polycarbonate material; wherein the cross-linked material is selected from the group consisting of a polyurethane material, a phenolic material, an epoxy material, a natural or synthetic rubber material, and a thermoset material.
  • 14. A polishing system including a polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 13, wherein the polymeric matrix material is defined by cells that extend into the pad, and some cells at the pad surface defining invaginated features for receiving the slurry.
  • 15. A polishing pad as recited in claim 13, wherein the polymeric additive is in the form of hydrophilic hollow beads.
  • 16. A polishing pad, comprising:a pad surface for polishing wafer surfaces, the pad surface being composed of a polymeric matrix material, the polymeric matrix material being hydrophobic, the polymeric matrix material includes one of a thermoplastic material and a cross-linked material, and the polymeric matrix material is defined by cells that extend into the pad, and some cells at the pad surface defining invaginated features for receiving the slurry; and a polymeric additive being defined in the polymeric matrix of the pad surface and in cells of the pad surface, the polymeric additive includes one of a polyamide and a polyester, the additive is configured to be hydrophilic such that the pad surface is rendered partially hydrophobic by the polymeric matrix material and partially hydrophilic by the polymeric additive making the pad surface wettable to enable improved slurry distribution over the pad surface; wherein the thermoplastic material is selected from the group consisting of a polytetrafluoroethylene material, a polyethylene material, an acrylonitrile butadiene styrene (ABS) material, a polypropylene material, a fluoronated polymer material, a polyurethane material, a thermoplastic elastomer material, and a polycarbonate material; wherein the cross-linked material is selected from the group consisting of a polyurethane material, a phenolic material, an epoxy material, a natural or synthetic rubber material, and a thermoset material.
  • 17. A polishing pad as recited in claim 16, wherein the polymeric matrix material is configured to absorb less than about 4% moisture.
  • 18. A polishing pad for use in chemical mechanical polishing (CMP), comprising:a pad surface for polishing wafer surfaces, the pad surface being composed of a hydrophobic polymeric matrix material; and a polymeric additive being defined in the polymeric matrix of the pad surface and in cells of the pad surface, the polymeric additive being a polyamide; wherein a portion of the pad surface made up of the polymeric matrix material is hydrophobic and the portion of the pad surface made up of the additive is hydrophilic.
  • 19. A polishing system including a polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 13, wherein the less than about 4% moisture is absorbed after soaking for about 24 hours.
  • 20. A polishing system including a polishing pad for use in chemical mechanical polishing (CMP) as recited in claim 18, wherein the polymeric matrix material is configured to absorb less than about 4% moisture.
CROSS REFERENCE TO RELATED APPLICATION

This is a continuation-in-part of a co-pending U.S. patent application Ser. No. 09/317,974 entitled “Improved Polishing Pad with Reduced Moisture Absorption” filed on May 25, 1999 now abandoned, which was a nonprovisional application claiming priority from a U.S. Provisional Application No. 60/087,742, filed on Jun. 2, 1998.

US Referenced Citations (5)
Number Name Date Kind
5578362 Reinhardt et al. Nov 1996 A
6069080 James et al. May 2000 A
6095902 Reinhardt Aug 2000 A
6117000 Anjur et al. Sep 2000 A
6217434 Roberts et al. Apr 2001 B1
Foreign Referenced Citations (1)
Number Date Country
WO 9906182 Feb 1999 WO
Provisional Applications (1)
Number Date Country
60/087742 Jun 1998 US
Continuation in Parts (1)
Number Date Country
Parent 09/317974 May 1999 US
Child 09/596842 US