1. Field of the Invention
The present invention relates to lead salt photodetectors and more particularly to midwave infrared lead salt photodetectors.
2. Brief Description of Prior Developments
The achievement of near-background limited (for 180 degree field of view) midwave infrared detector performance at room temperature mandates simultaneous responsivity (signal) and high impedance (for low-noise). Generally good responsivity is not compatible with high resistance and currently available room temperture photoconductive detectors often sacrifice response for high impedance due to the low mobility and lifetimes found in midwave semiconductors at these operating temperatures.
In the photodetector prior art air annealing of thin lead salt films and material compensation for impedance. The disadvantage of this procedure is that it may lead to surface damage and poor photoconductive gain.
There is, therefore, a need for improved photoconductors and methods of their manufacture that overcome the disadvantages of the prior art.
According to the present invention, molecular beam epitaxy (MBE) is employed to grow a heterostructure photoconductive detector with a wide-gap surface layer that creates a surface channel for minority carriers that enhances room temperature lifetimes by orders of magnitude over bulk polycrystalline material. This method is superior to the normal practice of surface oxidation as it provides more control over the surface potential and results in less damage to the semiconductor surface (and hence longer carrier lifetimes). This heterostructure results in a depletion layer that results in higher detector impedance without sacrifice of photoconductive gain.
The present invention is further described with reference to the accompanying drawings wherein:
Referring to
Those skilled in the art will appreciate that the depletion region 20 is created by the fixed positive charge as at 12 and 14 in the surface oxide layer 10, and that minority carrier (electron) lifetime is enhanced in surface channel 18 so that the depletion field separates electron-hole pairs and draws electrons to the channel. The depleted layer yields lower dark current (sub-intrinsic carrier concentration).
It will also be appreciated that the heterostructure creates minority carrier channel at surface leading to enhanced photoconductive gain. Surface depletion increases device impedance and results in lower noise. These conditions are not mutually exclusive and result in improved detector sensitivity.
While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications or additions may be made to the described embodiment for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended claims.
This Application claims rights under 35 USC §119(e) from U.S. Application Ser. No. 60/741,425 filed Dec. 1, 2005, entitled Polycrystalline Heterostructure Infrared Detector, the contents of which are incorporated herein by reference.
The invention was made with United States Government support under Contract No. S02-13. The United States Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
5804475 | Meyer et al. | Sep 1998 | A |
5823682 | Betz | Oct 1998 | A |
6890809 | Karpov et al. | May 2005 | B2 |
7608830 | Kinch | Oct 2009 | B1 |
7696584 | Henning et al. | Apr 2010 | B2 |
7741147 | Kiesel et al. | Jun 2010 | B2 |
20060021646 | Yotsuhashi et al. | Feb 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20110168996 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
60741425 | Dec 2005 | US |