The present teachings relate to the field of ink jet printing devices and, more particularly, to high a density piezoelectric ink jet print head and methods of making a high density piezoelectric ink jet print head.
prop on demand ink jet technology is widely used in the printing industry. Printers using drop on demand ink jet technology can use either thermal ink jet technology or piezoelectric technology. Even though they are more expensive to manufacture than thermal ink jets, piezoelectric ink jets are generally favored as they can use a wider variety of inks and eliminate problems with kogation.
Piezoelectric ink jet print heads typically include a flexible diaphragm and a piezoelectric element attached to the diaphragm. When a voltage is applied to the piezoelectric element, typically through electrical connection with an electrode electrically coupled to a voltage source, the piezoelectric element vibrates, causing the diaphragm to flex which expels a quantity of ink from a chamber through a nozzle. The flexing further draws ink into the chamber from a main ink reservoir through an opening to replace the expelled ink.
Increasing the printing resolution of an ink jet printer employing piezoelectric ink jet technology is a goal of design engineers. Increasing the jet density of the piezoelectric ink jet print head can increase printing resolution. One way to increase the jet density is to eliminate manifolds which are internal to a jet stack. With this design, it is preferable to have a single port through the back of the jet stack for each jet. The port functions as a pathway for the transfer of ink from the reservoir to each jet chamber. Because of the large number of jets in a high density print head, the large number of ports, one for each jet, must pass vertically through the diaphragm and between the piezoelectric elements.
Manufacturing a high density ink jet print head assembly having an external manifold has required new processing methods. Methods for manufacturing a print head having electrical contacts with reduced resistance, and the resulting print head, would be desirable.
The following presents a simplified summary in order to provide a basic understanding of some aspects of one or more embodiments of the present teachings. This summary is not an extensive overview, nor is it intended to identify key or critical elements of the present teachings nor to delineate the scope of the disclosure. Rather, its primary purpose is merely to present one or more concepts in simplified form as a prelude to the detailed description presented later.
An embodiment of the present teachings can include a method for forming an ink jet print head. The method can include attaching a diaphragm attach material to a diaphragm, wherein the diaphragm can include a plurality of openings, attaching a plurality of piezoelectric elements to the diaphragm, and dispensing a dielectric fill material to encapsulate the plurality of piezoelectric elements and to contact the diaphragm, wherein the diaphragm attach material prevents the flow of dielectric fill material through the plurality of openings in the diaphragm. The dielectric fill material can be cured to form an interstitial layer between the plurality of piezoelectric elements and over an upper surface of the plurality of piezoelectric elements. The interstitial layer can be removed from the upper surface of the plurality of piezoelectric elements using a plasma etch.
Another embodiment for forming an ink jet print head can include attaching a diaphragm attach material to a diaphragm, wherein the diaphragm can include a plurality of openings therethrough, attaching a plurality of piezoelectric elements to the diaphragm, dispensing a dielectric fill material to encapsulate the plurality of piezoelectric elements and to contact the diaphragm, wherein the diaphragm attach material prevents the flow of dielectric fill material through the plurality of openings in the diaphragm, and curing the dielectric fill material to form an interstitial layer between the plurality of piezoelectric elements and over an upper surface of the plurality of piezoelectric elements. The method can further include placing a patterned adhesive layer and a patterned removable liner over the interstitial layer, wherein openings within the patterned adhesive layer and the patterned removable liner expose the interstitial layer at locations which overlie the piezoelectric elements, and removing the interstitial layer from the upper surface of the plurality of piezoelectric elements with a plasma etch using the patterned removable liner and the patterned adhesive layer as an etch mask.
Another embodiment for forming an ink jet print head can include attaching a piezoelectric element layer to a transfer carrier, dicing the piezoelectric element layer to form a plurality of piezoelectric elements, and attaching the plurality of piezoelectric elements to a diaphragm of a jet stack subassembly, wherein the jet stack subassembly can further include an inlet/outlet plate, a body plate, a plurality of openings in the diaphragm, and a diaphragm attach material which covers the plurality of openings in the diaphragm. The method can further include dispensing a dielectric fill material to encapsulate the plurality of piezoelectric elements and to contact the diaphragm, wherein the diaphragm attach material prevents the flow of dielectric fill material through the plurality of openings in the diaphragm, curing the dielectric fill material to form an interstitial layer between the plurality of piezoelectric elements and over an upper surface of the plurality of piezoelectric elements, placing a patterned adhesive layer and a patterned removable liner over the interstitial layer, wherein openings within the patterned adhesive layer and the patterned removable liner expose the interstitial layer at locations which overlie the piezoelectric elements, and removing the interstitial layer from the upper surface of the plurality of piezoelectric elements with a plasma etch using the patterned removable liner and the patterned adhesive layer as an etch mask, wherein the plasma etch can include introducing an oxygen gas into an etch chamber at a delivery rate sufficient to provide an equilibrium chamber pressure of between about 25 mTorr to about 500 mTorr, for example between about 100 mTorr and about 200 mTorr, and igniting a plasma at a radiofrequency power of between about 0 W and about 1000 W, and more particularly between about 800 W and about 1,000 W, for example about 900 W. The chamber parameters can be set based, for example, on the interstitial material, for example the epoxy formulation. Depending on the formulation of the interstitial material, other process gasses can be used by themselves or in combination in addition to oxygen, for example argon, hydrogen, carbon tetrafluoride, and sulfur hexafluoride. The method can further include placing a conductive paste within the openings in the patterned removable liner and the patterned adhesive layer, removing the patterned removable liner. Additionally, using a laser beam, ablating the diaphragm attach material, the interstitial layer, and the patterned adhesive layer from the plurality of openings in the diaphragm, wherein the body plate and the inlet/outlet plate mask the laser beam, mechanically attaching a printed circuit board (PCB) to the interstitial layer with the patterned adhesive layer, wherein the conductive paste electrically coupled PCB electrodes to the piezoelectric elements, and attaching a manifold to the PCB.
A method for forming an assembly can include encapsulating a piezoelectric structure within an epoxy and plasma etching at least a portion of the epoxy to expose the piezoelectric structure.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present teachings and together with the description, serve to explain the principles of the disclosure. In the figures:
It should be noted that some details of the FIGS. have been simplified and are drawn to facilitate understanding of the inventive embodiments rather than to maintain strict structural accuracy, detail, and scale.
Reference will now be made in detail to embodiments of the present teachings, an example of which is illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
As used herein, the word “printer” encompasses any apparatus that performs a print outputting function for any purpose, such as a digital copier, bookmaking machine, facsimile machine, a multi-function machine, etc. The word “polymer” encompasses any one of a broad range of carbon-based compounds formed from long-chain molecules including thermoset polyimides, thermoplastics, resins, polycarbonates, epoxies, and related compounds known to the art.
In the perspective view of
After forming the
After forming the individual piezoelectric elements 20, the
In an embodiment, the
Subsequently, the transfer carrier 12 and the adhesive 14 are removed from the
Next, dielectric fill material is dispensed over the
Next, the interstitial layer 50 is removed from the upper surface of the piezoelectric elements 20. In an embodiment, a patterned mask 60 such as a patterned photoresist mask can be formed with openings 62 using known photolithographic techniques as depicted in
In another embodiment, the patterned mask 60 can be a layer of thermoplastic polyimide. For example, the patterned mask 60 can be a layer of DuPont® 100ELJ, which is patterned using laser ablation, a punch process, etching, etc. DuPont 100ELJ is typically manufactured and provided in a thickness of 25 μm (0.001 inch), although other thicknesses would be suitable if available, for example between about 20 μm to about 40 μm. In an embodiment, a thermoplastic polyimide mask can be attached to the surface of the polymer interstitial layer 50 using a heat lamination press. In an embodiment, the attachment can occur at a temperature of between about 180° C. and about 200° C., for example about 190° C. In an embodiment, the attachment can occur at a pressure of between about 90 psi and about 110 psi, for example at about 100 psi. The attachment process can be performed for a duration of between about 5 minutes and about 15 minutes, for example about 10 minutes.
In an embodiment, the mask can be of a material which can release from the interstitial layer 50 subsequent to removal of the exposed interstitial layer 50 with sufficient ease so as not to lift or otherwise damage the interstitial layer 50, the piezoelectric elements 20, or other structures. Temperatures during an etch such as plasma etch can reach 150° C. which, without intending to be bound by theory, can cure, harden, densify, and/or outgas the mask material and make it more difficult to remove from the interstitial layer 50.
The openings 62 of the mask can be positioned to expose only the polymer and the upper surface of each piezoelectric element 20 to which an electrical connection will be made subsequently, for example with silver epoxy in contact with a printed circuit board (PCB) electrode. The openings 62 should be of a sufficient size so that electrical resistance between the piezoelectric elements 20 and a subsequently formed electrode is within allowable limits which provides for a functional device with acceptable reliability. The openings themselves can be round, oval, square, rectangular, etc.
Subsequently, an etch such as a plasma etch is performed on the
The plasma etch can effectively remove the interstitial layer 50 from the surface of the nickel-plated PZT piezoelectric elements 20. It has been found that the surface of a nickel-plated PZT piezoelectric element 20 has a high surface roughness which makes removal of the interstitial layer 50 from the relatively deep and narrow (i.e. high aspect ratio) grooves difficult. Dielectric material remaining in the grooves in the nickel plating can increase electrical resistance between the piezoelectric element 20 and a PCB electrode which is subsequently electrically coupled with the piezoelectric element 20. Efficient removal of interstitial material 50 from the etched surface of the piezoelectric elements 20 will decrease resistance and improve the electrical characteristics of the device. The use of a masked plasma etch as described herein removes the dielectric material from these grooves more effectively than conventional removal methods. An etch rate of interstitial material 50 from the relatively narrow grooves within the piezoelectric element 20 is less than an etch rate of interstitial material 50 between adjacent relatively widely spaced piezoelectric elements 20. An unmasked plasma etch may result in excessive loss of interstitial material 50 between adjacent piezoelectric elements 20, thus a masked plasma etch exposing the interstitial material 50 at locations overlying the piezoelectric elements 20 and protecting interstitial material 50 at locations between piezoelectric elements 20 can be used to prevent this loss.
After etching the interstitial layer 50, the patterned mask 60 is removed to result in the structure of
Next, an assembly including a patterned adhesive layer 80 and a patterned removable liner 82 is aligned and attached to the
Next, as depicted in
Subsequently, the removable liner 82 is removed from the
Next, a PCB 110 having a plurality of vias 112 and a plurality of PCB electrodes 114 is attached to the Fr. 10 assembly using the adhesive 80 to result in the structure of
Next, the openings 40 through the diaphragm 36 can be cleared to allow passage of ink through the diaphragm. Clearing the openings includes removing a portion of the adhesive 80, the interstitial layer 50, and the diaphragm attach material 38 which covers the opening 40. In various embodiments, chemical or mechanical removal techniques can be used. In an embodiment, a self-aligned removal process can include the use of a laser beam 120 as depicted in
Subsequently, an aperture plate 140 can be attached to the inlet/outlet plate 32 with an adhesive (not individually depicted) as depicted in
Subsequently, a manifold 150 is bonded to the PCB 110, for example using a fluid-tight sealed connection 151 such as an adhesive to result in an ink jet print head 152 as depicted in
In use, the reservoir 154 in the manifold 150 of the print head 152 includes a volume of ink. An initial priming of the print head can be employed to cause ink to flow from the reservoir 154, through the vias 112 in the PCB 110, through the ports 156 in the jet stack 144, and into chambers 158 in the jet stack 144. Responsive to a voltage 160 placed on each electrode 122, each PZT piezoelectric element 20 vibrates at an appropriate time in response to a digital signal. The vibration of the piezoelectric element 20 causes the diaphragm 36 to flex which creates a pressure pulse within the chamber 158 causing a drop of ink to be expelled from the nozzle 142.
The methods and structure described above thereby form a jet stack 144 for an ink jet printer. In an embodiment, the jet stack 144 can be used as part of an ink jet print head 152 as depicted in
Another embodiment of the present teachings can begin with the
Subsequently, the exposed portion of the interstitial layer 50 which overlies the top surface of the piezoelectric elements 20 is etched using the removable liner 212 and the adhesive 210 as an etch mask to expose the piezoelectric electrodes 20 and result in the structure of
Next, a conductor 230 is placed on the piezoelectric elements 20, and may be placed over the removable liner 212 to ensure complete fill of the opening 214. The conductor can be a metal-filled epoxy, which can be applied by screen printing over the surface of the
Subsequently, the removable liner 212 is removed, for example by peeling, which may remove excess conductor 230. The piezoelectric elements 20 can be electrically coupled to electrodes 240 which can be part of a PCB 242 using the conductor 230 as depicted in
Subsequently, the diaphragm attach material 38, the interstitial material 50, and adhesive 210 can be cleared, for example using a laser beam according to embodiments described above, then the PCB electrodes 230 can be electrically coupled with a voltage 160. A voltage placed on electrodes 240 causes the piezoelectric elements 20 to vibrate, such that the device can operate in a manner similar to that described above. The jet stack of
It will be realized that a plasma etch to remove an epoxy material from a piezoelectric element as described above can be performed during the formation of other structures in addition to the specific embodiments discussed above. For example, a PZT piezoelectric structure can be encapsulated as protection against gasses or liquids from contacting the piezoelectric structure, to prevent damage from physical contact with a solid structure, to supply a damping to the piezoelectric structure, etc. The plated or unplated PZT piezoelectric structure can be exposed using a plasma etch as described above to provide a point of physical or electrical contact.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the present teachings are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of “less than 10” can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 5. In certain cases, the numerical values as stated for the parameter can take on negative values. In this case, the example value of range stated as “less than 10” can assume negative values, e.g. 1, −2, −3, −10, −20, −30, etc.
While the present teachings have been illustrated with respect to one or more implementations, alterations and/or modifications can be made to the illustrated examples without departing from the spirit and scope of the appended claims. In addition, while a particular feature of the disclosure may have been described with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular function. Furthermore, to the extent that the terms “including,” “includes,” “having,” “has,” “with,” or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.” The term “at least one of” is used to mean one or more of the listed items can be selected. Further, in the discussion and claims herein, the term “on” used with respect to two materials, one “on” the other, means at least some contact between the materials, while “over” means the materials are in proximity, but possibly with one or more additional intervening materials such that contact is possible but not required. Neither “on” nor “over” implies any directionality as used herein. The term “conformal” describes a coating material in which angles of the underlying material are preserved by the conformal material. The term “about” indicates that the value listed may be somewhat altered, as long as the alteration does not result in nonconformance of the process or structure to the illustrated embodiment. Finally, “exemplary” indicates the description is used as an example, rather than implying that it is an ideal. Other embodiments of the present teachings will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present teachings being indicated by the following claims.
Terms of relative position as used in this application are defined based on a plane parallel to the conventional plane or working surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “horizontal” or “lateral” as used in this application is defined as a plane parallel to the conventional plane or working surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to a direction perpendicular to the horizontal. Terms such as “on,” “side” (as in “sidewall”), “higher,” “lower,” “over,” “top,” and “under” are defined with respect to the conventional plane or working surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate.
Number | Name | Date | Kind |
---|---|---|---|
6530653 | Le et al. | Mar 2003 | B2 |
8303093 | Dolan et al. | Nov 2012 | B2 |
20020149652 | Sakamoto et al. | Oct 2002 | A1 |
20070153065 | Brick et al. | Jul 2007 | A1 |
20080239022 | Andrews et al. | Oct 2008 | A1 |
20080299396 | Lin et al. | Dec 2008 | A1 |
20100141703 | Andrews et al. | Jun 2010 | A1 |
20110141205 | Gerner et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
452663 | Oct 1991 | EP |
Entry |
---|
Nayve Regan et al. Jounral of Microelectromechanical Systems, vol. 13, No. 13, Oct. 2004, pp. 814-821. |
U.S. Appl. No. 12/638,582, filed Dec. 15, 2009, by Gerner et al. |
Number | Date | Country | |
---|---|---|---|
20120187076 A1 | Jul 2012 | US |