The present invention relates to coalescing type materials as well as their use for the treatment of a liquid (e.g. a liquid medium) comprising two or more components whereby two or more liquid components thereof may be separated or isolated one from the other. The coalescing type materials may, for example, be used for the treatment of an oil/water, medium or substance (e.g. an emulsion) for the separation of oil from water, the oil/water medium (i.e. emulsion), being a liquid, medium or substance, wherein oil is the dispersed phase and water is the continuous phase (i.e. an emulsion wherein water is the continuous phase).
It is to be understood herein that the term “oil” means any organic liquid which is substantially immiscible with water and which either has a specific gravity appreciably from that of water or which exhibits such difference when the specific gravity of the water is altered by a solute dissolved therein.
Oil from water separators are also known and include, for example, coalescing separators (see for example Canadian patent nos. 1,093,478 and 1,167,774 and U.S. Pat. No. 4,102,785). For example one means for the separation of oil from an oil/water medium (i.e. emulsion) involves the use of a coalescing type filter or separator (e.g. cartridge) designed for “inside to outside flow”. For this “inside to outside flow” technique an oil/water medium (i.e. emulsion) may be passed (radially) through the body of an annular coalescent bed from “inside to outside”. The annular coalescent bed may be made up of a coalescent (particulate) or adsorbing media. As the oil/water medium passes through the coalescent bed oil droplets are coalesced and an oil phase separates from the water passing through the coalescent bed. Thus oil from water separator may comprise a cartridge assembly having an annular coalescing section to cause emulsified liquids to form readily removable oil droplets in the flow. As may be appreciated various wall elements of these known separators are liquid permeable. An alternate coalescing type filter or separator is described in Canadian Patent no. 2,421,076 and in U.S. patent application Ser. No. 10/363,028 published under no. 20040112823; this alternate separator exploits an axial like flow. The invention will, however, in particular be described herein by way of example only with respect to a cartridge type separation system (see figures mentioned below).
It is known to exploit various kinds of particulate type materials for adsorbing or coalescing a non-aqueous phase, typically crude oil or a derivative thereof, such as gasoline, diesel fuel, lubricating oil, and the like. For this purpose, it is has been indicated that it is possible to exploit a wide range of polymeric or polymeric type substances for use as adsorbents and/or coalescing and/or separating agents. These substances include: polyethylene; polypropylene; polyisocyanurate; polyurethane; particles of polyurethane foam; silane cross linked polyolefin; polymethyl methacrylate; particles fibreglass; wool; cork; styrofoam; polyester and/or Cotton.
Coalescing type materials or compositions for liquid treatment (i.e. liquid/liquid separation) are, for example, described in U.S. patent application Ser. No. 10/363,028 (carrying a publication date of Jun. 17, 2004 and a U.S. publication no. 20040112823), U.S. patent application Ser. No. 10/541,180 (carrying a publication date of Mar. 9, 2006 and a U.S. publication no. 20060049108) and in international patent application no. PCT/CA2005/000585 (carrying a publication date of Oct. 26, 2006 and a publication no. WO 2006/110972). The entire contents of these patent documents is incorporated herein by reference.
Until recently it was considered that the chemical structure of the substance or material used to make adsorbent, coalescing or separating media determined the adsorptive, coalescing or separating characteristics of such media. It has, however, come to be recognized in accordance with the present invention that certain physical attributes of the media play an important role in relation to the separation of one liquid from another.
Thus, for example, the physical aspects of coalescing type media need to be further developed in relation to their exploitation for (liquid/liquid) separation systems wherein there is a constant flow of liquid across the coalescing media. The flow rate of liquid may, for example, range up to 80 m/h or more.
Advantageously, a coalescing media should be able to support the above mentioned resulting pressure drop across the coalescing media (for a reasonable or predetermined time period) without any (undesired) leaking of untreated or partially treated fluid medium through the coalescing media, i.e. the coalescing media advantageously should be able to resist fluid medium breakthrough that would allow the fluid to go around the media and avoid the adsorbing, coalescing and desorbing process.
International patent application no, PCT/CA2005/000585 (referred to above) indicates that then known coalescing media were not particularly designed to support pressure drops and to resist deformation and compacting when in contact with such a flow. It is indicated in the application that a (particulate) coalescent medium could, for example, react to the pressure drop that comes with the constant flow by physically rearranging itself (i.e. by compaction) so as to create unwanted open space(s) for the flow to pass therethrough. As a result of this rearrangement the target fluid in the flow over time may start to undesirably leak from the media without the desired contact (of oil) with the coalescing media. In other words, to the extent that leaking (i.e. breakthrough) may occur, process (oil) recovery efficiency may be reduced in kind.
International patent application no. PCT/CA2005/000585 (mentioned above) does, however, describe a possible solution to the problem of leaking. Thus this international application suggests the exploitation of a media which in addition to a coalescing media component (including a powder) also comprises a fiber (reinforcement) component.
There is, however, a continuing need for coalescing media which could avoid or minimize leaking problems (over time). It would thus, for example, be advantageous to have other or alternate means for dealing with the problem of leaking. It would in particular be advantageous to be able to exploit a coalescence media which could attenuate the problem of leaking and which would not require the presence of a fiber (reinforcement) component. The removal of a fiber component as part of a coalescing medium could, for example, facilitate the manufacture of a coalescing type cartridge for an oil-from-water separator system wherein the cartridge may be provided with an annular coalescent bed comprising the coalescing medium (as shall be described herein).
It is to be understood herein that the expression Indentation Force Deflection no. (i.e. IFD no.)
a reference to a measure of the load bearing capacity of a flexible polymeric foam material (e.g. such as in particular a polyurethane foam). It is to be further to be understood herein that in relation to the IFD no. reference may be made to Test Method ASTM D3574 which sets forth Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams; for the purposes herein the Test Method ASTM D3574 may be used or adapted as needed or necessary for other types of foam materials such as polystyrene foam, polypropylene foam, polyester foam, and polyethylene foam and the like. Generally the IFD no. is measured as the force (in pounds) required to compress a 50 square inch circular indentor foot into a 4 inch thick sample, typically 15 inches square or larger, to a stated (i.e. predetermined) percentage (e.g. 25%) of the sample's initial height (i.e. thickness). IFD is also known as or called “ILD” (Indentation Load Deflection.)
It is to be understood herein that word Hysteresis is a reference to the ability of foam to maintain original support characteristics after flexing. It is to be understood herein that Hysteresis is the percent of 25% IFD loss measured as a compression tester returns to the normal (25% IFD) position after measuring 65% compression. Lower hysteresis values, or less IFD loss are desirable. Low hysteresis in conventional foam is equal to less IFD loss.
It is to be understood herein that the expression Ball Rebound no. (i.e. BR no.) is a reference to a resilience measure which is the rebound height attained by a steel ball, expressed as a percentage of the original drop height. The measurement test involves dropping a steel ball of known mass from a predetermined height onto a foam sample (of a desired foam material); see for example the test procedure (ASTM D3574) used to measure the surface resilience of flexible polyurethane foam.
It is to be understood herein that the expression Support Factor no. (i.e. SF no.) is a reference to a ratio of IFD values for a foam material, namely a 65% IFD value and a 25% IFD value wherein SF=65% IFD/25% IFD, the ratio being determined after one minute of rest or recovery. Foam materials with low support factor (SF) are more likely to bottom out (lack support) under load. (see also Compression Modulus below)
Thus in accordance with one aspect the present invention provides a coalescing agent or medium for facilitating the separation of a non-aqueous phase from an aqueous phase of an aqueous medium, said agent consisting of particles of a polymeric foam material having:
In accordance with the present invention there is provided a coalescing agent wherein said polymeric foam material may, for example, be selected from the group of foam materials consisting of polyurethane foam, polystyrene foam, polypropylene foam, polyester foam, and polyethylene foam.
In accordance with the present invention there is provided a coalescing agent wherein said agent may comprise (e.g. consist of) particles of a polymeric foam material having:
In accordance with the present invention there is provided a coalescing agent wherein said agent may comprise (e.g. consist of) particles of a polymeric foam material having an IFD no. of from 90 to 125.
In accordance with the present invention there is provided a coalescing agent wherein said agent may comprise (e.g. consist of) particles of a polymeric foam material having an IFD no. of from 50 to 95.
In accordance with the present invention there is provided a coalescing agent wherein said agent may comprise (e.g. consist of) particles of a polymeric foam material having a BR no. of from 35% to 55.
In accordance with the present invention there is provided a coalescing agent wherein said agent may comprise (e.g. consist of) particles of a polymeric foam material having an SF no. of from 1.8 to 2.5.
In accordance with the present invention there is provided a coalescing agent wherein at least 85% by weight of said particles comprises particles having a particle size in the range of from 1120 to 4000 microns.
In accordance with the present invention the particles of the coalescing agent may, in particular, be particles which have been obtained by shearing (e.g. by ripping or shredding) of a (e.g. slab of) herein described polymeric foam material i.e. by size reduction which is accomplished in a manner which is distinct and different from mere grinding or sanding of a foam material into particles). Thus the particles may be obtained in a shearing manner such as described for example with respect to FIG. 6 in the above mentioned U.S. patent application Ser. No. 10/541,180 (carrying a publication date of Mar. 9, 2006 and a U.S. publication no. 20060049108) the entire contents of which are incorporated herein by reference. The particles may comprise ragged-edge particulate units such as described in the above mentioned U.S. patent application no. 10/541,180; the particulate units may be particulate units which may have a dimension in the nanoscale range (e.g. 10-100 nanometers); the particulate units may be particulate units wherein the ragged edges of said particulate units include filaments extending outwardly therefrom in the nanoscale range (e.g. 10-100 nanometers). The particles may for example be obtained as described herein below.
In accordance with the present invention the polymeric foam material may be any polymer suitable for the purposes herein, e.g. monomeric based polymer, a copolymer, etc.; for example, the polymeric foam material may be selected from the group of foam materials consisting of polyurethane foam, polystyrene foam, polypropylene foam, polyester foam, and polyethylene foam. Other types of foam material may be used keeping in mind the purpose specified herein, e.g. a copolymer of polyethylene and polypropylene, a copolymer of styrene and polyethylene, a copolymer of styrene and polypropylene, etc.
Suitable starting foam material for shearing (i.e. shredding) may be obtained commercially (e.g. from Domfoam International Inc. Montreal Quebec Canada). Thus it is possible to obtain a suitable starting foam slab from a manufacturer who identifies the foam material in relation to the desired or necessary IFD no., BR no., SF no. and density measurements.
The (starting) polymeric foam material (i.e. in the form of a slab of predetermined or desired size) to be rendered into particles for the present invention may as mentioned above, for example, be selected from the group of foam materials consisting of polyurethane foam, polystyrene foam, polypropylene foam, polyester foam, and polyethylene foam. Suitable starting foam materials may, more particularly, be obtained from Domfoam International Inc. (DOMFOAM) Montreal Quebec; such foam materials include polyurethane foam material in slab form obtainable from DOMFOAM under product numbers such as:
In accordance with another aspect the present invention provides a liquid permeable coalescing body for facilitating the separation of a non-aqueous phase from an aqueous phase of an aqueous medium, said body comprising a coalescing agent or medium as defined herein, said coalescing agent being subjected to a compression force of from 150 to 600 psi (e.g. within the confines of a cartridge such as for example described herein).
In accordance with a further aspect the present invention provides a liquid permeable assembly, for facilitating the separation of a non-aqueous phase from an aqueous phase of an aqueous medium, comprising an enclosure and a liquid permeable body of polymeric foam material packed in said enclosure, said liquid permeable body being a liquid permeable coalescing body as defined in herein, said enclosure having a fixed (i.e. first) upstream foraminous sidewall and an opposed fixed (i.e. second) downstream foraminous sidewall, said enclosure and said liquid permeable body being configured such that a flow of aqueous emulsion is able to pass through said fixed, upstream foraminous sidewalk, through said liquid permeable body and out of said enclosure through said opposed, fixed, downstream foraminous sidewall.
The terms “leak” and “leaking” as used herein are to be understood as characterizing a fluid as being able to go through a channel, or an open space, that is large enough that oil droplets passing therethrough avoid contact of oil droplets with the media.
The term “absorption” for the purpose of this application refers to any process that causes one substance to penetrate the inside of another substance. In the case of a spill clean-up, the aqueous phase and the non-aqueous phase are absorbed into porous sorbent materials or into particulate material spaces.
The term “adsorption” for the purpose of this application refers to a process that causes one substance to be attracted to and stick to the surface of another 30 substance, without actually penetrating its surface.
It is thus also to be understood herein that the expressions “coalescent bed”, “coalescent body” or the like refer to a coalescent bed, body or the like which is able to facilitate the coalescence, for example, of water immiscible liquid droplets (e.g. oil droplets) from an emulsion comprising the water immiscible liquid (e.g. oil) in water (i.e. water being the continuous phase). Such a “coalescent bed”,“coalescent body” or the like may for example comprise a coalescing agent as described herein.
In the drawings which illustrate an example(s) embodiment(s) of the invention:
In each of the figures the same reference numerals are used to identify the same elements, components, members, etc.
Referring to
Referring to
The cylindrical enclosure wall element terminates in opposed ends which are respectively generally indicated by the reference numerals 5 and 7.
Referring in particular to
The illustrated example cartridge assembly also comprises an inner tubular component 13 (see in particular
The inner tubular component 13 (see
Referring to
Additionally, for the embodiment shown (see
As may be appreciated from
As may be appreciated from
In accordance with the present invention the annular holding chamber may be filled (in any desired or necessary manner) with the desired coalescing agent of the present invention such that the coalescing agent may be maintained therein (i.e. as a coalescent bed) keeping in mind the purpose of the coalescing agent to separate a non-aqueous phase from an aqueous phase of an aqueous medium e.g. the coalescing agent may be subjected to a predetermined compression force, e.g. a compression force of from 150 to 600 psi. In other words, the amount of coalescing agent to be added to the holding chamber may be chosen as a function of the holding chamber size and configuration such that when the remaining end cap is installed, the coalescing agent (i.e. under compression) may be able to fulfill its desired function e.g. to facilitate separation of oil from water. The coalescing bed formed from the coalescing agent may, for example, be subject to the above mentioned compression force of from 150 to 600 psi; depending on the material used to form the coalescing agent the coalescing agent may of course be subject to a compression force which is outside the range of 150 to 600 psi (keeping in mind the purpose thereof).
It is of course to be appreciated that once the first end cap element 9 is attached to the end 5 of the cylindrical enclosure wall element 3, the inner tubular component 13 may be inserted into the cylindrical enclosure wall element 3 so that the first end member 15 thereof is slide into (releasable) engagement (i.e. in surface to surface abutment) with the above mentioned opening 22 of the first end cap element 9, i.e. the first end member 15 may engage the opening 22 in a (releasable) snug but not tight press fit type engagement for facilitating manual disengagement. Again, as mentioned above, the so formed annular holding space may then be filled with the desired particulate material. Once the annular holding space is filed with the coalescing agent, i.e. particulate material (not shown in
Referring to
The separator system (see
The interconnection shaft member 66 has two externally threaded opposed ends 68 and 70. The interconnection shaft member 66 also has three equally spaced baffle or wing members 72 which extend radially outwardly from the shaft body of the interconnection shaft member 66. The baffle members 72 also extend longitudinally parallel to the longitudinal axis of the interconnection shaft member 66.
The cartridge support anchor component 62 is hollow and has an outer peripheral wall 74.
An opening end of the outer peripheral wall 74 of the cartridge support anchor component 62 is connected or attached to the common wall 59 about the common wall opening 60 in liquid (i.e. water) tight fashion so as to inhibit leaks thereabout (e.g. by a suitable weld 76 in the case where both the common wall and the peripheral wall are of metal). Liquid medium in the inlet chamber thus has access to the interior of the cartridge support anchor component 62, defined by the outer peripheral wall 74, through the common wall opening 60.
The other end of the cartridge support anchor component is provided with an annular gasket engagement platform 77; this platform has a central opening 77a. The annular gasket engagement platform 77 is disposed so as to engage an annular gasket (e.g. rubber gasket) attached to a cartridge assembly of the present invention.
Referring to
Turning back to
The cartridge attachment component includes a compression spring 104 disposed about the interconnection shaft member 66 between the rotatable compression adjustment member 100 and a compression engagement member 106.
The compression engagement member 106 has an opening through which the interconnection shaft member 66 may pass for engagement with the compression adjustment member 100. The compression engagement member 106 has an annular shoulder member 108 for (compression) engagement with the upper annular gasket 78 attached to the immediately adjacent cartridge assembly.
The cartridge attachment component also has a sleeve member 110 and a washer member 112 which are rotatable about the longitudinal axis of the interconnection shaft member 66.
As may be appreciated the direction of rotation of the compression adjustment member 100 will determine the degree of compression to which the cartridge assembly(ies) are subjected; during operation sufficient compression is to be applied so as to provide liquid (i.e. water) tight interconnection between adjacent cartridge assemblies and between the cartridge assembly(ies) and the adjacent cartridge support anchor component and the adjacent cartridge attachment component. Referring to
As may be seen in
Liquid (medium) may pass through the cartridge tower of
The system shown in
The following examples describe example embodiments of the present invention. The particles may be obtained by exploiting size reduction structures shown by way of example in
1
b=particle feeder
The granulator units of
As may be appreciated from
Turning to
A starting slab of suitable foam material may be reduced to a particulate form of suitable size for the purposes of the present invention by exploiting two size reduction (i.e. ripping or shredding) stages and if desired or necessary followed by a particle sizing stage (not shown); namely, by exploiting a first size reduction step followed by a second size reduction step. As desired or necessary the particle product of the second size reduction step may be divided so as to remove undersize and oversize particles so as to obtain a batch of particles of desired predetermined size (i.e. desired size distribution).
First Size Reduction Step:
Second Size Reduction Step:
If Desired or Necessary a Particle Size Grading Step:
The starting foam may for example be:
Referring to
The filing of a cartridge may be achieved in stages by dividing a predetermined weight of particles into desired weight portions (e.g. each weight portion being place in a respective bucket). Each weight portion may then, in sequence, be fed into the press chute member 206, the press piston 210 activated and the portion of the particles volumetrically compressed (by a predefined stroke of the compression head 208) to form respective predetermined particle strata (for example as shown per the table below). The number of strata may be predetermined according to the desired density distribution it may be desired to have in the cartridge. Compression force may be captured by load cells and recorded to control uniformity and cartridge quality—is it possible to specify what the compression force is that is being applied to the particles in the loaded cartridge After the last quantity of particles is introduced and compressed into the cartridge the cover end cap element is then installed to complete the cartridge assembly.
The following Strata table gives an example of the number of steps, the amount of material and the total height of compaction at the end of each strata forming step of the filing process of an example particle charged cartridge wherein the annular holding space has a height of 19.5 inches an outer (i.e. inner) ring diameter of 6 inches and an inner ring diameter of 2 inches. The final total height of the strata for the example charged cartridge is 19.5 inches for a total weight of particles of 2.036 Kg of particles. The particles may be particles of DOMFOAM product No. 2565 treated as above described so as to having above mentioned particle size distribution.
A number of tests were carried out using a separator system (of the type as set forth and described with respect to
Then the fluid is sent to the Cartridge tower to coalesce and separate the oil and water before the treated water is returned to the master tank. The non coalesced oil is send back to the master tank with the water. By re circulating the non coalesced oil, as the test progress in time, the oil in to the water concentration constantly increase at the inlet of the cartridge tower and the fluid become more and more difficult to threat. The testing devise simply magnify performance difference between different cartridges. A Turner designs T D 500D (from Turner Designs Hydrocarbon instruments, Houston, Tex., USA) was used to measure hydrocarbon content in the water output (130—
The single cartridge of the separator system was, on the one hand, a cartridge (as described herein) charged with particles of the present invention and, on the other hand, a cartridge (also as described herein) charged with a previously known type of coalescing particulate material.
The cartridges in each case were charged or filled with particles using the charging technique described above in example 2 (i.e. in each case 8 strata); the starting foam material was either one in accordance with the present invention (hereinafter also designated generally as an RPA5 product) namely one of the above mentioned DOMFOAM products No. (RPA5) 2565, (RPA5) 2545, (RPA5) 1095 or was another type of particulate material designated herein as RPA3 obtained from a polyurethane foam material obtained from Plastique GYF Ltd., St Jean Sur Richelieu, Quebec, Canada and having the following characteristics:
≈1.2*1
The particles used for testing were as follows:
The results are shown in the following tables:
RPA 3 Test 1:
RPA 3 Test 2:
RPA 5 Test 3:
It can be easily seen (from either the VIPA or the TD500) that for the oil in water concentration at the outlet of the vessels, the oil in water concentrations obtained at the outlet of the RPA3 cartridges are significantly higher than those obtained at the outlet of the RPA5 cartridge (see the
Number | Date | Country | Kind |
---|---|---|---|
2592190 | Jun 2007 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2008/001173 | 6/18/2008 | WO | 00 | 6/25/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/154746 | 12/24/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3947362 | Etani | Mar 1976 | A |
4102785 | Head et al. | Jul 1978 | A |
4552903 | Nafziger et al. | Nov 1985 | A |
5239040 | Kozlowski | Aug 1993 | A |
7416667 | Benachenou et al. | Aug 2008 | B2 |
20040112823 | Benachenou et al. | Jun 2004 | A1 |
20060049108 | Veronneau et al. | Mar 2006 | A1 |
20070078193 | Gilder et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
1093478 | Jan 1981 | CA |
1167774 | May 1984 | CA |
2421076 | Mar 2006 | CA |
WO 2004087286 | Oct 2004 | WO |
WO 2006110972 | Oct 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100267852 A1 | Oct 2010 | US |