X-ray windows are designed to allow penetration of x-rays, even low energy x-rays. Desirable characteristics of x-ray windows include (1) minimal x-ray attenuation, (2) gas impenetrability, in order to maintain a vacuum on one side and perhaps ambient air on the other side, (3) corrosion resistance, (4) the ability to withstand high temperatures, and (5) high strength to withstand a pressure differential of at least one atmosphere.
Chemical vapor deposited poly(p-xylylene) polymers, known as parylene, has been used on top of a thin film of a beryllium x-ray window for corrosion protection. It would be beneficial to have an x-ray window that has improved corrosion resistance and improved ability to withstand higher temperatures than x-ray windows with a parylene coating on top of beryllium.
Boron hydride, known by Moxtek's trademark DuraCoat®, has been used on top of a thin film of a beryllium x-ray window for corrosion protection. It would be beneficial to have an x-ray window that has improved gas impenetrability and improved corrosion resistance than x-ray windows with a boron hydride coating on top of beryllium.
It has been recognized that it would be advantageous to provide an x-ray window x-ray that has improved gas impenetrability, improved corrosion resistance, and improved ability to withstand higher temperatures.
The present invention is directed to an x-ray window having a mount including a support frame and an aperture. A window film has a stack of layers including: a thin film layer comprising a material selected from the group consisting of diamond, graphene, diamond-like carbon, beryllium, and combinations thereof; a boron hydride layer; and a polymer layer. The window film, including the thin film layer, the boron hydride layer, and the polymer layer, extends across the aperture and is supported by the support frame. The window film is attached to the support frame defining a sealed joint. The layers are capable of withstanding a differential pressure of at least 1 atmosphere. The window film is substantially transmissive to x-rays having an energy in the range of 100-20,000 electronvolts.
In accordance with a more detailed aspect of the invention, the sealed joint can comprise a bond between the thin film layer and the mount at a perimeter of the thin film layer. The boron hydride layer and the polymer layer can extend beyond the perimeter of the thin film layer. The boron hydride layer and the polymer layer can provide corrosion protection to the sealed joint. The bond can be a diffusion bond, a brazed bond, or a soldered bond.
In addition, the invention provides an x-ray window with a mount including a support frame and an aperture. A window film has a stack of layers including a beryllium layer and a polyimide layer. The window film, including the beryllium layer and the polyimide layer, extends across the aperture and is supported by the support frame. The beryllium layer is attached to the support frame at a perimeter of the beryllium layer, defining a sealed joint. The polyimide layer extends beyond the perimeter of the beryllium layer. The polyimide layer provides corrosion protection to the sealed joint. The window film is capable of withstanding a differential pressure of at least 1 atmosphere and is substantially transmissive to x-rays having an energy in the range of 100-20,000 electronvolts.
Furthermore, the invention provides an x-ray window with a mount including a support frame and an aperture. A window film has a stack of layers including a beryllium layer, a boron hydride layer, and a polyimide layer. The window film, including the beryllium layer, the boron hydride layer, and the polyimide layer, extends across the aperture and is supported by the support frame. The beryllium layer is attached to the support frame at a perimeter of the beryllium layer, defining a sealed joint. The boron hydride layer and the polyimide layer extend beyond the perimeter of beryllium layer. The boron hydride layer and the polyimide layer provide corrosion protection to the sealed joint. The window film is capable of withstanding a differential pressure of at least 1 atmosphere.
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
As illustrated in
Beryllium, diamond, graphene, and diamond-like carbon may be selected for x-ray window films due to low atomic numbers of these materials and due to their strength. Boron hydride may be selected for its corrosion resistance properties and its resistance to high temperatures. The use of boron hydride on x-ray windows is described in U.S. Pat. No. 5,226,067, which is incorporated herein by reference. A polymer layer may be added to an x-ray window comprising boron hydride on a thin film in order to improve the corrosion resistance and gas impenetrability of the window.
In one embodiment, the x-ray window or layers may be capable of withstanding a differential pressure of at least 1 atmosphere and capable of withstanding temperatures of greater than 350° C. Use of high temperature polymers, such as a polyimide for the polymer layer, can allow the x-ray window or layers to withstand high temperatures. Use of sufficiently thick layers of materials can allow the window or layers to withstand a differential pressure of at least 1 atmosphere.
In one embodiment, the thin film layer has a thickness of about 5 to 500 micrometers, the boron hydride layer has a thickness of about 20 to 2000 nanometers, and the polymer layer has a thickness of about 50 to 1200 nanometers. In another embodiment, the thin film layer has a thickness of about 5 to 12 micrometers, the boron hydride layer has a thickness of about 800 to 1600 nanometers, and the polymer layer has a thickness of about 20 to 300 nanometers. In another embodiment, the thin film layer has a thickness of about 50 to 1200 nanometers, the boron hydride layer has a thickness of about 20 to 2000 nanometers, and the polymer layer has a thickness of about 50 to 1200 nanometers. Thicknesses of the layers may be selected according to desired window strength, level of corrosion resistance desired, level of gas impenetrability desired, ease of manufacturing, and for minimal x-ray attenuation. The above thickness combinations are believed to provide the desired performance.
As shown in
Also shown in
A second polymer layer can be disposed together with the second boron hydride layer (shown together as layer 23) on an opposite side of the thin film layer 22 from the first polymer layer. The second polymer layer can extend beyond the perimeter of the thin film layer 22 to cover the sealed joint 25. The second polymer layer can provide corrosion protection to the sealed joint 25. The second boron hydride layer may be disposed between the thin film layer 22 and the second polymer layer, or the second polymer layer may be disposed between the thin film layer 22 and the second boron hydride layer. The second boron hydride layer and the second polymer layer (shown together as 23) can extend across the aperture 26 of the support frame 27 as shown in
As shown in
As shown in
As shown in
A second layer 53 can be disposed on an opposing side of the beryllium layer 52 from the polyimide layer 51. The second layer 53 can extend across the aperture 26 of the support frame 27 as shown in
In one embodiment, the beryllium layer 52 has a thickness of about 5 to 500 micrometers and the polyimide layer 51 has a thickness of about 50 to 1200 nanometers. In another embodiment, the beryllium layer 52 has a thickness of about 5 to 12 micrometers and the polyimide layer 51 has a thickness of about 20 to 300 nanometers. In another embodiment, the beryllium layer 52 has a thickness of about 50 to 1200 nanometers and the polyimide layer 51 has a thickness of about 50 to 1200 nanometers.
Layers may be made by chemical vapor deposition, spin-on, or spray on.
It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention.
Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.
This is a continuation of U.S. patent application Ser. No. 12/899,750, filed on Oct. 7, 2010 (now U.S. Pat. No. 8,498,381, issued on Jul. 30, 2013); which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1276706 | Snook et al. | May 1918 | A |
1881448 | Forde et al. | Oct 1932 | A |
1946288 | Kearsley | Feb 1934 | A |
2291948 | Cassen | Aug 1942 | A |
2316214 | Atlee et al. | Apr 1943 | A |
2329318 | Atlee et al. | Sep 1943 | A |
2340363 | Atlee et al. | Feb 1944 | A |
2502070 | Atlee et al. | Mar 1950 | A |
2663812 | Jamison et al. | Mar 1950 | A |
2683223 | Hosemann | Jul 1954 | A |
2952790 | Steen | Sep 1960 | A |
3397337 | Denholm | Aug 1968 | A |
3538368 | Oess | Nov 1970 | A |
3665236 | Gaines et al. | May 1972 | A |
3679927 | Kirkendall | Jul 1972 | A |
3691417 | Gralenski | Sep 1972 | A |
3741797 | Chavasse, Jr. et al. | Jun 1973 | A |
3751701 | Gralenski et al. | Aug 1973 | A |
3801847 | Dietz | Apr 1974 | A |
3828190 | Dahlin et al. | Aug 1974 | A |
3873824 | Bean et al. | Mar 1975 | A |
3882339 | Rate et al. | May 1975 | A |
3962583 | Holland et al. | Jun 1976 | A |
3970884 | Golden | Jul 1976 | A |
4007375 | Albert | Feb 1977 | A |
4075526 | Grubis | Feb 1978 | A |
4160311 | Ronde et al. | Jul 1979 | A |
4163900 | Warren et al. | Aug 1979 | A |
4178509 | More et al. | Dec 1979 | A |
4184097 | Auge | Jan 1980 | A |
4250127 | Warren et al. | Feb 1981 | A |
4368538 | McCorkle | Jan 1983 | A |
4393127 | Greschner et al. | Jul 1983 | A |
4463257 | Simpkins et al. | Jul 1984 | A |
4463338 | Utner et al. | Jul 1984 | A |
4521902 | Peugeot | Jun 1985 | A |
4532150 | Endo et al. | Jul 1985 | A |
4573186 | Reinhold | Feb 1986 | A |
4576679 | White | Mar 1986 | A |
4584056 | Perret et al. | Apr 1986 | A |
4591756 | Avnery | May 1986 | A |
4608326 | Neukermans et al. | Aug 1986 | A |
4645977 | Kurokawa et al. | Feb 1987 | A |
4675525 | Amingual et al. | Jun 1987 | A |
4679219 | Ozaki | Jul 1987 | A |
4688241 | Peugeot | Aug 1987 | A |
4696994 | Nakajima | Sep 1987 | A |
4705540 | Hayes | Nov 1987 | A |
4777642 | Ono | Oct 1988 | A |
4797907 | Anderton | Jan 1989 | A |
4818806 | Kunimune et al. | Apr 1989 | A |
4819260 | Haberrecker | Apr 1989 | A |
4862490 | Karnezos et al. | Aug 1989 | A |
4870671 | Hershyn | Sep 1989 | A |
4876330 | Higashi et al. | Oct 1989 | A |
4878866 | Mori et al. | Nov 1989 | A |
4885055 | Woodbury et al. | Dec 1989 | A |
4891831 | Tanaka et al. | Jan 1990 | A |
4933557 | Perkins | Jun 1990 | A |
4939763 | Pinneo et al. | Jul 1990 | A |
4957773 | Spencer et al. | Sep 1990 | A |
4960486 | Perkins et al. | Oct 1990 | A |
4969173 | Valkonet | Nov 1990 | A |
4979198 | Malcolm et al. | Dec 1990 | A |
4979199 | Cueman et al. | Dec 1990 | A |
5010562 | Hernandez et al. | Apr 1991 | A |
5063324 | Grunwald et al. | Nov 1991 | A |
5066300 | Isaacson et al. | Nov 1991 | A |
5077771 | Skillicorn et al. | Dec 1991 | A |
5077777 | Daly | Dec 1991 | A |
5090046 | Friel | Feb 1992 | A |
5105456 | Rand et al. | Apr 1992 | A |
5117829 | Miller et al. | Jun 1992 | A |
5153900 | Nomikos et al. | Oct 1992 | A |
5161179 | Suzuki et al. | Nov 1992 | A |
5173612 | Imai et al. | Dec 1992 | A |
5196283 | Ikeda et al. | Mar 1993 | A |
5217817 | Verspui et al. | Jun 1993 | A |
5226067 | Allred et al. | Jul 1993 | A |
RE34421 | Parker et al. | Oct 1993 | E |
5258091 | Imai et al. | Nov 1993 | A |
5267294 | Kuroda et al. | Nov 1993 | A |
5343112 | Wegmann | Aug 1994 | A |
5391958 | Kelly | Feb 1995 | A |
5400385 | Blake et al. | Mar 1995 | A |
5422926 | Smith et al. | Jun 1995 | A |
5428658 | Oettinger et al. | Jun 1995 | A |
5432003 | Plano et al. | Jul 1995 | A |
5457041 | Ginaven et al. | Oct 1995 | A |
5465023 | Garner | Nov 1995 | A |
5469429 | Yamazaki et al. | Nov 1995 | A |
5469490 | Golden et al. | Nov 1995 | A |
5478266 | Kelly | Dec 1995 | A |
5524133 | Neale et al. | Jun 1996 | A |
5561342 | Roeder et al. | Oct 1996 | A |
5567929 | Ouimette | Oct 1996 | A |
RE35383 | Miller et al. | Nov 1996 | E |
5571616 | Phillips et al. | Nov 1996 | A |
5578360 | Viitanen | Nov 1996 | A |
5607723 | Plano et al. | Mar 1997 | A |
5621780 | Smith et al. | Apr 1997 | A |
5627871 | Wang | May 1997 | A |
5631943 | Miles | May 1997 | A |
5680433 | Jensen | Oct 1997 | A |
5682412 | Skillicorn et al. | Oct 1997 | A |
5696808 | Lenz | Dec 1997 | A |
5729583 | Tang et al. | Mar 1998 | A |
5740228 | Schmidt et al. | Apr 1998 | A |
5774522 | Warburton | Jun 1998 | A |
5812632 | Schardt et al. | Sep 1998 | A |
5835561 | Moorman et al. | Nov 1998 | A |
5870051 | Warburton | Feb 1999 | A |
5898754 | Gorzen | Apr 1999 | A |
5907595 | Sommerer | May 1999 | A |
6002202 | Meyer et al. | Dec 1999 | A |
6005918 | Harris et al. | Dec 1999 | A |
6044130 | Inazura et al. | Mar 2000 | A |
6062931 | Chuang et al. | May 2000 | A |
6069278 | Chuang | May 2000 | A |
6075839 | Treseder | Jun 2000 | A |
6097790 | Hasegawa et al. | Aug 2000 | A |
6133401 | Jensen | Oct 2000 | A |
6134300 | Trebes et al. | Oct 2000 | A |
6184333 | Gray | Feb 2001 | B1 |
6205200 | Boyer et al. | Mar 2001 | B1 |
6282263 | Arndt et al. | Aug 2001 | B1 |
6288209 | Jensen | Sep 2001 | B1 |
6307008 | Lee et al. | Oct 2001 | B1 |
6320019 | Lee et al. | Nov 2001 | B1 |
6351520 | Inazaru | Feb 2002 | B1 |
6385294 | Suzuki et al. | May 2002 | B2 |
6438207 | Chidester et al. | Aug 2002 | B1 |
6477235 | Chornenky et al. | Nov 2002 | B2 |
6487272 | Kutsuzawa | Nov 2002 | B1 |
6487273 | Takenaka et al. | Nov 2002 | B1 |
6494618 | Moulton | Dec 2002 | B1 |
6546077 | Chornenky et al. | Apr 2003 | B2 |
6567500 | Rother | May 2003 | B2 |
6646366 | Hell et al. | Nov 2003 | B2 |
6658085 | Sklebitz | Dec 2003 | B2 |
6661876 | Turner et al. | Dec 2003 | B2 |
6740874 | Doring | May 2004 | B2 |
6778633 | Loxley et al. | Aug 2004 | B1 |
6799075 | Chornenky et al. | Sep 2004 | B1 |
6803570 | Bryson, III et al. | Oct 2004 | B1 |
6816573 | Hirano et al. | Nov 2004 | B2 |
6819741 | Chidester | Nov 2004 | B2 |
6838297 | Iwasaki | Jan 2005 | B2 |
6852365 | Smart et al. | Feb 2005 | B2 |
6876724 | Zhou | Apr 2005 | B2 |
6956706 | Brandon | Oct 2005 | B2 |
6962782 | Livache et al. | Nov 2005 | B1 |
6976953 | Pelc | Dec 2005 | B1 |
6987835 | Lovoi | Jan 2006 | B2 |
7035379 | Turner et al. | Apr 2006 | B2 |
7046767 | Okada et al. | May 2006 | B2 |
7085354 | Kanagami | Aug 2006 | B2 |
7130380 | Lovoi et al. | Oct 2006 | B2 |
7130381 | Lovoi et al. | Oct 2006 | B2 |
7203283 | Puusaari | Apr 2007 | B1 |
7206381 | Shimono et al. | Apr 2007 | B2 |
7215741 | Ukita | May 2007 | B2 |
7224769 | Turner | May 2007 | B2 |
7233647 | Turner et al. | Jun 2007 | B2 |
7286642 | Ishikawa et al. | Oct 2007 | B2 |
7305066 | Ukita | Dec 2007 | B2 |
7358593 | Smith et al. | Apr 2008 | B2 |
7382862 | Bard et al. | Jun 2008 | B2 |
7428298 | Bard et al. | Sep 2008 | B2 |
7448801 | Oettinger et al. | Nov 2008 | B2 |
7448802 | Oettinger et al. | Nov 2008 | B2 |
7486774 | Cain | Feb 2009 | B2 |
7526068 | Dinsmore | Apr 2009 | B2 |
7529345 | Bard et al. | May 2009 | B2 |
7618906 | Meilahti | Nov 2009 | B2 |
7634052 | Grodzins | Dec 2009 | B2 |
7649980 | Aoki et al. | Jan 2010 | B2 |
7657002 | Burke et al. | Feb 2010 | B2 |
7684545 | Damento et al. | Mar 2010 | B2 |
7693265 | Hauttmann et al. | Apr 2010 | B2 |
7709820 | Decker et al. | May 2010 | B2 |
7737424 | Xu et al. | Jun 2010 | B2 |
7756251 | Davis et al. | Jul 2010 | B2 |
8498381 | Liddiard et al. | Jul 2013 | B2 |
20020075999 | Rother | Jun 2002 | A1 |
20020094064 | Zhou | Jul 2002 | A1 |
20030096104 | Tobita et al. | May 2003 | A1 |
20030117770 | Montgomery et al. | Jun 2003 | A1 |
20030152700 | Asmussen et al. | Aug 2003 | A1 |
20040076260 | Charles, Jr. et al. | Apr 2004 | A1 |
20040131835 | Schmitt et al. | Jul 2004 | A1 |
20050018817 | Oettinger et al. | Jan 2005 | A1 |
20050141669 | Shimono et al. | Jun 2005 | A1 |
20050207537 | Ukita | Sep 2005 | A1 |
20060098778 | Oettinger et al. | May 2006 | A1 |
20060233307 | Dinsmore | Oct 2006 | A1 |
20060269048 | Cain | Nov 2006 | A1 |
20070025516 | Bard et al. | Feb 2007 | A1 |
20070087436 | Miyawaki et al. | Apr 2007 | A1 |
20070111617 | Meilahti | May 2007 | A1 |
20070133921 | Haffner et al. | Jun 2007 | A1 |
20070165780 | Durst et al. | Jul 2007 | A1 |
20070183576 | Burke et al. | Aug 2007 | A1 |
20080296479 | Anderson et al. | Dec 2008 | A1 |
20080296518 | Xu et al. | Dec 2008 | A1 |
20080317982 | Hecht | Dec 2008 | A1 |
20090086923 | Davis et al. | Apr 2009 | A1 |
20100096595 | Prud'Homme et al. | Apr 2010 | A1 |
20100126660 | O'Hara | May 2010 | A1 |
20100140497 | Damiano, Jr. et al. | Jun 2010 | A1 |
20100239828 | Cornaby et al. | Sep 2010 | A1 |
20100243895 | Xu et al. | Sep 2010 | A1 |
20100248343 | Aten et al. | Sep 2010 | A1 |
20100285271 | Davis et al. | Nov 2010 | A1 |
20100323419 | Aten et al. | Dec 2010 | A1 |
20010089330 | Thomas | Jan 2011 | |
20110017921 | Jiang et al. | Jan 2011 | A1 |
20110121179 | Liddiard et al. | May 2011 | A1 |
20120025110 | Davis | Feb 2012 | A1 |
20120213336 | Liddiard | Aug 2012 | A1 |
20130051535 | Davis | Feb 2013 | A1 |
20130064355 | Davis | Mar 2013 | A1 |
20130315380 | Davis | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1030936 | May 1958 | DE |
4430623 | Mar 1996 | DE |
19818057 | Nov 1999 | DE |
0297808 | Jan 1989 | EP |
0330456 | Aug 1989 | EP |
0400655 | May 1990 | EP |
0676772 | Mar 1995 | EP |
1252290 | Nov 1971 | GB |
57082954 | Aug 1982 | JP |
S6074253 | Jan 1985 | JP |
S6089054 | May 1985 | JP |
3170673 | Jul 1991 | JP |
05066300 | Mar 1993 | JP |
5135722 | Jun 1993 | JP |
06119893 | Jul 1994 | JP |
6289145 | Oct 1994 | JP |
6343478 | Dec 1994 | JP |
8315783 | Nov 1996 | JP |
2001179844 | Jul 2001 | JP |
2003007237 | Jan 2003 | JP |
2003088383 | Mar 2003 | JP |
2003510236 | Mar 2003 | JP |
20033211396 | Jul 2003 | JP |
4171700 | Jun 2006 | JP |
2006297549 | Nov 2006 | JP |
10-2005-0107094 | Nov 2005 | KR |
WO 9965821 | Dec 1999 | WO |
WO 0009443 | Feb 2000 | WO |
WO 0017102 | Mar 2000 | WO |
WO 03076951 | Sep 2003 | WO |
WO 2008052002 | May 2008 | WO |
WO 2009009610 | Jan 2009 | WO |
WO 2009045915 | Apr 2009 | WO |
WO 2009085351 | Jul 2009 | WO |
WO 2010107600 | Sep 2010 | WO |
Entry |
---|
U.S. Appl. No. 13/312,531, filed Dec. 6, 2011; Steven Liddiard; office action dated Dec. 20, 2013. |
U.S. Appl. No. 13/855,575, filed Apr. 2, 2013; Robert C. Davis. |
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard; notice of allowance dated Jun. 4, 2013. |
Anderson et al., U.S. Appl. No. 11/756,962, filed Jun. 1, 2007. |
Barkan et al., “Improved window for low-energy x-ray transmission a Hybrid design for energy-dispersive microanalysis,” Sep. 1995, 2 pages, Ectroscopy 10(7). |
Blanquart et al.; “XPAD, a New Read-out Pixel Chip for X-ray Counting”; IEEE Xplore; Mar. 25, 2009. |
Chakrapani et al.; Capillarity-Driven Assembly of Two-Dimensional Cellular Carbon Nanotube Foams; PNAS; Mar. 23, 2004; pp. 4009-4012; vol. 101; No. 12. |
Chen, Xiaohua et al., “Carbon-nanotube metal-matrix composites prepared by electroless plating,” Composites Science and Technology, 2000, pp. 301-306, vol. 60. |
Coleman, et al.; “Mechanical Reinforcement of Polymers Using Carbon Nanotubes”; Adv. Mater. 2006, 18, 689-706. |
Coleman, et al.; “Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites”; Carbon 44 (2006) 1624-1652. |
Comfort, J. H., “Plasma-enhanced chemical vapor deposition of in situ doped epitaxial silicon at low temperatures,” J. Appl. Phys. 65, 1067 (1989). |
Grybos et al.; “DEDIX—Development of Fully Integrated Multichannel ASIC for High Count Rate Digital X-ray Imagining systems”; IEEE 2006; Nuclear Science Symposium Conference Record. |
Grybos, “Pole-Zero Cancellations Circuit With Pulse Pile-Up Tracking System for Low Noise Charge-Sensitive Amplifiers”; Mar. 25, 2009; from IEEE Xplore. |
Grybos, et al “Measurements of Matching and High Count Rate Performance of Multichannel ASIC for Digital X-Ray Imaging Systems”; IEEE Transactions on Nuclear Science, vol. 54, No. 4, 2007. |
http://www.orau.org/ptp/collection/xraytubescollidge/MachelettCW250.htm, 1999, 2 pgs. |
Hu, et al.; “Carbon Nanotube Thin Films: Fabrication, Properties, and Applications”; 2010 American Chemical Society Jul. 22, 2010. |
Hutchison, “Vertically aligned carbon nanotubes as a framework for microfabrication of high aspect ration mems,” 2008, pp. 1-50. |
Jiang, et al; “Carbon nanotubes-metal nitride composites: a new class of nanocomposites with enhanced electrical properties”; Jun. 25, 2004 ; J. Mater. Chem, 2005. |
Jiang, Linquin et al., “Carbon nanotubes-metal nitride composites; a new class of nanocomposites with enhanced electrical properties,” J. Mater. Chem., 2005, pp. 260-266, vol. 15. |
Komatsu, S., and Y. Moriyoshi, “Influence of atomic hydrogen on the growth reactions of amorphous boron films in a low-pressure B.sub.2 H.sub.6 +He+H.sub.2 plasma”, J. Appl. Phys. 64, 1878 (1988). |
Komatsu, S., and Y. Moriyoshi, “Transition from amorphous to crystal growth of boron films in plasma-enhanced chemical vapor deposition with B.sub.2 H.sub.6 +He,” J. Appl. Phys., 66, 466 (1989). |
Komatsu, S., and Y. Moriyoshi, “Transition from thermal-to electron-impact decomposition of diborane in plasma-enhanced chemical vapor deposition of boron films from B.sub.2 H.sub.6 +He,” J. Appl. Phys. 66, 1180 (1989). |
Lee, W., W. J. Lackey, and P. K. Agrawal, “Kinetic analysis of chemical vapor deposition of boron nitride,” J. Amer. Ceramic Soc. 74, 2642 (1991). |
Li, Jun et al., “Bottom-up approach for carbon nanotube interconnects,” Applied Physics Letters, Apr. 14, 2003, pp. 2491-2493, vol. 82 No. 15. |
Lines, U.S. Appl. No. 12/352,864, filed Jan. 13, 2009. |
Lines, U.S. Appl. No. 12/726,120, filed Mar. 17, 2010. |
Ma. R.Z., et al., “Processing and properties of carbon nanotubes-nano-SIC ceramic”, Journal of Materials Science 1998, pp. 5243-5246, vol. 33. |
Maya, L., and L. A. Harris, “Pyrolytic deposition of carbon films containing nitrogen and/or boron,” J. Amer. Ceramic Soc. 73, 1912 (1990). |
Michaelidis, M., and R. Pollard, “Analysis of chemical vapor deposition of boron,” J. Electrochem. Soc. 132, 1757 (1985). |
Micro X-ray Tube Operation Manual, X-ray and Specialty Instruments Inc., 1996, 5 pages. |
Moore, A. W., S. L. Strong, and G. L. Doll, “Properties and characterization of codeposited boron nitride and carbon materials,” J. Appl. Phys. 65, 5109 (1989). |
Najafi, et al.; “Radiation resistant polymer-carbon nanotube nanocomposite thin films”; Department of Materials Science and Engineering . . . Nov. 21, 2004. |
Nakajima et al; Trial Use of Carbon-Fiber-Reinforced Plastic as a Non-Bragg Window Material of X-Ray Transmission; Rev. Sci. Instrum.; Jul. 1989; pp. 2432-2435; vol. 60, No. 7. |
Nakamura, K., “Preparation and properties of amorphous boron nitride films by molecular flow chemical vapor deposition,” J. Electrochem. Soc. 132, 1757 (1985). |
Panayiotatos, et al., “Mechanical performance and growth characteristics of boron nitride films with respect to their optical, compositional properties and density,” Surface and Coatings Technology, 151-152 (2002) 155-159. |
Peigney, et al., “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceramics International, 2000, pp. 677-683, vol. 26. |
Perkins, F. K., R. A. Rosenberg, and L. Sunwoo, “Synchrotronradiation deposition of boron and boron carbide films from boranes and carboranes: decaborane,” J. Appl. Phys. 69,4103 (1991). |
Rankov. A. “A Novel Correlated Double Sampling Poly-Si Circuit for Readout System in Large Area X-Ray Sensors”, 2005. |
Roca i Cabarrocas, P., S. Kumar, and B. Drevillon, “In situ study of the thermal decomposition of B.sub.2 H.sub.6 by combining spectroscopic ellipsometry and Kelvin probe measurements,” J. Appl. Phys. 66, 3286 (1989). |
Satishkumar B.C., et al. “Synthesis of metal oxide nanorods using carbon nanotubes as templates,” Journal of Materials Chemistry, 2000, pp. 2115-2119, vol. 10. |
Scholze et al., “Detection efficiency of energy-dispersive detectors with low-energy windows” X-Ray Spectrometry, X-Ray Spectrom, 2005: 34: 473-476. |
Sheather, “The support of thin windows for x-ray proportional counters,” Journal Phys,E., Apr. 1973, pp. 319-322, vol. 6, No. 4. |
Shirai, K., S.-I. Gonda, and S. Gonda, “Characterization of hydrogenated amorphous boron films prepared by electron cyclotron resonance plasma chemical vapor deposition method,” J. Appl. Phys. 67, 6286 (1990). |
Tamura, et al “Developmenmt of ASICs for CdTe Pixel and Line Sensors”, IEEE Transactions on Nuclear Science, vol. 52, No. 5, Oct. 2005. |
Tien-Hui Lin et al., “An investigation on the films used as teh windows of ultra-soft X-ray counters.” Acta Physica Sinica, vol. 27, No. 3, pp. 276-283, May 1978, abstract only. |
U.S. Appl. No. 12/640,154, filed Dec. 17, 2009; Krzysztof Kozaczek. |
U.S. Appl. No. 12/726,120, filed Mar. 17, 2010; Michael Lines. |
U.S. Appl. No. 12/783,707, filed May 20, 2010; Steven D. Liddiard. |
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard. |
U.S. Appl. No. 13/018,667, filed Feb. 1, 2011; Lei Pei. |
U.S. Appl. No. 13/307,579, filed Nov. 30, 2011; Dongbing Wang. |
U.S. Appl. No. 13/312,531, filed Dec. 6, 2011; Steven Liddiard. |
Vajtai ; Building Carbon Nanotubes and Their Smart Architecture; pp. 691-698; 2002. |
Vandenbulcke, L. G., “Theoretical and experimental studies on the chemical vapor deposition of boron carbide,” Indust. Eng. Chem. Prod. Res. Dev. 24, 568 (1985). |
Viitanen Veli-Pekka et al., Comparison of Ultrathin X-Ray Window Designs, presented at the Soft X-rays in the 21st Century Conference held in Provo, Utah Feb. 10-13, 1993, pp. 182-190. |
Wagner et al, “Effects of Scatter in Dual-Energy Imaging: An Alternative Analysis”; IEEE; Sep. 1989, vol. 8. No. 3. |
Wang, et al.; “Highly oriented carbon nanotube papers made of aligned carbon nanotubes”; Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics; Published Jan. 31, 2008. |
Winter, J., H. G. Esser, and H. Reimer, “Diborane-free boronization,” Fusion Technol. 20, 225 (1991). |
Wu, et al.; “Mechanical properties and thermo-gravimetric analysis of PBO thin films”; Advanced Materials Laboratory, Institute of Electro-Optical Engineering; Apr. 30, 2006. |
www.moxtek.com, Moxtek, AP3 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages. |
www.moxtek.com, Moxtek, DuraBeryllium X-Ray Windows, May 2007, 2 pages. |
www.moxtek.com, Moxtek, ProLine Series 10 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages. |
www.moxtek.com, Moxtek, Sealed Proportional Counter X-Ray Windows, Oct. 2007, 3 pages. |
www.moxtek.com, X-Ray Windows, ProLINE Series 20 Windows Ultra-thin Polymer X-ray Windows, 2 pages. Applicant believes that this product was offered for sale prior to the filing date of applicant's application. |
Xie, et al.; “Dispersion and alignment of carbon nanotubes in polymer matrix: A review”; Center for Advanced Materials Technology; Apr. 20, 2005. |
Yan, Xing-Bin, et al., Fabrications of Three-Dimensional ZnO-Carbon Nanotube (CNT) Hybrids Using Self-Assembled CNT Micropatterns as Framework, 2007. pp 17254-17259, vol. III. |
Zhang, et al.; “Superaligned Carbon Nanotube Grid for High Resolution Transmission Electron Microscopy of Nanomaterials”; 2008 American Chemical Society. |
PCT application EP12167551.6; filing date May 10, 2012; Robert C. Davis; European search report mailed Nov. 21, 2013. |
Number | Date | Country | |
---|---|---|---|
20130094629 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12899750 | Oct 2010 | US |
Child | 13705724 | US |